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Abstract

We study the competitive effects of dual pricing, a vertical restraint that involves charg-

ing a distributor different prices for units intended to be resold online versus offline. We

develop a model in which a manufacturer contracts with hybrid retailers selling both

in-store and online. We find that, by eliminating wasteful price dispersion, dual pricing

allows the manufacturer to induce the industry monopoly outcome, whereas uniform

pricing does not. Despite this, a ban on dual pricing has negative welfare effects if

the online market is small, if the offline consumers’ search costs are high, and if the

monopoly pass-through is high.
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1 Introduction

Internet sales are becoming increasingly important in retailing. Many retailers have adopted

a so-called hybrid business model, which involves both owning and operating brick-and-

mortar stores, and selling online—such online sales can take place on the retailer’s online
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store or on a platform. This shift towards online sales has been a cause for concern for

manufacturers. To the extent that searching and comparing prices is easier online than

offline, a greater prevalence of online sales may intensify intra-brand competition, which may

ultimately be detrimental to manufacturers’ profits.1 This has led manufacturers to seek

greater control over their distribution network, using vertical restraints that make it harder

or more costly for retailers to sell online. A prominent example is the Pierre Fabre case,

in which cosmetic and body-hygiene products manufacturer Pierre Fabre required from its

retailers that a pharmacist be present to assist customers. The European Court of Justice

(case C-439/09) viewed that practice as an explicit ban on online sales, and thus as an

infringement of Article 101 of the Treaty on the Functioning of the European Union. More

generally, the fact that retailers face numerous contractual restrictions when selling online is

well documented in the European Commission’s 2017 e-commerce sector inquiry.2

In this paper, we study dual pricing, a vertical restraint that involves charging the same

distributor a different price for units intended to be resold online than for units intended

to be resold offline. In the European Union, dual pricing was a hardcore restriction under

the Vertical Block Exemption Regulation (VBER) until June 2022. It remains a hardcore

restriction “if its goal is to prevent online sales.” In recent years, a number of manufacturers in

Germany have been led to discontinue their use of dual pricing after the Bundeskartellamt,

Germany’s competition authority, initiated proceedings. For example, in the market for

household appliances in 2013, Bosch-Siemens was found to have offered price discounts to

retailers based on their share of online versus offline sales. Similar concerns were raised

in 2013 and 2016, respectively, about Gardena and Lego’s trade discounts.3 Lego’s price

discount system also ran afoul of the French Competition Authority in 2021 (case 21-D-02).

We explore the incentives to use dual pricing and the associated welfare implications

in online and brick-and-mortar markets. We develop a clearinghouse model with vertical

relations, based on Varian (1980), Stahl (1989), and Janssen and Shelegia (2015). A man-

ufacturer M distributes its product through two hybrid retailers, operating on- and offline.

There are two types of consumers: some search online for free; others use the offline chan-

nel, where search is costly. The manufacturer first offers contracts to both retailers. Next,

retailers compete in prices and consumers make search and purchase decisions. Throughout

1Another concern, which we will not address in this paper, is that manufacturers may find it harder to
maintain high-quality sales and post-sales services online. See Section II in Miklós-Thal and Shaffer (2022)
for a discussion of such service theories of dual pricing.

2Such restrictions include limitations to sell on marketplaces, limitations to sell on own website, limitations
to use price comparison tools, and limitations to advertise online. For cases involving restrictions on online
sales, see the ASICS case in 2015 (Bundeskartellamt, B2-98/11), the Coty case in 2017 (European Court of
Justice, C-230/16), and the Guess case in 2018 (European Commission, AT.40428).

3For the Bosch-Siemens and Gardena cases, see Bundeskartellamt B7-11/13 and B5-144/13. The case
number for the Lego case does not seem to be publicly available, but press releases can be found on the
website of the Bundeskartellamt.
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the paper, we maintain the assumption that retailers do not price discriminate between the

online and the offline channel—we discuss this assumption in detail below. We compare two

regimes: under uniform pricing, the manufacturer offers a standard two-part tariff; under

dual pricing, we again have a two-part tariff, but with potentially distinct variable parts for

online and offline sales.

We find that dual pricing is strictly optimal for the manufacturer. Specifically, we show

that the manufacturer is unable to induce the industry profit-maximizing outcome with a

uniform pricing contract. The reason is that, regardless of what uniform-pricing contract

is used, retailers face conflicting incentives. On the one hand, retailers want to undercut

each other to capture the online market; on the other, they also have an incentive to set

high prices to exploit their offline customer base. This tension gives rise to a mixed-strategy

equilibrium. The resulting price dispersion prevents the retail market from being supplied at

the industry monopoly price.

By contrast, a well-chosen dual pricing contract can induce the industry monopoly out-

come. The optimal contract involves discriminating against the online market by setting

a high variable part on online sales. This suppresses the retailers’ incentives to undercut

each other to corner the online market. Thus, by eliminating wasteful price dispersion, dual

pricing allows the manufacturer to fully exploit its monopoly power, whereas uniform pricing

does not. We also show that these results are robust to various alterations of the oligopoly

and search model, to allowing for uniform-pricing contracts that go beyond two-part tariffs,

and to upstream contracts being private rather than public.

Even though the industry monopoly outcome arises under dual pricing, the welfare effects

of banning this practice are a priori unclear. The reason is that, under uniform pricing

retailers set prices both above and below the monopoly level with positive probability. As

a result, a ban on dual pricing does not systematically reduce prices, and the question is

whether such a ban raises consumer surplus and/or aggregate surplus in expectation. Using

approximation techniques, we show that the answer is negative in a wide range of scenarios.

Specifically, a ban on dual pricing reduces both consumer and aggregate surplus when the

online market is relatively small, when offline consumers face low search costs and monopoly

pass-through is high, or when offline consumers have high search costs and demand is ρ-

linear (Bulow and Pfleiderer, 1983; Anderson and Renault, 2003).4 By contrast, banning

dual pricing has positive welfare effects when offline search costs are small and monopoly

pass-through is low.

The interests of online and offline consumers regarding dual pricing are often misaligned.

This divergence arises because online consumers receive two draws from the equilibrium price

4The demand function D is said to be ρ-linear if D(p)ρ is linear. This is equivalent to the inverse demand
function having constant curvature, and thus to monopoly pass-through being constant.
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distribution, while offline consumers receive only one. As a result, online consumers are more

likely to benefit from a ban on dual pricing. Indeed, we find that when search costs are low

or the online market is large, online consumers favor a ban on dual pricing, whereas offline

consumers prefer it to remain legal. This suggests that competition policy measures aimed

at protecting online sales, such as the prohibition of dual pricing, may ultimately backfire by

harming offline consumers.

The above results have implications beyond the welfare effects of dual pricing. In the

Stahl (1989) model without vertical relations, it is well known that an increase in the share

of shoppers or a decrease in the non-shoppers’ search cost results in a first-order stochastic

dominance shift toward lower prices, thus increasing consumer and aggregate surplus. Our

analysis implies that these intuitive results can be easily overturned once the manufacturer’s

optimal response to these changes, which typically involves raising the wholesale price to

soften retail competition, is taken into account. For instance, our Proposition 9 implies that

under uniform pricing, starting with no shoppers, a small increase in the share of shoppers

lowers consumer and aggregate surplus for any well-behaved demand function. In the case

where demand is ρ-linear and offline consumers’ search costs are high, our Proposition 7

implies that consumer and aggregate surplus are in fact highest in the absence of shoppers.

This highlights the importance of taking vertical relations into account when assessing the

welfare effects of policies aimed at reducing search frictions.

On the assumption that retailers do not discriminate. One of the paper’s central

assumptions is that retailers charge the same prices on- and offline. This assumption is

broadly in line with the evidence reported in Cavallo (2017). Cavallo collected data on

the online and offline prices charged by 56 large hybrid retailers in 10 countries and found

that on- and offline prices are identical 72% of the time. Moreover, there is substantial

variation in that key statistic both across countries (from 42% in Brazil to 91% in Canada)

and across sectors (from 25% for office products to 83% and 92% for electronics and clothing,

respectively). Thus, the assumption of no discrimination has empirical relevance, at least for

some countries and sectors.5

There are many good reasons why a retailer might choose not to price discriminate.

First, the firm may worry about losing customer goodwill, as its offline consumers would

feel deceived if they found out that the product they just purchased was offered online at

a lower price by the same retailer. Second, an individual (or collective) commitment not

to price discriminate may provide a strategic advantage. Third, if the online channel is

a marketplace, the platform may impose a price parity clause, thus making discrimination

5For another well-known real-world instance in which retailers do not discriminate as much as one would
expect them to, see the paper by DellaVigna and Gentzkow (2019), which shows that most U.S. food,
drugstore, and mass-merchandise chains set nearly uniform prices across their stores.
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infeasible. From this, we conclude that both the discrimination case and the no-discrimination

case are relevant and worth studying. This paper focuses on the no-discrimination case. We

refer the reader to Miklós-Thal and Shaffer (2021) for a thorough study of dual pricing in a

setting in which retailers do discriminate across markets.

Related literature. The literature on clearinghouse models was pioneered by Varian

(1980), Rosenthal (1980), and Stahl (1989, 1996). More recent contributions include Baye

and Morgan (2001), Montez and Schutz (2021), Shelegia and Wilson (2021), and Armstrong

and Vickers (2022). Janssen and Shelegia (2015) embed Stahl (1989)’s clearinghouse setup

into a vertical-relations model with an upstream monopolist and study the consequences of

consumers not observing vertical contracts. Garcia and Janssen (2018) study the upstream

manufacturer’s incentives to price-discriminate between retailers in Janssen and Shelegia

(2015)’s framework; Janssen and Reshidi (2022, 2023) address a similar question but in a

search model without shoppers. We contribute to this literature by studying the effects

on industry performance of non-linear upstream contracts that can condition on the sales

channel. We also perform novel comparative statics in the vertical-relations version of the

Stahl (1989) model, showing that parameters such as search costs or the share of informed

consumers have radically different welfare effects once upstream contracts are endogenized.

Our work is also related to the literature on vertical restraints in e-commerce, where

consumer search plays a central role.6 Retail-price recommendations (RPRs) are among the

most widely used vertical restraints in e-commerce and were shown empirically to influence

prices and consumer search (De los Santos et al., 2018). Lubensky (2017) shows that a

manufacturer can use RPRs as a cheap-talk signal about its marginal cost to influence the

search behavior of consumers. In Buehler and Gärtner (2013), a manufacturer uses RPRs to

convey information on cost or demand conditions to retailers. Janssen and Reshidi (2022)

find that regulations requiring that at least some sales be made at RPRs can harm retailers

and consumers. Asker and Bar-Isaac (2020) study the effects of minimum-advertised-price

policies on search frictions, retail competition, and upstream profits. In a model in which

consumers have context-dependent preferences, Helfrich and Herweg (2020) show that a

manufacturer can benefit from banning online sales, as low online prices can negatively affect

the perceived quality of the manufacturer’s product.

The closest paper to ours is Miklós-Thal and Shaffer (2021), who also study input price

discrimination across resale markets. Our paper differs from theirs in several dimensions.

First, as discussed above, Miklós-Thal and Shaffer (2021) allow retailers to price discriminate,

whereas we do not. Second, they consider an exogenously given system of market demand

functions, whereas we explicitly model the underlying asymmetry in search frictions online

6For classic references on vertical restraints, see Mathewson and Winter (1984), Rey and Tirole (1986),
Hart and Tirole (1990), and Winter (1993).
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and offline, which generates different demand functions across the retail markets. Miklós-

Thal and Shaffer (2021) show that, everything else equal, the manufacturer has an incentive

to discriminate against those resale markets in which competition is more intense. In the

context of online versus offline sales, this means setting a higher wholesale price for online

units so as to bring online and offline retail prices closer together. This mechanism is absent

in our model, as retailers are required to price uniformly across markets. Instead, the reason

why discriminating against online sales is profitable for the manufacturer is that it eliminates

the price dispersion that is inherent to clearinghouse models.

The rest of the paper is organized as follows. In Section 2, we present the model. In

Section 3, we characterize equilibria under uniform and dual pricing. In our baseline result

in Section 3.1, we show that the manufacturer strictly benefits from using dual pricing. In

Section 3.2, we discuss several extensions of the model, including a richer class of uniform-

pricing contracts, the possibility of discriminating between retailers, and secret contracts. In

Section 4, we examine the welfare effects of banning dual pricing. We conclude in Section 5.

2 The Model

A manufacturer,M , sells its product through two identical retailers, R1 and R2, who compete

in prices. The manufacturer has a constant unit cost of production, c > 0. Retailing costs

are linear and normalized to zero. The retailers have a hybrid business model, in that they

operate both in an online market (O) and in a brick-and-mortar market (B). We assume

throughout that each retailer Ri sets the same price pi on- and offline.

The online market is populated by a mass λ ∈ (0, 1) of buyers. These consumers, some-

times referred to as shoppers, purchase from the retailer offering the lowest price (and flip a

coin in case of indifference). The remaining mass of consumers, 1− λ, is composed of offline

buyers, sometimes referred to as captive consumers. These consumers search sequentially

with perfect recall, as in Stahl (1989). Specifically, each offline consumer initially observes

the price of one of the retailers, drawn at random with probability of 50/50. Then, the

consumer can either purchase from this retailer, or pay a search cost of s, discover the price

charged by the other retailer, and purchase from the retailer charging the lowest price. We

assume throughout that retailers play an advertising role in the following sense: if the prod-

uct is not available at retailer Ri (because that retailer has not signed a contract with the

manufacturer), then the consumers that are captive to Ri are not aware of the product’s

existence and will therefore not attempt to purchase it from Rj. This assumption rules out

the trivial outcome in which the manufacturer can induce the industry monopoly outcome

by only dealing with one retailer.

Per-consumer demand is given by the continuous function D(·), assumed to be strictly

6



decreasing and twice continuously differentiable up to its (potentially infinite) choke price

p̌. Moreover, D satisfies Marshall’s second law of demand (i.e., the absolute value of the

price elasticity of demand is non-decreasing in price), and limp→∞ r(p) = 0, where r(p) ≡

(p − c)D(p) is industry profit at price p. These assumptions imply that, for every unit cost

w < p̌, the function p ∈ (w, p̌) 7→ π(p, w) = (p − w)D(p) is strictly quasi-concave and has a

unique maximizer, which we denote pm(w). For what follows, it is useful to define p0 ≡ pm(c),

the price that maximizes industry profit, and r0 ≡ r(p0), the industry monopoly profit.

The manufacturer offers public, non-discriminatory contracts to the retailers. A contract

is a triple (wo, wb, T ), where T denotes the lump-sum transfer made to the manufacturer,

wo > 0 the per-unit wholesale price for units sold online, and wb > 0 the per-unit wholesale

price for units sold offline. We shall distinguish two cases. Under uniform pricing, on- and

offline wholesale prices must coincide, wo = wb = w, and the contract thus boils down to a

standard two-part tariff, (w, T ). Under dual pricing, there is no such restriction.

The game unfolds as follows. In stage 1, the manufacturer publicly announces its contract.

In stage 2, retailers simultaneously decide whether to accept the contract and their decisions

become common knowledge. In stage 3, retailers that have accepted the contract choose

their retail prices. In stage 4, consumers make search and purchase decisions as described

above.7 The equilibrium concept is perfect Bayesian equilibrium.8 Moreover, we confine

attention to equilibria in which the manufacturer does not mix,9 retailers do not randomize

their acceptance decisions,10 and retailers behave symmetrically in stage 3, both on and off

the equilibrium path.

Some of the results in Section 4 require stronger assumptions on the shape of demand.

We say that the demand function D is ρ-linear if it takes the form11

D(p) =M

[

1 +
1− α

α
(a− bp)

] α

1−α

(1)

7Note that we are assuming that consumers observe the upstream contract to simplify the analysis. The
case in which the upstream contract is unobservable to consumers gives rise to major technical complications.
Janssen and Shelegia (2015) show that an equilibrium in which the manufacturer’s choice of upstream contract
is pure and the consumers’ search strategy is a cutoff rule fails to exist for a wide range of parameters. It is
unclear whether an equilibrium exists at all in this case, and, if so, how to characterize it.

8The reason for not using subgame-perfect equilibrium is that offline consumers’ information sets at the
beginning of stage 4 are not singletons. Note that, since consumers observe the manufacturer’s contract and
by virtue of the no-signaling-what-you-don’t-know condition (Fudenberg and Tirole, 1991), a non-shopper
that observes Ri’s price must hold passive beliefs about Rj ’s price.

9Given our assumption that consumers observe the upstream contract, this assumption is generically
without loss of generality, as the manufacturer’s maximization problem will typically have a unique solution.

10It is clear that, for any contract, the acceptance subgame has at least one pure-strategy equilibrium. If
T is so high that retailers would make losses if they both accepted the contract, but sufficiently low so that
a retailer that accepts the contract makes positive profits conditional on the other retailer rejecting, then
the acceptance subgame has the same structure as Chicken. That subgame therefore has two pure-strategy
equilibria and one non-degenerate mixed-strategy equilibrium. We select one of the pure-strategy equilibria.

11The case of α = 1 arises from taking the limit in equation (1), which gives D(p) = M ea−bp.
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for some parameters α > 0, a, b > 0, and M > 0.12 Note that linear demand and iso-elastic

demand are nested as special cases. This family of demand functions was first introduced

by Bulow and Pfleiderer (1983), who showed that the ρ-linearity of demand is equivalent to

the monopoly cost pass-through being constant. Routine calculations show that, under this

demand specification,

pm(w) =
α + (1− α)a

b
+ αw,

so that monopoly pass-through, dpm/dw, is indeed constant and equal to α.

3 Uniform vs. Dual Pricing

In this section, we show that dual pricing allows the manufacturer to fully exploit its

monopoly power and induce the monopoly outcome, whereas uniform pricing does not. The

main result is in Section 3.1. We provide extensions and discuss the robustness of this result

in Section 3.2.

3.1 Baseline Result

Uniform pricing. We proceed by backward induction. Consider the subgame in which the

manufacturer has offered uniform-pricing contract (w, T ), which both retailers have accepted.

Equilibrium behavior in the retail pricing game was studied in Varian (1980) and Stahl (1989).

It is well known that, in equilibrium, retailers draw their prices from a continuous cumulative

distribution function (CDF), F , with support [p, p], and offline consumers never search on

the equilibrium path. The retailers’ indifference condition

[

λ(1− F (p)) +
1− λ

2

]

π(p, w) =
1− λ

2
π(p, w)

pins down the CDF as

F (p, p, w) = 1−
1− λ

2λ

(
π(p, w)

π(p, w)
− 1

)

(2)

for every p ∈ [p, p]. The lower bound of the support, p(p, w), is the unique solution to

F (p, p, w) = 0, which can be rewritten as:

(1− λ)π(p, w) = (1 + λ)π(p, w). (3)

12This parametrization of ρ-linear demand is due to Anderson and Renault (2003). Genesove and Mullin
(1998) use a variant of this specification in their empirical investigation of oligopoly conduct in a homogeneous-
products industry.
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To determine the upper bound of the support, let

H(p, w) ≡

∫ p

p(p,w)

D(p)F (p, p, w)dp (4)

denote the expected gains from searching (gross of the search cost) when receiving price

quote p, and expecting the other firm to draw its price from F (·, p, w). To ensure that offline

consumers do not search on path and deter retailers from pricing above p, it must be that

either (i) p = pm(w) and H(p, w) ≤ s, or (ii) p < pm(w) and H(p, w) = s. It is easily checked

that limp↓wH(p, w) = 0 and H(·, w) is continuous on (w, p]. Moreover, by Lemma A.1.1 in

Appendix A.1, Marshall’s second law of demand implies that H(·, w) is strictly increasing on

the interval (w, pm(w)). It follows that there exists a unique p such that condition (i) or (ii)

holds. Hence, the retail equilibrium is unique; we denote the CDF of prices by F (·, w) and

its support by [p(w), p(w)].

Moving backward, it is clear that in any equilibrium in which both retailers are active,

the fixed part of the tariff must fully extract retailers’ profits, i.e., T = T (w) ≡ 1−λ
2
π(p, w).

The manufacturer then earns an expected profit of

Π(w) =

∫ p(w)

p(w)

r(p)dG(p, w), (5)

where

G(p, w) ≡ (1− λ)F (p, w) + λ
[
1− (1− F (p, w))2

]

is the CDF of prices paid by consumers. To understand the formula for G, note that a share

1−λ of consumers receive one draw from F , whereas the remaining share receives two draws

and picks the lowest.

Let us now show that the maximization problem

max
w>0

Π(w) (6)

has a solution. Standard arguments imply that the objective function is continuous. We show

in Appendix A.1 that Π(·) is strictly increasing on (0, c] and strictly decreasing on [p0, p̌) (see

Lemma A.1.3). It follows that maximization problem (6) is equivalent to maximizing the

continuous function Π(·) over the compact set [c, p0]. Hence, a solution exists.

Alternatively, the manufacturer could choose to offer a contract with a fixed fee so high

that only one retailer would be willing to accept it. In that case, the manufacturer has no

incentives to introduce double marginalization: it sets its variable part equal to c, and the

active retailer prices at p0 and supplies the online consumers as well as its captive consumers.

The manufacturer can then adjust its fixed fee to extract retail profits, which results in the
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optimal tariff
(
c, 1+λ

2
r0
)
and a profit of 1+λ

2
r0 for the manufacturer. Note that even though

the manufacturer induces a downstream price of p0, it does not earn the industry monopoly

profit, as the consumers that are captive to the excluded retailer are not served.

Taking stock, we have that, if maxw Π(w) > 1+λ
2
r0, then in equilibrium the manufacturer

offers (w∗, T (w∗)), where w∗ is any solution to maximization problem (6), both retailers ac-

cept, and retailers mix according to F (·, w∗). If the inequality is reversed, then in equilibrium

the manufacturer offers
(
c, 1+λ

2
r0
)
, and only one retailer accepts and prices at p0. Finally,

in the knife-edged case where maxw Π(w) = 1+λ
2
r0, there exist equilibria with one active

retailer and equilibria with two active retailers, as characterized above. This concludes the

equilibrium characterization.

Observe that, in any equilibrium, either both retailers accept and retail prices are drawn

from a continuous distribution, or only one retailer accepts and a share (1−λ)/2 of consumers

are not served. This means that the industry monopoly outcome, in which all consumers

purchase at p0 with probability one, never arises, regardless of which equilibrium is selected.

We summarize these insights in the following proposition:

Proposition 1. An equilibrium exists under uniform pricing. Moreover, there exists no

equilibrium in which the industry monopoly outcome arises.

In standard models of vertical relations with smooth product differentiation and no in-

formation frictions on the consumer side, the retail equilibrium is always pure. This implies

that a simple two-part tariff is always sufficient to soften downstream competition and induce

the industry monopoly outcome (see, e.g., Mathewson and Winter, 1984). By contrast, in

our model two-part tariff contracts always induce wasteful mixing (unless one of the retailers

is excluded), and so the monopoly outcome cannot be achieved.

Dual pricing. Consider now the dual-pricing contract (wo, wb, T ) =
(
p0, c,

1−λ
2
r0
)
. Let us

argue that there exists an equilibrium in the continuation subgame in which both retailers

accept this contract and price at p0. Retailer Ri does not have an incentive to deviate upward,

as that firm would then lose the online consumers and charge a sub-optimal price on its offline

consumers. Similarly, a downward deviation would involve charging a sub-optimal price on

offline consumers and receiving a negative margin on online consumers. Hence, conditional

on both retailers having accepted the contract, pricing at p0 is indeed a Nash equilibrium.

As the fixed fee was set to fully extract retail profits, it follows that this dual pricing contract

generates the industry monopoly outcome and allows the manufacturer to obtain industry

monopoly profits. We go one step further and show that the industry monopoly outcome

with full surplus extraction arises in any equilibrium under dual pricing:

10



Proposition 2. There is an equilibrium under dual pricing. In any equilibrium, the manu-

facturer sets wo = p0 and wb ≤ c, both retailers are active and price at p0 with probability 1,

and the manufacturer makes a profit of r0. This outcome can be induced by the dual-pricing

contract
(
p0, c,

1−λ
2
r0
)
.13

Proof. The proof involves constructing a continuation equilibrium in the subgame following

any dual pricing contract. Interestingly, we find subgames in which firms mix in equilibrium

and offline consumers occasionally search on the equilibrium path, which cannot arise in

the standard Stahl (1989) model. Moreover, conditional on both retailers accepting contract
(
p0, c,

1−λ
2
r0
)
, we show that the unique equilibrium of the retail competition subgame involves

both retailers pricing at p0. See Appendix C for details.

Combining Propositions 1 and 2, we see that dual pricing is an essential tool, as it allows

the manufacturer to fully exploit its monopoly power and induce the monopoly outcome.

The manufacturer does so by discriminating against online sales. This eliminates retail-

ers’ incentives to undercut to corner the online market, thus giving rise to a pure-strategy

equilibrium.

Another less subtle (but, from the point of view of competition law, certainly riskier)

way of inducing the monopoly outcome would be to offer a two-part tariff with a variable

part equal to c and prohibit one of the retailers from selling online. An even less subtle

approach would be an outright ban on online sales—the manufacturer can then obtain the

industry monopoly profit, under the assumption that online consumers would be willing to

purchase from their local stores. What all these approaches have in common is that they

involve explicitly discriminating against online sales.

3.2 Extensions and Robustness

We begin this subsection by discussing the robustness of our results to various alterations of

the oligopoly and search model. Next, we undertake two more involved extensions. In the

first extension, we explore whether a richer class of uniform-pricing contracts could allow the

manufacturer to induce the industry monopoly outcome. In the second, we study a version

of the model in which retailers do not observe each other’s contracts.

Some robustness considerations. It is straightforward to show that Propositions 1 and 2

are robust to various alterations of the retail oligopoly and search model, such as having N

retailers instead of 2, endogenizing the share of online consumers (as in Varian, 1980; Baye

and Morgan, 2001), or allowing offline consumers to have heterogeneous search costs (as

13In Appendix C, we show that a dual pricing contract (wo, wb, T ) induces this outcome if and only if

wo = p0, wb ∈
[
(1+λ)c−2λp0

1−λ
, c
]

, and T = 1−λ
2 π(p0, wb).
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in Stahl, 1996). In all these alterations, the monopoly outcome remains out of reach under

uniform pricing, as retailers continue to randomize their prices (or the manufacturer excludes

some of them). By contrast, a well-chosen dual-pricing contract, with wo = p0 and wb = c,

still gives rise to the monopoly outcome. Similar insights obtain if we relax the assumption

that consumers observe the manufacturer’s contract: if an equilibrium exists under uniform

pricing, then it must give rise to price dispersion (or exclusion of one of the retailers), whereas

the monopoly outcome arises under dual pricing.14 Our results also extend to the case with

asymmetric shares µi of offline consumers, if the manufacturer can charge different fixed fees

to the retailers.15 Again, either wasteful price dispersion or exclusion arises under uniform

pricing, whereas the manufacturer obtains the industry monopoly profit with the dual-pricing

contracts (po, c, µir0) for i = 1, 2.

Our results also continue to hold if online and offline consumers have different demand

functions, Do and Db, under some conditions. Suppose for instance that Do and Db satisfy

the assumptions made above and that online consumers are less price-elastic than offline

consumers, i.e., D′
o(p)/Do(p) ≥ D′

b(p)/Db(p) for every p. Then, Corollary 1 in Armstrong

and Vickers (2023) implies that a vertically integrated monopolist controlling the prices of

both retailers would find it optimal to set uniform prices, i.e., p1 = p2. Let p∗ be such

an industry-profit-maximizing uniform price. The manufacturer can induce the outcome in

which both retailers price at p∗ by offering a dual-pricing contract with wo = p∗ and wb such

that p∗ ∈ argmaxp(p − wb)Db(p). This outcome cannot be achieved with a uniform-pricing

contract for the same reasons as in the baseline model.

Proposition 2 does, however, rely on the assumption that search frictions are absent

online. If, for instance, a fraction of the online consumers faced strictly positive search costs,

then dual pricing would no longer give rise to a pure-strategy equilibrium, as a retailer would

always have an incentive to either cut its price to attract the online “shoppers” or raise its

price to exploit the online “captives”. That being said, the manufacturer would still find it

profitable to set a higher variable part on online units so as to mitigate these incentives and

reduce wasteful price dispersion. In this sense, the main message of Propositions 1 and 2

is robust. The fact that the industry monopoly outcome arises under dual pricing in our

baseline model will be particularly useful for our welfare analysis in Section 4, as this gives

us a clean outcome against which to compare the equilibrium under uniform pricing.

Richer class of uniform-pricing contracts. According to Proposition 1, no uniform

two-part tariff contract can induce the industry monopoly outcome. This raises the question

of whether the industry monopoly outcome could be induced by a more flexible uniform-

14See Janssen and Shelegia (2015) for conditions under which an equilibrium exists under uniform pricing
when consumers do not observe the wholesale contract.

15We study discriminatory contracts more thoroughly below.
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pricing contract, i.e., by some arbitrary mapping T (·), which, to any quantity q ordered by

the retailer, associates the payment T (q) to be made to the manufacturer. In the baseline

model of Section 2, it is easy to see that the answer is positive. Consider indeed the quantity-

forcing contract

T (q) =







1
2
p0D(p0) if q = 1

2
D(p0),

T otherwise,

where T is a sufficiently large number. It is clear that, following such a contract, there exists

an equilibrium in which both retailers accept and price at p0, so that the monopoly outcome

arises.

One may contend that this contract is somewhat special, as it is neither monotonic nor

continuous. Yet, consider the following continuous and monotonic contract:

T (q) =







1
2
p0D(p0) if q ≤ 1

2
D(p0),

p0q if q > 1
2
D(p0),

which resembles a two-part tariff with a minimum purchase requirement. Starting from a

situation in which both retailers accept the contract and price at p0, a retailer deviating up-

ward would lower its revenue without affecting the payment to be made to the manufacturer,

whereas a retailer deviating downward would end up pricing below its average cost. Hence,

this continuous and monotonic contract also induces the monopoly outcome.

Thus, the ability to discriminate against the online market brought about by dual pricing

no longer seems that essential if the manufacturer can use sufficiently rich uniform-pricing

contracts. Let us now show that dual pricing becomes essential again in a slightly richer

version of the model of Section 2 with stochastic demand. Specifically, let us assume that

demand per consumer at price p is given by M × D(p), where M is a non-contractible

random variable, which is drawn and becomes common knowledge at the beginning of stage

3, before retailers set their prices. We assume that M is supported on the interval [m,m]

with 0 ≤ m < m ≤ ∞. The rest of the model is as in Section 2, except that we allow the

manufacturer to offer any continuous uniform-pricing contract.

Proposition 3. Consider the model with demand uncertainty, and suppose that the support

of M satisfies

m ≥
1 + λ

1− λ
m.

Then, there exists no continuous uniform-pricing contract that induces the industry monopoly

outcome in almost every state.

By contrast, regardless of the support of M , the dual-pricing contract
(
p0, c,

1−λ
2
E(M)r0

)

induces the monopoly outcome in every state and allows the manufacturer to earn the expected
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industry monopoly profit.

Proof. See Appendix A.3.

The proposition states that the manufacturer cannot induce the industry monopoly out-

come with a flexible uniform-pricing contract if retail demand is sufficiently uncertain. Intu-

itively, for a flexible uniform-pricing contract to induce the monopoly outcome, it would have

to satisfy the following properties. First, in high demand states, a retailer should not have

an incentive to raise its price above p0, thus losing the shoppers and ordering fewer units

from the manufacturer. This implies that payments made to the manufacturer when ordering

few units should be high enough. Second, retailers should make non-negative profits when

pricing at p0 in low demand states, implying that payments when ordering few units cannot

be too high. We show in the proof that these conditions cannot hold simultaneously when

demand uncertainty is sufficiently high. By contrast, the monopoly outcome does arise with

a well chosen dual-pricing contract, as wholesale discrimination against the online market

continues to suppress retailers’ incentives to undercut.

Wholesale discrimination and secret contracts. We assumed in our baseline model

that the manufacturer does not discriminate between retailers, which automatically implies

that each retailer knows the terms at which the other retailer is purchasing. One justification

for this assumption is that, in many jurisdictions, there are laws (such as the Robinson-

Patman Act in the U.S. and Article 102 of the Treaty on the Functioning of the European

Union) restricting a manufacturer’s ability to price discriminate. Nevertheless, it seems

important to study whether our results continue to hold if the manufacturer can discriminate.

Under the assumption of publicly observable contracts, it is clear that the manufacturer

will remain unable to induce the monopoly outcome using discriminatory uniform-pricing

two-part tariffs, as such contracts will induce either mixing by both retailers, or pure pricing

with at least one retailer not setting p0, or the exclusion of one retailer. By contrast, the non-

discriminatory dual-pricing contract
(
p0, c,

1−λ
2
r0
)
continues to induce the monopoly outcome.

Note however that, if the manufacturer is able to discriminate between its retailers, then

there is no longer a compelling reason to assume that contracts are observable to rivals.

Bilateral vertical contracts are typically private information to the contracting parties; and

even though the manufacturer could in principle show its contract with retailer R1 to retailer

R2, nothing would prevent it from secretly renegotiating that contract thereafter. In the

following, we therefore solve a version of the model with secret contracts. That is, we

now assume that retailer Ri never observes retailer Rj’s contract; nor does it observe Rj’s

acceptance decision in stage 3. Let Ci = (wi,o, wi,b, Ti) denote the contract offered to Ri under

dual pricing (resp., Ci = (wi, Ti) under uniform pricing). For simplicity (and to avoid taking
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a stance on whether consumers observe wholesale contracts), we assume that the search cost

parameter s is so high that offline consumers would never consider searching in stage 4.

As perfect Bayesian equilibria are notoriously hard to solve for when downstream com-

petition is in price (Rey and Vergé, 2004), we use contract equilibrium in passive beliefs as

our solution concept (Crémer and Riordan, 1987; Horn and Wolinsky, 1988; O’Brien and

Shaffer, 1992; Rey and Vergé, 2020). A pair of contracts (C1, C2) and a strategy profile for

the two retailers form a contract equilibrium in passive beliefs if: (i) contract Ci maximizes

the manufacturer’s profit holding fixed Cj (i ̸= j in {1, 2}); (ii) retailer Ri believes that Rj’s

contract is Cj, regardless of what contract M offers to Ri; (iii) the retailers’ strategies are

sequentially rational given their beliefs.16 Moreover, for simplicity, we confine attention to

symmetric equilibria, i.e., C1 = C2.

Let us first solve the model under uniform pricing. Consider an equilibrium candidate

in which the manufacturer offers the two-part tariff (w, T ) to both retailers, with w > c.

By sequential rationality, on the candidate equilibrium path both retailers mix according

to the CDF F (·) of equation (2) (where we have dropped argument w to ease notation).

As the manufacturer’s profits must be maximized, it must be that T = 1−λ
2
π(p, w). The

manufacturer earns an expected profit of

Π∗ = 2T + (1− λ)(w − c)

∫ p

p

D(p)dF (p) + λ(w − c)

∫ p

p

D(p)dFmin(p), (7)

where Fmin denotes the CDF of the minimum of (p1, p2).

Suppose now that the manufacturer deviates by offering (w − ε, T ) to retailer R1, for

some small ε > 0. Then, R1 accepts this new contract and (correctly) believes that R2 will

continue to draw its price from F . Before the deviation, firm R1 was indifferent between all

the prices in [p, p]. After the deviation, R1’s marginal cost is strictly lower, and R1’s profit

is therefore strictly decreasing on [p, p].17 It follows that, after the deviation, R1 prices at p

with probability 1. Taking ε to zero, the manufacturer’s expected deviation profits can be

16Any perfect Bayesian equilibrium in passive beliefs must be a contract equilibrium in passive beliefs, but
the converse is not necessarily true, as condition (i) in the definition does not consider deviations in which the
manufacturer changes both contracts. Note that, to fix ideas, we are using the version of contract equilibrium
in which the manufacturer has all the bargaining power.

17To see this, let D̃(p) be the expected demand that R1 faces when R2 is mixing according to F :

D̃(p) =

(
1− λ

2
+ λ(1− F (p))

)

D(p).

By definition of F , the function p 7→ (p−w)D̃(p) is strictly increasing up to p, constant on [p, p], and strictly

decreasing on [p, p̌). This implies that (p− w + ε)D̃(p) = (p− w)D̃(p) + εD̃(p) is strictly increasing up to p
(for ε small enough) and strictly decreasing on [p, p̌).
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made arbitrarily close to:

2T +
1− λ

2
(w − c)D(p) + λ(w − c)D(p)

︸ ︷︷ ︸

variable profits on R1

+
1− λ

2
(w − c)

∫ p

p

D(p)dF (p)

︸ ︷︷ ︸

variable profits on R2

.

The change in the manufacturer’s profit is given by

1− λ

2
(w − c)

∫ p

p

(D(p)−D(p))dF (p) + λ(w − c)

∫ p

p

(D(p)−D(p))dFmin(p),

which is strictly positive since D is strictly decreasing. Hence, there is no equilibrium in

which the variable part of the tariff is strictly above cost.

Next, consider an equilibrium candidate in which the manufacturer offers the two-part

tariff (c, T ) to the retailers. Again, we must have that T = 1−λ
2
π(p, c) = 1−λ

2
r0. On the

candidate equilibrium path, the manufacturer makes an expected profit of 2T . Suppose the

manufacturer deviates and offers (w′, T ′) to retailer Ri. If w
′ < c, then the argument used in

the previous paragraph implies that Ri responds by pricing at p′ = min(p(c), pm(w′)) with

probability 1. The retailer therefore supplies the online market and makes an operating profit

of 1+λ
2
π(p′, w′), which the manufacturer extracts with its fixed fee. Hence, the manufacturer’s

expected deviation profit is

T +
1 + λ

2
r(p′) ≤ T +

1 + λ

2
r(p(c)) = T +

1− λ

2
r0 = 2T,

where we have used equation (3). The deviation is therefore not profitable. If instead w′ > c,

then Ri optimally sets p′ = pm(w′) > p0 and makes an operating profit of 1−λ
2
π(p′, w′), which

the manufacturer extracts. The manufacturer earns

T +
1− λ

2
r(p′) < T +

1− λ

2
r0 = 2T,

and so the deviation is not profitable.

Summing up:

Proposition 4. Consider the model with secret contracts. Under uniform pricing, there

is a unique symmetric equilibrium. The manufacturer offers the contract
(
c, 1−λ

2
r0
)
to both

retailers. Both retailers accept and draw their prices from F (·, c).

Proof. See Appendix A.3.

Thus, under secret contracts and uniform pricing, the manufacturer loses its ability to

soften downstream competition by choosing a high variable part. As the proposition shows,
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the only variable part that can be sustained in equilibrium is w = c. Hence, as far as

the retail competition outcome is concerned, it is as if the upstream market were perfectly

competitive. The intuition is the same as in Hart and Tirole (1990) and the literature that

followed: starting from a contract (w, T ) with w > c, manufacturer M and retailer Ri have

a joint incentive to free-ride on retailer Rj’s margin by setting a lower pi.

Next, we turn our attention to dual pricing. Consider an equilibrium candidate in which

the manufacturer offers the dual-pricing contract
(
p0, c,

1−λ
2
r0
)
, i.e., the same contract as in

Proposition 2. On the equilibrium path, it is sequentially rational for both retailers to accept

this contract and price at p0, as argued in Section 3.1. The manufacturer then earns r0.

Now, suppose that the manufacturer deviates and offers some alternative contract C ′ =

(w′
o, w

′
b, T

′) to retailer Ri. As Rj does not observe this deviation, it continues to price at p0

with probability 1. This implies that, regardless of the deviation contract C ′ and regardless

of how Ri behaves after having been offered that contract, Rj earns zero profit. The reason

is that Rj makes zero profit on shoppers and receives the monopoly profit on its captives,

which is transferred to the manufacturer. Hence, for any sequentially rational decision made

by Ri, industry profit must be equal to the sum of the manufacturer’s and Ri’s profits. Since

Ri’s profit must be non-negative by sequential rationality, it follows that the manufacturer’s

deviation profit is weakly less than industry profit, which is bounded above by r0. The

deviation is therefore unprofitable.

We thus have:

Proposition 5. Consider the model with secret contracts. Under dual pricing, there exists an

equilibrium in which the manufacturer offers contract
(
p0, c,

1−λ
2
r0
)
and both retailers accept

and price at p0.

As mentioned above, the reason why a uniform-pricing equilibrium with a positive variable

part can not be sustained is that the manufacturer and one of the retailers would have an

incentive to agree on more favorable terms so as to free-ride on the other retailer’s margin.

Under the dual-pricing contract of Proposition 5, such incentives are absent since there is no

margin that can be free-ridden on in the competitive (online) segment.

Comparing Propositions 1–2 and Propositions 4–5, there is a sense in which being able to

use dual pricing becomes even more crucial for the manufacturer when contracts are secret.

That is, in addition to eliminating wasteful mixing as in the case of public contracts, under

secret contracts dual pricing also solves the supplier opportunism problem.

17



4 The Welfare Effects of Dual Pricing

In this section, we study how a ban on dual pricing affects expected consumer surplus and

expected aggregate surplus. We are thus interested in

∆CS = CSUP − CSDP and ∆AS = ASUP − ASDP ,

where the superscript UP (resp. DP) stands for uniform pricing (resp. dual pricing). Some

of our results rely on approximating equilibrium behavior under uniform pricing in the neigh-

borhood of s = 0, λ = 0, or λ = 1.18 As we shall see below, monopoly pass-through and

its behavior will play a key role in these approximations. We thus introduce the following

notation:

α =
dpm(w)

dw

∣
∣
∣
∣
w=c

and β =
d2pm(w)

dw2

∣
∣
∣
∣
w=c

.

That is, α is the monopoly pass-through (of a cost increase, evaluated at the industry marginal

cost) and β is the derivative of pass-through with respect to cost. Recall from our discussion

at the end of Section 2 that pass-through is constant under ρ-linear demand, i.e., β = 0.

We begin by putting on record some key properties of the equilibrium under uniform

pricing:

Proposition 6. In any equilibrium under uniform pricing, the manufacturer deals with both

retailers if (at least) one of the following conditions holds:

(i) λ ≤ 1/3;

(ii) λ is sufficiently close to 1 and s ̸=
∫ pm(p0)

p0
D(p)dp;19

(iii) s is sufficiently close to 0;

(iv) s is sufficiently high and demand is ρ-linear.

Moreover, whenever an equilibrium under uniform pricing involves dealing with both retailers,

the wholesale price w∗ satisfies w∗ ∈ (c, p0) and the support of the equilibrium distribution of

retail prices, [p, p], satisfies p < p0 < p.

Proof. For the first part of the proposition, see Lemma B.2 in Appendix B for condition (i),

Lemma D.5.13 in Appendix D.5.6 for condition (ii), Lemma D.2.1 in Appendix D.2.1 for

18This will require strengthening the differentiability properties of the demand function D on (0, p̌). Specif-
ically, we need D to be C4 for Propositions 6, 8, 10, and 11, and C5 for Proposition 9. We refrain from
mentioning these technical assumptions in the propositions to avoid overloading their statements.

19The reason why we need to exclude the knife-edged case s =
∫ pm(p0)

p0

D(p)dp is discussed in footnote 23
below.
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condition (iii), and Lemma B.1 in Appendix B for condition (iv). For the second part, see

Lemma A.1.3 in Appendix A.1.

That conditions (i) and (iii) are sufficient for the manufacturer to prefer dealing with

both retailers is quite intuitive. If λ is small, excluding one of the retailers means giving up

on a large chunk of the retail market, which cannot be optimal. If s is small, then the retail

equilibrium is close to the Bertrand outcome, implying that the manufacturer can make a

profit close to r0 by setting w equal to p0.

The sufficiency of condition (ii) is far less obvious: as λ approaches 1, double marginaliza-

tion and price dispersion vanish, and so the cost associated with dealing with both retailers

disappears; at the same time, the benefit from using both retailers also becomes negligible,

as offline consumers cease to exist. We prove the result by obtaining a Taylor approximation

of equilibrium behavior under the optimal w in the neighborhood of λ = 1. The sufficiency

of condition (iv) is also non-trivial. We establish it by exploiting the mean-value theorem to

obtain a lower bound on the profit from dealing with both retailers under ρ-linear demand

and high search costs, and showing that that lower bound is greater than (1 + λ)/2r0, the

profit from excluding one retailer.

To see the intuition for the second part of the proposition, suppose to the contrary

that p ≥ p0 in equilibrium. Then, the retailers are systematically pricing above the industry

monopoly level. The manufacturer can then gain by lowering its variable part to induce a first-

order stochastic dominance shift towards lower prices, thus mitigating double marginalization.

If instead p ≤ p0, then the retailers are systematically pricing below the industry monopoly

level, and the manufacturer should increase w to induce a first-order stochastic dominance

shift towards higher prices, thus softening downstream competition. The optimal w solves

the trade-off between double marginalization and excessive downstream competition, which

results in c < w∗ < p0 and p < p0 < p.

An implication of the second part of Proposition 6 is that the welfare effects of a ban on

dual pricing are generally ambiguous whenever the manufacturer chooses to deal with both

retailers under uniform pricing. Under dual pricing, we know from Proposition 2 that the

monopoly outcome arises in equilibrium. This means that, under dual pricing retailers price

at p0 with probability 1, whereas under uniform pricing retailers randomize between pricing

above and below p0. Hence, a ban on dual pricing, despite preventing the manufacturer from

implementing the industry monopoly outcome, may or may not raise consumer surplus and

aggregate surplus. In the following, we show how the welfare effects of a ban on dual pricing

depend on the shape of demand, the relative size of the online segment, and the search cost

faced by offline consumers.
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The case of high search costs. This first set of results does not rely on approxi-

mations but requires assuming that demand is ρ-linear. Suppose that the search cost

is sufficiently high, so that the offline consumers’ threat of searching does not constrain

the retailers’ pricing behavior, i.e., p(w) = pm(w) for every w. That is, suppose that

s ≥ s ≡ maxw∈[c,p0]H(pm(w), w). (Recall from Proposition 6 that any optimal wholesale

price must lie in [c, p0].)

We now argue that a ban on dual pricing strictly lowers consumer surplus and aggregate

surplus. Under dual pricing, the monopoly outcome arises. It is well known that, in the

monopoly outcome under ρ-linear demand, the ratio of consumer surplus to producer surplus

is equal to α, the monopoly pass-through (see, e.g., Anderson and Renault, 2003). That is,

CSDP = αΠDP , where ΠDP is industry profit under dual pricing. Recall from Proposition 6

that the manufacturer deals with both retailers under uniform pricing. In Appendix A.2, we

show that at any optimal variable part under uniform pricing, the ratio of consumer surplus

to producer surplus is also equal to α: CSUP = αΠUP . It follows that

CSUP = αΠUP < αΠDP = CSDP ,

where the inequality follows by Propositions 1 and 2. Hence, ∆CS and ∆AS are both strictly

negative.

Summing up:

Proposition 7. Assume that demand is ρ-linear and s ≥ s. Then, a ban on dual pricing

strictly reduces consumer surplus, industry profit, and aggregate surplus.

Proof. See Appendix A.2.

The case of low search costs. When the search cost s is equal to zero, the retail pricing

game reduces to a simple homogeneous-goods Bertrand model. Hence, for any uniform tariff

(w, 0), both retailers price at w with probability 1, i.e., p = p = w. The manufacturer

therefore finds it optimal to set w = p0, thereby inducing the industry monopoly outcome.

Suppose now that s is strictly positive, but small. By Proposition 6, the manufacturer finds it

profitable to deal with both retailers under uniform pricing. For every such small s, let w(s)

be an equilibrium variable part; denote also by p(s) and p(s) the lower and upper bounds

of the support of the retailers’ equilibrium mixed strategy given s and w(s). We show in

Appendix D.2.1 that, as s tends to zero, w(s), p(s), and p(s) all tend to p0, i.e., equilibrium

behavior does converge to the equilibrium of the limiting game without search costs (see

Lemma D.2.1).

The following proposition approximates the welfare effects of a ban on dual pricing in the

neighborhood of s = 0:
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Proposition 8. In the neighborhood of s = 0, we have:20

∆CS(s) = K [α(2− α)− β(p0 − c)] s2 + o(s2),

∆AS(s) = K [α(1− α)− β(p0 − c)] s2 + o(s2),

where

K =
(1− λ)(λ− ψ)

2α2r0ψ2
> 0 and ψ = 1−

1− λ

2λ
log

1 + λ

1− λ
.

Therefore, when the search cost is small, a ban on dual pricing raises consumer surplus (resp.

aggregate surplus) if α(2− α)− β(p0 − c) > 0 (resp. α(1− α)− β(p0 − c) > 0) and reduces

it if the inequality is reversed.

Proof. The proof is lengthy and non-trivial. We provide here a brief sketch and refer the

reader to Appendix D.2 for details.

Integrating by parts in the definition of ∆CS and ∆AS, we obtain

∆CS =

∫ p

p

D(p)G(p, p, w)dp−

∫ p

p0

D(p)dp (8)

and ∆AS = ∆CS + r(p)− r(p0)−

∫ p

p

r′(p)G(p, p, w)dp, (9)

which we wish to approximate. Recall that G is the CDF of prices paid by consumers, i.e.,

G(p, p, w) = (1− λ)F (p, p, w) + λ
[
1− (1− F (p, p, w))2

]
,

where F is given by

F (p, p, w) = 1−
1− λ

2λ

(
π(p, w)

π(p, w)
− 1

)

.

The variables p, p, and w are jointly pinned down by the fact that a retailer should be

indifferent between pricing at p and pricing at p, the fact that a non-shopper should be

indifferent between searching and not searching when receiving a price quote of p, and the

manufacturer’s first-order condition:

(1− λ)π(p, w) = (1 + λ)π(p, w), (10)
∫ p

p

D(p)F (p, p, w)dp = s, (11)

and

∫ p

p

r′(p)

[
∂G(p, p, w)

∂w
+
∂p

∂w

∂G(p, p, w)

∂p

]

dp = 0, (12)

20o(·) is Landau’s little-o notation: f(x) = o(g(x)) in the neighborhood of x = x0 if f(x)/g(x) −→
x→x0

0.
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where, on the last line, ∂p/∂w corresponds to the partial derivative of the function p implicitly

defined by equations (10)–(11).21

We begin by exploiting equation (10) to show that p − w ∼ 1−λ
1+λ

(p − w) when s is close

to zero. Next, we apply the implicit function theorem to condition (11) and take limits to

obtain that ∂p/∂w −→
s→0

1. Combining this with a first-order Taylor approximation around p0

of the integrand in condition (12), we then show that p0−w ∼ (1−λ)(p−w) when s is close

to zero. It follows that p−w, p−w, and p0−w are all of the same order in the neighborhood

of s = 0. This allows us to further apply the Taylor theorem to conditions (10), (11), and

(12) to obtain approximations of p− w and p0 − w at the second order in p− w:

p− w =
1− λ

1 + λ

[

p− w −
2λ

1 + λ

1

p0 − c
(p− w)2

]

+ o((p− w)2)

p0 − w = (1− λ)

[

p− w −

(

(λ− ψ)

(
β

2α2
+

2α− 1

α(p0 − c)

)

+
λ

p0 − c

)

(p− w)2
]

+ o((p− w)2).

Further exploiting condition (11), we also show that s and p−w are of the same order when

s is close to zero and derive the approximation

p− w =
1

ψD0

s+ o(s). (13)

The final step involves approximating the integrands in equations (8) and (9) in the

neighborhood of p = p0 and inserting the approximations of p − w and p0 − w to obtain

approximations of ∆CS and ∆AS at the second order in p−w. We can then use equation (13)

to obtain approximations of these welfare measures with s as the right-hand side variable.

According to the proposition, when offline consumers have sufficiently low search costs,

the consumer surplus effect of a ban on dual pricing has the same sign as α(2−α)−β(p0−c).

Thus, a sufficient condition for the ban to benefit consumers is that monopoly pass-through

is less than 2 and non-increasing in cost.22 The condition under which such a ban raises

aggregate surplus is naturally more stringent, as we know from Propositions 1 and 2 that

industry profit is unambiguously higher under dual pricing. Specifically, a ban on dual pricing

raises aggregate surplus provided monopoly pass-through is less than 1 and non-increasing

in costs.

21More precisely, equations (10)–(11) jointly define two functions, p(w, s) and p(w, s).
22Although there is a large empirical literature analyzing the pass-through of costs, estimates of the

monopoly pass-through are harder to find. Genakos and Pagliero (2022) study the price effects of excise
duties in isolated gasoline markets and find a pass-through of 0.43 in monopoly markets. In their study of
the portland cement industry, Miller et al. (2017) use an empirical specification that allows pass-through to
depend on the intensity of competition. Their estimate of the monopoly pass-through (which corresponds to
coefficient α0 in their specification) ranges from 2.05 to 2.76. Ganapati et al. (2020) estimate pass-through
rates for six imperfectly competitive U.S. industries and find rates ranging from 0.27 to 1.84.
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In the special case of ρ-linear demand, monopoly pass-through is constant and we thus

have β = 0. It follows that, if search costs are small and demand is ρ-linear, then a ban on

dual pricing raises consumer surplus if monopoly pass-through is less than 2 and lowers it if

monopoly pass-through is greater than 2. The pass-through cutoff for aggregate surplus is 1.

The case of a small online market. When the share of online consumers, λ, is equal to

zero, retailers are no longer in competition with each other. The manufacturer therefore finds

it optimal to set w = c to eliminate double marginalization. The retailers respond by pricing

at p0, i.e., p = p = p0. Suppose now that λ is strictly positive but small. By Proposition 6,

the manufacturer optimally chooses to deal with both retailers in equilibrium. For every such

small λ, let w(λ) be an equilibrium variable part; denote also by p(λ) and p(λ) the upper and

lower bounds of the support of the retailers’ equilibrium mixed strategy given λ and w(λ).

We show in the appendix that, as λ tends to zero, w(λ) tends to c, whereas p(λ) and p(λ)

tend to p0, i.e., equilibrium behavior converges to the equilibrium of the limiting game in

which the online market does not exist.

The following proposition approximates the welfare effects of a ban on dual pricing in the

neighborhood of λ = 0:

Proposition 9. In the neighborhood of λ = 0, we have:

∆CS(λ) = −
1

9
r0αλ+ o(λ).

Thus, when the share of online consumers is small, a ban on dual pricing lowers consumer

surplus and aggregate surplus.

Proof. We follow similar steps as in the proof of Proposition 8. See Appendix D.3 for details.

In contrast to Proposition 8, the sign of the welfare effect of a ban on dual pricing when

the online market is small does not depend on how high or low the monopoly pass-through

is. Such a ban lowers consumer surplus (and thus aggregate surplus) for any well-behaved

demand function when the online market is small.

The case of a large online market. When the share of online consumers, λ, is equal

to 1, retailers compete à la Bertrand for consumers. As there is no double marginalization,

the manufacturer optimally sets w = p0 and the retailers respond by pricing at p0. By

Proposition 6, when λ is close to but strictly less than 1, the manufacturer finds it optimal to

deal with both retailers. We show in Appendix D.4 that the equilibrium variable part, w(λ),

and lower bound of the support, p(λ), both tend to p0 as λ goes to 1, while the equilibrium
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CDF of prices converges weakly to a unit mass on p0. The upper bound of the support, p(λ)

converges to p̃(s) ≡ min(pm(p0), p̂(s)), where p̂(s) is the solution of equation
∫ p̂

p0
D(p)dp = s.

Define ŝ ≡
∫ pm(p0)

p0
D(p)dp and

µ̃(s) ≡
(D′(p̃(s))(p̃(s)− p0) +D(p̃(s)))D(p0)

D(p̃(s))π(p̃(s), p0)
−

1

p̃(s)− p0
.

The following proposition approximates the welfare effects of a ban on dual pricing in the

neighborhood of λ = 1:

Proposition 10. In the neighborhood of λ = 1, if s ̸= ŝ, we have:23

∆CS(λ) =
π2(p̃(s), p0)

4r0α2

[
α(2− α)− β(p0 − c) + 2(p0 − c)α2µ̃(s)

]
(1− λ)2 |log(1− λ)|

+ o
(
(1− λ)2 log(1− λ)

)
,

∆AS(λ) =
π2(p̃(s), p0)

4r0α2

[
α(1− α)− β(p0 − c) + 2(p0 − c)α2µ̃(s)

]
(1− λ)2 |log(1− λ)|

+ o((1− λ)2 log(1− λ)).

Therefore, when the share of online consumers is large, a ban on dual pricing raises consumer

surplus (resp. aggregate surplus) if α(2− α)− β(p0 − c) + 2(p0 − c)α2µ̃(s) > 0 (resp. α(1−

α)− β(p0 − c) + 2(p0 − c)α2µ̃(s) > 0) and lowers it if the inequality is reversed.

The function µ̃ is continuous and strictly negative. If monopoly pass-through is non-

increasing in cost (i.e., pm′′ ≤ 0), then µ̃ is strictly decreasing on (0, ŝ) and constant there-

after.

Proof. We follow similar steps as in the proof of Proposition 8. See Appendices D.4 and D.5

for details.

According to the proposition, when λ is large the consumer-surplus effect of a ban on dual

pricing has the same sign as α(2−α)−β(p0− c)+2(p0− c)α
2µ̃(s); and the aggregate-surplus

effect of a ban has the same sign as α(1 − α) − β(p0 − c) + 2(p0 − c)α2µ̃(s). If s is close

to zero, then p̃(s) ≃ p0, implying that µ̃(s) ≃ 0. The sign of ∆CS is then determined by

α(2 − α) − β(p0 − c) while the sign of ∆AS is determined by α(1 − α) − β(p0 − c), as in

Proposition 8.

Under the (perhaps natural) assumption that pass-through is non-increasing in cost, µ̃

is strictly decreasing on (0, ŝ) and constant thereafter. This implies that if a ban on dual

23The reason why we exclude the case s = ŝ is that, when s = ŝ and λ is close to 1, it is unclear whether
the manufacturer chooses a w such that p < pm(w) or p = pm(w). This gives rise to major complications
when approximating p in the neighborhood of λ = 1. Note that µ̃(·) is continuous on the strictly positive
domain, so we have every reason to expect our approximations to remain valid when s = ŝ.
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pricing raises (resp. lowers) consumer surplus for some s1, then such a ban raises (resp.

lowers) consumer surplus for any s2 < s1 (resp. s2 > s1).
24 Likewise, if a ban on dual pricing

raises (resp. lowers) aggregate surplus for some s1, then such a ban raises (resp. lowers)

aggregate surplus for any s2 < s1 (resp. s2 > s1). In this sense, if λ is close to 1, then a ban

on dual pricing is “more likely” to be detrimental to consumer surplus and aggregate surplus

if s is large.

In the special case where demand is ρ-linear, we have that β = 0, so that the expression

to be signed for the consumer-surplus effect reduces to α(2−α)+2(p0− c)α
2µ̃(s). Moreover,

as pm′(w) is constant and thus non-increasing, the proposition implies that µ̃(s) is decreasing

in s. If s is high, then µ̃(s) = − 1
pm(p0)−p0

= − 1
(p0−c)α

, so that ∆CS(λ) < 0, consistent with

Proposition 7. This implies that if λ is large and the pass-through rate is sufficiently high,

i.e., α ≥ 2, then a ban on dual pricing lowers consumer surplus for any s > 0. Otherwise, if

α < 2, then there exists a cutoff š such that a ban on dual pricing raises consumer surplus if

s < š, and lowers it if the inequality is reversed. Similar results obtain for aggregate surplus,

with the pass-through cutoff being 1 instead of 2.

Numerical simulations. Taking stock, Propositions 7–10 characterize the welfare effects

of banning dual pricing when s is large (assuming demand is ρ-linear), when s is low, when λ is

low, and when λ is large. To explore those welfare effects when both s and λ are intermediate,

we run numerical simulations under ρ-linear demand (with a = b =M = c = 1).25 The results

are reported in Figure 1. We experiment with low (0.5), intermediate (1.5), and high (2.5)

values of the pass-through parameter α, as well as low (0.2), intermediate (0.5), and high (0.8)

values of the share of online consumers λ; the search-cost parameter s varies continuously.

When the pass-through parameter is high, we know from Propositions 7 and 8 that

a ban on dual pricing negatively affects consumer and aggregate surplus both when s is

high and when s is low. Our simulations suggest that the welfare effects remain negative for

intermediate s, regardless of λ. When the pass-through parameter is low, Propositions 7 and 8

imply that a ban on dual pricing has a positive effect on consumer and aggregate surplus

when s is low, but a negative one when s is high. Our simulations suggest the existence

of cutoffs σCS(λ) and σAS(λ) such that banning dual pricing raises consumer surplus (resp.

aggregate surplus) if and only if s < σCS(λ) (resp. s < σAS(λ)). Moreover, these cutoffs

appear to be increasing in λ. This is consistent with the results of Propositions 9 and 10,

according to which a ban on dual pricing always lowers consumer and aggregate surplus when

24Excluding the knife-edged case where the search cost is equal to ŝ.
25This is a normalization, as the game with arbitrary values of the parameters a, b, c, and M corresponds

to a version of the game in which all these parameters are equal to 1 and the players’ payoffs and the search

cost parameter s are scaled up by M
b

(
1 + 1−α

α
(a− bc)

) 1

1−α . This can be shown by defining the new strategic

variable p′ = 1 + bα
α+(1−α)(a−bc) (p− c) and by applying a similar transformation to the wholesale price.
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Figure 1: Consumer Surplus (left panel) and Aggregate Surplus (right panel)

Notes: Figure is constructed for ρ-linear demand (a = b = M = 1), c = 1, and various values of λ:
λ = 0.2 (solid), λ = 0.5 (dashed) and λ = 0.8 (dotted).
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λ is small, but raises them when λ is high (provided s is low and α is not too high). Finally,

the case where the pass-through parameter is intermediate is similar to the low pass-through

case for consumer surplus, and to the high pass-through case for aggregate surplus.

The general picture that emerges from our propositions and simulations is that a ban on

dual pricing is “more likely” to have positive welfare effects if the monopoly pass-through is

low, the offline consumers’ search cost is low, and the online market is large. Interestingly,

the European Commission has adopted a friendlier approach towards dual pricing in recent

years, with the 2022 revision of the Vertical Block Exemption Regulation labeling it as a

hardcore restriction only if its goal is to prevent online sales. As the share of consumers

shopping online has in recent years increased, not decreased, our analysis does not endorse

this less aggressive stance.

The distributional effects of dual pricing. We now separately examine the effects of

a ban on dual pricing on offline and online consumers. Under dual pricing, the online and

offline consumers end up with the same utility level, as both types obtain the good at p0

with probability 1. By contrast, under uniform pricing the online consumers systematically

receive a higher utility than the offline ones because the former receive two draws from the

equilibrium price distribution, whereas the latter only receive one draw. This implies that

online consumers are more likely to benefit from a ban on dual pricing in the following sense:

if online consumers suffer from such a ban, then so do the offline ones; similarly, if offline

consumers benefit from such a ban, then so do the online ones. The following proposition

provides conditions under which online and offline consumers disagree on whether dual pricing

should be banned:26

Proposition 11. A ban on dual pricing makes offline consumers worse off and online con-

sumers better off if at least one of the following conditions holds:

(i) s is small;

(ii) λ is high, s ̸= ŝ, and monopoly pass-through is non-increasing in cost.

Proof. See Online Appendices D.2.4, D.4.4, and D.5.5.

The fact that the interests of online and offline consumers with regard to dual pricing

are not aligned extends beyond the cases considered in Proposition 11. Figure 2 plots the

consumer surplus effects in online and offline markets of a ban on dual pricing under ρ-

linear using the same parameter values as in Figure 1. Our numerical simulations indicate

26It is easily seen that offline consumers suffer from a ban on dual pricing when (i) λ is small, or (ii) s
is high and demand is ρ-linear. The reason is that, if offline consumers were not harmed, then the above
reasoning would imply that the overall consumer surplus effect would be positive, which would contradict
Propositions 7 and 9.
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Figure 2: Offline (left panel) and Online (right panel) Consumer Surplus per Consumer

Notes: Figure is constructed for ρ-linear demand (a = b = M = 1), c = 1 and various values of λ:
λ = 0.2 (solid), λ = 0.5 (dashed) and λ = 0.8 (dotted).
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that, typically, online consumers benefit from such a ban, whereas offline consumers suffer

from it.27 Overall, our analysis suggests that policy measures aimed at protecting the online

market may well backfire by harming consumers in the offline market.

An alternative interpretation of Propositions 7–10. Propositions 7–10 can also be

interpreted as providing comparative statics in the vertical-relations version of the Stahl

(1989) model. Without vertical relations (i.e., when w is exogenously given), it is well known

that an increase in λ or a decrease in s gives rise to a first-order stochastic dominance shift

towards lower prices, thus resulting in higher consumer surplus and aggregate surplus (see

Propositions 6 and 7 in Stahl, 1989).

Consider now the version of the model with vertical relations, i.e., suppose w is optimally

chosen by an upstream monopolist to maximize industry profit. According to Proposition 8,

if the monopoly pass-through is sufficiently low (α < 1) and does not vary too much with cost

(β ≃ 0), then, starting from 0 search cost, a small increase in s raises both consumer surplus

and aggregate surplus. The intuition is that the manufacturer responds to the increase in

s by decreasing w to mitigate double marginalization. This effect counteracts the upward

pressure on retail prices that arises from the increase in search costs.

Similarly, Proposition 9 shows that with vertical relations, starting from λ = 0, a small

increase in λ always reduces consumer surplus and aggregate surplus. The intuition is again

that the manufacturer responds to the increase in λ by raising w, which ends up outweighing

the downward pressure on prices brought about by the intensification of retail competition.28

In fact, assuming that demand is ρ-linear and s is high, Proposition 7 implies that consumer

surplus and aggregate surplus are highest when λ = 0, i.e., when the retailers have no overlap

in their customer bases. These results highlight the importance of accounting for vertical

relations when evaluating the welfare effects of, e.g., policy changes that make markets more

transparent for consumers.

5 Conclusion

We examine dual pricing, a vertical restraint that enables manufacturers to condition contract

terms offered to hybrid retailers based on whether a product is sold online or offline. The

new EU Vertical Guidelines adopted in June 2022 have taken a less aggressive stance towards

this practice, suggesting that online sales no longer require protection relative to offline sales.

27More precisely, we have found a small set of parameters for which offline consumers benefit from a ban,
and no parameters for which online consumers suffer from it.

28Similarly, suppose that the terms inside square brackets in Proposition 10 are strictly positive, and that
λ is initially high. Then, increasing λ to 1, i.e., making everybody a shopper, also reduces consumer surplus
and aggregate surplus.
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Under this new approach, dual pricing benefits from the exemption provided by Article 2(1)

if it encourages retailer investments, but it continues to be considered a hardcore restriction

if it is primarily used to limit online sales. This raises the question of why a manufacturer

would benefit from discriminating against online sales.

We propose a new rationale for using dual pricing that is based on search cost hetero-

geneity across online and offline markets. In our model, online consumers can search and

compare prices for free, whereas search is costly in the offline market. Due to these search

cost asymmetries, a uniform-pricing contract, which does not distinguish between online and

offline sales, necessarily gives rise to wasteful price dispersion. By offering more favorable

terms for offline sales, the manufacturer can weaken the retailers’ incentives to cut prices

to corner the online market, thereby mitigating price dispersion. This restores the manu-

facturer’s control over retail prices. Indeed, a well-chosen dual-pricing contract allows the

manufacturer to implement the industry monopoly outcome.

This insight applies to a broad class of non-linear uniform-pricing contracts. Moreover,

if upstream contracts are secret, dual pricing not only eliminates wasteful price dispersion

but also solves the classic supplier opportunism problem. Our results also extend to a more

general search model with more than two retailers, asymmetric shares of offline consumers

among retailers, heterogeneous search costs for offline consumers, an endogenous share of

online consumers, and heterogeneous demands for online and offline consumers. As discussed

in Section 3.2, the industry monopoly outcome would no longer arise under dual pricing if

there were search cost heterogeneity in the online market. However, as long as search frictions

are greater offline than online, the manufacturer would still find it profitable to discriminate

against online sales to mitigate price dispersion.

Our second set of results suggests that dual pricing, despite inducing the industry monopoly

outcome, is not necessarily detrimental to consumer surplus or aggregate surplus. Under dual

pricing, the retail market is always supplied at the industry monopoly price, whereas under

uniform pricing retailers price above and below the industry monopoly level with positive

probability. We find that a ban on dual pricing tends to harm consumers and society at

large when the online market is small, offline search frictions are large, and the monopoly

pass-through is high. Interestingly, our analysis indicates that the interests of online and

offline consumers are often misaligned: typically, while online consumers benefit from a ban

on dual pricing, offline consumers suffer from it. Thus, policy measures aimed at protecting

online sales may well come at the cost of harming offline consumers.
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Appendix

A Technical Details and Omitted Proofs

A.1 Technical Details for the Equilibrium Analysis under Uniform

Pricing

This appendix gathers some omitted technical details for the equilibrium analysis under

uniform pricing.
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As discussed in the main text, for a given w, the retailers draw their prices from the CDF

F (·, p, w) defined in equation (2). The support of F is [p, p], where, for a given p, p uniquely

solves equation (3). The following lemma implies that the upper endpoint of the support is

uniquely pinned down (recall that the function H was defined in equation (4)):

Lemma A.1.1. Given Marshall’s second law of demand, H(·, w) has a strictly positive

derivative on the interval (w, pm(w)).

Proof. We show that Marshall’s second law of demand implies Assumption C in Stahl (1989).

Once this is established, the lemma follows from Lemma 3 in Stahl (1989). In our framework,

Stahl’s Assumption C can be expressed as follows: for every w, the function

χ : p ∈ (w, pm(w)) 7→
(p− w)∂π(p,w)

∂p

π(p, w)2

is strictly decreasing. Observe that

χ(p) =
(p− w)D′(p) +D(p)

(p− w)D(p)2
=

1

π(p, w)

[

1−
p− w

p
|ε(p)|

]

,

where ε(·) is the price elasticity of demand. By Marshall’s second law of demand, the term

inside square brackets is strictly positive and non-increasing on (w, pm(w)). Moreover, π(·, w)

is strictly increasing on that interval. The result follows.

Thus, the upper endpoint of the support is equal to the monopoly price, pm(w), if

H(pm(w), w) ≤ s, and otherwise to the unique solution of equation H(p, w) = s. In the

following, we use the notation p(w), p(w), and F (·, w) to describe the retail equilibrium. For

what follows, it is useful to study the differentiability properties of p(·):

Lemma A.1.2. At every w, p(w) has strictly positive left and right derivatives. If H(pm(w), w) ̸=

s, then p(w) is differentiable. If H(pm(w), w) > s, then the derivative is equal to

p′(w) =

1−λ
2λ

(

−1 + p−w

p−w
− log

(
p−w

p−w

))

1− 1−λ
2λ

(
D′(p)
D(p)

(p− w) + 1
)

log
(

p−w

p−w

) , (14)

where p = p(w) and p = p(w). If instead H(pm(w), w) < s, then p′(w) = pm′(w).

Proof. Let Hm(w) ≡ H(pm(w), w). Suppose first that Hm(w) > s. Then, for every w′

close enough to w, p(w′) is strictly less than pm(w′) and given by the unique solution of

equation H(p, w′) = s. Applying the implicit function theorem to H(p, w′) = s at w′ = w
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and p = p(w), we obtain p′(w) = −(∂H/∂w)/(∂H/∂p). As

∂F

∂p
= −

(1− λ)

2λ

D(p) + (p− w)D′(p)

π(p, w)
, (15)

∂F

∂w
= −

(1− λ)

2λ

−D(p)π(p, w) +D(p)π(p, w)

π2(p, w)
= −

(1− λ)

2λ

D(p)

π(p, w)

p− p

p− w
, (16)

we have that

∂H

∂p
= D(p) +

∫ p

p

D(p)
∂F (p, p, w)

∂p
dp

= D(p)−
1− λ

2λ
(D′(p)(p− w) +D(p)) log

(
p− w

p− w

)

, (17)

∂H

∂w
=

∫ p(w)

p(w)

D(p)
∂F (p, p(w), w)

∂w
dp

= −
1− λ

2λ
D(p)

(

−1 +
p− w

p− w
− log

(
p− w

p− w

))

. (18)

Inserting these expressions into the formula for p′(w), we obtain equation (14). Note that

this derivative is indeed strictly positive by Lemma A.1.1 and since log(1 + x) < x for every

x > 0.

Next, suppose that Hm(w) < s, so that, for every w′ close enough to w, p(w′) is equal to

pm(w′). Then, p′(w) = pm′(w), as stated.

Finally, suppose that Hm(w) = s. Observe that

∂H

∂p

∣
∣
∣
∣
(pm(w),w)

= D(pm(w)),

which is strictly positive. It follows that, for some sufficiently small η > 0, H(pm(w)+η, w) >

s. By continuity ofH, this implies that H(pm(w)+η, w′) > s for w′ close enough to w. Hence,

for every such w′, the equation H(p, w′) = s has a solution by the intermediate value theorem,

and we let ρ(w′) denote the smallest such solution (which exists by continuity of H). Below,

w′ should always be understood as being part of the neighborhood of w such that ρ(w′) is

well defined. Since ∂H/∂p and ∂H/∂w at (pm(w), w) are respectively strictly positive and

strictly negative (see above), the implicit function theorem implies that ρ is continuously

differentiable in a neighborhood of w and ρ′(w) is strictly positive.

We distinguish three cases. Assume first that Hm′(w) > 0. Then, p(w′) is equal to ρ(w′)

if w′ ≥ w, and to pm(w′) otherwise. It follows that the right derivative of p at w is equal

to ρ′(w), while the left derivative is equal to pm′(w). If instead Hm′(w) < 0, then the right

derivative of p at w is equal to pm′(w), while the left derivative is equal to ρ′(w).
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Finally suppose that Hm′(w) = 0, which implies that

∂H

∂w
+
∂H

∂p
pm′(w) = 0,

i.e., pm′(w) = −(∂H/∂w)/(∂H/∂p) = ρ′(w). For w′ in the neighborhood of w, we have that

p(w′) = min (ρ(w′), pm(w′)). It follows that

∣
∣
∣
∣

p(w′)− p(w)

w′ − w
− ρ′(w)

∣
∣
∣
∣
≤ max

(∣
∣
∣
∣

pm(w′)− pm(w)

w′ − w
− ρ′(w)

∣
∣
∣
∣
,

∣
∣
∣
∣

ρ(w′)− ρ(w)

w′ − w
− ρ′(w)

∣
∣
∣
∣

)

= max

(∣
∣
∣
∣

pm(w′)− pm(w)

w′ − w
− pm′(w)

∣
∣
∣
∣
,

∣
∣
∣
∣

ρ(w′)− ρ(w)

w′ − w
− ρ′(w)

∣
∣
∣
∣

)

−→
w′→w

0.

Hence, p is differentiable at w with strictly positive derivative.

The manufacturer’s profit is given by

Π(w) =

∫ p(w)

p(w)

r(p)dG(p, w) = r(p(w))−

∫ p(w)

p(w)

r′(p)G(p, w)dp,

where the second equality follows by integrating by parts and G(·, w) was defined in the main

text as the CDF of prices paid by consumers. Using equation (2), G simplifies to:

G(p, w) =
1

4λ

[

(1 + λ)2 − (1− λ)2
(
π(p(w), w)

π(p, w)

)2
]

. (19)

Differentiating Π(w) yields (if p is kinked at w (see Lemma A.1.2), the derivatives below

are one-sided derivatives):

Π′(w) = −

∫ p

p

r′(p)
∂G(p, w)

∂w
dp

=
(1− λ)2

2λ
π(p, w)

∫ p

p

r′(p)

D2(p)

(
π′
1(p, w)p

′(w)−D(p)

(p− w)2
+

π(p, w)

(p− w)3

)

dp,

where π′
1(p, w) denotes the partial derivative of π(p, w) with respect to its first argument.

Simplifying, we obtain the following first-order condition, which is necessary for optimality

whenever p(w) is differentiable:

∫ p

p

r′(p)

D2(p)

(
π′
1(p, w)p

′(w)−D(p)

(p− w)2
+

π(p, w)

(p− w)3

)

dp = 0. (20)
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In the following lemma, we establish some basic properties of the manufacturer’s maxi-

mization problem and the resulting retail price distribution:

Lemma A.1.3. For every λ ∈ (0, 1) and s > 0, the manufacturer’s maximization problem

has a solution. Moreover, any solution w must satisfy w ∈ (c, p0) and p < p0 < p, where p

and p are the associated upper and lower bounds of the support of the retail distribution.

Proof. We begin by showing that Π(·) has a strictly positive right-hand derivative at every

w ≤ c and a strictly negative right-hand derivative at every w ∈ [p0, p̌). That right-hand

derivative is given by:

Π′+(w) =
(1− λ)2

2λ
π(p, w)

∫ p

p

r′(p)

D2(p)

(
π′
1(p, w)p

′+(w)−D(p)

(p− w)2
+

π(p, w)

(p− w)3

)

dp, (21)

where p = p(w), p = p(w), and p′+(w) is the right-hand derivative of the upper bound with

respect to the wholesale price, which, by Lemma A.1.2, exists and is strictly positive.

The expression inside parentheses in the integrand in equation (21),

π′
1(p, w)p

′+(w)−D(p)

(p− w)2
+

π(p, w)

(p− w)3
=
π′
1(p, w)p

′+(w)

(p− w)2
+
D(p)(p− p)

(p− w)3
, (22)

is strictly positive for every p ∈ [p, p) since p(w) ≤ pm(w) and p′+(w) > 0.

If w ≤ c, then p ≤ pm(w) ≤ pm(c) = p0, so that r′(p) > 0 for p < p. It follows that

the integrand in equation (21) is strictly positive on p ∈ [p, p), implying that Π′+(w) > 0. If

instead w ≥ p0, then p > p0, so that r′(p) < 0 for p ∈ [p, p]. It follows that the integrand in

equation (21) is strictly negative, implying that Π′+(w) < 0. Hence, Π(·) is strictly increasing

on (0, c] and strictly decreasing on [p0, p̌). The manufacturer’s problem is therefore equivalent

to maxw∈[c,p0] Π(w), which has a solution by the Weierstrass theorem.

Next, let w be a solution to the maximization problem, with associated upper and lower

endpoints of the support, p and p, respectively. Then, w ≥ c. Moreover, as Π′+(c) > 0, we

have that w > c. Let us prove that p > p0. Assume for a contradiction that p ≤ p0. The

right-hand derivative of the manufacturer’s profit function at the optimal wholesale price is

given by equation (21). As p ≤ p0, we have that r
′(p) > 0 for every p ∈ [p, p), implying again

that the integrand in that equation is strictly positive. It follows that Π′+(w) > 0 at the

optimal wholesale price, which is a contradiction. Hence, p > p0. Following the exact same

approach, we also obtain that p < p0. Since p > w, it follows that w < p0.

A.2 Proof of Proposition 7

Suppose demand is ρ-linear and s ≥ s = maxw∈[c,p0]H(pm(w), w). We need to show that, at

any optimal w, the ratio of consumer surplus to industry profit is equal to α. This proof and
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the proof of Lemma B.1 below will rely on the following formulas for D′ and ∂π/∂p, which

are easily verified under ρ-linear demand:

D′(p) = −
αD(p)

p0 − αc− (1− α)p
(23)

and
∂π(p, w)

∂p
=

D(p)

p0 − αc− (1− α)p
(pm(w)− p). (24)

We begin by deriving expressions for consumer surplus and industry profit:

Lemma A.2.1. Under ρ-linear demand, for s ≥ s, expected industry profit and expected

consumer surplus are given by

Π(w) = (1− λ)πm(w)

∫ pm(w)

p(w)

p− c

p− w
dF (p, w) (25)

= r(pm(w))−

∫ pm(w)

p(w)

r′(p)G(p, w)dp (26)

and CS(w) = αΠ(w) + (1− λ)πm(w)

∫ pm(w)

p(w)

p0 − p

p− w
dF (p, w). (27)

Proof. Equation (25) follows immediately by inserting

dG(p, w) = d
[
(1− λ)F (p, w) + λ

(
1− (1− F (p, w))2

)]

= (1− λ)
πm(w)

π(p, w)
dF (p, w).

into the definition of Π(w). Integrating by parts in that definition and using the fact that

G(pm(w), w) = 1 and G(p(w), w) = 0, we obtain equation (26).

Expected consumer surplus is given by

CS(w) =

∫ pm(w)

p(w)

∫ ∞

p

D(x)dx dG(p, w)

=
1− λ

b
πm(w)

∫ pm(w)

p(w)

(α + (1− α)(a− bp))D(p)
dF (p, w)

π(p, w)

= (1− λ)πm(w)

∫ pm(w)

p(w)

(p0 − αc− (1− α)p)
dF (p, w)

p− w
.

Combining this with equation (25), we obtain equation (27).

Next, we obtain the optimality conditions for the wholesale price w:
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Lemma A.2.2. Under ρ-linear demand with s ≥ s, for any optimal wholesale price w, we

have ∫ pm(w)

p(w)

r′(p)

π2(p, w)

pm(w)− p

p− w
dp = 0, (28)

or, equivalently,
∫ pm(w)

p(w)

p0 − p

p− w
dF (p, w) = 0. (29)

Proof. Suppose that w maximizes Π(·). Then, Π′(w) = 0. Applying the Leibniz integral

rule to equation (26) and using the fact that G(pm(w), w) = 1 and G(p(w), w) = 0, we obtain

0 = −

∫ pm(w)

p(w)

r′(p)
∂G

∂w
dp

=

∫ pm(w)

p(w)

r′(p)(1− λ)
πm(w)

π(p, w)

1− λ

2λ

∂

∂w

πm(w)

π(p, w)
dp

=
(1− λ)2

2λ
πm(w)D(pm(w))

∫ pm(w)

p(w)

r′(p)

π3(p, w)
[pm(w)− p]D(p)dp,

which yields condition (28).

As

dF (p, w) =
1− λ

2λ

πm(w)

π(p, w)2
∂π(p, w)

∂p
dp,

equation (28) can be rewritten as

∫ pm(w)

p(w)

r′(p)

∂π(p, w)/∂p

pm(w)− p

p− w
dF (p, w) = 0.

Plugging equation (24) into the above condition to eliminate ∂π/∂p and r′(p), using the fact

that pm(c) = p0, and simplifying, we obtain condition (29).

Combining Lemmas A.2.1 and A.2.2, we obtain that CS(w) = αΠ(w).

A.3 Proofs for Section 3.2

Proof of Proposition 3. The second part of the proposition is obvious given the analysis

in Section 3.1. To prove the first part, we take the contrapositive. Suppose indeed that

the continuous uniform-pricing tariff T implements the monopoly outcome in almost every

demand state.

We begin by showing that, for every x ∈
[

mD(p0)
2
,mD(p0)

2

]

and y ∈ (0, (1− λ)x),

p0x− T (x) > p0y − T (y). (30)
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To see this, recall that, in almost every state m and for every price p > p0, retailers should

have no incentive to deviate from p0 to p:

m

2
p0D(p0)− T

(m

2
D(p0)

)

≥
1− λ

2
mpD(p)− T

(
1− λ

2
mD(p)

)

.

By continuity of D and T , the above inequality must in fact hold for every m ∈ [m,m] and

p > p0. It follows that, for every m ∈ [m,m] and p ∈ (p0, p̌),

m

2
p0D(p0)− T

(m

2
D(p0)

)

>
1− λ

2
mp0D(p)− T

(
1− λ

2
mD(p)

)

.

Letting x ≡ mD(p0)/2 and noting that, as p varies between p0 and p̌, y ≡ 1−λ
2
mD(p) takes

all the values in the interval (0, (1− λ)x), establishes inequality (30).

Next, let m0 = m + ε, where ε > 0 is small, and for every n, mn+1 = (1 + λ)mn. Let N

be the highest n such that mn ≤ m (or ∞ if m = ∞). For every n, let xn = mnD(p0)/2. In

state mn, retailers should not have an incentive to price “just below” p0:
29

p0
mn

2
D(p0)− T

(mn

2
D(p0)

)

≥ p0
1 + λ

2
mnD(p0)− T

(
1 + λ

2
mnD(p0)

)

.

Rewriting, this means that

p0xn − T (xn) ≥ p0xn+1 − T (xn+1).

Hence,

p0x0 − T (x0) ≥ p0xn − T (xn) (31)

for every n ≤ N .

Suppose that there is an integer n ≤ N such that xn >
x0

1−λ
. Then, as xn ∈ [mD(p0)

2
,mD(p0)

2
]

and x0 < (1− λ)xn, inequality (30) must hold for x = xn and y = x0, i.e.,

p0xn − T (xn) > p0x0 − T (x0),

contradicting condition (31). Hence, it must be that xn ≤ x0/(1− λ) whenever n ≤ N . The

following condition must therefore hold for every small ε > 0:

∀n > 0, (1 + λ)n ≤
m

m+ ε
=⇒ (1 + λ)n ≤

1

1− λ
. (32)

29The continuity of D and T implies that this inequality must hold in every state, rather than just in
almost every state.
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As this condition is clearly violated for ε > 0 small enough when m = 0, let us assume

that m > 0. Then, ε can be made arbitrarily small in condition (32) to obtain the simpler

condition

∀n > 0, (1 + λ)n ≤
m

m
=⇒ (1 + λ)n ≤

1

1− λ
,

or, taking the contrapositive,

∀n > 0, (1 + λ)n >
1

1− λ
=⇒ (1 + λ)n >

m

m
.

The premise is equivalent to

n ≥ 1 +

[
− log(1− λ)

log(1 + λ)

]

,

where [·] is the integer-part function. Hence, the condition reduces to

m < m(1 + λ)1+[
− log(1−λ)
log(1+λ) ].

As [x] ≤ x, this implies that

m < m(1 + λ)1−
log(1−λ)
log(1+λ) ,

which simplifies to the negation of the condition in the statement of the proposition.

Proof of Proposition 4. All that is left to do is check that there is no equilibrium in

which the variable part w is strictly below cost. Assume for a contradiction that such an

equilibrium exists. As usual, the fixed part is given by T = 1−λ
2
π(p, w). The manufacturer’s

equilibrium expected profit is still given by equation (7). Suppose that the manufacturer

deviates by offering (c, T ′) to retailer R1. If R1 accepts this new contract, it reacts by pricing

at pm(c) = p0 with probability 1, thus never supplying the online market. The manufacturer

extracts its profit by setting T ′ = 1−λ
2
r0 and thus makes a deviation profit of

Π′ = T +
1 + λ

2
(w − c)

∫ p

p

D(p)dF (p) +
1− λ

2
(p0 − c)D(p0)

> T +
1− λ

2
(w − c)

∫ p

p

D(p)dF (p) + λ(w − c)

∫ p

p

D(p)dFmin(p) +
1− λ

2
(p− c)D(p)

= T +
1− λ

2
(w − c)

∫ p

p

D(p)dF (p) + λ(w − c)

∫ p

p

D(p)dFmin(p)

+
1− λ

2
(π(p, w) + (w − c)D(p))

> 2T +
1− λ

2
(w − c)

∫ p

p

D(p)dF (p) + λ(w − c)

∫ p

p

D(p)dFmin(p)
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+
1− λ

2
(w − c)

∫ p

p

D(p)dF (p)

= Π∗.

The deviation is therefore profitable.

B On the Optimality of Dealing with Both Retailers

Lemma B.1. Suppose that D(p) is ρ-linear and s ≥ s = maxw∈[c,p0]H(pm(w), w). Then, in

any equilibrium under uniform pricing, the manufacturer deals with both retailers.

Proof. As s ≥ s, we have that for any w ∈ [c, p0], the upper bound of the retail price

distribution is given by the monopoly price, pm(w) = p0 + α(w − c). By Lemma A.2.1, the

profit of the manufacturer can be represented as

Π(w) = (1− λ)πm(w)

∫ pm(w)

p(w)

p− c

p− w
dF (p, w)

= (1− λ)πm(w)

(

1 + (w − c)

∫ pm(w)

p(w)

dF (p, w)

p− w

)

.

Let w be a global maximizer of Π(·). By Lemma A.2.2, the following condition must hold:

0 =

∫ pm(w)

p(w)

p0 − p

p− w
dF (p, w) = (p0 − w)

∫ pm(w)

p(w)

dF (p, w)

p− w
− 1.

Inserting this into the above expression for Π(w), we obtain that

Π(w) = (1− λ)πm(w)
p0 − c

p0 − w
= 2

1− λ

1 + λ

πm(w)

π(p0, w)
×

1 + λ

2
r0

= 2
π(p(w), w)

π(p0, w)
×

1 + λ

2
r0,

where the second line follows by equation (3).

Next, we show that (p0 − w)/(p(w) − w) < 2. By Lemma A.2.2, w must satisfy condi-

tion (28). Using equation (24) to replace r′(p) in that condition, we obtain:

0 =

∫ pm(w)

p(w)

ψ(p)
p0 − p

(p− w)3
dp, (33)
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where

ψ(p) ≡
1

D(p)

pm(w)− p

p0 − αc− (1− α)p
.

The derivative of ψ(p) is given by

ψ′(p) = −
D′(p)

D2(p)

pm(w)− p

p0 − αc− (1− α)p
+

1

D(p)

−(p0 − αc− (1− α)p) + (1− α)(pm(w)− p)

(p0 − αc− (1− α)p)2

=
1

D(p)

α(pm(w)− p) + (1− α)pm(w)− (p0 − αc)

(p0 − αc− (1− α)p)2
= −

α

D(p)

p− w

(p0 − αc− (1− α)p)2
,

where we have used equation (23) to obtain the second equality and the fact that pm(w) =

p0 + α(w − c) to obtain the third. Note that ψ′(·) < 0 for every p > w.

By the mean-value theorem, for every p ∈ [p(w), pm(w)] there exists ξ = ξ(p) between p

and p0 such that

ψ(p) = ψ(p0)− ψ′(ξ(p))(p0 − p).

Therefore, condition (33) can be rewritten as

ψ(p0)

∫ pm(w)

p(w)

p0 − p

(p− w)3
dp =

∫ pm(w)

p(w)

ψ′(ξ(p))
(p0 − p)2

(p− w)3
dp.

As ψ(p0) > 0 and ψ′(p) < 0 for every p > w, we have that the integral on the left-side is

strictly negative for any optimal w. Thus,

∫ pm(w)

p(w)

p0 − p

(p− w)3
dp =

∫ pm(w)

p(w)

(
p0 − w

(p− w)3
−

1

(p− w)2

)

dp

=
p0 − w

2

(
1

(p(w)− w)2
−

1

(pm(w)− w)2

)

−

(
1

p(w)− w
−

1

pm(w)− w

)

< 0.

Multiplying this inequality by p(w)− w, we obtain

1

2

p0 − w

p(w)− w

(

1−

(
p(w)− w

pm(w)− w

)2
)

<

(

1−
p(w)− w

pm(w)− w

)

.

This implies that
p0 − w

p(w)− w
<

2

1 +
p(w)−w

pm(w)−w

< 2.

Hence, p(w) > 1
2
w + 1

2
p0. Moreover, as π(·, w) is strictly concave and strictly increasing on
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(w, pm(w)) by Marshall’s second law of demand, we have that

π(p(w), w) > π

(
1

2
w +

1

2
p0, w

)

>
1

2
π(w,w) +

1

2
π(p0, w) =

1

2
π(p0, w).

This establishes the final result that Π(w) > 1+λ
2
r0.

Lemma B.2. Regardless of D(·), the manufacturer deals with both retailers in any equilib-

rium under uniform pricing provided λ ≤ 1
3
.

Proof. We begin by showing that the manufacturer can secure a profit strictly greater than

(1 − λ)r0 by dealing with both retailers. Suppose first that s ≥ H(p0, c), where H(·, ·) was

defined in equation (4). If the manufacturer offers the tariff
(
c, 1−λ

2
r0
)
, then both retailers

accept and draw their prices from the CDF F defined in equation (2), with support [p(c), p0].

This results in a profit of (1− λ)r0 for the manufacturer. By Lemma A.1.3, w = c is not an

optimal wholesale price for the manufacturer. Hence, for some w, Π(w) > (1− λ)r0.

Next, suppose instead that s < H(p0, c). It is easily checked that limw↑p0 H(p0, w) = 0

and H(p0, ·) is continuous on [c, p0). The intermediate value theorem implies the existence of

a w′ ∈ (c, p0) such that H(p0, w
′) = s. If the manufacturer offers the tariff

(
w′, 1−λ

2
π(p0, w

′)
)
,

then both retailers accept and the support of the equilibrium CDF of retail prices is [p(w′), p0].

The manufacturer earns a profit of

Π(w′) = (1− λ)(p0 − w′)D(p0) + (w′ − c)

∫ p0

p(w′)

D(p)dG(p, w′)

= (1− λ)r0 − (1− λ)(w′ − c)D(p0) + (w′ − c)

∫ p0

p(w′)

D(p)dG(p, w′)

> (1− λ)r0.

Hence, the manufacturer can secure a profit strictly greater than (1 − λ)r0 by dealing

with both retailers. This exceeds (1 + λ)r0/2, the maximum profit from dealing with one

retailer, provided λ ≤ 1/3.

C Equilibrium Analysis under Dual Pricing

Fix a profile of wholesale prices (wo, wb), where wo > 0 and wb > 0. In Sections C.1–C.3

below, we establish the existence of a symmetric equilibrium in each retail pricing subgame;

we also fully characterize the set of symmetric pure-strategy equilibria. Building on this, we

prove Proposition 2 in Section C.4.

A symmetric equilibrium is a common CDF of prices F (which may be degenerate) and

a search rule for the offline consumers such that: (i) for every firm i, drawing prices from
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F is optimal, conditional on the offline consumers’ search rule and on the other firm mixing

according to F ; and (ii) the offline consumers’ search rule is sequentially rational.

Let p and p be the maximum and minimum of the support of F . It is easily shown that

any sequentially rational search rule must involve a cutoff strategy. That is, there exists

ρ ∈ [p,∞] such that a non-shopper that samples a price of p always searches if p > ρ, and

never searches if p < ρ. A non-shopper that samples p = ρ is indifferent between searching

and not searching; the search rule should specify the non-shopper’s behavior in that case.

We let ν ∈ [0, 1] denote the probability that a non-shopper searches when it samples p = ρ.

Note that ρ > p, as the gains from search (gross of the search cost) vanish as the sampled

price approaches p.

To sum up, a symmetric equilibrium is fully described by a CDF F (with p and p as the

maximum and minimum of the support) and a search rule (ρ, ν) ∈ (p,∞] × [0, 1]. We show

equilibrium existence in the retail competition subgame separately for the following cases: 1.

wo < pm(wb); 2. wo > pm(wb); and 3. wo = pm(wb). We do so in Sections C.1, C.2, and C.3,

respectively. Define πb(p) ≡ π(p, wb), πo(p) ≡ π(p, wo), and π
m
b ≡ π(pmb (wb), wb).

C.1 Case 1: Dual Pricing Subgames when wo < pm(wb)

We begin by ruling out pure-strategy equilibria:

Lemma C.1.1. For any (wo, wb) such that wo < pm(wb), there is no symmetric pure-strategy

equilibrium in the retail competition subgame.

Proof. Assume for a contradiction that there exists a symmetric pure-strategy equilibrium,

in which retailers price at p. If p > wo, then retailer i can profitably deviate to pricing just

below p, a contradiction. Suppose instead that p ≤ wo. If equilibrium profits are strictly

negative, then firm i can deviate to pm(wb) and make non-negative profits, a contradiction.

Suppose instead that equilibrium profits are non-negative, which implies that wo ≥ p > wb.

Then, retailer i can deviate to p + ε. This deviation is profitable, as firm i no longer serves

the shoppers (on which it was making losses), continues to serve its captives, and makes more

profits on its captives (as p+ε < pm(wb)). Hence, there is no pure-strategy equilibrium.

We construct an equilibrium in which retailers mix symmetrically and continuously and

the offline consumers never search on path. Define the function

k(p, x;wo, wb) = 1−
1− λ

2λ

πb(x)− πb(p)

πo(p)
, (34)

for every x ∈ (wo, p
m(wb)] and p ∈ (wo, x]. Define also p as the unique solution to k(p, x;wo, wb) =
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0, which can be rewritten as

2λπo(p) + (1− λ)πb(p) = (1− λ)πb(x). (35)

We establish the existence and uniqueness of p in the proof of the proposition below.

The following proposition establishes the existence of a symmetric equilibrium for the

case wo < pm(wb).

Lemma C.1.2. Suppose that wo < pm(wb). There exists a p ∈ (wo, p
m(wb)] such that the

continuous CDF F (·, p) ≡ k(·, p;wo, wb) with support [p, p] and the search rule (ρ, ν) = (p, 1)

form a symmetric equilibrium in the retail competition subgame.

Proof. We begin by showing that, for any x ∈ (wo, p
m(wb)], the function k(·, x) (where we

have dropped the arguments (wo, wb) to ease notation) is strictly increasing on (wo, x). We

have:
∂k(p, x)

∂p
=

1− λ

2λ

1

π2
o(p)

[π′
b(p)πo(p) + (πb(x)− πb(p))π

′
o(p)] . (36)

If wo > wb, then p
m(wo) > pm(wb), and we immediately obtain that ∂k/∂p > 0, as the two

terms inside the square brackets in equation (36) are strictly positive. Suppose instead that

wo ≤ wb. We have:

∂k(p, x)

∂p
=

1− λ

2λ

1

π2
o(p)

[(p− wb)D
′(p) +D(p)] (p− wo)D(p)

+
1− λ

2λ

1

π2
o(p)

[πb(x)− (p− wb)D(p)] [(p− wo)D
′(p) +D(p)]

=
1− λ

2λ

1

π2
o(p)

[
(wb − wo)D

2(p) + πb(x) ((p− wo)D
′(p) +D(p))

]

=
1− λ

2λ

D(p)

π2
o(p)

[

(wb − wo)D(p) + πb(x)

(

1−
p− wo

p
|ε(p)|

)]

, (37)

where ε is the price elasticity of demand. As x ≤ pm(wb), we see from equation (36) that
∂k(x,x)

∂p
= 1−λ

2λ

π′

b
(x)

πo(x)
≥ 0. Moreover, given Marshall’s second law of demand and the fact that

wo ≤ wb, the term inside the square brackets on the right-hand side of equation (37) is strictly

decreasing in p. It follows that ∂k/∂p > 0 for every p ∈ (wo, x).

Note that k(p, x) < 1, for every p < x and k(x, x) = 1. Moreover, k is continuous on

the set of pairs (p, x) such that x ∈ (wo, p
m(wb)] and p ∈ (wo, x]. As x > wo, we have

that limp↓wo
k(p, x) = −∞. The continuity and monotonicity of k uniquely pin down a

p = p(x) ∈ (wo, x) such that k(p(x), x) = 0. The properties of k imply that F is continuous

in (p, x) and non-decreasing in p. Therefore, for every x ∈ (wo, p
m(b)], the function F (·, x) is

the CDF of a probability measure with support [p(x), x].

46



Next, we show that, for some x, there exists an equilibrium in which retailers mix sym-

metrically according to the CDF F (·, x) with support [p(x), x], and offline consumers do not

search on the equilibrium path. Define H(x) as the expected gain from searching (gross of

the search cost) when receiving a price of x and expecting the new price to be drawn from

F (·, x):

H(x) =

∫ x

p

(∫ ∞

p

D(t)dt−

∫ ∞

x

D(t)dt

)

dF (p, x) =

∫ x

p

D(p)F (p, x)dp,

where the second equality was obtained by integrating by parts.

Suppose first that s ≥ H(pm(wb)), and let us show that there is an equilibrium in which

firms mix according to F (·, x) with x = pm(wb) and offline consumers do not search on path.

The latter property follows as the net gains from searching when receiving price pm(wb) are

non-positive, and the gains from searching when receiving a lower price are even lower. Next,

we show that the retailers have no incentives to deviate. The expected profit of a retailer

setting price p ∈ [p(x), x] is given by

1− λ

2
πb(p) + λ(1− F (p, x))πo(p) =

1− λ

2
πb(x),

implying that the firm is indifferent between any prices in [p(x), x]. Deviating to a price above

pm(wb) is not profitable, as the deviating firm does not serve the shoppers and makes sub-

optimal profits on the offline consumers. Deviating to any price p ∈ [wo, p) is not profitable,

as the expected profit from the deviation would satisfy

1− λ

2
πb(p) + λπo(p) <

1− λ

2
πb(p) + λ(1− k(p, x))πo(p) =

1− λ

2
πb(x).

Finally, deviating to a price p < wo involves making a loss on shoppers and charging a

sub-optimal price on the offline consumers, which is not profitable. Therefore, the proposed

strategy profile is a symmetric equilibrium.

Next, suppose that s < H(pm(wb)). Let us show that,H(x) = s for some x ∈ (wo, p
m(wb)).

Note that limx↓wo
H(x) = 0, as H(x) ≤ (x − wo)D(wo) −→

x↓wo

0. Moreover, H is continuous,

as the integrand is continuous in (p, x) and bounded above by the integrable function D(p).

By the intermediate value theorem, there therefore exists an x ∈ (wo, p
m(wb)) such that

H(x) = s. We can again construct a symmetric equilibrium in which firms mix according to

F (·, x) and offline consumers do not search on path. As above, firms are indifferent between

all the prices in [p(x), x] and have no incentives to price below p(x). Moreover, deviating to

a price above x would result in zero profit, as the firm’s offline consumers would search and

find a lower price with probability 1.
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C.2 Case 2: Dual Pricing Subgames when wo > pm(wb)

We begin by characterizing the set of symmetric pure-strategy equilibria. For every θ ∈ [0, 1],

define

w̃(θ) ≡
1−λ
2
(1 + θ)wb + λwo

1−λ
2
(1 + θ) + λ

(38)

and π̃m(θ) ≡ π(pm(w̃(θ)), w(θ)).

Lemma C.2.1. Suppose that wo > pm(wb). If wo ≤ pm(w̃(0)), then the retail competition

subgame has a unique symmetric pure-strategy equilibrium, in which both firms price at wo.

If instead wo > pm(w̃(0)), then no pure-strategy equilibrium exists.

Proof. Suppose that there exists a symmetric pure-strategy equilibrium, in which retailers

price at p. Assume for a contradiction that p < wo. If equilibrium profits are strictly

negative, then firm i can obtain non-negative profits by deviating to wo, a contradiction.

Suppose instead that equilibrium profits are non-negative, which implies that p > wb. Then,

firm i can raise its profits by deviating to p+ ε to stop serving the shoppers (on which it was

making losses) without inducing offline consumers to search. Hence, p ≥ wo. Assume for a

contradiction that p > wo; then, firm i can profitably deviate to p − ε, a contradiction. It

follows that p = wo.

We show that p = wo is a pure-strategy equilibrium if and only if wo ≤ pm(w̃(0)). Clearly,

starting from this equilibrium candidate, deviating upwards is not profitable, as wo ≥ pm(wb).

If firm i deviates downward, it obtains

1− λ

2
(pi − wb)D(pi) + λ(pi − wo)D(pi) =

1 + λ

2
(pi − w̃(0))D(pi),

which tends to 1−λ
2
(wo − wb)D(wo) (the candidate equilibrium profits) as pi tends to wo. If

wo ≤ pm(w̃(0)), then pi 7→ (pi − w̃(0))D(pi) is strictly increasing on (wb, wo), and so the

downward deviation is not profitable. If instead wo > pm(w̃(0)), then that function is locally

strictly decreasing around pi = wo, and there is a profitable downward deviation.

For the case where wo > pm(w̃(0)), we construct a symmetric mixed-strategy equilibrium.

Consider the function

k(p, θ;wo, wb) =

[
1− λ

2λ
(1 + θ) + 1

]
π̃m(θ)− π(p, w̃(θ))

−πo(p)
, (39)

defined for every p ∈ [pm(w̃(θ)), wo) and θ ∈ [0, 1]. We have:

Lemma C.2.2. Suppose that wo > pm(w̃(0)). There exist θ ∈ [0, 1], ν ∈ [0, 1) and p ∈

(pm(w̃), wo) such that the following strategy profile is a symmetric equilibrium of the retail
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competition subgame: firms draw their prices from the CDF

F (p) =







k(p, θ;wo, wb) if p ∈ [pm(w̃(θ)), p)

1 otherwise

and the search rule is (p, ν).

Proof. For every θ ∈ [0, 1], we have that k(pm(w̃(θ)), θ) = 0, and k is continuous and strictly

positive on (pm(w̃(θ)), wo), where we have dropped the arguments (wo, wb) to ease notation.

Moreover, limp↑wo
k(p, θ) = ∞, and k is strictly increasing on (pm(w̃(θ)), wo), as

∂k(p, θ)

∂p
=

[
1− λ

2λ
(1 + θ) + λ

] [
∂π(p, w̃(θ))

∂p
πo(p) + (π̃m(θ)− π(p, w̃(θ))) π′

o(p)

]

> 0.

Therefore, there exists a unique p̂(θ) ∈ (pm(w̃(θ)), wo) such that k(p̂(θ), θ) = 1.

For every x ∈ (pm(w̃(θ)), p̂(θ)], define

F (p, x, θ) =







k(p, θ) if p ∈ [pm(w̃(θ)), x)

1 otherwise.

Then, F (·, x, θ) is the CDF of a probability measure. Define also H(x, θ) as the expected

gain from searching (gross of the search cost) when receiving a price of x and expecting the

new price to be drawn from F (·, x, θ):

H(x, θ) ≡

∫ x

pm(w̃(θ))

(∫ ∞

p

D(t)dt−

∫ ∞

x

D(t)dt

)

dF (p, x, θ) =

∫ x

pm(w̃(θ))

D(p)F (p, x, θ)dp,

where we have integrated by parts to obtain the second equality.

Suppose first that H(p̂(0), 0) ≤ s. We show that there is an equilibrium in which firms

mix according to F (·, p̂(0), 0) and offline consumers never search on path. Clearly, this

search behavior is sequentially rational for the offline consumers. The expected profit of a

firm pricing at any p ∈ [pm(w̃(0)), p̂(0)] is

1− λ

2
πb(p) + λ(1− F (p, p̂(0), 0))πo(p)

=

(
1− λ

2
+ λ

)

π(p, w̃(0))− λk(p, 0)πo(p) =
1 + λ

2
π̃m(0),

implying that firms are indifferent between all the prices in the support of F (·, p̂(0), 0). In

particular, a firm pricing at p̂(0) receives a profit of 1−λ
2
πb(p̂(0)) =

1+λ
2
π̃m(0). A deviation to

a price p > p̂(0) results in a profit of at most 1−λ
2
πb(p), which is lower than 1−λ

2
πb(p̂(0)), as
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p̂(0) > pm(w̃(0)) > pm(wb). Similarly, a deviation to a price p < pm(w̃(0)) results in a profit

of 1+λ
2
π(p, w̃(0)) < 1+λ

2
π̃m(0).

Next, suppose that H(p̂(0), 0) > s. Consider the following equation:

Ψ(x, θ) ≡ [1− k(x, θ)]2
λ

1− λ

wo − x

x− wb

− θ = 0. (40)

Let us show that there exists a θ̄ > 0, such that for every θ ∈ [0, θ̄], equation (40) has a

unique solution in x on the interval [pm(w̃(θ)), p̂(θ)], which we define as p̃(θ). Note that

∂Ψ/∂x < 0, implying that, Ψ(·, θ) is maximized at x = pm(w̃(θ)). Thus, define

Φ(θ) ≡ Ψ(pm(w̃(θ)), θ) =
λ

1− λ

wo − pm(w̃(θ))

pm(w̃(θ))− wb

− θ.

As wo > pm(w̃(0)), we have that Φ(0) > 0. Moreover, as pm(w̃(1)) > w̃(1) = (1−λ)wb+λwo,

we have that λ(wo − pm(w̃(1))) < (1 − λ)(pm(w̃(1)) − wb), implying that Φ(1) < 0. By

the intermediate value theorem, there exists a solution to the equation Φ(θ) = 0. Let θ̄ be

the smallest θ that solves Φ(θ) = 0 (which exists by continuity of Φ). Note that θ̄ > 0, as

Φ(0) > 0. Thus, by the monotonicity of Ψ(·, θ), we have that for every θ ∈ [0, θ̄], there exists

a unique p̃(θ) ∈ [pm(w̃(θ)), p̂(θ)] that solves equation (40). The properties of Ψ imply that

p̃(·) is continuous and satisfies p̃(0) = p̂(0), and p̃(θ̄) = pm(w̃(θ̄)).

Next, let

H̃(θ) ≡ H(p̃(θ), θ) =

∫ p̃(θ)

pm(w̃(θ))

D(p)F (p, p̃(θ), θ)dp

for every θ ∈ [0, θ̄]. Let us show that equation H̃(θ) = s has a solution. When θ = 0,

we have that H̃(0) > s by assumption. Note that limθ↑θ̄ H̃(θ) = 0, as H̃(θ) ≤ (p̃(θ) −

pm(w̃(θ)))D(w̃(1)) −→
θ↑θ̄

0. Moreover, H̃(·) is continuous in θ, as the integrand is continuous

in (p, θ) and bounded above by the integrable function D(p). Hence, by the intermediate

value theorem, there exists a θ∗ ∈ [0, θ̄] such that H̃(θ∗) = s.

Consider the strategy profile in which: firms draw their prices from the CDF F (·, p̃(θ∗), θ∗)

with support [pm(w̃(θ∗)), p̃(θ∗)]; offline consumers never search if they receive a price strictly

below p̃(θ∗); offline consumers search with probability

ν =
θ∗

1− k(p̃(θ∗), θ∗)
(41)

if they sample a price of p̃(θ∗). Let us verify that this strategy profile constitutes a sym-

metric equilibrium. Note first that the offline consumers’ search rule is sequentially ra-

tional by construction. Following the same steps as above, it is easily shown that firms

are indifferent between all the prices in [pm(w̃(θ∗)), p̃(θ∗)), which all result in a profit of
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(
1−λ
2
(1 + θ∗) + λ

)
π̃m(θ∗). Deviating to p < pm(w̃(θ∗)) is unprofitable, as the resulting

profit would be
(
1−λ
2
(1 + θ∗) + λ

)
π(p, w̃(θ∗)). Deviating to p > p̃(θ∗) would result in zero

profit. All that is left to do is show that the profit from pricing at p̃(θ∗) is equal to
(
1−λ
2
(1 + θ∗) + λ

)
π̃m(θ∗). This holds, as the expected profit at p̃(θ∗) is

1− λ

2
(1− ν)πb(p̃(θ

∗)) + (1− k(p̃(θ∗), θ∗))

(
λ

2
πo(p̃(θ

∗)) +
1− λ

2
νπb(p̃(θ

∗))

)

=

(
1− λ

2
(1 + θ∗) + λ

)

π̃m(θ∗)−
1− λ

2

θ∗

1− k(p̃(θ∗), θ∗)
πb(p̃(θ

∗))

−
λ

2
(1− k(p̃(θ∗), θ∗)) πo(p̃(θ

∗))

=

(
1− λ

2
(1 + θ∗) + λ

)

π̃m(θ∗)−
1− λ

2

πb(p̃(θ
∗))

1− k(p̃(θ∗), θ∗)
Ψ(p̃(θ∗), θ∗)

=

(
1− λ

2
(1 + θ∗) + λ

)

π̃m(θ∗).

C.3 Case 3: Dual Pricing Subgames when wo = pm(wb)

Lemma C.3.1. Suppose that wo = pm(wb). Then, the retail competition subgame has a

unique equilibrium, in which both firms price at wo.

Proof. Consider a symmetric equilibrium characterized by a CDF F , where p and p are the

maximum and minimum of the support, and a search rule (ρ, ν). Assume for a contradiction

that p < wo. Then, given that firm j draws its price from F , firm i’s equilibrium expected

profit is locally strictly increasing in pi at p. The reason is that a small increase in pi (i) does

not induce the offline consumers to start searching, (ii) raises profit per non-shopper, (iii)

reduces the probability of selling to the shoppers (on which firm i makes losses), and (iv)

raises profit per shopper. This contradicts the fact that p is the minimum of the support of

F . It follows that p ≥ wo, and that expected equilibrium profits are strictly positive.

Next, assume for a contradiction that F is non-degenerate, i.e., p > p. Suppose first that

F puts strictly positive mass on p. Then, firm i would be strictly better off pricing at p− ε

than pricing at p, a contradiction. Suppose instead that F puts no mass on p. Then, as pi

approaches p from below, firm i sells with vanishingly small probability to the shoppers, and

the price at which it sells to its captives is strictly sub-optimal. Firm i would therefore be

strictly better off pricing at pm(wb) instead, a contradiction. It follows that F is degenerate,

i.e., puts full weight on some p ≥ wo.

If p > wo, then firm i is strictly better off undercutting p, a contradiction. It follows that

p = wo. This is clearly an equilibrium.
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C.4 Proof of Proposition 2

Proof. Consider the dual pricing contract (wo, wb, T ) =
(
p0, c,

1−λ
2
r0 − ε

)
for some small ε >

0. By Lemma C.3.1, if both retailers accept this contract, there exists a unique equilibrium

of the continuation subgame, in which both retailers price at p0 and earn ε. Hence, both

retailers accept, and the manufacturer makes a profit of r0− 2ε. Thus, the manufacturer can

guarantee itself a profit that can be made arbitrarily close to r0.

Assume for a contradiction that there is a subgame-perfect equilibrium in which wo ̸= p0,

or wo = p0 and wb /∈
[
(1+λ)c−2λp0

1−λ
, c
]

. If only one retailer (resp., no retailer) accepts, then the

manufacturer earns at most 1+λ
2
r0 (resp., 0), which is less than r0.

Suppose instead that both retailers accept. If wo < pm(wb) or wo > pm(w̃(0)) (using

the notation of Section C.2), then by Lemmas C.1.1 and C.2.1, the retail pricing game does

not have a pure-strategy equilibrium. In any mixed-strategy equilibrium (which exists by

Lemmas C.1.2 and C.2.2), the retailers do not price at p0 with probability 1, implying that

industry profit, and thus the manufacturer’s profit, is strictly less than r0.

Next, suppose that wo ∈ [pm(wb), p
m(w̃(0))]. Assume for a contradiction that wo = p0.

Then, p0 ≥ pm(wb) implies that wb ≤ c, while p0 ≤ pm(w̃(0)) implies that w̃(0) ≥ c, and thus

wb ≥
(1+λ)c−2λp0

1−λ
. This contradicts our original assumption that wb /∈

[
(1+λ)c−2λp0

1−λ
, c
]

.

It follows that wo ̸= p0. Then, by Lemmas C.2.1 and C.3.1, there exists a unique pure-

strategy equilibrium, in which both firms price at wo ̸= p0, implying that industry profit, and

thus the manufacturer’s profit, is strictly less than r0. If instead a non-degenerate mixed-

strategy equilibrium is selected, then the manufacturer again earns strictly less than r0.

Thus, in this subgame-perfect equilibrium candidate, the manufacturer earns strictly

less than r0. It follows that the manufacturer can profitably deviate to (wo, wb, T ) =
(
p0, c,

1−λ
2
r0 − ε

)
for ε > 0 sufficiently small, a contradiction.

Thus, in any subgame-perfect equilibrium, wo = p0 and wb ∈
[
(1+λ)c−2λp0

1−λ
, c
]

. Moreover,

the above reasoning implies that in any such equilibrium, T = 1−λ
2
π(p0, wb) and both retailers

accept the contract and price at p0 with probability 1 (for otherwise the manufacturer would

earn strictly less than r0 and could profitably deviate to (wo, wb, T ) =
(
p0, c,

1−λ
2
r0 − ε

)

for ε > 0 sufficiently small). The fact that this strategy profile forms a subgame-perfect

equilibrium follows by Lemmas C.2.1 and C.3.1.

D Proofs of Approximation Results

In this appendix, we provide the proofs of our approximation results (Propositions 8–10).

The structure of this appendix is as follows. In Section D.1, we present some preliminaries,

including expressions for consumer and aggregate surplus and a technical lemma that will be
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used repeatedly to approximate integrals. In Section D.2, we study the welfare effects of dual

pricing for small s and prove Proposition 8. In Section D.3, we turn to the approximation

results for small λ and prove Proposition 9. Finally, Sections D.4 and D.5 contain the welfare

results for the case of high λ and the proof of Proposition 10.

D.1 Preliminaries for the Proofs of Propositions 8–10

D.1.1 Expressions for Consumer and Aggregate Surplus

In principle, the manufacturer’s maximization problem may have multiple solutions. In the

following, for every (λ, s), we let w = w(λ, s) be such a solution. We also define p(λ, s)

and p(λ, s) as the associated upper and lower endpoints of the support of the retail price

distribution.

Let CS(p) =
∫∞

p
D(t)dt. The consumer surplus effect of a ban on dual pricing is given by

∆CS(λ, s) =

∫ p(λ,s)

p(λ,s)

CS(p)dG(p, w(λ, s), λ, s)− CS(p0).

Integrating by parts and dropping the arguments (λ, s) to ease notation, we obtain:

∆CS = CS(p) +

∫ p

p

D(p)G(p, w)dp− CS(p0)

= −

∫ p

p0

D(p)dp+

∫ p

p

D(p)G(p, w)dp

= −

∫ p

p0

D(p)dp+
(1 + λ)2

4λ

∫ p

p

D(p)dp−
(1− λ)2

4λ
π2(p, w)

∫ p

p

dp

D(p)(p− w)2
. (42)

The change in producer surplus is given by

∆Π =

∫ p

p

r(p)dG(p, w)− r0

= r(p)− r0 −

∫ p

p

r′(p)G(p, w)dp

= r(p)− r0 −
(1 + λ)2

4λ
(r(p)− r(p)) +

(1− λ)2

4λ
π2(p, w)

∫ p

p

r′(p)

D(p)2
dp

(p− w)2
. (43)

The change in aggregate surplus is given by

∆AS = ∆CS +∆Π. (44)
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We show below that, as s → 0, λ → 0 or λ → 1, the equilibrium of the model under

uniform pricing converges to that under dual pricing. Thus, to determine the sign of ∆CS

and ∆AS, it is sufficient to investigate whether consumer surplus and aggregate surplus under

uniform pricing increases or decreases in the neighborhood of s = 0, λ = 0 and λ = 1. Our

approximation results will rely on the (local) monopoly cost pass-through and its behavior:

α ≡
dpm

dw

∣
∣
∣
∣
w=c

=
D′

0

r′′0
(45)

and β ≡
d2pm

dw2

∣
∣
∣
∣
w=c

= α2

(
2D′′

0

D′
0

−
r′′′0
r′′0

)

, (46)

where D
(k)
0 and r

(k)
0 are the k-th derivative of D(p) and r(p) at p = p0, respectively, and the

expressions were derived using the implicit function theorem.

D.1.2 Taylor Approximation under the Integral Sign

The following lemma will allow us to derive Taylor approximations of expressions involving

integrals:

Lemma D.1.1. Consider the integral

I(x) =

∫ b(x)

a(x)

χ(p)ξ(p, x)dp.

Let p0 such that p0 ∈ [a(x), b(x)] for every x. Assume limx→x0 a(x) = a0 ≤ b0 = limx→x0 b(x)

and χ is CN+1 on an open interval J such that [a0, b0] ⊆ J . Then, in the neighborhood of

x = x0,

I(x) =
N∑

k=0

χ(k)(p0)

k!

∫ b(x)

a(x)

(p− p0)
kξ(p, x)dp+O

(
∫ b(x)

a(x)

|p− p0|
N+1|ξ(p, x)|dp

)

.

Proof. By the Taylor-Lagrange theorem, for every p ∈ J , there exists a ψ(p) between p and

p0 such that

χ(p) =
N∑

k=0

χ(k)(p0)
(p− p0)

k

k!
+ χ(N+1)(ψ(p))(p− p0)

N+1.

Let ε > 0 be sufficiently small and

κ ≡ sup
p∈[a0−ε,b0+ε]

|χ(N+1)(ψ(p))| ≤ sup
p∈[a0−ε,b0+ε]

|χ(N+1)(p)| <∞.
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Then, for x in the neighborhood of x0,

I(x) =
N∑

k=0

χ(k)(p0)

k!

∫ b(x)

a(x)

(p− p0)
kξ(p, x)dp+

∫ b(x)

a(x)

χ(N+1)(ψ(p))(p− p0)
N+1ξ(p, x)dp

︸ ︷︷ ︸

≡R(x)

.

Note that

|R(x)| ≤ κ

∫ b(x)

a(x)

|p− p0|
N+1|ξ(p, x)|dp

for x sufficiently close to x0, which implies that

R(x) = O

(
∫ b(x)

a(x)

|p− p0|
N+1|ξ(p, x)|dp

)

in the neighborhood of x = x0.

D.2 Proofs of Welfare Results when s is Small

In this appendix, we study the welfare effects of a ban on dual pricing when s is small and

provide the proof of Proposition 8. Specifically, we derive the second-order Taylor approxi-

mations of ∆CS and ∆AS with respect to s in the neighborhood of s = 0.

We proceed as follows. In Section D.2.1, we discuss the properties of the retail price

distribution for s ≃ 0. Next, in Section D.2.2, we derive auxiliary Taylor approximations for

the wholesale price and the lower bound of the support of the retail price distribution. In

Section D.2.3, we derive the second-order Taylor approximations of ∆CS and ∆AS, which

concludes the proof of Proposition 8. In section D.2.4, we study the distributional effects of

banning dual pricing.

D.2.1 Basic Properties of the Equilibrium for Low s

By Lemma A.1.3, without loss of generality, we can restrict attention to wholesale prices in

[c, p0]. Let us show that in the neighborhood of s = 0, the upper endpoint of the support,

p(w), satisfies H(p, w) = s. Define s̃ ≡ minw∈[c,p0]H(pm(w), w). Note that H(pm(w), w) does

not depend on s. Moreover, the minimum exists, as we are minimizing a continuous function

over a compact set, and it must be strictly positive, as retailers play mixed strategies at any

minimizing w. Therefore, for all s < s̃ and all w ∈ [c, p0] we have that H(pm(w), w) ≥ s̃ > s.

This implies that for s sufficiently close to zero, p(w) is strictly less than pm(w) and must

therefore satisfy H(p, w) = s.

We now show that, as s→ 0, the equilibrium of the model under uniform pricing converges

to that under dual pricing. In particular, we show that, when s goes to 0, p, p, and w converge

55



to the industry monopoly price p0; the change in consumer and aggregate surplus, ∆CS and

∆AS respectively, both converge to 0.

Lemma D.2.1. Under uniform pricing, the limiting equilibrium behavior as s goes to zero

is as follows:

lim
s→0

w(λ, s) = lim
s→0

p(λ, s) = lim
s→0

p(s, λ) = p0.

This implies that

lim
s→0

∆CS(λ, s) = lim
s→0

∆AS(λ, s) = 0.

Proof. Below, we drop argument λ to ease notation. First, we show that p(s)−p(s) converges

to 0 as s tends to 0. We begin by putting on record that, for any w, the equilibrium price CDF

is strictly concave. From equation (2), the density function of the retail price distribution is

f(p, w, s) =
1− λ

2λ
π(p(w, s), w)

∂π(p, w)/∂p

π2(p, w)
.

In Lemma A.1.1, we established that Marshall’s second law of demand implies Assumption C

in Stahl (1989), i.e., (p−w)∂π(p,w)
∂p

/π2(p, w) is strictly decreasing on (w, pm(w)). It follows that
∂π(p,w)

∂p
/π2(p, w) is also strictly decreasing on (w, pm(w)), implying that F (·, w, s) is strictly

concave over its support. As a concave function lies above its secant lines, we have that for

every p ∈ [p(w, s), p(w, s)], F (p, w, s) ≥ (p− p(w, s))/(p(w, s)− p(w, s)).

As, in the neighborhood of s = 0, p(s) satisfies H(p(s), w(s), s) = s, we have that

s =

∫ p(s)

p(s)

D(p)F (p, w(s), s)dp ≥

∫ p(s)

p(s)

D(p)
p− p(s)

p(s)− p(s)
dp ≥

D(pm(p0))

2
(p(s)− p(s)),

where the second inequality follows as w(s) ≤ p0 by Lemma A.1.3. Taking the limit as

s tends to zero and applying the squeeze theorem, we obtain that p(s) − p(s) −→
s→0

0. As

p(s) < p0 < p(s) by Lemma A.1.3, this implies that p(s) → p0 and p(s) → p0 as s goes to 0.

Next, we study the limit of w(s) as s goes to 0. Solving out for w(s) in equation (3)

yields:

w(s) =
(1 + λ)p(s)D(p(s))− (1− λ)p(s)D(p(s))

(1 + λ)D(p(s))− (1− λ)D(p(s))
,

which tends to p0 as s goes to 0.

Finally, to show that ∆CS(s) and ∆AS(s) converge to 0 as s goes to 0, let us show

that (F (·, w(sn), sn))n≥0 converges weakly to a unit mass at p0 for any sequence (sn)n≥0

that converges to 0. For every p > p0, we have that for n large enough, p(sn) < p, and

so F (p, w(sn), sn) = 1. Similarly, for every p < p0, p(sn) > p for n high enough, and
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so F (p, w(sn), sn) = 0. This establishes the weak convergence of (F (·, w(sn), sn))n≥0 to

a unit mass at p0. Hence, for any sequence (sn)n≥0 that converges to 0, we have that

limn→∞ ∆CS(sn) = limn→∞ ∆AS(sn) = 0. It follows that ∆CS(s) and ∆AS(s) converge to

0 as s goes to 0.

D.2.2 Taylor Approximation of Equilibrium Behavior

In this section, we derive the Taylor approximations of p(λ, s)−w(λ, s) and p0−w(λ, s) with

respect to p(λ, s)−w(λ, s) when s ≃ 0. We drop arguments (λ, s) to ease notation. For what

follows, it is useful to define

ψ ≡ 1−
1− λ

2λ
log

1 + λ

1− λ
. (47)

First-order Taylor approximation of p− w.

Lemma D.2.2. In the neighborhood of s = 0, we have

p− w =
1− λ

1 + λ
(p− w) + o(p− w). (48)

Proof. Rearranging equation (3), we have that

p− w =
1− λ

1 + λ

D(p)

D(p)
(p− w) =

1− λ

1 + λ
(1 + o(1)) (p− w) =

1− λ

1 + λ
(p− w) + o(p− w),

where the second equality follows by Lemma D.2.1.

Lemma D.2.2 implies that, in the neighborhood of s = 0, o((p − w)k) = o((p − w)k),

o((p− w)k) = o((p− w)k) for all k ≥ 0, and

z ≡
p− w

p− w
=

1 + λ

1− λ
+ o(1). (49)

First-order Taylor approximation of p0 − w. By Lemma A.1.2, as H(pm(w), w) > s

in the neighborhood of s = 0, p′(w) exists and is given by equation (14). Therefore, the

manufacturer’s first-order condition, given by equation (20), must hold. We start by stating

an auxiliary lemma that establishes the limiting behavior of p′(w) when s→ 0.

Lemma D.2.3. The derivative of p with respect to w at w = w(λ, s) converges to 1 as s goes

to 0: p′(w) −→
s→0

1.
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Proof. By Lemma A.1.2, we have that

p′(w) =
1−λ
2λ

(−1 + z − log z)

1− 1−λ
2λ

(
D′(p)
D(p)

(p− w) + 1
)

log z
,

where z was defined in equation (49). As p− w tends to 0 and D′(p)/D(p) tends to D′
0/D0

as s→ 0, we have that

lim
s→0

p′(w) =
1−λ
2λ

(
−1 + 1+λ

1−λ
− log 1+λ

1−λ

)

1− 1−λ
2λ

log 1+λ
1−λ

=
ψ

ψ
= 1.

Next, we define the following functions, which we will use throughout the proofs:

ϕ(p) ≡
r′(p)

D2(p)
, (50)

ι(p, w) ≡
π′
1(p, w)p

′(w)−D(p)

D(p)
. (51)

Then, equation (20) can be rewritten as

(p− w)

∫ p

p

ϕ(p)
1

(p− w)3
dp+ ι(p, w)

∫ p

p

ϕ(p)
1

(p− w)2
dp = 0. (52)

In the following lemma, we use equation (52) to derive the Taylor approximation of p0−w

with respect to p− w for s ≃ 0:

Lemma D.2.4. In the neighborhood of s = 0, we have

p0 − w = (1− λ)(p− w) + o(p− w).

Proof. Applying Lemma D.1.1 to the two integrals in equation (52), we obtain the existence

of bounded functions M(s) and N(s) such that

0 = (p− w)ϕ′
0

∫ p

p

p− p0
(p− w)3

dp+

≡R1(s)
︷ ︸︸ ︷

ι(p, w)ϕ′
0

∫ p

p

p− p0
(p− w)2

dp

+M(s)(p− w)

∫ p

p

(p− p0)
2

(p− w)3
dp

︸ ︷︷ ︸

≡R2(s)

+N(s)ι(p, w)

∫ p

p

(p− p0)
2

(p− w)2
dp

︸ ︷︷ ︸

≡R3(s)

,
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where

ϕ′
0 ≡

dϕ

dp

∣
∣
∣
∣
p=p0

=
r′′0
D2

0

is strictly negative. Simplifying further, we have that

0 = (p− w)ϕ′
0

(
∫ p

p

dp

(p− w)2
− (p0 − w)

∫ p

p

dp

(p− w)3

)

+
3∑

i=1

Ri(s)

= ϕ′
0

((
p− w

p− w
− 1

)

−
1

2

p0 − w

p− w

((
p− w

p− w

)2

− 1

))

+R(s),

where R(s) ≡
∑3

i=1Ri(s). Next, we obtain upper bounds for each remainder term Ri:

|R1| ≤ |ι(p, w)||ϕ′
0|

∫ p

p

|p− p0|

(p− w)2
dp ≤ |ι(p, w)||ϕ′

0|(p− w)

∫ p

p

dp

(p− w)2

= |ι(p, w)||ϕ′
0|

(
p− w

p− w
− 1

)

,

|R2| ≤ |M(s)|(p− w)

∫ p

p

(p− p0)
2

(p− w)3
dp ≤ |M(s)|(p− w)3

∫ p

p

1

(p− w)3
dp,

= |M(s)|(p− w)3
1

2

(
1

(p− w)2
−

1

(p− w)2

)

= (p− w)
|M(s)|

2

((
p− w

p− w

)2

− 1

)

|R3| ≤ |N(s)||ι(p, w)|

∫ p

p

(
p− p0
p− w

)2

dp ≤ |N(s)||ι(p, w)|(p− w)2
∫ p

p

dp

(p− w)2

= |N(s)||ι(p, w)|(p− w)

(
p− w

p− w
− 1

)

.

By Lemma D.2.3, p′(w) −→
s→0

1, and so ι(p, w) tends to 0 as s → 0. Moreover, z = p−w

p−w
is

bounded in the neighborhood of s = 0 by Lemma D.2.2. It follows that lims→0 |Ri(s)| = 0

for i = 1, 2, 3. Rearranging the first-order condition of the manufacturer and taking absolute

values yields

∣
∣
∣
∣

2

z + 1
−
p0 − w

p− w

∣
∣
∣
∣
=

2

|z2 − 1||ϕ′
0|
|R(s)| ≤

2

|z2 − 1||ϕ′
0|

3∑

i=1

|Ri(s)|.

It follows that

∣
∣
∣
∣
1− λ−

p0 − w

p− w

∣
∣
∣
∣
≤

∣
∣
∣
∣
1− λ−

2

z + 1

∣
∣
∣
∣
+

∣
∣
∣
∣

2

z + 1
−
p0 − w

p− w

∣
∣
∣
∣

≤

∣
∣
∣
∣
1− λ−

2

z + 1

∣
∣
∣
∣
+

2

|z2 − 1||ϕ′
0|

3∑

i=1

|Ri(s)| −→
s→0

0.
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Hence,

lim
s→0

p0 − w

p− w
= 1− λ,

which implies that p0 − w = (1− λ)(p− w) + o(p− w).

Lemma D.2.2 and Lemma D.2.4 imply that, in the neighborhood of s = 0, for all k ≥ 0

o((p− w)k) = o((p− w)k) = o((p0 − w)k) = o((p− p0)
k) = o((p0 − p)k)

and vice versa. Moreover, Lemma D.2.4 implies that for s ≃ 0, we have

τ ≡
p0 − w

p− w
= 1− λ+ o(1). (53)

Second-order Taylor approximation of p− w.

Lemma D.2.5. In the neighborhood of s = 0, we have

p− w =
1− λ

1 + λ
(p− w) +

2λ(1− λ)

(1 + λ)2
D′

0

D0

(p− w)2 + o((p− w)2). (54)

Proof. Rearranging equation (3) yields

p− w =
1− λ

1 + λ

D(p)

D(p)
(p− w).

Let us obtain the first-order approximations of D(p) and 1/D(p) in the neighborhood of s = 0

using the first-order approximations of p−w and p0−w derived in Lemmas D.2.2 and D.2.4.

As o(p− p0) = o(p0 − p) = o(p− w), we have that

D(p) = D0 +D′
0(p− p0) + o(p− p0) = D0 +D′

0(p− w − (p0 − w)) + o(p− w)

= D0 + λD′
0(p− w) + o(p− w) (55)

and

1

D(p)
=

1

D0

−
D′

0

D2
0

(p− p0) + o(p− p0) =
1

D0

−
D′

0

D2
0

(p− w − (p0 − w)) + o(p− w)

=
1

D0

−
D′

0

D2
0

(
1− λ

1 + λ
− (1− λ)

)

(p− w) + o(p− w)

=
1

D0

+
λ(1− λ)

(1 + λ)

D′
0

D2
0

(p− w) + o(p− w).
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Plugging these approximations into equation (3), we find that for s ≃ 0,

p− w =
1− λ

1 + λ
(D0 + λD′

0(p− w))

(
1

D0

+
λ(1− λ)

(1 + λ)

D′
0

D2
0

(p− w)

)

(p− w) + o((p− w)2)

=
1− λ

1 + λ

(

1 +
2λ

(1 + λ)2
D′

0

D0

(p− w)

)

(p− w) + o((p− w)2).

Lemma D.2.5 implies:

Lemma D.2.6. In the neighborhood of s = 0, we have

z =
1 + λ

1− λ
−

2λ

1− λ

D′
0

D0

(p− w) + o(p− w), (56)

log z = log
1 + λ

1− λ
−

2λ

1 + λ

D′
0

D0

(p− w) + o(p− w),

p− p

p− w
=

2λ

1 + λ

(

1−
1− λ

1 + λ

D′
0

D0

(p− w)

)

+ o(p− w).

Proof. The first and third approximations follow immediately from Lemma D.2.5. To obtain

the second approximation, note that log(1 − x) = −x + o(x) in the neighborhood of x = 0,

so that

log z = log
1 + λ

1− λ
+ log

(

1−

(

1−
1− λ

1 + λ
z

))

= log
1 + λ

1− λ
− 1 +

1− λ

1 + λ
z + o

(

1−
1− λ

1 + λ
z

)

= log
1 + λ

1− λ
−

2λ

1 + λ

D′
0

D0

(p− w) + o(p− w).

Second-order Taylor approximation of p0 − w. We begin by deriving the first-order

approximation of p′(w):

Lemma D.2.7. In the neighborhood of s = 0, we have

p′(w) = 1−
D′

0

D0

(p− w) + o(p− w). (57)

Proof. We derive the first-order approximation of the partial derivatives of H(p, w) in the

neighborhood of s = 0. Combining Lemmas D.2.5 and D.2.6 with equations (17) and (18),

we obtain:

∂H

∂p

1

D(p)
=

[

1−
1− λ

2λ

(
D′

0

D0

(p− w) + 1

)(

log
1 + λ

1− λ
−

2λ

1 + λ

D′
0

D0

(p− w)

)]

+ o(p− w)

=

[

ψ +
D′

0

D0

(

ψ −
2λ

1 + λ

)

(p− w)

]

+ o(p− w),
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−
∂H

∂w

1

D(p)
=

1− λ

2λ

[

−1 +
1 + λ

1− λ
−

2λ

1− λ

D′
0

D0

(p− w)− log
1 + λ

1− λ
+

2λ

1 + λ

D′
0

D0

(p− w)

]

+ o(p− w)

=

[

ψ −
2λ

1 + λ

D′
0

D0

(p− w)

]

+ o(p− w).

Using the implicit function theorem and the fact that 1
a+bx

= 1
a
− b

a2
x+ o(x) in the neighbor-

hood of x = 0, we obtain

p′(w) =

[

ψ −
2λ

1 + λ

D′
0

D0

(p− w)

] [
1

ψ
−

1

ψ2

D′
0

D0

(

ψ −
2λ

1 + λ

)

(p− w)

]

+ o(p− w)

= 1−
D′

0

D0

(p− w) + o(p− w).

We continue to work with the function ϕ(p) defined in equation (50). The following lemma

relies on ϕ′
0 (computed above) and ϕ′′

0 = 2ϕ′
0γ, where

γ ≡
1

2

r′′′0
r′′0

− 2
D′

0

D0

.

Using the definitions of α and β (equations (45) and (46)), we can rewrite

γ = −
β

2α2
+
D′′

0

D′
0

− 2
D′

0

D0

= −
β

2α2
+

(
1

α(p0 − c)
−

2

p0 − c

)

+
2

p0 − c

=
1

2α2

(
2α

p0 − c
− β

)

,

where we used the fact that D′
0 = − D0

p0−c
and D′′

0 =
D′

0

p0−c
1−2α
α

.

We are ready to derive the second-order Taylor approximation of p0 − w with respect to

p− w in the neighborhood of s = 0:

Lemma D.2.8. In the neighborhood of s = 0, we have

p0 − w = (1− λ)(p− w) + χ(p− w)2 + o((p− w)2) (58)

and

τ = 1− λ+ χ(p− w) + o(p− w), (59)

where

χ ≡ (1− λ)

(

γ(λ− ψ) + λ
D′

0

D0

)

.
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Proof. Applying Lemma D.1.1 to equation (20), we have that

0 =

∫ p

p

ϕ(p)

(
dπ(p,w)

dw

(p− w)2
+

π(p, w)

(p− w)3

)

dp

= ϕ′
0

∫ p

p

(p− p0)

(
dπ(p,w)

dw

(p− w)2
+

π(p, w)

(p− w)3

)

dp

︸ ︷︷ ︸

≡B1

+ϕ′
0γ

∫ p

p

(p− p0)
2

(
dπ(p,w)

dw

(p− w)2
+

π(p, w)

(p− w)3

)

dp

︸ ︷︷ ︸

≡B2

+O

(
∫ p

p

|p− p0|
3

(
dπ(p,w)

dw

(p− w)2
+

π(p, w)

(p− w)3

)

dp

)

︸ ︷︷ ︸

≡B3

.

Next, we approximate B1 and B2 in the neighborhood of s = 0. We will then show that

B3 = o(p− w).

First, applying Lemma D.2.7, we have that

dπ(p, w)

dw
= (D′(p)(p− w) +D(p)) p′(w)−D(p)

= D(p)

((
D′

0

D0

(p− w) + 1

)(

1−
D′

0

D0

(p− w)

)

− 1

)

+ o(p− w) = o(p− w).

Note that B1 can be rewritten as

B1 =

∫ p

p

(p− p0)

(
dπ(p, w)/dw

(p− w)2
+

π(p, w)

(p− w)3

)

dp

=
dπ(p, w)

dw

∫ p

p

p− p0
(p− w)2

dp+ π(p, w)

∫ p

p

p− p0
(p− w)3

dp.

Computing the integrals, we obtain

B1 =
dπ(p, w)

dw

(

log
p− w

p− w
−
p0 − w

p− w

p− p

p− w

)

+ π(p, w)

(
p− p

(p− w)(p− w)
+

1

2

p0 − w

(p− w)2
−

1

2

p0 − w

(p− w)2

)

=
dπ(p, w)

dw
(log z − τ(z − 1)) +D(p)

(

(z − 1)−
1

2
τ(z2 − 1)

)

.

By Lemma D.2.2, log z − τ(z − 1) is bounded in the neighborhood of s = 0, implying that

the first term of B1 is a little-o of (p − w). Next, we simplify the second term of B1. From
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equation (55) above, we have :

D(p) = D0 +D′
0λ(p− w) + o(p− w).

As (z − 1)− 1
2
τ(z2 − 1) tends to 0 when s goes to 0, we have that

λ

(

(z − 1)−
1

2
τ(z2 − 1)

)

(p− w) = o(p− w)

in the neighborhood of s = 0. Therefore, the first-order Taylor approximation of B1 is given

by

B1 = D0

(

(z − 1)−
1

2
τ(z2 − 1)

)

+ o(p− w)

= D0

(

2λ

1− λ
−

2λ

1− λ

D′
0

D0

(p− w)−
1

2
τ

((
1 + λ

1− λ

)2

− 1−
4λ(1 + λ)

(1− λ)2
D′

0

D0

(p− w)

))

+ o(p− w)

= D0

(
2λ

1− λ
−

2λ

1− λ

D′
0

D0

(p− w)− τ
2λ

(1− λ)2

(

1− (1 + λ)
D′

0

D0

(p− w)

))

+ o(p− w)

=
2λ

1− λ

(

1−
τ

1− λ

)

D0 +
2λ2

1− λ
D′

0(p− w) + o(p− w),

where in the last equality we used the fact that τ = 1− λ+ o(1).

Next, we rewrite B2 by splitting the integral into two parts:

B2 =
dπ(p, w)

dw

∫ p

p

(p− p0)
2

(p− w)2
dp+ π(p, w)

∫ p

p

(p− p0)
2

(p− w)3
dp.

We start by showing that the first term in B2 is a little-o of p− w. Note that

∫ p

p

(

1− 2
p0 − w

p− w
+

(p0 − w)2

(p− w)2

)

dp

=

[

p− p

p− w
− 2

p0 − w

p− w
log

(
p− w

p− w

)

+

(
p0 − w

p− w

)2(
p− w

p− w
− 1

)]

(p− w).

By Lemmas D.2.2 and D.2.4, the expression inside the square brackets is bounded for s ≃ 0.

Since dπ(p,w)
dw

= o(p−w), we obtain that the first term in B2 is a little-o of (p−w)2, and thus

of (p− w).
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The second term in B2 can be rewritten as

B2 = D(p)(p− w)

[

log

(
p− w

p− w

)

− 2
p0 − w

p− w

(
p− w

p− w
− 1

)

+
1

2

(
p0 − w

p− w

)2
((

p− w

p− w

)2

− 1

)]

= D0

[

log
1 + λ

1− λ
−

4λ

1− λ
(1− λ) +

1

2
(1− λ)2

4λ

(1− λ)2

]

(p− w) + o(p− w)

= D0

[

−2λ+ log
1 + λ

1− λ

]

(p− w) + o(p− w).

Next, we show that B3 = o(p− w). Note that

∫ p

p

|p− p0|
3

(
dπ(p,w)

dw

(p− w)2
+

π(p, w)

(p− w)3

)

dp ≤
dπ(p, w)

dw

(p− p)4

(p− w)2
+D(p)

(p− w)(p− p)4

(p− w)3

Since dπ(p, w)/dw is bounded in the neighborhood of s = 0, we have that B3 = O((p−w)2) =

o(p− w).

Putting together the approximations of B1, B2 and B3 and dividing by 2λϕ′
0D0/(1− λ),

we obtain

0 = 1−
τ

1− λ
+

[

λ
D′

0

D0

+ γ

(

−(1− λ) +
1− λ

2λ
log

1 + λ

1− λ

)]

(p− w) + o(p− w)

= 1−
τ

1− λ
+

[

λ
D′

0

D0

+ γ(λ− ψ)

]

(p− w) + o(p− w).

Solving out for τ proves the lemma.

First-order Taylor approximation of p− w in s.

Lemma D.2.9. In the neighborhood of s = 0, we have that

p− w =
1

ψD0

s+ o(s). (60)

Proof. The expected gain from search H(p, w) given by equation (4) can be rewritten as

H(p, w) =
1 + λ

2λ

∫ p

p

D(p)dp−
1− λ

2λ
π(p, w) log

p− w

p− w
.

By Lemma D.1.1, we have that

∫ p

p

D(p)dp =

∫ p

p

D0dp+O

(
∫ p

p

|p− p0|dp

)
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= D0

(

1−
p− w

p− w

)

(p− w) +O
(
(p− p)2

)

=
2λ

1 + λ
D0(p− w) + o(p− w).

This yields the approximation

H(p, w) =
1 + λ

2λ

2λ

1 + λ
D0(p− w)−

1− λ

2λ
log

1 + λ

1− λ
D0(p− w) + o(p− w)

= ψD0(p− w) + o(p− w).

Since H(p, w) = s for s ≃ 0, we have that s = ψD0(p− w) + o(p− w), implying that

p− w =
1

ψD0

s+ o(s).

The lemma implies that, in the neighborhood of s = 0, o(sk) = o((p−w)k) and vice versa

for every k ≥ 0.

D.2.3 Proof of Proposition 8

We are now in a position to derive the second-order Taylor approximations of ∆CS and ∆AS

with respect to s for s ≃ 0. The expressions for ∆CS and ∆AS are given by equations (42)

and (44), respectively.

Approximation of consumer surplus.

Lemma D.2.10. In the neighborhood of s = 0, we have

∆CS = K(α(2− α)− β(p0 − c))s2 + o(s2), (61)

where

K =
(1− λ)2

2α2r0ψ2

(
1

2λ
log

1 + λ

1− λ
− 1

)

> 0. (62)

Proof. Recall from equation (42) that

∆CS = −

∫ p

p0

D(p)dp

︸ ︷︷ ︸

≡A1

+
(1 + λ)2

4λ

∫ p

p

D(p)dp

︸ ︷︷ ︸

≡A2

−
(1− λ)2

4λ
π2(p, w)

∫ p

p

dp

(p− w)2D(p)
︸ ︷︷ ︸

≡A3

.

We derive the second-order approximations of A1, A2 and A3 with respect to p − w. By
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Lemma D.1.1, we have

A1 =

∫ p

p0

D(p)dp =

∫ p

p0

(D0 +D′
0(p− p0))dp+O

(∫ p

p0

(p− p0)
2dp

)

=

∫ p

p0

(D0 +D′
0(p− p0))dp+O

(
(p− p0)

3
)

= D0

(

1−
p0 − w

p− w

)

(p− w) +
1

2
D′

0

(

1−
p0 − w

p− w

)2

(p− w)2 + o((p− w)2)

= D0λ(p− w)−

(

χ−
1

2
λ2
D′

0

D0

)

D0(p− w)2 + o((p− w)2),

where we have used Lemma D.2.8 and χ = (1 − λ)(γ(λ − ψ) + λD′
0/D0). Next, we use

Lemmas D.2.4 and D.2.5 to compute the approximation of A2:

A2 =

∫ p

p

D(p)dp =

∫ p

p

(D0 +D′
0(p− p0))dp+O((p− p0)

3)

= D0

(
p− p

p− w

)

(p− w) +
1

2
D′

0

((

1−
p0 − w

p− w

)2

−

(
p0 − w

p− w
−
p− w

p− w

)2
)

(p− w)2

+ o((p− w)2)

=
2λ

1 + λ
D0(p− w)−

(
2λ(1− λ)

(1 + λ)2
D′

0

D0

D0 −
2λ3

(1 + λ)2
D′

0

)

(p− w)2 + o((p− w)2)

=
2λ

1 + λ
D0(p− w) +

2λ(λ2 + λ− 1)

(1 + λ)2
D′

0(p− w)2 + o((p− w)2).

To approximate A3 we start by deriving the first-order approximation of the following integral

I =

∫ p

p

1

D(p)

p− w

(p− w)2
dp.

Applying Lemma D.1.1, we obtain

I = (p− w)

(

1

D0

∫ p

p

dp

(p− w)2
−
D′

0

D2
0

∫ p

p

(p− p0)

(p− w)2
dp

)

+O

(

(p− w)

∫ p

p

(p− p0)
2

(p− w)2
dp

)

.

As

(p− w)

∫ p

p

(p− p0)
2

(p− w)2
dp ≤ (p− w)

(p− p)3

(p− w)2
,
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the remainder is a little-o of (p− w). Therefore, by Lemmas D.2.4 and D.2.5, we have that

I =
1

D0

p− p

p− w
−

(

log
p− w

p− w
−

(p0 − w)(p− p)

(p− w)(p− w)

)
D′

0

D0

(p− w) + o(p− w)

=

(
2λ

1− λ
−

2λ

1− λ

D′
0

D0

(p− w)

)
1

D0

−

(

log
1 + λ

1− λ
− 2λ

)
D′

0

D0

(p− w) + o(p− w)

=
2λ

1− λ

1

D0

+
2λ

1− λ
(ψ − (1− λ))

D′
0

D2
0

(p− w) + o(p− w).

Combining this with the fact that D2(p)(p − w) = D2
0(p − w) + o(p − w), we obtain the

first-order Taylor approximation of A3 in the neighborhood of s = 0,

A3 =
2λ

1− λ
D0(p− w) +

2λ

1− λ
(ψ − (1− λ))D′

0(p− w)2 + o((p− w)2).

Finally, we can derive the second-order Taylor approximation of ∆CS

∆CS = − A1 +
(1 + λ)2

4λ
A2 −

(1− λ)2

4λ
A3

=

(

−λ+
1 + λ

2
−

1− λ

2

)

D0(p− w)

+

(

χ−

(
λ2

2
−
λ2 + λ− 1

2
+

1− λ

2
(ψ − (1− λ))

)
D′

0

D0

)

D0(p− w)2 + o((p− w)2)

=

(

χ+
1− λ

2
(ψ + λ)

1

p0 − c

)

D0(p− w)2 + o((p− w)2),

where we used D0 +D′
0(p0 − c) = 0 to obtain the last expression. Inserting the formulas for

χ and γ, we obtain

∆CS = (1− λ)

(

γ(λ− ψ)− λ
1

p0 − c
+

1

2
(ψ + λ)

1

p0 − c

)

D0(p− w)2 + o((p− w)2)

= (1− λ)(λ− ψ)

(

γ +
1

2(p0 − c)

)

(p− w)2 + o((p− w)2)

=
(1− λ)(λ− ψ)D0

2α2(p0 − c)
(α(2− α)− β(p0 − c))(p− w)2 + o((p− w)2).

Using Lemma D.2.9 to re-express the approximation in terms of s, we obtain equation (61).

Approximation of aggregate surplus Next, we approximate industry profit:
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Lemma D.2.11. In the neighborhood of s = 0, we have that

∆Π = −αKs2 + o(s2), (63)

where K is given in equation (62).

Proof. The change in industry profit is given by equation (43):

∆Π = r(s)− r0 = r(p)− r0
︸ ︷︷ ︸

≡C1

−
(1 + λ)2

4λ
(r(p)− r(p))
︸ ︷︷ ︸

≡C2

+
(1− λ)2

4λ
π2(p, w)

∫ p

p

r′(p)

D2(p)

dp

(p− w)2
︸ ︷︷ ︸

≡C3

.

We start with the second-order Taylor approximation of C1. By Lemma D.2.4, we have

that

C1 = r(p)− r0 =
1

2
r′′0

(
p− p0
p− w

)2

(p− w)2 + o((p− p0)
2) =

1

2
λ2r′′0(p− w)2 + o((p− w)2).

As for C2, we have that r(p)− r(p) = (r(p)− r0)− (r(p)− r0). The first part of this equation

coincides with C1. The second part can be approximated by

r(p)− r0 =
1

2
r′′0

(
p− p0

p− w

)2

(p− w)2 + o((p− p0)
2) =

1

2

λ2(1− λ)2

(1 + λ)2
r′′0(p− w)2 + o((p− w)2).

Adding up the approximations for r(p)− r0 and −(r(p)− r0), we obtain

C2 = r(p)− r(p) =
2λ3

(1 + λ)2
r′′0(p− w)2 + o((p− w)2).

Next, we approximate C3. Applying Lemmas D.1.1, D.2.2, and D.2.4, we obtain

C3 = π2(p, w)

∫ p

p

r′(p)

D2(p)

dp

(p− w)2
=

r′′0
D2

0

D2
0(p− w)2

∫ p

p

p− p0
(p− w)2

dp+ o((p− w)2)

= r′′0

(

log

(
p− w

p− w

)

−
p0 − w

p− w

(
p− w

p− w
− 1

))

(p− w)2 + o((p− w)2)

=

(

log

(
1 + λ

1− λ

)

− 2λ

)

r′′0(p− w)2 + o((p− w)2)

=
2λ

1− λ
(λ− ψ)r′′0(p− w)2 + o((p− w)2).

Finally, we can compute the approximation of ∆Π. By the definition of α given in equa-
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tion (45), we have that r′′0 =
D′

0

α
= − D0

α(p0−c)
. Thus,

∆Π = C1 −
(1 + λ)2

4λ
C2 +

(1− λ)2

4λ
C3

=

(
λ2

2
−
λ2

2
+

1− λ

2
(λ− ψ)

)

r′′0(p− w)2 + o((p− w)2)

= −
(1− λ)(λ− ψ)D0

α(p0 − c)
(p− w)2 + o((p− w)2).

Using Lemma D.2.9, we can then rewrite the approximation with respect to s to obtain

equation (63).

Combining Lemmas D.2.10 and D.2.11, we obtain the approximation of aggregate surplus:

Lemma D.2.12. In the neighborhood of s = 0, we have

∆AS = K(α(1− α)− β(p0 − c))s2 + o(s2). (64)

D.2.4 Distributional Effects

We now separately derive the approximation of consumer surplus for online and offline con-

sumers. The change in the consumer surplus of offline and online consumers after the intro-

duction of the ban on dual pricing can be written respectively as:

∆CSB = (1− λ)

[
∫ ∞

p

D(p)dp+

∫ p

p

D(p)F (p, w)dp

]

− (1− λ)CS(p0)

= (1− λ)

[

−

∫ p

p0

D(p)dp+

∫ p

p

D(p)F (p, w)dp

]

= (1− λ)

[

−

∫ p

p0

D(p)dp+
1 + λ

2λ

∫ p

p

D(p)dp−
1− λ

2λ
π(p, w) log

p− w

p− w

]

(65)

and

∆CSO = ∆CS −∆CSB, (66)

where ∆CS is given by equation (42).

Lemma D.2.13. In the neighborhood of s = 0, we have that

∆CSB = −
(1− λ)(λ− ψ)

ψ
s+ o(s), (67)

∆CSO =
(1− λ)(λ− ψ)

ψ
s+ o(s). (68)
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Proof. In the neighborhood of s = 0, we have:

∆CSB = (1− λ)

[

−D0(p− p0) +
1 + λ

2λ
D0(p− p)−

1− λ

2λ
log

1 + λ

1− λ
D0(p− w)

]

+ o(p− w)

= (1− λ)

[

−
p− p0
p− w

+
1 + λ

2λ

p− p

p− w
−

1− λ

2λ
log

1 + λ

1− λ

]

D0(p− w) + o(p− w)

= −(1− λ)(λ− ψ)D0(p− w) + o(p− w)

= −
(1− λ)(λ− ψ)

ψ
s+ o(s),

where the first line follows by Lemma D.1.1, the third line follows by Lemmas D.2.2 and D.2.4,

and the fourth line follows by Lemma D.2.9. By Lemma D.2.10, ∆CS = o(s) in the neigh-

borhood of s = 0. It follows that ∆CSO = −∆CSB + o(s).

D.3 Proofs of Welfare Results when λ is Small

In this appendix, we study the welfare effects of banning dual pricing when λ is small and

provide the proof of Proposition 9. Specifically, we derive the first-order Taylor approximation

of ∆CS (equation (42)) with respect to λ when λ ≃ 0. As industry profit is lower under

uniform pricing, and as we will show that ∆CS < 0 in the neighborhood of λ = 0, it will not

be necessary to approximate ∆AS to conclude that ∆AS < 0 for small λ.

We proceed as follows. In Section D.3.1, we establish the limiting equilibrium behavior

and describe the properties of the retail price distribution when λ is small. In Section D.3.2,

we derive some auxiliary Taylor approximations required to approximate ∆CS. Section D.3.3

is devoted to the approximation of ∆CS.

D.3.1 Basic Properties of the Equilibrium for Low λ

In the following lemma, we show that for small λ, the upper endpoint of the retail price

distribution is given by the monopoly price for all w ∈ [c, p0]. (Recall from Proposition 6

that wholesale prices w /∈ [c, p0] are suboptimal for the manufacturer.) Define Hm(w, λ) ≡

H(pm(w), w, λ) for every w ∈ [c, p0], where H is given by equation (4), and we have made its

dependence on λ explicit. We have:

Lemma D.3.1. limλ→0 maxw′∈[c,p0]H
m(w′, λ) = 0. Therefore, there exists a neighborhood of

λ = 0 such that p(w) = pm(w) for every w ∈ [c, p0].

Proof. In this proof, we include the argument λ in all functions to avoid confusion. Note
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that for any w ∈ [c, p0], H
m(w, λ) is strictly increasing in λ, as

∂Hm(w, λ)

∂λ
=

∫ pm(w)

p(pm(w),w,λ)

D(p)
∂F (p, pm(w), w, λ)

∂λ
dp

=
1

2λ2

∫ pm(w)

p(pm(w),w,λ)

D(p)

(
π(pm(w), w)

π(p, w)
− 1

)

dp > 0.

Let (λn)n≥0 be a strictly decreasing sequence over (0, 1), converging to 0 as n → ∞. Let

us show that the sequence of functions (Hm(·, λn))n≥0 converges uniformly to 0 on [c, p0]. By

Proposition 2 in Stahl (1989), holding fixed w the equilibrium lower endpoint of the support,

p(w, λn), converges to p
m(w) as n→ 0. Therefore, as

p(w, λn) = p(p(w, λn), w, λn) ≤ p(pm(w), w, λn),

we have that

Hm(w, λn) =

∫ pm(w)

p(w,λn)

D(p)F (p, pm(w), w, λn)dp ≤ D(c)(pm(w)− p(w, λn)) −→
n→∞

0,

implying that for any w ∈ [c, p0], the sequence (Hm(w, λn))n≥0 converges to 0 as n→ ∞.

Thus, for every w ∈ [c, p0], (H
m(w, λn))n≥0 is decreasing in n and converges to 0 as n

tends to ∞. By Dini’s theorem, (Hm(·, λn))n≥0 converges uniformly to 0. Let η > 0. There

exists N > 0 such that Hm(w′, λn) ≤ η for all n ≥ N and w′ ∈ [c, p0]. By monotonicity

of Hm(w, λ) in λ, this implies that maxw′∈[c,p0]H
m(w′, λ) ≤ η for every λ ≤ λN . Hence,

limλ→0 maxw′∈[c,p0]H
m(w′, λ) = 0. It follows that, for some λ > 0, for every w ∈ [c, p0],

Hm(w, λ) < s for every λ < λ. Therefore, p(w, λ) = pm(w) for every such λ and w.

Next, we show that, as λ → 0, the equilibrium of the model under uniform pricing

converges to that under dual pricing. In particular, the following lemma establishes that,

as λ → 0, the upper and lower endpoints, p, p, converge to p0 and the wholesale price w

converges to c. The changes in consumer and aggregate surplus, ∆CS and ∆AS, converge

to 0.

Lemma D.3.2. Under uniform pricing, the limiting equilibrium behavior as λ goes to zero

is as follows:

lim
λ→0

w(λ, s) = c, lim
λ→0

p(λ, s) = lim
λ→0

p(λ, s) = p0.

This implies that

lim
λ→0

∆CS(λ, s) = lim
λ→0

∆AS(λ, s) = 0.
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Proof. We drop arguments s below to ease notation. We start by showing that p(λ)−p(λ) →

0 as λ→ 0. In the proof of Lemma D.2.1, we showed that F (p, w, λ) is strictly concave in p

on [p(λ), p(λ)] and, therefore, lies above its secant lines. This implies that

H(p(λ), w(λ), λ) ≥

∫ p(λ)

p(λ)

D(p)
p− p(λ)

p(λ)− p(λ)
dp ≥

D(pm(p0))

2
(p(λ)− p(λ)).

Since H(·, w, λ) is increasing on (w, pm(w)) by Lemma A.1.1, we also have that

H(p(λ), w(λ), λ) ≤ H(pm(w(λ)), w(λ), λ) ≤ max
w′∈[c,p0]

H(pm(w′), w′, λ).

Using Lemma D.3.1, it follows that

0 ≤
D(pm(p0))

2
(p(λ)− p(λ)) ≤ max

w′∈[c,p0]
H(pm(w′), w′, λ) −→

λ→0
0,

so that p(λ) − p(λ) −→
λ→0

0 by the squeeze theorem. As p(λ) < p0 < p(λ) by Lemma A.1.3,

this implies that p(λ) → p0 and p(λ) → p0 as λ goes to 0.

By Lemma D.3.1, we have that in the neighborhood of λ = 0, p(λ) = pm(w(λ)). Using

the first-order condition for that monopoly price yields:

w(λ) = c+
r′(p(λ))

D′(p(λ))
,

which tends to c as λ goes to 0.

Finally, using the same argument as in the proof of Lemma D.2.1, it is straightforward to

show that, for every sequence (λn)n≥0 over (0, 1) that converges to 0, (F (·, w(λn), λn))n≥0 con-

verges weakly to a unit mass at p0. This implies that limn→∞ ∆CS(λn) = limn→∞ ∆AS(λn) =

0 for any such sequence, so that ∆CS(λ) and ∆AS(λ) both tend to 0 as λ→ 0.

D.3.2 Taylor Approximation of Equilibrium Behavior

The goal of this section is to obtain, in the neighborhood of λ = 0, the Taylor approximations

of p(λ, s), p(λ, s), and λ with respect to w(λ, s) − c. These approximations are required to

calculate the first-order Taylor approximations of ∆CS with respect to λ in Section D.3.3.

To ease notation, we define w̃(λ, s) ≡ w(λ, s)− c, and drop arguments (λ, s) in the following.

Third-order Taylor approximation of p.
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Lemma D.3.3. In the neighborhood of λ = 0, we have

p = p0 + αw̃ +
1

2
βw̃2 + δw̃3 + o(w̃3), (69)

where α and β were defined in equations (45) and (46), and δ is a constant.

Proof. By Lemma D.3.1, in the neighborhood of λ = 0, p is equal to pm(w) and solves

π′
1(p, w) = 0. Manipulating this equation yields

w̃ =
r′(p)

D′(p)

=
r′′0
D′

0
︸︷︷︸

α̃

(p− p0) +

(
1

2

r′′′0
D′

0

− r′′0
D′′

0

(D′
0)

2

)

︸ ︷︷ ︸

β̃

(p− p0)
2 +

1

6

(
r′

D′

)′′′∣
∣
∣
∣
p0

︸ ︷︷ ︸

δ̃

(p− p0)
3 + o((p− p0)

3).

This implies in particular that, for every k ≥ 0, o(w̃k) = o((p − p0)
k) (and vice versa), and

that

w̃2 = α̃2(p− p0)
2 + 2α̃β̃(p− p0)

3 + o(w̃3),

w̃3 = α̃3(p− p0)
3 + o(w̃3).

Hence,

p = p0 +
1

α̃
w̃ −

β̃

α̃
(p− p0)

2 −
δ̃

α̃
(p− p0)

3 + o((p− p0)
3)

= p0 +
1

α̃
w̃ −

β̃

α̃

[

w̃2

α̃2
− 2

β̃

α̃4
w̃3

]

−
δ̃

α̃4
w̃3 + o(w̃3)

= p0 +
1

α̃
w̃ −

β̃

α̃3
w̃2 +

[

β̃2

α̃5
−

δ̃

α̃4

]

w̃3 + o(w̃3).

It is easily verified that the coefficient on w̃ is α and the coefficient on w̃2 is β/2.

First-order Taylor approximation of p. By Lemma D.3.1, in the neighborhood of λ = 0,

p = pm(w), implying that equation (20) reduces to

∫ p

p

φ(p, w)(p− p)dp = 0, (70)

where

φ(p, w) ≡
r′(p)

D2(p)

1

(p− w)3
. (71)
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In the following lemma, we use equation (70) to derive the first-order Taylor approxima-

tion of p with respect to w̃ for λ ≃ 0.

Lemma D.3.4. In the neighborhood of λ = 0, we have

p = p0 −
1

2
αw̃ + o(w̃). (72)

Proof. Applying Lemma D.1.1 to equation (70), we obtain the existence of a bounded

function M(λ) such that

0 = φ′
0(w)

∫ p

p

(p− p)(p− p0)dp+M(λ)

∫ p

p

(p− p)(p− p0)
2dp

︸ ︷︷ ︸

≡R(λ)

,

where

φ′
0(w) ≡

∂φ

∂p

∣
∣
∣
∣
(p0,w)

=
r′′0
D2

0

1

(p0 − w)3
.

It follows that:

0 = φ′
0(w)

[
1

2
(p− p0)(p− p0)

2 −
1

3
(p− p0)

3

]p

p

+R(λ)

= (p− p0)
3

{

φ′
0(w)

[

1

2

(

1−

(
p0 − p

p− p0

)2
)

−
1

3

(

1 +

(
p0 − p

p− p0

)3
)]

+
R(λ)

(p− p0)3

}

= φ′
0(w)

[

1

2

(

1−

(
p0 − p

p− p0

)2
)

−
1

3

(

1 +

(
p0 − p

p− p0

)3
)]

+
R(λ)

(p− p0)3
. (73)

Next, we derive an upper bound for the absolute value of the remainder term:

∣
∣
∣
∣

R(λ)

(p− p0)3

∣
∣
∣
∣
≤

|M(λ)|

(p− p0)3

∫ p

p

(p− p)(p− p0)
2dp

=
|M(λ)|

(p− p0)3

[
1

3
(p− p0)(p− p0)

3 −
1

4
(p− p0)

4

]p

p

= |M(λ)|

[

1

3
(p− p0)

(

1 +

(
p0 − p

p− p0

)3
)

−
1

4

(

(p− p0)−
(
p0 − p

)
(
p0 − p

p− p0

)3
)]

= |M(λ)|

[

1

12
(p− p0) +

(
p− p0

3
+
p0 − p

4

)(
p0 − p

p− p0

)3
]

.

We wish to show that

ς ≡
p0 − p

p− p0
−→
λ→0

1

2
.
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Assume for a contradiction that this is not the case. Then, there exists ε0 > 0, a sequence

(λn)n≥0 that converges to 0, and an associated sequence of equilibrium upper and lower

endpoints of the support and wholesale price (pn, pn, wn)n≥0 that converges to (p0, p0, c),

such that ∣
∣
∣
∣
∣
∣
∣
∣

p0 − pn

pn − p0
︸ ︷︷ ︸

≡ςn

−
1

2

∣
∣
∣
∣
∣
∣
∣
∣

> ε0

for every n.

Suppose first that (ςn)n≥0 is bounded. Then, we can extract a subsequence that converges

to some ς∗ ̸= 1/2. Moreover, the boundedness of (ςn)n≥0 and the above upper bound on the

remainder term imply that
R(λn)

(pn − p0)3
−→
n→∞

0.

Taking limits along the convergent subsequence in equation (73), this implies that

1

2
(1− ς∗2)−

1

3
(1 + ς∗3) = 0.

The above polynomial has exactly two roots: −1 and 1/2. As ςn > 0 for every n, this implies

that ς∗ = 1/2, a contradiction.

Next, suppose that (ςn)n≥0 is not bounded, and extract a subsequence that diverges to

+∞. Along the divergent subsequence, for n sufficiently high, we have

|φ′
0(w

n)|

[
1

2

(
(ςn)2 − 1

)
+

1

3
((ςn)3 + 1)

]

=

∣
∣
∣
∣

R(λn)

(pn − p0)3

∣
∣
∣
∣

≤ |M(λn)|

[
1

12
(pn − p0) +

(
pn − p0

3
+
p0 − pn

4

)

(ςn)3
]

.

Therefore,

1

2

(
(ςn)2 − 1

)
+

1

3
+

(
1

3
−

|M(λn)|

|φ′
0(w

n)|

(
pn − p0

3
+
p0 − pn

4

))

(ςn)3 ≤
|M(λn)|

|φ′
0(w

n)|

1

12
(pn − p0).

As n tends to ∞, the left-hand side of the above inequality tends to +∞ whereas the right-

hand side tends to zero, which is again a contradiction.

It follows that ς −→
λ→0

1/2. Hence, in the neighborhood of λ = 0,

p− p0 = −
1

2
(p− p0) + o (p− p0) ,
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and so, by Lemma D.3.3

p = p0 −
1

2
αw̃ + o(w̃).

Lemma D.3.4 implies that o((p− p0)
k) = o(w̃k) (and vice versa) for every k ≥ 0.

Second-order Taylor approximation of p.

Lemma D.3.5. In the neighborhood of λ = 0, we have

p = p0 −
1

2
αw̃ + γw̃2 + εw̃3 + o(w̃3), (74)

where ε is a constant and

γ ≡ −
5

32
β +

3

16

α

p0 − c
(3α− 1). (75)

Proof. Applying Lemma D.1.1 to equation (70), we have that

0 = φ′
0(w)

∫ p

p

(p− p)(p− p0)dp+
1

2
φ′′
0(w)

∫ p

p

(p− p)(p− p0)
2dp

+
1

6
φ′′′
0 (w)

∫ p

p

(p− p)(p− p0)
3dp+O

(
∫ p

p

(p− p)(p− p0)
4dp

)

,

where φ′
0(w) was defined in the proof of Lemma D.3.4,

φ′′
0(w) ≡

∂2φ

∂p2

∣
∣
∣
∣
(p0,w)

= φ′
0(w)

(
r′′′0
r′′0

−
6D0 + 4(p0 − w)D′

0

(p0 − w)D0

)

,

and φ′′′
0 (w) ≡ ∂3φ/∂p3|(p0,w). Note that φ′′′

0 (w) has a finite limit as λ tends to 0, as the

equilibrium w is bounded away from p0.

Define again ς ≡ (p0 − p)/(p− p0). Then, the first integral can be computed as

∫ p

p

(p− p)(p− p0)dp = (p− p0)
3

(
1

2
(1− ς2)−

1

3
(1 + ς3)

)

= −(p− p0)
31

3
(ς + 1)2

(

ς −
1

2

)

.

The second integral can be computed as

∫ p

p

(p− p)(p− p0)
2dp =

[
1

3
(p− p)(p− p0)

3

]p

p

+
1

3

∫ p

p

(p− p0)
3dp

=
1

3
(p− p)(p0 − p)3 +

1

12

(
(p− p0)

4 − (p0 − p)4
)

= (p− p0)
3

[(
p− p

3
−
p0 − p

12

)

ς3 +
p− p0
12

]

,
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where we have obtained the first line by integrating by parts. Finally, the third integral is

equal to

∫ p

p

(p− p)(p− p0)
3dp =

[
1

4
(p− p)(p− p0)

4

]p

p

+
1

4

∫ p

p

(p− p0)
4dp

= −
1

4
(p− p)(p0 − p)4 +

1

20

(
(p− p0)

5 + (p0 − p)5
)

= (p− p0)
4

[(
p0 − p

20
−
p− p

4

)

ς4 +
p− p0
20

]

.

Note that ∫ p

p

(p− p0)
4(p− p)dp ≤ (p− p)6,

implying that the remainder term is O
(
(p− p)6

)
and thus, by Lemmas D.3.3 and D.3.4, a

little-o of w̃5.

Combining the four terms, dividing through by (p− p0)
3, and rearranging terms yields:

ς −
1

2
=

1

2

φ′′
0(w)

φ′
0(w)

3

(ς + 1)2

[(
p− p

3
−
p0 − p

12

)

ς3 +
p− p0
12

]

+
1

2

φ′′′
0 (w)

φ′
0(w)

1

(ς + 1)2
(p− p0)

[(
p0 − p

20
−
p− p

4

)

ς4 +
p− p0
20

]

+ o(w̃2). (76)

We begin by using the above expression to obtain an approximation of ς at the first order

in w̃. By Lemmas D.3.3 and D.3.4, the term inside square brackets on the first line is at most

first order in w̃, while the term on the second line is a little-o of w̃. Thus, this expression

simplifies to

ς =
1

2
+

1

2

φ′′
0(c)

φ′
0(c)

3

(1
2
+ 1)2

[(
p− p

3
−
p0 − p

12

)(
1

2

)3

+
p− p0
12

]

+ o(w̃)

=
1

2
+

2

3

(
r′′′0
r′′0

−
2

p0 − c

)[(
p− p

3
−
p0 − p

12

)
1

8
+
p− p0
12

]

+ o(w̃)

=
1

2
+

2

3

(
r′′′0
r′′0

−
2

p0 − c

)

α

[(
3

2
×

1

3
−

1

2
×

1

12

)
1

8
+

1

12

]

w̃ + o(w̃)

=
1

2
+

3

32

(
r′′′0
r′′0

−
2

p0 − c

)

α

︸ ︷︷ ︸

≡κ

w̃ + o(w̃).

Next, we use equation (76) again to obtain an approximation of ς at the second order in
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w̃:

ς =
1

2
+

1

2

[
φ′′
0(c)

φ′
0(c)

+

(
φ′′
0(w)

φ′
0(w)

)′∣
∣
∣
∣
w=c

w̃

](
4

3
−

16

9
κw̃

)
9

64
αw̃ +

1

160

φ′′′
0 (c)

φ′
0(c)

α2w̃2 + o(w̃2)

=
1

2
+ κw̃ + α

[
3

32

(
φ′′
0(w)

φ′
0(w)

)′∣
∣
∣
∣
w=c

−
1

8

φ′′
0(c)

φ′
0(c)

κ+
1

160

φ′′′
0 (c)

φ′
0(c)

α

]

︸ ︷︷ ︸

≡ε̃

w̃2 + o(w̃2).

Therefore, applying Lemma D.3.3, we have that

p0 − p =

(
1

2
+ κw̃ + ε̃w̃2

)

(p− p0) + o(w̃3)

=

(
1

2
+ κw̃ + ε̃w̃2

)(

αw̃ +
1

2
βw̃2 + δw̃3

)

+ o(w̃3)

=
1

2
αw̃ +

[
1

4
β + ακ

]

w̃2 +

[
1

2
δ +

1

2
βκ+ αε̃

]

︸ ︷︷ ︸

≡−ε

w̃3 + o(w̃3).

It remains to show that the expression in the square brackets is equal to γ defined in equa-

tion (75). Note that

−
1

4
β − ακ = −

1

4
β −

3

32

(
r′′′0
r′′0

−
2

p0 − c

)

α2

= −
1

4
β −

3

16
α2

[
1

2

r′′′0
r′′0

−
D′′

0

D′
0

+
D′′

0

D′
0

−
1

p0 − c

]

= −
5

32
β −

3

16
α2 1

(p0 − c)D′
0

[(p0 − c)D′′
0 −D′

0]

= −
5

32
β −

3

16
α2 1

(p0 − c)D′
0

[r′′0 − 3D′
0]

= −
5

32
β +

3

16

α

p0 − c
(3α− 1)

= γ.

Relating the derivatives of demand to α and β.

Lemma D.3.6. We have:

D′
0 = −

D0

p0 − c
,

D′′
0 =

D0

(p0 − c)2
2α− 1

α
,

D′′′
0 =

D0

(p0 − c)3

[
β(p0 − c)

α3
+

(2− 3α)(2α− 1)

α2

]

.
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Proof. The expression for D′
0 follows immediately from the monopolist’s first-order condi-

tion. Moreover,

D′′
0 =

1

p0 − c
((p0 − c)D′′

0 + 2D′
0 − 2D′

0) =
D′

0

p0 − c

(
r′′0
D′

0

− 2

)

=
D0

(p0 − c)2
2α− 1

α
.

Finally,

D′′′
0 =

1

p0 − c
(r′′′0 − 3D′′

0)

=
1

p0 − c

(
1

2

r′′′0
r′′0

2r′′0 − 3D′′
0

)

=
1

p0 − c

((
1

2

r′′′0
r′′0

−
D′′

0

D′
0

)

2r′′0 + 2
D′′

0

D′
0

r′′0 − 3D′′
0

)

=
1

p0 − c

(

−β
r′′0
α2

+ 2
D′′

0

D′
0

r′′0 − 3D′′
0

)

=
1

p0 − c

[

−
β

α3
D′

0 +

(
2

α
− 3

)

D′′
0

]

=
D0

(p0 − c)3

[
β(p0 − c)

α3
+

(2− 3α)(2α− 1)

α2

]

.

Third-order Taylor approximations of λ and π(p, w).

Lemma D.3.7. In the neighborhood of λ = 0, we have:

λ =
9

16
α

w̃2

(p0 − c)2
+

9

64

(

5α− 3α2 +
3

2
β(p0 − c)

)
w̃3

(p0 − c)3
+ o(w̃3),

π(p, w) = r0 −D0w̃ +
D0

p0 − c

α

2
w̃2 +

D0

(p0 − c)2

[

−
1

6
(2α− 1)α +

1

6
β(p0 − c)

]

w̃3 + o(w̃3).

Proof. Solving out for λ in equation (3) yields:

λ =
π(p, w)− π(p, w)

π(p, w) + π(p, w)
.

We seek third-order Taylor approximations of π(w̃) ≡ π(p, c + w̃) and π(w̃) ≡ π(p, c + w̃).

To ease notation, we define p̃0 ≡ p0 − c.

Applying Lemma D.3.3, we have:

π(w̃) =

(

p̃0 + (α− 1)w̃ +
1

2
βw̃2 + δw̃3

)

D

(

p0 + αw̃ +
1

2
βw̃2 + δw̃3

)

+ o(w̃3)

=

(

p̃0 + (α− 1)w̃ +
1

2
βw̃2 + δw̃3

)
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×

(

D0 +D′
0

[

αw̃ +
1

2
βw̃2 + δw̃3

]

+
D′′

0

2

[

αw̃ +
1

2
βw̃2

]2

+
D′′′

0

6
α3w̃3

)

+ o(w̃3)

= p̃0D0 −D0w̃ + p̃0

[

D′′
0

2

[

αw̃ +
1

2
βw̃2

]2

+
D′′′

0

6
α3w̃3

]

+D′
0

(

(α− 1)w̃ +
1

2
βw̃2

)(

αw̃ +
1

2
βw̃2

)

+
D′′

0

2
(α− 1)α2w̃3 + o(w̃3)

= r0 −D0w̃ +

[

p̃0
D′′

0

2
α2 +D′

0α(α− 1)

]

w̃2

+

[

p̃0
D′′

0

2
αβ + p̃0

D′′′
0

6
α3 −D′

0

(

−αβ +
1

2
β

)

+
D′′

0

2
(α− 1)α2

]

w̃3 + o(w̃3),

which, using Lemma D.3.6, can be further simplified to

π(w̃) = r0 −D0w̃ +
D0

p̃0

[
1

2
(2α− 1)α− α(α− 1)

]

w̃2 +
D0

p̃20

[

(2α− 1)

(
1

2
(α− 1)α +

1

2
βp̃0

)

−
1

2
βp̃0(2α− 1) +

1

6
βp̃0 +

1

6
α(2− 3α)(2α− 1)

]

w̃3 + o(w̃3)

= r0 −D0w̃ +
D0

p̃0

α

2
w̃2 +

D0

p̃20

[
2α− 1

6
(3α(α− 1) + α(2− 3α)) +

1

6
βp̃0

]

w̃3 + o(w̃3)

= r0 −D0w̃ +
D0

p̃0

α

2
w̃2 +

D0

p̃20

[

−
1

6
(2α− 1)α +

1

6
βp̃0

]

w̃3 + o(w̃3).

We also have:

π(w̃) =
(

p̃0 −
(α

2
+ 1
)

w̃ + γw̃2 + ϵw̃3
)

D
(

p0 −
α

2
w̃ + γw̃2 + ϵw̃3

)

+ o(w̃3)

=
(

p̃0 −
(α

2
+ 1
)

w̃ + γw̃2 + ϵw̃3
)

×

(

D0 +D′
0

[

−
α

2
w̃ + γw̃2 + ϵw̃3

]

+
D′′

0

2

[

−
α

2
w̃ + γw̃2

]2

−
D′′′

0

48
α3w̃3

)

+ o(w̃3)

= r0 −D0w̃ + p̃0

[
D′′

0

2

[

−
α

2
w̃ + γw̃2

]2

−
D′′′

0

48
α3w̃3

]

+D′
0

(

−
(

1 +
α

2

)

w̃ + γw̃2
)(

−
α

2
w̃ + γw̃2

)

−
D′′

0

2

(

1 +
α

2

) α2

4
w̃3 + o(w̃3)

= r0 −D0w̃ +

[

p̃0
D′′

0

8
α2 +D′

0

α

2

(

1 +
α

2

)]

w̃2

+

[

−p̃0
D′′

0

2
αγ − p̃0

D′′′
0

48
α3 −D′

0 (1 + α) γ −
D′′

0

16
α2(2 + α)

]

w̃3 + o(w̃3),
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which, using again Lemma D.3.6, simplifies to

π(w̃) = r0 −D0w̃ +
D0

p̃0

[
1

8
α(2α− 1)−

α

2
−
α2

4

]

w̃2 +
D0

p̃20

[

−
(2α− 1)

2
γp̃0

−
1

48
(βp̃0 + α(2− 3α)(2α− 1)) + (1 + α)γp̃0 −

2α− 1

16
α(2 + α)

]

w̃3 + o(w̃3)

= r0 −D0w̃ −
D0

p̃0

5

8
αw̃2 +

D0

p̃20

[
3

2
γp̃0 −

1

48
βp̃0 −

1

6
α(2α− 1)

]

w̃3 + o(w̃3)

= r0 −D0w̃ −
D0

p̃0

5

8
αw̃2 +

D0

p̃20

[

−
15

64
βp̃0 +

9

32
α(3α− 1)−

1

48
βp̃0 −

1

6
α(2α− 1)

]

w̃3

+ o(w̃3)

= r0 −D0w̃ −
D0

p̃0

5

8
αw̃2 +

D0

p̃20

[

−
49

192
βp̃0 +

α

96
(49α− 11)

]

w̃3 + o(w̃3).

Hence,

π(w̃)− π(w̃) =
D0

p̃0

9

8
αw̃2 +

D0

p̃20

9

32

(

α− 3α2 +
3

2
βp̃0

)

w̃3 + o(w̃3)

and π(w̃) + π(w̃) = 2r0 − 2D0w̃ + o(w̃). It follows that

λ =

9
16
α w̃2

p̃20
+ 9

64

(
α− 3α2 + 3

2
βp̃0
)

w̃3

p̃30

1− w̃
p̃0

+ o(w̃3)

=
9

16
α
w̃2

p̃20
+

9

64

(

5α− 3α2 +
3

2
βp̃0

)
w̃3

p̃30
+ o(w̃3).

Lemma D.3.7 implies that o(λk) = o(w̃2k) (and vice versa) for any k ≥ 0, and that

w̃2 =
16

9

(p0 − c)2

α
λ+ o(λ).

D.3.3 Proof of Proposition 9

It follows from equation (42) that ∆CS = Ψ/(4λ), where

Ψ ≡ −4λ

∫ p

p0

D(p)dp+ (1 + λ)2
∫ p

p

D(p)dp− (1− λ)2π(w̃)2
∫ p

p

dp

(p− w)2D(p)
,

and π(w̃) ≡ π(p, w̃ + c). We seek a fourth-order Taylor approximation of Ψ with respect to

w̃. As λ is second order in w̃, we have that

(1 + λ)2 = 1 + 2λ+ o(w̃3) and (1− λ)2 = 1− 2λ+ o(w̃3),
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which implies that

Ψ = 2λ

≡A
︷ ︸︸ ︷(
∫ p

p

D(p)dp+ π(w̃)2
∫ p

p

dp

(p− w)2D(p)
− 2

∫ p

p0

D(p)dp

)

+

∫ p

p

D(p)dp− π(w̃)2
∫ p

p

dp

(p− w)2D(p)
︸ ︷︷ ︸

≡B

+o(w̃4).

As λ is second order, we require a second-order approximation of A and a fourth-order

approximation of B.

Approximation of B. Put

B1 =

∫ p

p

D(p)dp and B2 =

∫ p

p

dp

(p− w)2D(p)
,

and note that B = B1 − π(w̃)2B2.

We start by approximating B1 at the fourth order:

B1 = D0(p− p) +
D′

0

2

(
(p− p0)

2 − (p0 − p)2
)
+
D′′

0

6

(
(p− p0)

3 + (p0 − p)3
)

+
D′′′

0

24

(
(p− p0)

4 − (p0 − p)4
)
+ o(w̃4)

= D0(p− p)−
D0

p̃0

1

2

([

αw̃ +
1

2
βw̃2 + δw̃3

]2

−
[α

2
w̃ − γw̃2 − ϵw̃3

]2
)

+
D0

p̃20

2α− 1

6α

([

αw̃ +
1

2
βw̃2

]3

+
[α

2
w̃ − γw̃2

]3
)

+
D0

p̃30

5

128
α [α(2α− 1)(2− 3α) + βp̃0] w̃

4 + o(w̃4),

which further simplifies to

B1 = D0(p− p)−
D0

p̃0

1

2

(
3

4
α2w̃2 + α(γ + β)w̃3 +

[
1

4
β2 − γ2 + 2αδ + αϵ

]

w̃4

)

+
D0

p̃20

2α− 1

6α

(
9

8
α3w̃3 − 3α2

(

−
1

2
β +

γ

4

)

w̃4

)

+
D0

p̃30

5

128
α [α(2α− 1)(2− 3α) + βp̃0] w̃

4 + o(w̃4)

= D0(p− p)−
D0

p̃0

3

8
α2w̃2 +

D0

p̃20
α

[
3

16
α(2α− 1)−

1

2
βp̃0 −

γ

2
p̃0

]

w̃3
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+
D0

p̃30

[
1

2

(

γ2 −
1

4
β2 − 2αδ − αϵ

)

p̃20 +
5

128
α2(2α− 1)(2− 3α)

+
5

128
αβp̃0 −

α(2α− 1)

2

(

−
1

2
β +

γ

4

)

p̃0

]

w̃4 + o(w̃4). (77)

Applying Lemma D.1.1 to B2, we obtain:

B2 =
1

D0

∫ p

p

dp

(p− w)2
−
D′

0

D2
0

∫ p

p

p− p0
(p− w)2

dp+

(
(D′

0)
2

D3
0

−
1

2

D′′
0

D2
0

)∫ p

p

(p− p0)
2

(p− w)2
dp

+

(
D′

0D
′′
0

D3
0

−
(D′

0)
3

D4
0

−
1

6

D′′′
0

D2
0

)∫ p

p

(p− p0)
3

(p− w)2
dp+ o(w̃4)

=
1

D0

=B0
2

︷ ︸︸ ︷
∫ p

p

dp

(p− w)2
+

1

p̃0D0

=B1
2

︷ ︸︸ ︷
∫ p

p

p− p0
(p− w)2

dp+
1

p̃20D0

1

2α

=B2
2

︷ ︸︸ ︷
∫ p

p

(p− p0)
2

(p− w)2
dp

+
1

p̃30D0

2α− α2 − βp̃0
6α3

∫ p

p

(p− p0)
3

(p− w)2
dp

︸ ︷︷ ︸

=B3
2

+o(w̃4).

We require a fourth-order approximation for each of the above integrals.30 As p − w =

p− p0 − w̃ + p̃0, we have:

B0
2 =

1

p̃20

∫ p

p

1

1 + 2
p̃0
(p− p0 − w̃) + 1

p̃20
(p− p0 − w̃)2

dp

=
1

p̃20

∫ p

p

[

1−

(
2

p̃0
(p− p0 − w̃) +

1

p̃20
(p− p0 − w̃)2

)

+

(
2

p̃0
(p− p0 − w̃) +

1

p̃20
(p− p0 − w̃)2

)2

−

(
2

p̃0
(p− p0 − w̃) +

1

p̃20
(p− p0 − w̃)2

)3
]

dp+ o(w̃4) (by Lemma D.1.1)

=
1

p̃20

∫ p

p

[

1−
2

p̃0
(p− p0 − w̃) +

3

p̃20
(p− p0 − w̃)2 −

4

p̃30
(p− p0 − w̃)3

]

dp+ o(w̃4)

=
p− p

p̃20
−

1

p̃30

[

(p− p0 − w̃)2 −
(
p− p0 − w̃

)2
]

+
1

p̃40

[

(p− p0 − w̃)3 −
(
p− p0 − w̃

)3
]

−
1

p̃50

[

(p− p0 − w̃)4 −
(
p− p0 − w̃

)4
]

+ o(w̃4)

=
p− p

p̃20
−

1

p̃30

[(

(α− 1)w̃ +
1

2
βw̃2 + δw̃3

)2

−
(

−
(α

2
+ 1
)

w̃ + γw̃2 + ϵw̃3
)2
]

30Although those integrals can be computed in closed form, it is less cumbersome to first approximate the
integrands at the third order.

84



+
1

p̃40

[(

(α− 1)w̃ +
1

2
βw̃2

)3

+
((α

2
+ 1
)

w̃ − γw̃2
)3
]

−
1

p̃50

[

(α− 1)4 −
(α

2
+ 1
)4
]

w̃4 + o(w̃4) (by Lemmas D.3.3 and D.3.5)

=
p− p

p̃20
+

(

3α−
3

4
α2

)
w̃2

p̃30
+

[
9

2
α−

9

4
α2 +

9

8
α3 − (2 + α)γp̃0 + (1− α)βp̃0

]
w̃3

p̃40

+

[[

γ2 −
1

4
β2 − 2(α− 1)δ − (2 + α)ϵ

]

p̃20 − 3

(

−
1

2
(α− 1)2β +

(α

2
+ 1
)2

γ

)

p̃0

+6α−
9

2
α2 +

9

2
α3 −

15

16
α4

]
w̃4

p̃50
+ o(w̃4).

For the second integral, we have:

B1
2 =

1

p̃20

∫ p

p

p− p0
1 + 2

p̃0
(p− p0 − w̃) + 1

p̃20
(p− p0 − w̃)2

dp

=
1

p̃20

∫ p

p

(p− p0)

[

1−
2

p̃0
(p− p0 − w̃) +

3

p̃20
(p− p0 − w̃)2

]

dp

+ o(w̃4) (by Lemma D.1.1)

=
1

p̃20

∫ p

p

(p− p0)

[

1 +
2w̃

p̃0
+

3w̃2

p̃20
−

2

p̃0

(

1 +
3w̃

p̃0

)

(p− p0) +
3

p̃20
(p− p0)

2

]

dp+ o(w̃4)

=
1

p̃20

(

1 +
2w̃

p̃0
+

3w̃2

p̃20

)
1

2

[

(p− p0)
2 −

(
p− p0

)2
]

−
1

p̃30

(

1 +
3w̃

p̃0

)
2

3

[

(p− p0)
3 −

(
p− p0

)3
]

+
1

p̃40

3

4

[

(p− p0)
4 −

(
p− p0

)4
]

+ o(w̃4)

=
1

p̃20

(

1 +
2w̃

p̃0
+

3w̃2

p̃20

)
1

2

(
3

4
α2w̃2 + α(γ + β)w̃3 +

[
1

4
β2 − γ2 + 2αδ + αϵ

]

w̃4

)

−
1

p̃30

(

1 +
3w̃

p̃0

)
2

3

(
9

8
α3w̃3 − 3α2

(

−
1

2
β +

γ

4

)

w̃4

)

+
45

64
α4 w̃

4

p̃40
+ o(w̃4) (by Lemmas D.3.3 and D.3.5)

=
3

8
α2 w̃

2

p̃20
+

[
3

4
α2 −

3

4
α3 + α

(
γ

2
+
β

2

)

p̃0

]
w̃3

p̃30
+

[
9

8
α2 −

9

4
α3 +

45

64
α4

+α(γ + β)p̃0 + α2
(

−β +
γ

2

)

p̃0 +
1

2

[
1

4
β2 − γ2 + 2αδ + αϵ

]

p̃20

]
w̃4

p̃40
+ o(w̃4).

For the third integral, we have:

B2
2 =

1

p̃20

∫ p

p

(p− p0)
2

1 + 2
p̃0
(p− p0 − w̃) + 1

p̃20
(p− p0 − w̃)2

dp
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=
1

p̃20

∫ p

p

(p− p0)
2

[

1−
2

p̃0
(p− p0 − w̃)

]

dp+ o(w̃4) (by Lemma D.1.1)

=
1

p̃20

∫ p

p

(p− p0)
2

[

1 +
2w̃

p̃0
−

2

p̃0
(p− p0)

]

dp+ o(w̃4)

=
1

p̃20

(

1 +
2w̃

p̃0

)
1

3

[
(p− p0)

3 − (p− p0)
3
]
−

1

p̃30

1

2

[
(p− p0)

4 − (p− p0)
4
]
+ o(w̃4)

=
1

p̃20

(

1 +
2w̃

p̃0

)
1

3

[
9

8
α3w̃3 − 3α2

(

−
β

2
+
γ

4

)

w̃4

]

−
1

p̃30

15

32
α4w̃4

+ o(w̃4) (by Lemmas D.3.3 and D.3.5)

=
1

3

[
9

8
α3 w̃

3

p̃20
+

(
9

4
α3 − 3α2

(

−
β

2
+
γ

4

)

p̃0

)
w̃4

p̃30

]

−
15

32
α4 w̃

4

p̃30
+ o(w̃4)

=
3

8
α3 w̃

3

p̃20
+

[
3

4
α3 −

15

32
α4 − α2

(

−
β

2
+
γ

4

)

p̃0

]
w̃4

p̃30
+ o(w̃4).

Finally, applying again Lemmas D.1.1, D.3.3, and D.3.5, the fourth integral can be ap-

proximated as:

B3
2 =

1

p̃20

∫ p

p

(p− p0)
3dp+ o(w̃4) =

1

p̃20

1

4

[
(p− p0)

4 − (p− p0)
4
]
+ o(w̃4) =

15

64
α4 w̃

4

p̃20
+ o(w̃4).

Combining those approximations allows us to approximate B2 as:

B2 =
1

r0

(
p− p

p̃0
+ b22

w̃2

p̃20
+ b32

w̃3

p̃30
+ b42

w̃4

p̃40

)

+ o(w̃4), (78)

where

b22 = 3α−
3

8
α2,

b32 =
9

2
α−

21

16
α2 +

3

8
α3 − 2

(

γ −
β

2

)

p̃0 − α
β

2
p̃0 −

1

2
αγp̃0,

b42 =

[
1

2

(

γ2 −
1

4
β2

)

+ (2− α)δ −
(

2 +
α

2

)

ϵ

]

p̃20 −

(

−α2 +
229

64
α− 3

)
β

2
p̃0

−

(
1

4
α2 +

17

8
α + 3

)

γp̃0 + 6α−
187

64
α2 +

253

128
α3 −

15

64
α4.

Next, we use our approximation of B2 to approximate π(w̃)2B2. By Lemma D.3.7, we

have:

π(w̃)2 = r20

(

1−
w̃

p̃0
+
α

2

w̃2

p̃20
−

[
1

6
(2α− 1)α−

1

6
βp̃0

]
w̃3

p̃30

)2

+ o(w̃3)
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= r20

(

1− 2
w̃

p̃0
+ α

w̃2

p̃20
−

[
1

3
(2α− 1)α−

1

3
βp̃0

]
w̃3

p̃30
+

[

−
w̃

p̃0
+
α

2

w̃2

p̃20

]2
)

+ o(w̃3)

= r20

(

1− 2
w̃

p̃0
+ (α + 1)

w̃2

p̃20
−

2

3

[

α(α + 1)−
β

2
p̃0

]
w̃3

p̃30

)

+ o(w̃3).

The approximation of the first term in equation (78) multiplied by π(w̃)2 is:

p− p

p̃20D0

π(w̃)2 = D0

(
p− p

)
(

1− 2
w̃

p̃0
+ (1 + α)

w̃2

p̃20
−

2

3

[

α(α + 1)−
β

2
p̃0

]
w̃3

p̃30

)

+ o(w̃4)

= D0

(

p− p− 2
w̃

p̃0

(
3

2
αw̃ −

(

−
β

2
+ γ

)

w̃2 + (δ − ϵ)w̃3

)

+(1 + α)

[
3

2
αw̃ −

(

−
β

2
+ γ

)

w̃2

]
w̃2

p̃20
− α

[

α(α + 1)−
β

2
p̃0

]
w̃4

p̃30

)

+ o(w̃4)

= D0

(

p− p− 3α
w̃2

p̃0
+

[
3

2
α(1 + α) + 2

(

−
β

2
+ γ

)

p̃0

]
w̃3

p̃20

+

[

2(ϵ− δ)p̃20 −

[

−
β

2
+ γ − αβ + αγ

]

p̃0 − α2(α + 1)

]
w̃4

p̃30

)

+ o(w̃4),

where we have used Lemmas D.3.3 and D.3.5 to obtain the second line. The second term is:

[

3α−
3

8
α2

]
w̃2

p̃30D0

π(w̃)2 = D0

[

3α−
3

8
α2

]
w̃2

p̃0

(

1− 2
w̃

p̃0
+ (α + 1)

w̃2

p̃20

)

+ o(w̃4)

= D0

([

3α−
3

8
α2

]
w̃2

p̃0
− 2

[

3α−
3

8
α2

]
w̃3

p̃20
+ (α + 1)

[

3α−
3

8
α2

]
w̃4

p̃30

)

+ o(w̃4).

The third term is:

b32
w̃3

p̃40D0

π(w̃)2 = D0

([
9

2
α−

21

16
α2 +

3

8
α3 − (2γ − β)p̃0 − α

β

2
p̃0 −

1

2
αγp̃0

]
w̃3

p̃40

+

[

−9α +
21

8
α2 −

3

4
α3 + 2(2γ − β)p̃0 + αβp̃0 + αγp̃0

]
w̃4

p̃50

)

+ o(w̃4).

Combining these three terms yields:

B2π(w̃)
2 = D0

(

p− p+ b̃22
w̃2

p̃0
+ b̃32

w̃3

p̃20
+ b̃42

w̃4

p̃30

)

+ o(w̃4),

where

b̃22 = −
3

8
α2

b̃32 =
3

8
α3 +

15

16
α2 −

1

2
α (β + γ) p̃0
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b̃42 =

[
1

2

(

γ2 −
1

4
β2

)

− αδ −
α

2
ϵ

]

p̃20 +

[
α2

2
+

27

128
α

]

βp̃0 −

[
1

4
α2 +

17

8
α

]

γp̃0

+
85

64
α2 −

19

128
α3 −

15

64
α4.

Combining the approximations of B1 and π(w̃)2B2 yields:

B = D0

(

−
9

8
α2 w̃

3

p̃20
+

[

−
45

32
α2 +

27

64
α3 −

27

64
αβp̃0 +

9

4
αγp̃0

]
w̃4

p̃30

)

+ o(w̃4).

Using the expression we derived above for γ from Lemma D.3.5, we finally obtain:

B = D0

(

−
9

8
α2 w̃

3

p̃20
+

9

64
α

[

−13α + 12α2 −
11

2
βp̃0

]
w̃4

p̃30

)

+ o(w̃4).

Approximation of A. There are three integrals in the definition of A. We have shown

above (see the approximation of B1) that the first integral can be approximated as

∫ p

p

D(p)dp = D0

(

p− p−
3

8
α2 w̃

2

p̃0

)

+ o(w̃2).

In addition (see the approximation of π(w̃)2B2), the second integral can be approximated as

π(w̃)2
∫ p

p

dp

(p− w)2D(p)
= D0

(

p− p−
3

8
α2 w̃

2

p̃0

)

+ o(w̃2),

i.e., the first and second integrals coincide at the second order. The third can be easily

approximated as,

∫ p

p0

D(p)dp = D0

(

p− p0 −
1

2p̃0
(p− p0)

2

)

+ o(w̃2) = D0

(

p− p0 −
1

2
α2 w̃

2

p̃0

)

+ o(w̃2),

where we have used Lemma D.1.1 to obtain the first equality and Lemma D.3.3 to obtain

the second one.

Combining these three approximations yields:

A = 2D0

(

p0 − p+
1

8
α2 w̃

2

p̃0

)

+ o(w̃2)

= D0

(

αw̃ +

[
3

8
α−

7

8
α2 +

5

16
βp̃0

]
w̃2

p̃0

)

+ o(w̃2) (by Lemma D.3.5).
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Combining this with Lemma D.3.7, we obtain:

2λA = D0

(
9

8
α
w̃2

p̃20
+

9

32

[

5α− 3α2 +
3

2
βp̃0

]
w̃3

p̃30

)(

αw̃ +

[
3

8
α−

7

8
α2 +

5

16
βp̃0

]
w̃2

p̃0

)

+ o(w̃4)

= D0

(
9

8
α2 w̃

3

p̃20
+

9

64
α

[

13α− 13α2 +
11

2
βp̃0

]
w̃4

p̃30

)

+ o(w̃4).

Approximation of ∆CS. Combining the Taylor approximations of 2λA and B, we obtain

a Taylor approximation of Ψ = 2λA+B:

Ψ = −
9

64
D0α

3 w̃
4

p̃30
+ o(w̃4).

The approximation of consumer surplus is therefore given by

∆CS =
Ψ

4λ
= −

1

16
D0α

2 w̃
2

p̃0
+ o(w̃2),

where we have used Lemma D.3.7. Using again Lemma D.3.7, we obtain:

∆CS = −
1

9
r0αλ+ o(λ).

D.4 Proofs of Welfare Results When λ is High and s > ŝ

In this appendix, we study the welfare effects of banning dual pricing when λ is close to

1 and s > ŝ, thus proving Proposition 10 for the case of high search costs. We derive the

Taylor approximations of ∆CS and ∆AS with respect to (1 − λ)2 log(1 − λ) when λ ≃ 1.

We proceed as follows. In Section D.4.1, we study the limiting equilibrium behavior when

λ tends to 1. In Section D.4.2, we derive some auxiliary Taylor approximations required to

approximate ∆CS and ∆AS. Section D.4.3 is devoted to the approximations of ∆CS and

∆AS. In Section D.4.4, we study the distributional effects of a ban on dual pricing.

D.4.1 Basic Properties of the Equilibrium for High λ

The following lemma applies regardless of whether s is high or low:

Lemma D.4.1. Let s ̸= ŝ. Under uniform pricing, the limiting equilibrium behavior as λ

goes to 1 is as follows:

lim
λ→1

w(λ, s) = lim
λ→1

p(λ, s) = p0, lim
λ→1

p(λ, s) = p̃,

where p̃(s) is equal to p1 ≡ pm(p0) if
∫ pm(p0)

p0
D(p)dp < s, and solves

∫ p̃

p0
D(p)dp = s otherwise.
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This implies that

lim
λ→1

∆CS(λ, s) = lim
λ→1

∆AS(λ, s) = 0.

In the neighborhood of λ = 1, the derivative p′(w(s, λ), λ, s) exists; moreover, the upper

endpoint of the support is equal to the monopoly price if s > ŝ, and solves H(p, w(s, λ)) = s

if s < ŝ.

Proof. We drop argument s to ease notation. Note first that p(λ) − w(λ) tends to 0 as

λ→ 1, as

0 ≤ p(λ)− w(λ) =
1− λ

1 + λ

π(p(λ), w(λ))

D(p(λ))
≤

1− λ

1 + λ

r0
D(pm(p0))

−→
λ→1

0,

where we have used equation (3) and the inequality follows as w(λ) ∈ [c, p0] by Proposition 6.

Assume for a contradiction that w(λ) does not converge to p0 as λ tends to 1. Then,

there exists a sequence (λn)n≥0 that tends to 1 and such that the associated sequence of

equilibrium wholesale prices (wn)n≥0 remains bounded away from p0. As the latter sequence

lives in the compact set [c, p0], we can extract a subsequence that converges to some w̌ ̸= p0.

In the following, all limits will be taken along that convergent subsequence. Note that the

associated sequence of equilibrium lower endpoints (pn)n≥0 tends to w̌.

Let us show that the associated sequence of CDFs of prices, (F n)n≥0 converges weakly to

a unit mass on w̌. Let p < w̌. Then, for n high enough, pn > p, and so F n(p) = 0. Next, let

p > w̌. Then, for n high enough, F n(p) > 0 and π(p, wn) is bounded away from 0, and so

F n(p) = min

(

1−
1− λn

2λn

[
π(pn, wn)

π(p, wn)
− 1

]

, 1

)

−→
n→∞

1.

It follows from the weak convergence of (F n)n≥0 and the continuity of r(·) that the manufac-

turer’s expected profit converges to r(w̌) < r0 as n goes to infinity.

Note however that, for every n, the manufacturer could set a wholesale price of p0, which

would result in an equilibrium CDF of prices denoted by F n
0 (·) and a profit of

Πn
0 =

∫

r(p)d
[
λn(1− (1− F n

0 (p))
2) + (1− λn)F n

0 (p))
]
.

Thus, the manufacturer’s equilibrium expected profit must be at least Πn
0 . By Proposi-

tion 2(b) in Stahl (1989), (F n
0 )n≥0 converges weakly to a unit mass on p0 as n goes to infinity,

implying that Πn
0 −→

n→∞
r0, which contradicts the fact that the manufacturer’s equilibrium

profit tends to r(w̌) < r0 as n tends to infinity.

Hence, w(λ) converges to p0 as λ tends to 1. Using the same argument as above, it follows

that the equilibrium CDF of prices converges weakly to a unit mass on p0 as λ tends to 1.
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This implies that limλ→1 ∆CS(λ) = limλ→1 ∆AS(λ) = 0.

Finally, we turn to the properties of the upper endpoint of the support, p. We have:

H(pm(w(λ)), w(λ), λ) =

∫ pm(w(λ))

p(pm(w(λ)),w(λ),λ)

D(p)

(

1−
1− λ

2λ

(
π(pm(w(λ)), w(λ))

π(p, w(λ))
− 1

))

dp

=
1 + λ

2λ

∫ pm(w(λ))

p(pm(w(λ)),w(λ),λ)

D(p)dp

−
1− λ

2λ
π(pm(w(λ)), w(λ)) log

pm(w(λ))− w(λ)

p(pm(w(λ)), w(λ), λ)− w(λ)

=
1 + λ

2λ

∫ pm(w(λ))

p(pm(w(λ)),w(λ),λ)

D(p)dp−
1− λ

2λ
π(pm(w(λ)), w(λ))

×

(

log
1 + λ

1− λ
+ log

D(p(pm(w(λ)), w(λ), λ))

D(pm(w(λ)))

)

−→
λ→1

∫ pm(p0)

p0

D(p)dp = ŝ.

where we have used equation (3) to obtain the third equality. By Lemma A.1.2, it follows

that, for λ close enough to 1, p′(w(λ), λ) exists (since H(pm(w(λ)), w(λ), λ) ̸= s); moreover,

p(λ) is equal to pm(w(λ)) if s > ŝ, and solves H(p(λ), w(λ), λ) = s if s < ŝ. In the case where

s > ŝ, we immediately obtain that p(λ) −→
λ→1

pm(p0) = p̃.

Suppose instead that s < ŝ. Then, for λ high enough, we have

∫ p(λ)

p(λ)

D(p)F (p, w(λ), λ)dp = s =

∫ p̃

p0

D(p)dp.

Rearranging terms and taking absolute values yields:

∣
∣
∣
∣
∣

∫ p(λ)

p̃

D(p)F (p, w(λ), λ)dp

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∫ p0

p(λ)

D(p)F (p, w(λ), λ)dp+

∫ p̃

p0

D(p) [F (p, w(λ), λ)− 1] dp

∣
∣
∣
∣
∣
.

As λ goes to 1, the first integral on the right-hand side tends to 0, as the integrand is bounded

and p(λ)−p0 tends to 0. By Lebesgue’s dominated convergence theorem, the second integral

on the right-hand side also tends to 0, as the integrand is again bounded and converges

pointwise to 0 on (p0, p̃]. It follows that

|p(λ)− p̃|F (p̃, w(λ), λ)D(pm(p0)) ≤

∣
∣
∣
∣

∫ p

p̃

D(p)F (p, w(λ), λ)dp

∣
∣
∣
∣
−→
λ→1

0.

As p̃ > p0, we have that F (p̃, w(λ), λ) −→
λ→1

1, implying that p(λ) −→
λ→1

p̃.
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D.4.2 Taylor Approximation of Equilibrium Behavior

In this section, we derive Taylor approximations of p0 −w(λ, s) and π(p(λ, s), w(λ, s)) in the

neighborhood of λ = 1 when s > ŝ. We drop arguments (λ, s) to ease notation. We introduce

new notation: D1 ≡ D(p1), D
′
1 ≡ D′(p1), r

′′
1 ≡ ∂2π(p, p0)/∂p

2, r′′′1 ≡ ∂3π(p, p0)/∂p
3,

α1 =
dpm(w)

dw

∣
∣
∣
∣
w=p0

=
D′

1

r′′1
,

and β1 =
d2pm(w)

dw2

∣
∣
∣
∣
w=p0

= α2
1

(
2D′′

1

D′
1

−
r′′′1
r′′1

)

.

Taylor approximation of p0 − w. As in Appendix D.2.2, we define ϕ(p) = r′(p)/D(p)2

to rewrite equation (20):
∫ p

p

ϕ(p)
p− p

(p− w)3
dp = 0. (79)

Put ϕ′
0 ≡ ϕ′(p0) = r′′0/D

2
0 and

ϕ′′
0 ≡ ϕ′′(p0) =

r′′′0
D2

0

− 4
D′

0r
′′
0

D3
0

= ϕ′
0

(
r′′′0
r′′0

− 4
D′

0

D0

)

.

Lemma D.4.2. For s > ŝ, in the neighborhood of λ = 1, we have

p0 − w = 2(p− w) +

(
2

p1 − p0
−
ϕ′′
0

ϕ′
0

)

(p− w)2 log(p− w) + o
(
(p− w)2 log(p− w)

)
. (80)

Proof. Let ϵ ≡ (p0−w)/(p−w). We begin by showing that ϵ −→
λ→1

2. Applying Lemma D.1.1

to equation (79), we obtain the existence of a bounded function M(λ) such that in the

neighborhood of λ = 1,

ϕ′
0

∫ p

p

(p− p0)(p− p)

(p− w)3
dp

︸ ︷︷ ︸

≡I1

+M(λ)

∫ p

p

(p− p0)
2(p− p)

(p− w)3
dp

︸ ︷︷ ︸

≡I2

= 0.

We have:

I1 =

∫ p

p

−(p− w)(p0 − w)− (p− w)2 + (p+ p0 − 2w)(p− w)

(p− w)3
dp

=
(p− w)(p0 − w)

2

(
1

(p− w)2
−

1

(p− w)2

)

− log
p− w

p− w
+ (p+ p0 − 2w)

(
1

p− w
−

1

p− w

)
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=
1

p− w

[
p− w

2

(
(p− w)(p0 − w)

(p− w)2
− ϵ

)

−(p− w) log
p− w

p− w
+ (p+ p0 − 2w)

(

1−
p− w

p− w

)]

,

It follows from Lemma D.4.1 that

(p− w)I1 = p1 − p0 −
p− w

2
ϵ+ o(1).

Moreover,

I2 =

∫ p

p

[(p− w)2 − 2(p0 − w)(p− w) + (p0 − w)2] [(p− w)− (p− w)]

(p− w)3
dp

=

∫ p

p

[

−1 +
p+ 2p0 − 3w

p− w
− (p0 − w)

2p+ p0 − 3w

(p− w)2
+

(p0 − w)2(p− w)

(p− w)3

]

dp

= − (p− p) + (p+ 2p0 − 3w) log
p− w

p− w
+ (p0 − w)(2p+ p0 − 3w)

[
1

p− w
−

1

p− w

]

+ (p0 − w)2(p− w)
1

2

[
1

(p− w)2
−

1

(p− w)2

]

=
1

p− w

(

−(p− p)(p− w) + (p+ 2p0 − 3w)(p− w) log
p− w

p− w

+(p0 − w)(2p+ p0 − 3w)

[
p− w

p− w
− 1

]

+ (p0 − w)(p− w)
1

2

[

ϵ−
(p0 − w)(p− w)

(p− w)2

])

,

which implies by Lemma D.4.1 that

(p− w)I2 =
p− w

2
(p0 − w)ϵ+ o(1).

Plugging the approximations of I1 and I2 into the first-order condition, we obtain:

ϕ′
0(p1 − p0) +

[

−ϕ′
0

p− w

2
+M(λ)

p− w

2
(p0 − w)

]

ϵ+ o(1) = 0.

As the term inside square brackets tends to −ϕ′
0(p1 − p0)/2 as λ goes to 1, it follows that

ϵ −→
λ→0

2.

This implies that

p0 − w = 2(p− w) + o(p− w).

Hence, a little-o of p0 − w is a little-o of p− w (and vice versa).

Next, we obtain a higher-order approximation of ϵ (and thus of p0 − w). Applying again

Lemma D.1.1 to equation (79), we obtain the existence of a bounded function N(λ) such
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that in the neighborhood of λ = 1,

ϕ′
0(p− w)I1 +

ϕ′′
0

2
(p− w)I2 + (p− w)N(λ)

∫ p

p

(p− p0)
3(p− p)

(p− w)3
dp

︸ ︷︷ ︸

≡I3

= 0. (81)

Using the above expression for I1 and the approximation of p0 − w yields:

(p− w)I1 = −
p− w

2
ϵ+ (p− w) log(p− w) + (p+ p0 − 2w) + o

(
(p− w) log(p− w)

)
,

where we have used the fact that a little-o of (p−w) is a little-o of (p−w) log(p−w). Next,

we require an approximation of p − w, which by Lemma D.4.1, is equal to pm(w) − w. We

have:

p− w = pm(p0 + (w − p0))− p0 + (p0 − w)

= pm(p0)− p0 + pm′(p0)(w − p0)− (w − p0) + o(w − p0)

= p1 − p0 + (1− α1)(p0 − w) + o(p0 − w)

= p1 − p0 + 2(1− α1)(p− w) + o(p− w)

= p1 − p0 + o
(
(p− w) log(p− w)

)
.

Plugging this into the approximation of I1 yields:

(p− w)I1 = −
p1 − p0

2
ϵ+ (p− w) log(p− w) + (p1 − p0) + o

(
(p− w) log(p− w)

)
.

Next, we approximate the second term in equation (81). Using the above expression for

I2 and the approximations of p0 − w and p− w yields:

(p− w)I2 = − (p1 − p0)(p− w) log(p− w) + o
(
(p− w) log(p− w)

)
.

Finally, we argue that I3 is bounded in the neighborhood of λ = 1. We have

|I3| ≤

∫ p

p

∣
∣
∣
∣

p− p0
p− w

∣
∣
∣
∣

3

(p− p)dp ≤ max
p∈[p,p]

∣
∣
∣
∣

p− p0
p− w

∣
∣
∣
∣
pm(p0)

2.

As the function p ∈ [p, p] 7→ (p− p0)/(p− w) is strictly increasing, we have that

max
p∈[p,p]

∣
∣
∣
∣

p− p0
p− w

∣
∣
∣
∣
= max

{
p0 − p

p− w
,
p− p0
p− w

}

−→
λ→1

1,

where we have used Lemma D.4.1 and the above approximation of p0−w to obtain the limit.
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Hence, I3 is bounded and (p− w)I3 = o((p− w) log(p− w)).

Putting together our approximations of I1, I2, and I3 yields the following approximation

of Equation (81):

−
p1 − p0

2
ϵ+(p−w) log(p−w)+p1−p0−

ϕ′′
0

2ϕ′
0

(p1−p0)(p−w) log(p−w)+o
(
(p− w) log(p− w)

)
= 0.

Rearranging terms, this means that

ϵ = 2 +

(
2

p1 − p0
−
ϕ′′
0

ϕ′
0

)

(p− w) log(p− w) + o
(
(p− w) log(p− w)

)
.

Multiplying both sides by (p− w) proves the lemma.

Approximation of π(p, w) and λ.

Lemma D.4.3. For s > ŝ, in the neighborhood of λ = 1, we have:

π(p, w)2 = (p1 − p0)
2D2

1 + 2(p1 − p0)D
2
1(p0 − w) + o

(
(p− w)2 log(p− w)

)
,

λ = 1− 2
D0

(p1 − p0)D1

(p− w) + o
(
(p− w)2 log(p− w)

)
,

(p− w)2 log(p− w) =
π2(p1, p0)

4D2
0

(1− λ)2 log(1− λ) + o((1− λ)2 log(1− λ)).

Proof. We begin by approximating p = pm(w):

p = pm(p0) + pm′(p0)(w − p0) +
1

2
pm′′(p0)(w − p0)

2 + o((w − p0)
2)

= p1 + α1(w − p0) +
1

2
β1(w − p0)

2 + o((p0 − w)2)

= p1 − α1(p0 − w) + o
(
(p− w)2 log(p− w)

)
,

where we have used the fact that (w−p0)
2 is a little-o of (p−w)2 log(p−w) (see Lemma D.4.2).

Next, we derive the approximation of π(w) ≡ π(p, w). We have:

π(w) = (p− w)D(p0 + p− p0)

= (p− w)
(
D0 +D′

0(p− p0)
)
+ o((p− w)2)

= (p− w)D0 + o
(
(p− w)2 log(p− w)

)
,

where we have again used Lemma D.4.2.

Next, we turn to the approximation of π(w) ≡ π(p, w). Using the above approximation
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of p and Lemma D.4.2, we obtain:

p− w = p1 − p0 + (p− p1) + (p0 − w)

= p1 − p0 + (1− α1)(p0 − w) + o
(
(p− w)2 log(p− w)

)

and

D(p) = D(p1 + p− p1)

= D1 +D′
1(p− p1) +

D′′
1

2
(p− p1)

2 + o((p− p1)
2)

= D1 +D′
1(p− p1) + o

(
(p− w)2 log(p− w)

)

= D1 +
D1

p1 − p0
α1(p0 − w) + o

(
(p− w)2 log(p− w)

)
.

It follows that

π(w) = (p1 − p0)D1 +D1(p0 − w) + o
(
(p− w)2 log(p− w)

)
.

Next, we approximate λ:

λ =
π(w)− π(w)

π(w) + π(w)

= 1− 2
π(w)

π(w) + π(w)

= 1− 2
(p− w)D0 + o

(
(p− w)2 log(p− w)

)

(p1 − p0)D1 +D1(p0 − w) + (p− w)D0 + o
(
(p− w)2 log(p− w)

)

= 1− 2
D0

(p1 − p0)D1

(p− w) + o
(
(p− w)2 log(p− w)

)
.

Finally, we approximate (p− w)2 log(p− w) in terms of λ. Rewriting the above approxi-

mation of λ and using the fact that a little-o of p− w is a little-o of 1− λ, we have

p− w =
π(p1, p0)

2D0

(1− λ) + o(1− λ),

which implies that

(p− w)2 log(p− w) =

(
π(p1, p0)

2D0

)2

(1− λ)2 log(p− w) + o((1− λ)2 log(p− w))

=

(
π(p1, p0)

2D0

)2

(1− λ)2 log
(1− λ)π(w)

(1 + λ)D(p)
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+ o

(

(1− λ)2 log
(1− λ)π(w)

(1 + λ)D(p)

)

=
π2(p1, p0)

4D2
0

(1− λ)2 log(1− λ) + o((1− λ)2 log(1− λ)),

where we have used equation (3) to obtain the second line and the fact that π(w)/D(p) is

bounded for λ close to 1 to obtain the third line.

D.4.3 Proof of Proposition 10 for s > ŝ

Consumer surplus approximation.

Lemma D.4.4. For s > ŝ, in the neighborhood of λ = 1, we have

∆CS =
π2(p̃(s), p0)

4r0α2

[
α(2− α)− β(p0 − c) + 2(p0 − c)α2µ̃(s)

]

× (1− λ)2 |log(1− λ)|+ o((1− λ)2 log(1− λ)).

Proof. It follows from equation (42) that ∆CS = Ψ/(4λ), where

Ψ ≡ −4λ

∫ p

p0

D(p)dp+ (1 + λ)2
∫ p

p

D(p)dp− (1− λ)2π(w)2
∫ p

p

dp

(p− w)2D(p)

= 4λ

∫ p0

p

D(p)dp+ (1− λ)2
∫ p

p

D(p)dp− (1− λ)2π(w)2
∫ p

p

dp

(p− w)2D(p)
,

where we have used the fact that (1 + λ)2 = (1− λ)2 + 4λ. We seek a Taylor approximation

of Ψ up to order (p− w)2 log(p− w).

By Lemma D.4.3,

(1− λ)2 =
4D2

0

(p1 − p0)2D2
1

(p− w)2 + o
(
(p− w)3 log(p− w)

)
,

and so (1− λ)2 = o((p−w)2 log(p−w)). As
∫ p

p
D(p)dp is bounded when λ is close to 1, this

implies that

(1− λ)2
∫ p

p

D(p)dp = o
(
(p− w)2 log(p− w)

)
.

Next, we turn our attention to the term 4λ
∫ p0

p
D(p)dp. By Lemmas D.1.1 and D.4.2, the

integral can be approximated as

∫ p0

p

D(p)dp = D0(p0 − p)−
D′

0

2
(p0 − p)2 + o

(
(p0 − p)2

)
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= D0(p0 − p) + o
(
(p− w)2 log(p− w)

)
,

where we have used Lemma D.4.2 to obtain the second line. Combining this with the approx-

imation of λ in Lemma D.4.3 and using the fact that (p−w)(p0−p) = o((p−w)2 log(p−w)),

we obtain:

4λ

∫ p0

p

D(p)dp = 4D0(p0 − p) + o
(
(p− w)2 log(p− w)

)

= 4D0

(

p− w +

[
2

p1 − p0
−
ϕ′′
0

ϕ′
0

]

(p− w)2 log(p− w)

)

+ o
(
(p− w)2 log(p− w)

)
,

where we have again used Lemma D.4.2.

Finally, we turn to the third term in the above expression for Ψ. By Lemma D.1.1, the

integral can be approximated as31

∫ p

p

dp

(p− w)2D(p)
=

1

D0

∫ p

p

dp

(p− w)2
−
D′

0

D2
0

∫ p

p

p− p0
(p− w)2

dp+O

(
∫ p

p

(p− p0)
2

(p− w)2
dp

)

=
1

D0

[
1

p− w
−

1

p− w

]

+
1

r0

[

log
p− w

p− w
+
p0 − w

p− w
−
p0 − w

p− w

]

+O(1)

=
1

D0

(
1

p− w
−

1

p0 − c
log(p− w)

)

+O(1),

where we have used Lemma D.4.2.

Combining this with the above Taylor approximation of (1− λ)2, we obtain:

(1− λ)2
∫ p

p

dp

(p− w)2D(p)
=

4D0

(p1 − p0)2D2
1

(

p− w −
1

p0 − c
(p− w)2 log(p− w)

)

+ o
(
(p− w)2 log(p− w)

)
,

where we have used the fact that a big-o of (p−w)2 is a little-o of (p−w)2 log(p−w), and a

little-o of (p−w)3(log(p−w))2 is also a little-o of (p−w)2 log(p−w). Combining this with

the approximation of π(p, w)2 from Lemma D.4.3, it follows that

31To see why
∫ p

p

(p−p0)
2

(p−w)2 dp is bounded in the expression below, recall from the proof of Lemma D.4.2 that

∫ p

p

(p− p0)
2

(p− w)2
dp ≤ max

p∈[p,p]

(
p− p0
p− w

)2

(p− p) ≤ max

{(
p0 − p

p− w

)2

,

(
p− p0
p− w

)2
}

pm(p0)

and that both terms within the second maximum are bounded when λ is close to 1.

98



(1− λ)2π(w)2
∫ p

p

dp

(p− w)2D(p)
=

4D0

(

p− w −
1

p0 − c
(p− w)2 log(p− w)

)

+ o
(
(p− w)2 log(p− w)

)
.

We thus obtain the Taylor approximation of Ψ:

Ψ = 4D0

[
2

p1 − p0
−
ϕ′′
0

ϕ′
0

+
1

p0 − c

]

(p− w)2 log(p− w) + o
(
(p− w)2 log(p− w)

)
.

Using the approximation of (p − w)2 log(p − w) from Lemma D.4.3 and the fact that

∆CS = Ψ/(4λ), we obtain:

∆CS =
π2(p1, p0)

4D0

[
2

p1 − p0
−
ϕ′′
0

ϕ′
0

+
1

p0 − c

]

(1− λ)2 log(1− λ) + o((1− λ)2 log(1− λ)).

Let us define

ζ ≡ (p0 − c)
ϕ′′
0

ϕ′
0

− 1−
2(p0 − c)

p1 − p0

and rewrite it as a function of the pass-through and its derivative:

ζ = (p0 − c)

(
r′′′0
r′′0

− 2
D′′

0

D′
0

+ 2
D′′

0

D′
0

− 4
D′

0

D0

)

− 1−
2(p0 − c)

p1 − p0

=
−β(p0 − c)

α2
− 2

2α− 1

α
+ 3−

2(p0 − c)

p1 − p0

= −1−
β(p0 − c)

α2
+ 2

(
1

α
−

p0 − c

p1 − p0

)

.

Thus,

∆CS =
π2(p1, p0)

4r0

[

−1−
β(p0 − c)

α2
+ 2

(
1

α
−

p0 − c

p1 − p0

)]

× (1− λ)2 |log(1− λ)|+ o((1− λ)2 log(1− λ)).

As µ̃(s) = − 1
p1−p0

and p̃(s) = p1 for s > ŝ, this concludes the proof of the lemma.

Producer surplus approximation.

Lemma D.4.5. For s > ŝ, in the neighborhood of λ = 1, we have

∆Π = −
π2(p̃(s), p0)

4r0α
(1− λ)2 |log(1− λ)|+ o((1− λ)2 log(1− λ)).
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Proof. Using equation (43), we see that the ∆Π = Φ/(4λ), where

Φ ≡ 4λ (r(p)− r0) + (1− λ)2π(w)2
∫ p

p

r′(p)

D(p)2
dp

(p− w)2
− (1 + λ)2

(
r(p)− r(p)

)

= 4λ
(
r(p)− r0

)
+ (1− λ)2π(w)2

∫ p

p

r′(p)

D(p)2
dp

(p− w)2
− (1− λ)2

(
r(p)− r(p)

)
.

The third term is clearly a little-o of (p − w)2 log(p − w), as r(p) − r(p) is bounded and

(1− λ)2 = o
(
(p− w)2 log(p− w)

)
by Lemma D.4.3. The first term is also negligible, as

r(p)− r0 =
r′′0
2
(p− p0)

2 + o
(
(p− p0)

2
)
= o

(
(p− w)2 log(p− w)

)
,

where the second equality follows by Lemma D.4.2.

Using Lemma D.1.1, we obtain an approximation of the integral in the second term:32

∫ p

p

r′(p)

D(p)2
dp

(p− w)2
=

r′′0
D2

0

∫ p

p

p− p0
(p− w)2

dp+O

(
∫ p

p

(p− p0)
2

(p− w)2
dp

)

=
r′′0
D2

0

[

log
p− w

p− w
+
p0 − w

p− w
−
p0 − w

p− w

]

+O(1)

= −
r′′0
D2

0

log(p− w) +O(1),

where the last line follows by Lemmas D.4.1 and D.4.2. Combining this with Lemma D.4.3,

we obtain:

(1− λ)2π(w)2
∫ p

p

r′(p)

D(p)2
dp

(p− w)2
= −4r′′0(p− w)2 log(p− w) + o

(
(p− w)2 log(p− w)

)
.

As r′′0 = −D0/(α(p0 − c)), this implies that

Φ = 4
D0

p0 − c

1

α
(p− w)2 log(p− w) + o

(
(p− w)2 log(p− w)

)
.

Combining this with the approximation of (p−w)2 log(p−w) with respect to (1−λ)2 log(1−λ)

from Lemma D.4.3 proves the lemma.

Aggregate Surplus Approximation. Combining Lemmas D.4.4 and D.4.5, we obtain:

Lemma D.4.6. For s > ŝ, in the neighborhood of λ = 1, we have

32For the argument why the integral inside the big-O on the first line is bounded, see footnote 31.
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∆AS =
π2(p̃(s), p0)

4r0α2

[
α(1− α)− β(p0 − c) + 2(p0 − c)α2µ̃(s)

]

× (1− λ)2 |log(1− λ)|+ o((1− λ)2 log(1− λ)).

D.4.4 Distributional Effects

We now separately derive the approximation of consumer surplus for online and offline con-

sumers. The change in consumer surplus in the offline and the online markets, denoted by

∆CSB and ∆CSO, are given in equations (65) and (66) respectively.

Lemma D.4.7. For s > ŝ, in the neighborhood of λ = 1, we have

∆CSB = −
1

2
π(p̃(s), p0)(1− λ)2| log(1− λ)|+ o((1− λ)2 log(1− λ)) (82)

∆CSO =
π2(p̃(s), p0)

4r0α2

[

α(2− α)− β(p0 − c) + 2(p0 − c)α2

(

µ̃(s) +
D0

π(p1, p0)

)]

× (1− λ)2 |log(1− λ)|+ o((1− λ)2 log(1− λ)). (83)

Proof. From equation (65), the change in consumer surplus in the offline market is given by

∆CSB = (1− λ)/(2λ)ΨB, where

ΨB ≡ −2λ

∫ p

p0

D(p)dp+ (1 + λ)

∫ p

p

D(p)dp− (1− λ)π(p, w) log
p− w

p− w

= (1 + λ)

∫ p0

p

D(p)dp+ (1− λ)

∫ p

p0

D(p)dp− (1− λ)π(p, w) log
p− w

p− w
.

We derive an approximation of ΨB(λ) of order (p−w) log(p−w). By Lemma D.1.1, we have

that ∫ p0

p

D(p)dp = D0(p0 − p) + o(p0 − p) = o((p− w) log(p− w)),

implying that the first term of ΨB(λ) is a little-o of (p − w) log(p − w). As
∫ p

p0
D(p)dp is

bounded in the neighborhood of λ = 1, Lemma D.4.3 implies that the second term of ΨB(λ)

is also a little-o of (p−w) log(p−w). Applying again Lemma D.4.3 to approximate the third

term, we obtain

(1− λ)π(p, w) log
p− w

p− w
= −(1− λ)π(p, w) log(p− w) + o((p− w) log(p− w))

= −2D0(p− w) log(p− w) + o((p− w) log(p− w)).

It follows that

ΨB = 2D0(p− w) log(p− w) + o((p− w) log(p− w)).
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Using the approximation of 1− λ from Lemma D.4.3, we obtain

∆CSB =
2D2

0

π(p1, p0)
(p− w)2 log(p− w) + o((p− w)2 log(p− w)).

Finally, using the approximation of (p − w)2 log(p − w) from Lemma D.4.3, we obtain the

approximation of ∆CSB in the statement of the lemma. Inserting this approximation and the

approximation of ∆CS from Lemma D.4.4 into ∆CS−∆CSB, we obtain the approximation

of ∆CSO in the statement of the lemma.

D.5 Proofs of Welfare Results when λ is High and s < ŝ

In this appendix, we study the welfare effects of banning dual pricing when λ is close to 1

and s < ŝ, thus proving Proposition 10 for low search costs. The approach is similar to that

in Appendix D.4. In Section D.5.1, we describe the limiting equilibrium behavior when λ

tends to 1. In Section D.5.2, we derive some auxiliary Taylor approximations required to

approximate ∆CS and ∆AS. Section D.5.3 is devoted to the approximations of ∆CS and

∆AS. In Section D.5.4, we study the properties of the function µ̃(s). In Section D.5.5, we

study the distributional effects of a ban on dual pricing. In Section D.5.6, we show that the

manufacturers deals with both retailers in equilibrium provided λ is high enough.

D.5.1 Basic Properties of the Equilibrium for High λ and s < ŝ

We already characterized the limiting equilibrium behavior as λ tends to 1 in Lemma D.4.1.

For λ high enough, the upper bound of the equilibrium CDF of prices, p, solves H(p, w) = s.

It converges to p̂ as λ tends to 1, where p̂ is the unique solution to

∫ p̂

p0

D(p)dp = s.

D.5.2 Taylor Approximation of Equilibrium Behavior

Define D̂ ≡ D(p̂), D̂′ ≡ D′(p̂), r̂ = π(p̂, p0), r̂
′ ≡ D̂′(p̂− p0) + D̂, and µ̂ ≡ (r̂′D0

D̂
− D̂)/r̂.

Limit of p′(w) as λ tends to 1.

Lemma D.5.1. We have: limλ→1 p
′(w) = D0/D̂.

Proof. Manipulating equation (3), we obtain

(1− λ) log
p− w

p− w
= (1− λ) log

[

(1 + λ)
D(p)

D(p)

]

− (1− λ) log(1− λ) −→
λ→1

0,
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(1− λ)
p− w

p− w
= (1 + λ)

D(p)

D(p)
−→
λ→1

2
D0

D̂
.

The lemma follows by taking the limit as λ tends to 1 in equation (14).

First-order approximation of p0 − w. Let ϵ ≡ p0−w

p−w
. As in Appendix D.4.2, we define

ϕ(p) = r′(p)/D(p)2 to rewrite equation (20) as

∫ p

p

ϕ(p)
1

(p− w)3
dp+ µ(p, w)

∫ p

p

ϕ(p)
1

(p− w)2
dp = 0, (84)

where

µ(p, w) =
π′
1(p, w)

∂p

∂w
−D(p)

π(w)
and π(w) ≡ π(p, w).

Recall from Appendix D.4.2 that ϕ′
0 ≡ ϕ′(p0) = r′′0/D

2
0 and

ϕ′′
0 ≡ ϕ′′(p0) =

r′′′0
D2

0

− 4
D′

0r
′′
0

D3
0

= ϕ′
0

(
r′′′0
r′′0

− 4
D′

0

D0

)

.

Lemma D.5.2. For s < ŝ, in the neighborhood of λ = 1, we have

p0 − w = 2(p− w) + o
(
p− w

)
. (85)

Proof. Applying Lemma D.1.1 to the two integrals in equation (84), we obtain the existence

of bounded functions M(λ) and N(λ) such that

0 = ϕ′
0

≡I1
︷ ︸︸ ︷
∫ p

p

p− p0
(p− w)3

dp+µ(p, w)ϕ′
0

≡I2
︷ ︸︸ ︷
∫ p

p

p− p0
(p− w)2

dp

+M(λ)

∫ p

p

(p− p0)
2

(p− w)3
dp

︸ ︷︷ ︸

≡I3

+µ(p, w)N(λ)

∫ p

p

(p− p0)
2

(p− w)2
dp

︸ ︷︷ ︸

≡I4

. (86)

We can explicitly compute I1 and I2:

I1 =

(
∫ p

p

dp

(p− w)2
− (p0 − w)

∫ p

p

dp

(p− w)3

)

=
1

p− w

[

1−
p− w

p− w
−
p0 − w

2

(
1

p− w
−

p− w

(p− w)2

)]

, (87)

I2 =

∫ p

p

dp

p− w
− (p0 − w)

∫ p

p

dp

(p− w)2
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=
1

p− w

(

(p− w) log

(
p− w

p− w

)

− (p0 − w)

(

1−
p− w

p− w

))

. (88)

As µ(p, w) is bounded (by Lemmas D.4.1 and D.5.1), it follows that

(p− w) (I1 + µ(p, w)I2) = 1−
ϵ

2
+ o(1).

We can also explicitly compute I3 and I4 as

I3 =

∫ p

p

dp

p− w
− 2

∫ p

p

p0 − w

(p− w)2
dp+

∫ p

p

(p0 − w)2

(p− w)3
dp,

=
1

p− w

(

(p− w) log

(
p− w

p− w

)

−2(p0 − w)

(

1−
p− w

p− w

)

+
(p0 − w)2

2

(
1

p− w
−

p− w

(p− w)2

))

(89)

I4 =

∫ p

p

dp− 2

∫ p

p

p0 − w

p− w
dp+

∫ p

p

(p0 − w)2

(p− w)2
dp,

=
1

p− w

(
(p− w)(p− p)

−2(p0 − w)(p− w) log

(
p− w

p− w

)

+ (p0 − w)2
(

1−
p− w

p− w

))

. (90)

Multiplying by p− w and taking limits, we obtain:

(p− w)I3 =
p0 − w

2
ϵ+ o(1) and (p− w)I4 = o(1).

Plugging the approximations of I1, I2, I3, and I4 into equation (86), we obtain:

ϕ′
0 +

[

−
1

2
ϕ′
0 +M(λ)

p0 − w

2

]

ϵ+ o(1) = 0.

As the term inside square brackets tends to −ϕ′
0/2 as λ goes to 1, we have that ϵ −→

λ→1
2.

The lemma implies in particular that a little-o of p − w is a little-o of p0 − w (and vice

versa).

Approximation of p− p̂. Define π(w) ≡ π(p, w).

Lemma D.5.3. For s < ŝ, in the neighborhood of λ = 1, we have

p− p̂ = −
D0

D̂
(p− w) log(p− w) + o((p− w) log(p− w)) (91)
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Proof. Let

ν ≡
p− p̂

(p− w) log(p− w)
.

Manipulating equation (3), we obtain that

λ =
π(w)− π(w)

π(w) + π(w)
.

Plugging this into condition H(p, w)− s = 0 yields:

0 =
1 + λ

2λ

∫ p

p

D(p)dp−
1− λ

2λ
π(w) log

(
p− w

p− w

)

− s

=
π(w)

π(w)− π(w)

(
∫ p

p

D(p)dp− π(w) log

(
p− w

p− w

))

− s.

Dividing by π(w)/(π(w)− π(w)) and using the definition of p̂, we obtain:

0 =

∫ p

p

D(p)dp− π(w) log

(
p− w

p− w

)

−

∫ p̂

p0

D(p)dp+
π(w)

π(w)
s

=

∫ p

p̂

D(p)dp+

∫ p0

p

D(p)dp− π(w) log

(
p− w

p− w

)

+
π(w)

π(w)
s. (92)

Applying Lemma D.1.1 to the two integrals, we obtain the existence of bounded functions

M(λ) and N(λ) such that for λ close enough to 1, we have:

D̂(p− p̂) +M(λ)(p− p̂)2 +D0(p0 − p) +N(λ)(p0 − p)2 − π(w) log

(
p− w

p− w

)

+
π(w)

π(w)
s = 0.

Rearranging terms and using Lemma D.5.2, we obtain

(D̂ν+D(p))(p−w) log(p−w)+M(λ)(p− p̂)ν(p−w) log(p−w)+ o((p−w) log(p−w)) = 0,

or, equivalently,

D̂ν +D(p) +M(λ)(p− p̂)ν + o(1) = 0.

It follows that ν converges to −D0/D̂ when λ tends to 1, which proves the lemma.

Lemma D.5.3 implies that a little-o of p−p̂ is a little-o of (p−w) log(p−w) (and vice versa).

Moreover, combining equation (91) with the fact that p0−w is a little-o of (p−w) log(p−w)

we have

p− w = p− p̂+ p̂− p0 + p0 − w
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= p̂− p0 −
D0

D̂
(p− w) log(p− w) + o((p− w) log(p− w)),

p− p = p− w − (p− w)

= p̂− p0 −
D0

D̂
(p− w) log(p− w) + o((p− w) log(p− w)).

For what follows, it is also useful to compute

log(p− w) = log(p̂− p0) +
1

p− p0
(p− w − (p̂− p0)) + o((p− w) log(p− w))

= log(p̂− p0)−
D0

r̂
(p− w) log(p− w) + o((p− w) log(p− w)).

A higher order approximation of p0 − w.

Lemma D.5.4. For s < ŝ, in the neighborhood of λ = 1, we have

p0 − w = 2(p− w)− 2(µ̂+ γ)(p− w)2 log(p− w) + o((p− w)2 log(p− w)). (93)

Proof. By Lemma D.1.1 applied to the two integrals in equation (84), there exist bounded

functions M(λ) and N(λ) such that

ϕ′
0

≡B1
︷ ︸︸ ︷
∫ p

p

(p− p0)

(
µ(p, w)

(p− w)2
+

1

(p− w)3

)

dp+ϕ′
0γ

≡B2
︷ ︸︸ ︷
∫ p

p

(p− p0)
2

(
µ(p, w)

(p− w)2
+

1

(p− w)3

)

dp

+

∫ p

p

(p− p0)
3

(p− w)3
[M(λ)µ(p, w)(p− w) +N(λ)] dp

︸ ︷︷ ︸

≡B3

= 0,

where ϕ′
0 was defined above and

γ ≡
1

2

r′′′0
r′′0

− 2
D′

0

D0

.

We seek the approximations of (p − w)Bi, for every i. We start with (p − w)B1. Note

that (p− w)B1 = µ(p, w)(p− w)I2 + (p− w)I1, where I1 and I2 were defined in the proof of

Lemma D.5.2. Using equations (87) and (88), we obtain:

(p− w)I1 = 1−
ϵ

2
+ o((p− w) log(p− w)),

(p− w)I2 = −(p− w) log(p− w) + o((p− w) log(p− w)).
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It follows that

(p− w)B1 = 1−
ϵ

2
− µ̂× (p− w) log(p− w) + o((p− w) log(p− w)).

Next, we approximate (p− w)B2 = µ(p, w)(p− w)I4 + (p− w)I3, where I3 and I4 were also

defined in the proof of Lemma D.5.2. Using equation (89), we obtain:

(p− w)I3 = −(p− w) log(p− w) +
p0 − w

2
ϵ+ o((p− w) log(p− w))

= −(p− w) log(p− w) + o((p− w) log(p− w)),

where the second line follows as (p0 −w)ϵ is a little-o of (p−w) log(p−w) by Lemma D.5.2.

Moreover, using equation (90), we immediately obtain that (p − w)I4 is a little-o of (p −

w) log(p− w), so that

(p− w)B2 = −(p− w) log(p− w) + o((p− w) log(p− w)).

Let M , N , and m be upper bounds for |M(λ)|, |N(λ)|, and |µ(p, w)| in the neighborhood of

λ = 1. For high enough λ, we have:

B3 ≤

∫ p

p

∣
∣
∣
∣

p− p0
p− w

∣
∣
∣
∣

3
(
mM(p− w) +N

)
dp

≤

∫ p

p

(

max
p′∈[p,p]

∣
∣
∣
∣

p′ − p0
p′ − w

∣
∣
∣
∣

)3
(
mMp1 +N

)
dp

≤
(
mMp1 +N

)
p1

(

max

{
p0 − p

p− w
,
p− p0
p− w

})3

,

where we have used the fact that p − w ≤ p ≤ pm(w) ≤ pm(p0) = p1 to obtain the second

line and p 7→ (p − p0)/(p − w) is strictly increasing to obtain the third line. Since the two

terms inside the maximum are bounded (see Lemma D.5.2), it follows that (p − w)B3 =

o((p− w) log(p− w)).

Combining the above approximations, we obtain:

1−
ϵ

2
− (µ̂+ γ)(p− w) log(p− w) + o((p− w) log(p− w)) = 0,

which implies that

ϵ = 2− 2(µ̂+ γ)(p− w) log(p− w) + o((p− w) log(p− w)),

proving the lemma.
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A higher-order approximation of p− p̂. Define η ≡ log(p̂− p0)− s/r̂. We have:

Lemma D.5.5. For s < ŝ, in the neighborhood of λ = 1, we have

p− p̂ = −
D0

D̂
(p− w) log(p− w) +

D0η

D̂
(p− w) + o(p− w). (94)

Proof. Applying Lemma D.1.1 to the two integrals in equation (92) above, we obtain the

existence of bounded functions M(λ) and N(λ) such that, for λ high enough, we have:

D̂(p− p̂) +
1

2
D̂′(p− p̂)2 +M(λ)(p− p̂)3 +D0(p0 − p) +

1

2
D′

0(p0 − p)2

+N(λ)(p0 − p)3 − π(w) log

(
p− w

p− w

)

+
π(w)

π(w)
s = 0.

By Lemmas D.5.2 and D.5.3, the terms (p0 − p)2, (p0 − p)3, (p − p̂)2, and (p − p̂)3 are all

little-os of p − w. Moreover, using the definition of ν from the proof of Lemma D.5.3, we

have that

D̂(p− p̂) = D̂ν(p− w) log(p− w).

Finally,

−π(w) log

(
p− w

p− w

)

+
π(w)

π(w)
s = D0(p− w) log(p− w)−D0η(p− w) + o(p− w),

where we have used Lemma D.5.2 and the definition of η from above.

Combining the above approximations, we obtain:

(D0 + D̂ν)(p− w) log(p− w)−D0η(p− w) + o(p− w) = 0.

It follows that

ν = −
D0

D̂
+
D0η

D̂

1

log(p− w)
+ o

(
1

log(p− w)

)

,

which proves the lemma.

Approximation of π(w) and λ.

Lemma D.5.6. For s < ŝ, in the neighborhood of λ = 1, we have:

π(w)2 = r̂2 − 2r̂r̂′
D0

D̂
(p− w) log(p− w) + o

(
(p− w)2 log(p− w)

)
,

λ = 1− 2
D0

r̂
(p− w)− 2

r̂′D2
0

r̂2D̂
(p− w)2 log(p− w) + o

(
(p− w)2 log(p− w)

)
,
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(p− w)2 log(p− w) =
r̂2

4D2
0

(1− λ)2 log(1− λ) + o((1− λ)2 log(1− λ)).

Proof. Combining Lemmas D.5.4 and D.5.5, we obtain:

p− w = p− p̂+ p̂− p0 + p0 − w

= p̂− p0 −
D0

D̂
(p− w) log(p− w) +

(
D0η

D̂
+ 2

)

(p− w) + o(p− w).

Moreover, by Lemma D.5.5, we have:

D(p) = D̂ + D̂′(p− p̂) +
D̂′′

2
(p− p̂)2 + o((p− p̂)2)

= D̂ −
D̂′D0

D̂
(p− w) log(p− w) +

D̂′D0η

D̂
(p− w) + o(p− w).

It follows that

π(w) = (p− w)D(p)

= r̂ − r̂′
D0

D̂
(p− w) log(p− w) +

(

2D̂ + r̂′
D0η

D̂

)

(p− w) + o(p− w).

Taking the square and discarding higher-order terms, we obtain the first approximation in

the statement of the lemma.

Next, we turn to the approximation of λ. By Lemma D.5.2, we have:

π(w) = (p− w)
(
D0 +D′

0(p− p0)
)
+ o((p− w)2) = D0(p− w) + o((p− w)2 log(p− w)).

Combining this with the above approximation of π(w) yields:

λ =
π(w)− π(w)

π(w) + π(w)

= 1− 2
π(w)

π(w) + π(w)

= 1− 2
D0(p− w) + o((p− w)2 log(p− w))

r̂ − r̂′D0

D̂
(p− w) log(p− w) +

(

2D̂ + r̂′D0η

D̂
+D0

)

(p− w) + o(p− w)

= 1− 2
D0

r̂
(p− w)− 2

r̂′D2
0

r̂2D̂
(p− w)2 log(p− w) + o((p− w)2 log(p− w)),

as stated.

Finally, we approximate (p− w)2 log(p− w) in terms of λ. Rewriting the above approxi-
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mation of λ and using the fact that a little-o of p− w is a little-o of 1− λ, we have

p− w =
r̂

2D0

(1− λ) + o(1− λ),

which implies that

(p− w)2 log(p− w) =

(
r̂

2D0

)2

(1− λ)2 log(p− w) + o((1− λ)2 log(p− w))

=

(
r̂

2D0

)2

(1− λ)2 log
(1− λ)π(w)

(1 + λ)D(p)
+ o

(

(1− λ)2 log
(1− λ)π(w)

(1 + λ)D(p)

)

=
r̂2

4D2
0

(1− λ)2 log(1− λ) + o((1− λ)2 log(1− λ)),

where we have used equation (3) to obtain the second line and the fact that π(w)/D(p) is

bounded for λ close to 1 to obtain the third line.

D.5.3 Proof of Proposition 10 for s < ŝ

Consumer surplus approximation

Lemma D.5.7. For s < ŝ, in the neighborhood of λ = 1, we have

∆CS =
π2(p̃(s), p0)

4r0α2

[
α(2− α)− β(p0 − c) + 2(p0 − c)α2µ̃(s)

]

× (1− λ)2 |log(1− λ)|+ o((1− λ)2 log(1− λ)).

Proof. In the proof of Proposition D.4.4, we established that ∆CS = Ψ/(4λ), where

Ψ ≡ 4λ

∫ p0

p

D(p)dp

︸ ︷︷ ︸

≡A1

+(1− λ)2
∫ p

p

D(p)dp

︸ ︷︷ ︸

≡A2

− (1− λ)2π(w)2
∫ p

p

dp

(p− w)2D(p)
︸ ︷︷ ︸

≡A3

.

We approximate Ψ up to order (p − w)2 log(p − w). Applying Lemmas D.1.1 and D.5.4 to

the integral in A1, we obtain:

∫ p0

p

D(p)dp = D0(p0 − p)−
D′

0

2
(p0 − p)2 + o((p0 − p)2)

= D0

(
(p− w)− 2(µ̂+ γ)(p− w)2 log(p− w)

)
+ o((p− w)2 log(p− w)).
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Multiplying this by the approximation of λ from Lemma D.5.6?yields

A1 = 4D0(p− w)− 8D0(µ̂+ γ)(p− w)2 log(p− w) + o((p− w)2 log(p− w)).

Next, we approximate A2. By Lemma D.5.6,

(1− λ)2 = 4
D2

0

r̂2
(p− w)2 + 8

r̂′D3
0

r̂3D̂
(p− w)3 log(p− w) + o((p− w)3 log(p− w)). (95)

This implies that (1 − λ)2 is a little o of (p − w)2 log(p − w). As the integral
∫ p

p
D(p)dp is

bounded when λ is close to 1, we have that A2 is a little-o of (p− w)2 log(p− w).

Finally, we approximate A3. By Lemma D.1.1, the integral in A3 can be approximated

as follows:33

∫ p

p

dp

(p− w)2D(p)
=

1

D0

∫ p

p

dp

(p− w)2
−
D′

0

D2
0

∫ p

p

p− p0
(p− w)2

dp+O

(
∫ p

p

(p− p0)
2

(p− w)2
dp

)

=
1

D0

(
1

p− w
−

1

p− w

)

−
D′

0

D2
0

(

log

(
p− w

p− w

)

+
p0 − w

p− w
−
p0 − w

p− w

)

+O(1)

=
1

D0(p− w)
+
D′

0

D2
0

log(p− w) +O(1),

where we used Lemma D.5.4 to obtain the third line. Multiplying this by the approximation

of (1 − λ)2 from equation (95) and using the fact that a big-o of (p − w)2 is a little-o of

(p−w)2 log(p−w), and a little-o of (p−w)3
(
log(p− w)

)2
is a little-o of (p−w)2 log(p−w),

we obtain

(1− λ)2
∫ p

p

dp

(p− w)2D(p)
=

4
D0

r̂2
(p− w) +

(

4
D′

0

r̂2
+ 8

r̂′D2
0

r̂3D̂

)

(p− w)2 log(p− w) + o((p− w)2 log(p− w)).

Using the approximation of π2(w) from Lemma D.5.6, it follows that

A3 = 4D0(p− w)−
4D0

p0 − c
(p− w)2 log(p− w) + o((p− w)2 log(p− w)).

33To obtain the second line, we used the fact that
∫ p

p

(p−p0)
2

(p−w)2 dp is bounded when λ is close to 1. To see

this, recall from the proof of Lemma D.5.4 that

∫ p

p

(p− p0)
2

(p− w)2
dp ≤ max

p∈[p,p]

(
p− p0
p− w

)2

(p− p) ≤ max

{(
p0 − p

p− w

)2

,

(
p− p0
p− w

)2
}

pm(p0)

By Lemmas D.5.4 and D.4.1, both terms within the second maximum are bounded when λ is close to 1.
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Combining the terms, we obtain the approximation of Ψ:

Ψ = −4
D0

p0 − c
(2(p0 − c)(µ̂+ γ)− 1) (p− w)2 log(p− w) + o((p− w)2 log(p− w)).

Using the approximation of (p−w)2 log(p−w) from Lemma D.5.6 and the fact that ∆CS =

Ψ/(4λ), we have:

∆CS =
r̂2

4r0
(2(p0 − c)(µ̂+ γ)− 1)
︸ ︷︷ ︸

≡ζ

(1− λ)2| log(1− λ)|+ o((1− λ2) log(1− λ)).

Plugging the expression of γ from the proof of Lemma D.5.4, we can rewrite ζ as a

function of the pass-through and its derivative:

2(p0 − c)(γ + µ̂)− 1 = (p0 − c)

(
r′′′0
r′′0

− 2
D′′

0

D′
0

+ 2
D′′

0

D′
0

− 4
D′

0

D0

)

+ 2(p0 − c)µ̂− 1

= −
β(p0 − c)

α2
− 2

2α− 1

α
+ 3 + 2(p0 − c)µ̂

= −
β(p0 − c)

α2
+

2

α
− 1 + 2(p0 − c)µ̂.

Inserting this into the approximation of ∆CS and using the fact that µ̃(s) = µ̂ and p̃(s) = p̂(s)

for s < ŝ, we obtain the approximation in the statement of the lemma.

Producer surplus approximation

Lemma D.5.8. For s < ŝ, in the neighborhood of λ = 1, we have

∆Π = −
π2(p̃(s), p0)

4r0α
(1− λ)2 |log(1− λ)|+ o((1− λ)2 log(1− λ)).

Proof. In the proof of Proposition D.4.5, we established that ∆Π = Φ/(4λ), where

Φ ≡ 4λ
(
r(p)− r0

)
+ (1− λ)2π(w)2

∫ p

p

r′(p)

D(p)2
dp

(p− w)2
− (1− λ)2

(
r(p)− r(p)

)
.

We approximate Φ up to order (p− w)2 log(p− w). By Lemma D.5.4, we have:

r(p)− r0 =
r′′0
2
(p− p0)

2 + o
(
(p− p0)

2
)
= o

(
(p− w)2 log(p− w)

)
.
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Applying Lemma D.1.1, the integral in the second term can be approximated as:34

∫ p

p

r′(p)

D(p)2
dp

(p− w)2
=

r′′0
D2

0

∫ p

p

p− p0
(p− w)2

dp+O

(
∫ p

p

(p− p0)
2

(p− w)2
dp

)

=
r′′0
D2

0

[

log
p− w

p− w
+
p0 − w

p− w
−
p0 − w

p− w

]

+O(1)

= −
r′′0
D2

0

log(p− w) +O(1),

where the last line follows by Lemmas D.4.1 and D.5.4. Combining this with Lemma D.5.6,

we obtain the approximation of the second term:

(1− λ)2π(w)2
∫ p

p

r′(p)

D(p)2
dp

(p− w)2
= −4r′′0(p− w)2 log(p− w) + o

(
(p− w)2 log(p− w)

)
.

The third term is a little-o of (p− w)2 log(p− w), as r(p)− r(p) is bounded and (1− λ)2 =

o
(
(p− w)2 log(p− w)

)
by Lemma D.5.6.

Combining the terms and using the fact that r′′0 = −D0/(α(p0 − c)), we obtain

Φ = 4
D0

p0 − c

1

α
(p− w)2 log(p− w) + o

(
(p− w)2 log(p− w)

)
.

Using the approximation of (p − w)2 log(p − w) with respect to (1 − λ)2 log(1 − λ) from

Lemma D.5.6 proves the lemma.

Aggregate Surplus Approximation.

Lemma D.5.9. For s < ŝ, in the neighborhood of λ = 1, we have

∆AS =
π2(p̃(s), p0)

4r0α2

[
α(1− α)− β(p0 − c) + 2(p0 − c)α2µ̃(s)

]

× (1− λ)2 |log(1− λ)|+ o((1− λ)2 log(1− λ)).

Proof. This follows immediately from combining Lemmas D.5.7 and D.5.8.

D.5.4 Properties of the Function µ̃

Lemma D.5.10. The function µ̃(s) is continuous, strictly negative, and identically equal to

1/(p1−p0) on (ŝ,∞). Moreover, it is strictly decreasing on (0, ŝ) if the monopoly pass-through

function, pm′(w), is non-increasing in w on [c, p0].

34For the argument why the integral inside the big-O on the first line is bounded, see footnote 33.
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Proof. The fact that µ̃ is continuous in s and constant above ŝ is immediate. Let us study

the properties of µ̃ on (0, ŝ). Define the function

µ : p ∈ (p0, p1) 7→
(p− p0)π

′(p, p0)D0

π2(p, p0)
−

1

p− p0
,

and note that µ̃(s) = µ(p̂(s)). As p̂ : (0, ŝ) → (p0, p1) is strictly increasing in s, µ̃ inherits

and monotonicity properties of µ. Observe that µ can be rewritten as

µ(p) =
D0

p− p0

[
1

D(p)
−

1

D0

−

(
1

D(p)

)′

(p− p0)

]

.

As 1/D is strictly convex on [p0, p1], its graph lies above its tangent lines: for every p ∈

(p0, p1),
1

D0

>
1

D(p)
+

(
1

D(p)

)′

(p0 − p).

Therefore, µ is strictly negative.35

Next, we turn to the monotonicity of µ. We have:

µ′(p) =
D0

(p− p0)2

[
1

D0

−
1

D(p)
+

(
1

D(p)

)′

(p− p0)−

(
1

D(p)

)′′

(p− p0)
2

]

︸ ︷︷ ︸

≡ϑ(p)

.

Clearly, ϑ(p0) = 0. Let us show that ϑ is strictly decreasing on (p0, p1). We have:

ϑ′(p) = (p− p0)

[

−

(
1

D(p)

)′′

−

(
1

D(p)

)′′′

(p− p0)

]

.

For every p ∈ (p0, p1), let α(p) ≡ pm′ ((pm)−1(p)). By assumption, α(p) is non-increasing

in p. As, for every w ∈ (c, p0),

pm′(w) =
1

2− D′′(pm(w))D(pm(w))
D′(pm(w))2

,

35To see why 1/D is strictly convex, note that

D(p)3
(

1

D(p)

)′′

= 2D′(p)2 −D′′(p)D(p) ≥
−D′(p)D(p)

p

(
−pD′(p)

D(p)
− 1

)

> 0,

where the first inequality follows by differentiating the price elasticity of demand, using Marshall’s second
law of demand, and rearranging terms; and the second inequality holds because the price elasticity of demand
strictly exceeds 1 whenever p > p0, again due to Marshall’s second law.
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we can express (1/D)′′ as
(

1

D(p)

)′′

=
1

α(p)

D′(p)2

D(p)3
.

Differentiating once more, we obtain

(
1

D(p)

)′′′

= −
α′(p)

α(p)2
D′(p)2

D(p)3
+

1

α(p)

2D′(p)D′′(p)D(p)3 − 3D′(p)3D(p)2

D(p)6

= −
α′(p)

α(p)2
D′(p)2

D(p)3
+

1

α(p)

D′(p)3

D(p)4

(

1−
2

α(p)

)

.

Inserting these expressions into ϑ′(p) yields

ϑ′(p)

p− p0
=

1

α(p)

D′(p)2

D(p)3

[

−1−
D′(p)

D(p)

(

1−
2

α(p)

)

(p− p0) +
α′(p)

α(p)
(p− p0)

]

≤
1

α(p)

D′(p)2

D(p)4

[

−D(p)−D′(p)

(

1−
2

α(p)

)

(p− p0)

]

=
1

α(p)

D′(p)2

D(p)4

[

− (D(p) + (p− p0)D
′(p)) +D′(p)

2

α(p)
(p− p0)

]

,

where the second line follows because α′(p) ≤ 0. As p 7→ (p− p0)D(p) has a strictly positive

derivative on (p0, p1) due to Marshall’s second law of demand, it follows that ϑ′(p) < 0 for

every p ∈ (p0, p1).

D.5.5 Distributional Effects

We now separately derive the approximation of consumer surplus for online and offline con-

sumers.

Lemma D.5.11. For s < ŝ, in the neighborhood of λ = 1, we have:

∆CSB = −
1

2
π(p̃(s), p0)(1− λ)2| log(1− λ)|+ o((1− λ)2 log(1− λ)), (96)

∆CSO =
π2(p̃(s), p0)

4r0α2

[

α(2− α)− β(p0 − c) + 2(p0 − c)α2

(

µ̃(s) +
D0

π(p̃(s), p0)

)]

× (1− λ)2 |log(1− λ)|+ o((1− λ)2 log(1− λ)). (97)

Proof. From equation (65), we have that ∆CSB = (1− λ)/(2λ)ΨB, where

ΨB = (1 + λ)

∫ p0

p

D(p)dp+ (1− λ)

∫ p

p0

D(p)dp− (1− λ)π(p, w) log
p− w

p− w
.

We approximate ΨB up to order (p− w) log(p− w). Applying Lemmas D.1.1 and D.5.2, we
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obtain ∫ p0

p

D(p)dp = D0(p0 − p) + o(p0 − p) = o((p− w) log(p− w)),

implying that the first term of ΨB is a little-o of (p−w) log(p−w). As
∫ p

p0
D(p)dp is bounded

, the approximation of 1 − λ from Lemma D.5.6 implies that the second term of ΨB is also

a little-o of (p− w) log(p− w). Applying again Lemma D.5.6, we obtain the approximation

of the third term of ΨB:

(1− λ)π(p, w) log
p− w

p− w
= −(1− λ)π(p, w) log(p− w) + o((p− w) log(p− w))

= −2D0(p− w) log(p− w) + o((p− w) log(p− w)).

Combining the three terms yields

ΨB = 2D0(p− w) log(p− w) + o((p− w) log(p− w)).

Using the approximation of 1− λ from Lemma D.5.6, this implies:

∆CSB =
2D2

0

π(p̂, p0)
(p− w)2 log(p− w) + o((p− w)2 log(p− w)).

Finally, using the approximation of (p − w)2 log(p − w) from Lemma D.5.6, we obtain the

approximation of ∆CSB in the statement of the lemma. Using the fact that ∆CSO =

∆CS − ∆CSB, the approximation of ∆CSO is obtained by combining this approximation

with the approximation of ∆CS from Lemma D.5.7.

Combining Lemmas D.4.7 and D.5.11, we obtain:

Lemma D.5.12. Suppose that s ̸= ŝ. Then, for λ high enough, offline consumers are harmed

by a ban on dual pricing. If, in addition, the monopoly pass-through function, pm′(w), is non-

increasing in w on [c, p0], then online consumers benefit from a ban on dual pricing for λ

high enough.

Proof. The results for offline consumers follows immediately from Lemmas D.4.7 and D.5.11.

These lemmas also imply that, for λ close enough to 1, ∆CSO has the same sign as

A(s) ≡ α(2− α)− β(p0 − c) + 2(p0 − c)α2

[

µ̃(s) +
D0

π(p̃(s), p0)

]

.

By Lemma D.5.10, µ̃(·) is decreasing on (0, ŝ). Moreover, Marshall’s second law of demand

implies that p ∈ (p0, p1) 7→ π(p, p0) is strictly increasing. As s̃ ∈ (0, ŝ) 7→ p̃(s) ∈ (p0, p1) is
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increasing, it follows that D0/π(p̃(s), p0) is decreasing in s on (0, ŝ). Hence, A(s) ≥ A(ŝ) for

every s > 0, and all we need to do is show that A(ŝ) > 0.

At s = ŝ, µ̃(s) = −1/(p1 − p0), and so

A(ŝ) = 2α− β(p0 − c) + α2

[

2

(
r0
r1

−
p0 − c

p1 − p0

)

− 1

]

. (98)

By revealed profitability, we have that

r0 ≥ (p1 − c)D1 =
p1 − c

p1 − p0
r1 =

(

1 +
p0 − c

p1 − p0

)

r1.

Combining this with the fact that β ≤ 0, we obtain that A(s̃) ≥ α2 + 2α, which concludes

the proof.

D.5.6 On the Optimality of Supplying Both Retailers when λ is High

The following lemma leverages our Taylor approximations of equilibrium behavior to show

that the manufacturer deals with both retailers in equilibrium when λ is close to 1:

Lemma D.5.13. The manufacturer strictly prefers supplying both retailers provided λ is

sufficiently close to 1.

Proof. If the manufacturer supplies a single retailer, then it optimally sets w = c and fully

extracts the retailer’s profit, earning

πone = r0 −
1− λ

2
r0.

If it supplies both retailers, then its expected profit is πtwo = r0+∆Π, where ∆Π was defined

in equation (43). Applying Lemmas D.4.5 and D.5.8, the difference in profits is:

πtwo − πone =
1− λ

2
r0

[

1−
π(p̃(s), p0)

2

2αr20
(1− λ)| log(1− λ)|

]

+ o((1− λ)2 log(1− λ)),

As λ tends to one, the term inside square brackets tends to 1, implying that the manufacturer

strictly prefers supplying both retailers.
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