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Abstract

A seller with commitment power sets prices over time. Risk-averse buyers arrive to the market and
decide when to purchase. We show that it is optimal for the seller to choose a constant high price
punctuated by occasional episodes of sequential discounts that occur at random times. This optimal
price path has the property that the price a buyer ends up paying is independent of his arrival and
purchase times, and only depends on his valuation. Our theory accommodates empirical findings on
the timing of discounts.

JEL classification: D82

Keywords: dynamic pricing, sales, random mechanisms

1 Introduction

Durable goods prices at many retailers exhibit a distinct pattern that might seem difficult to square with
much of the theory on dynamic pricing. Prices tend to remain constant at the highest level — often termed
the “regular price” — apart from when they are occasionally discounted. Such patterns have been noticed
across a range of empirical work; e.g., Warner and Barsky (1995), Pesendorfer (2002), Eichenbaum et al.
(2011), Kehoe and Midrigan (2015), and Chevalier and Kashyap (2017).

A key reason these patterns seem difficult to reconcile with much of the theory is as follows. If the
sellers in the theoretical models do choose to reduce their prices at some dates, then the price discounts are

predictable. Strategic and forward-looking buyers therefore become less willing to purchase at high prices
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Figure 1: Illustration of typical price and quantity patterns (Figure 1 from Février and Wilner, 2016) for
two albums — ‘Brothers in arms’ by Dire Straits, and ‘Greatest hits’ by Janis Joplin — featuring two focal
prices (a high price and a discounted or sale price).

as the date of a price discount approaches. In a range of models with flexible prices, this means that the
seller gradually reduces prices as the date with the steepest discount draws near. Stokey (1979), Conlisk
et al. (1984), Sobel (1991), Board (2008), and Garrett (2016) are but a few instances.

For an example of common empirical price patterns, consider Février and Wilner’s (2016) analysis of
a French music retailer in the early 2000s. They observe that price discounts are typically abrupt rather
than gradual and that purchases do not decline immediately before sizeable price reductions (see Figure
1). The latter observation might be interpreted as indicating that buyers are unable to foresee the timing
of discounts. Février and Wilner find that demand at the regular price is nonetheless sensitive to the
frequency and size of price reductions, which is taken as evidence consumers are forward-looking. The
view of consumers as forward-looking but uncertain about future prices is in common with much of the
literature on dynamic demand estimation (see the discussions in Gowrisankaran and Rysman, 2012, who
consider camcorders, and in Hendel and Nevo, 2013, who consider soft-drinks).

In this paper, we propose a novel theory of buyers’ failure to predict the timing of price reductions
based on optimal price discrimination by sellers. We show that setting random discounts is optimal for a
seller with commitment power who faces buyers that are forward-looking and risk averse, and who arrive
to the market over time.! This contrasts with the optimality of constant prices in important benchmarks
with risk-neutral buyers (see Stokey, 1979, and Conlisk et al., 1984). That our approach assumes full
commitment is in contrast to the received work on Coasian dynamics, but is in line with a number of other

papers studying intertemporal price discrimination in durable goods markets.?

'While not all price reductions are difficult to predict in practice (e.g., Black Friday and Christmas specials), many retailers
discount products throughout the year but do not inform customers about the timing in advance. Since timely advance information
could be made available at little cost, it may be reasonable to infer that its absence is often part of a deliberate policy.

2Some of these papers are reviewed in Section 7 at the end of the paper. The assumption of full commitment seems useful
for shedding light on pricing patterns adopted by sellers. Our view is in line with Board and Skrzypacz (2016) who suggest that



While risk aversion has been studied in other allocation problems such as auctions, its role has been
given less attention in relation to dynamic pricing. Aversion to small risks has often been observed. Among
the evidence on aversion to small-scale risks is that relating to durable goods markets. One example is the
sale of warranties for electronic goods at worse than fair prices (see Chen et al., 2009). Possibly another is
the presence of “buy-it-now” prices in online auctions on platforms such as Yahoo and eBay which has often
been associated with buyer risk aversion (see Budish and Takeyama, 2001, and Reynolds and Wooders,
2009). A prominent interpretation is that small-stakes risk aversion is reflective of agent loss aversion and
Section 6 discusses how we can adapt our theory when viewing buyers as loss averse.

The seller’s problem is to choose the price path offered to buyers who arrive over time. We show
that there is a virtually optimal price path involving a constant regular price, with short-lived episodes
of discounting that are randomly timed, and which buyers find unpredictable.® Within each discounting
episode, the initial discount is small, and after each further discount there is a positive probability that the
price goes back to the regular price. The stochastic process for prices we construct is a stationary Markov
process in which future prices depend only on the current price (and not, for instance, on calendar time).

An important feature of our pricing policy is that it implies virtually all the buyers with a given valuation
purchase at the same price, independently of their arrival time. For instance, all highest valuation buyers
have the same incentive to accept the constant regular price independently of their arrival time because the
distribution of the arrival of the next discounting episode is history independent under the optimal policy.
Similarly, buyers with intermediate values purchase at intermediate prices within discounting episodes
because delaying purchase to obtain a lower price involves the risk that the discounting episode ends and
the price returns to the regular level. Buyers with the lowest values obtain no rents and only buy if the price
reaches their valuation in a discounting episode. Hence, each type of the buyer arriving at a time where
the regular price is offered ends up buying at a predictable price but at a random time. The importance
of buyers with the same valuation purchasing at the same price is that this is efficient given buyer risk
aversion. In essence, buyers are protected from pricing risk associated with their time of arrival to the
market, increasing the surplus the seller can extract.

Our analysis of the seller’s problem proceeds in two main steps. The first step (in Section 3) involves
analyzing a static allocation problem with a single (representative) buyer, with payments made only in case
the buyer receives the good. This analysis is closely connected to work on auctions with risk-averse bidders
such as Matthews (1983), Maskin and Riley (1984), and Moore (1984), although a key difference is the
restriction to “winner pays” which necessitates separate analysis. The unique optimal mechanism involves
a type-dependent probability of receiving the good and a non-stochastic payment for allocation.

The second step (in Section 4) is to consider a setting where buyers arrive over time, and where the
profits from the static mechanism provide a natural upper bound on the available profits per buyer. We show

that this upper bound can be attained — or approximated arbitrarily closely — by a stochastic price path.

commitment “is reasonable with applications such as retailing, online ads, and concerts in which the seller automates the pricing
scheme and uses it repeatedly.”
3The reason for considering price paths that are only “virtually optimal” relates to the impossibility of offering different price

discounts “within the same instant of time”. We show that this means there are cases where no optimal price path exists, and we
look at virtually optimal policies in these cases.



As we explain below, these stochastic price paths can be understood in terms of a dynamic implementation
of the optimal static allocations. The properties of the dynamic format are therefore intimately related to
those of the optimal static mechanism. For instance, the above result that all buyers with the same valuation
purchase at the same price in the dynamic format follows from the same result for the static mechanism.

A further part of our analysis (in Section 5) relaxes the assumption that buyers observe the prices
posted before their arrival. We show that when buyers only observe prices after their arrival to the market,
there is a range of optimal stochastic processes for prices, with this range determined by an incentive com-
patibility condition for buyers. This condition requires that buyers do not become more pessimistic about
the arrival of new discounts the longer they wait, so a price discount becomes more likely the longer since
the last discount. Thus, under an optimal stochastic process for prices, price discounts may be somewhat
predictable to an econometrician with access to historical price data, but not to an arriving buyer with no
access to previous prices. We argue that this permits the theory to better accommodate observed discount
patterns, as several empirical studies find that the arrival of price discounts has an increasing hazard rate.
The analysis is therefore relevant to empirical investigations of the topic in the macroeconomics literature
on price stickiness (see, e.g., Nakamura and Steinsson, 2008, Eichenbaum et al., 2011, and Kehoe and
Midrigan, 2015), and in industrial organization (e.g., Pesendorfer, 2002, Berck et al., 2008, and Février
and Wilner, 2016).

The ideas above connect to a range of work on price discounts discussed further in Section 7.

2 Set-up

In this section, we introduce the environment of our static model. Section 3 will study seller-optimal
mechanisms in this environment. The dynamic setting is introduced in Section 4.

There is a seller and a buyer. The seller can produce one unit of a good at cost zero and the buyer has
unit demand. The buyer’s enjoyment of the good depends on his private “type”, labeled {6,|n=1,...,N},
with Oy >...>0;>0. The probability that the buyer’s type is 8, is f3,,>0.

An outcome of our model is a production decision and a price in case the good is produced. If the
good is not produced, both the buyer and the seller obtain 0. Alternatively, if the buyer’s type is 6, the
good is produced, and the price is p€R,, then the seller obtains p and the buyer obtains v(p; 6,) €R. We
generally use the alternative notation v,(p) to denote v(p; 6,,).

We assume that, for each n, v,(-) is a strictly decreasing, strictly concave, and twice continuously-
differentiable function. We normalize v,,(6,) =0 for each 6,, which means that types have the interpretation
of maximum willingness to pay. We also make the following additional assumptions.

Condition A.

—v () _ —vi(p)
Vnt1(P) vu(p) *

v (@) _v!(p)

Vi) = vip)”

A1l Condition on price sensitivity: For any n=1,...,N—1 and p<6,,

A2 Higher types are less risk averse: For any n=1,...,N—1 and peR,,



Assumption Al is a single-crossing condition: it ensures that at any given price, a higher-type buyer
has a relatively lower sensitivity to price than a lower-type buyer. Assumption A2 says that higher types are
less risk averse. Assumptions Al and A2 together will ensure that higher types are more likely to receive
the good and pay higher prices in the optimal mechanism. A natural interpretation of higher types (see,
for instance, Maskin and Riley, 1984) is that they represent wealthier individuals, since risk aversion is
generally believed to be decreasing in wealth.

A natural special case is where we restrict v, so that buyer types have an equivalent monetary value,
that is to set v,(p)=u(6,—p) for some function u:R—R. If v,(p)=u(6,—p), the above restrictions on
preferences require that u is strictly increasing, strictly concave, twice continuously differentiable, and

satisfies u(0)=0. Assumption Al is then met because L) g strictly decreasing over y >0.* Assumption

u(y)
A2 is the requirement that the coefficient of absolute risk aversion _5,(%)

example for u is given by specifying CARA preferences, where u(y)=1—e " for a coefficient of absolute

is weakly decreasing in y. An

risk aversion R>0.

3 Analysis of the static model

This section considers static mechanisms for the environment presented in Section 2, where the buyer pays
only if he gets the good. This anticipates the relevance for dynamic pricing in Section 4.

By the revelation principle, it will be without loss of generality to consider direct mechanisms. These
mechanisms allocate a unit to each type 6,, with probability denoted x,. In addition, they stipulate a po-
tentially random and non-negative price conditional on assignment, with cumulative distribution function
H, for each type 6,,. To ensure finiteness of expected payoffs, we assume that H,, has a bounded support.
In case x, =0, we might as well set the payment conditional on award to zero and we do so below. A static
mechanism can then be written as M=(x,, H,)\_,.

To define incentive compatibility, note that type 0,’s expected payoff when reporting 6, is

Up e =X f v,(p)dH(p).

An incentive compatible direct mechanism is one where, for all n and k, U, ,>2U, ;. Apart from being
incentive compatible, the static mechanism should be individually rational, which requires U, , >0 for all
n. We say that a mechanism has deterministic payments if H, is degenerate at some p,, for each n. In this
case, with an abuse of notation, we may write the mechanism as M? =(x,, p, fle. The following result

implies monotonicity of the allocation in mechanisms with deterministic payments.

Lemma 1. Consider any two types 8, and 0; with k<1, and consider two allocation probabilities and (sure)
prices (x’,p’) and (x”,p”) with x’<x” and p"” < 6. If x"vi.(p”)=x"vi.(p"), then x"v;(p”")> x"v;(p’).

Lemma 1 (shown in the Appendix together with the other proofs) follows from a combination of the

fact that higher types have higher maximum willingness to pay and Assumption Al, which limits the price

8 u'(6—p) _ u”(6—p)u(6—p)—u’'(6—p)*
26 u(6-p) — u(6—p)?

4Assumption A1 follows, in particular, because <0 for 6>p.



sensitivity of higher types. The result implies that if some type 6, would not accept a specified reduction
in the probability of getting the good in return for a discount on the price, then any higher type 6; would
not accept this reduction either. Note that the result uses deterministic payments. Our next result is that

this is the relevant case for seller-optimal mechanisms, where we use now both Assumptions Al and A2.
Lemma 2. Any optimal mechanism has deterministic payments.

Note that Matthews (1983), Maskin and Riley (1984), and Moore (1984) find similar results. However,
their settings feature a payment also in case the buyer is not awarded the good, so their results do not apply
(especially consider Theorem 1 in Moore, 1984). Another point of comparison is provided by Bansal and
Maglaras (2009) in a model where buyers have CRRA utility and only pay if they get the good. However,
their work assumes each type pays a sure price, rather than deriving the implication.

Lemmas 1 and 2 permit further characterization of the optimal mechanism. We show the following

result.

Proposition 1. The optimal mechanism is unique. It is fully characterized by a weakly increasing sequence
(x>, p5 1::1 of allocation probabilities and prices for each type such that xj,=1. Downward incentive con-

straints bind: for alln=1,...,N, x;v,(p;)=x,_,v,(p;_;), where we put x;=p;=0.

While Proposition 1 follows closely from the above lemmas, it is worth drawing attention to the proof of

uniqueness, which appears new to the literature. Uniqueness is of interest here because it will be important
for our discussion of optimal price paths in the dynamic environment of Section 4.
Optimality of random mechanisms. We do not attempt a full characterization of the optimal allocations
(x ﬁ’:l, but it is important to demonstrate that concavity of the buyer’s preferences v, can imply the
optimality of random allocations: that is, it may be that x; €(0, 1) for some n. We first establish this in the
case where N =2 before discussing the case with many types.

In the two-type model, we refer to 6, as the “high type” and 6, as the “low type”. By Proposition
1, it is optimal to set the probability of allocation to the high type equal to one. Also, letting x; denote
the probability of allocation to the low type and p, the price charged to the high type, we may assume
Vo(pa)=x1v9(0;) (i.e., indifference of the high type to the low type’s option). We then have that 60, is
the price charged to the low type, and v, 1(x1v,(6;)) the price charged to the high type, where vy s the
inverse of v,. We can therefore write the seller’s expected profits as:

B1x1 61+ Bavy  (x1v5(6,)). €Y)
The optimal mechanism is then determined by maximizing the expression in Equation (1) with respect to
Xq.

Proposition 2. Suppose N =2 and consider the allocation probability to the low type in the optimal mech-
anism, x3, which is the value maximizing the expression in Equation (1). There is an interval (f3, B), with
0<pB <P <1, such that x7 is in (0,1) if and only if Bo€(B,B). If By<PB, then xj=1, and if B>, then

*
xl—O.



Note that it is the concavity of v4(-), or equivalently the concavity of v, 1(.), that explains why we find
an interior solution for a range of probabilities 3, of the high type, different to the case where v,(-) is
linear.® Intuitively, when the probability of allocation to the low type (i.e., x;) is low, the price charged to
the high type is high, and so the high type is more price sensitive. Therefore, raising x; above the lower
bound of zero requires reducing the price of the high type relatively little, suggesting the profitability of
the change. Conversely, when x; is high, the price charged to the high type is low, and so the high type
is less price sensitive. Lowering x; below the upper bound of one permits increasing the price to the high
type by a relatively large amount, which suggests the profitability of the change. Indeed, for intermediate
values of the probability of the high type (namely B, € (88, 8)), both the above adjustments are profitable,
explaining why the optimal choice of x; is interior. B

Many types. We now show that random allocations can be a robust feature of the optimal mechanism also

with a large number of types. We consider sequences of discrete-type models that, in the limit, approxim-
ate settings with a continuum of types. We can provide conditions under which the probability of types
receiving random allocations (i.e., the probability of types 6,, with x, € (O, 1)) remains bounded away from
zero in this limit.

In the main text, we specialise to the case of CARA utility mentioned above, where v, (p)=1—e R(6—P)
with R> 0 the coefficient of absolute risk aversion. More general preferences are considered in the proofs
in the Appendix. We consider type distributions that approximate a twice continuously differentiable dis-
tribution F with density f and support on an interval [0, 8] with 0<6 <.

We impose a regularity condition on F, namely that p(1—F(p)) has a unique maximiser p*€(6,6).°
Note that p(1—F(p)) represents the seller’s expected profit from posting price p to get the good for sure
in a model with types continuously distributed according to F (using that types are equal to the maximum
willingness to pay). We then consider a sequence of models with evenly spaced types, where the number
of types is given by the increasing sequence (N,,)>> ;. For each m€N, and each n€{1,2,...,N,,}, we let
9;1":Q+(n—1)% and let B/ =F (0", ,)—F(0,"), where we set ONmm+1
type 6".

For each meN, we let E™ represent the environment with the above specified types, payoffs, and

=0. Here, B, is the probability of

distribution over types. Taking m large closely approximates a model with a continuum of types distrib-
uted according to F. For each environment E™, we let the corresponding optimal mechanism be given by
7, py 1:21. We then have the following characterization of optimal mechanisms.

Proposition 3. Suppose the buyer is sufficiently risk averse that the following inequality holds:

_F W 2 (")

A Tess)

(2)

Then there exists € >0 and K sufficiently large that, for all m>K, the following is true: There exist adjacent

S5That is, when payoffs are linear in prices, we obtain the usual “no-haggling” result that it is optimal to make a take-it-or-leave
it offer to the buyer (see Riley and Zeckhauser, 1983, for this result in a dynamic setting with many buyers).

5The derivative of profit with respect to p is —f (p)p +1—F(p), so a sufficient condition that implies our assumption is that (i)
—p+(1—F(p))/f (p) is strictly decreasing, while (ii) lim,o f (p)~' > 6, and (iii) lim4 f (p) "' (1=F(p))<6.
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Figure 2: Numerically determined optimal mechanism for a CARA utility function with R=1. We assume
that there are 100 types evenly spaced between 0 and 9.9, each with the same probability. In particular,
6,=(n—1)/10 and $,,=1/100 for n=1,...,100.

m m m : m m m m m
types 9n,, 9n’+1’ e, 9n,, with xT7, Xpi1ses Xy €le,1—¢] and Qn,,—Qn, >e.

We thus find that, when the buyer is sufficiently risk averse, the fraction of types that are assigned
a random allocation does not vanish as the number of types N,, becomes large. Alternatively stated, the
probability of these types (as given by /") does not vanish. The sufficient condition on the coefficient of
absolute risk aversion R depends on the distribution of types. For instance, if F is the uniform distribution
on [0, 8], so that each environment E™ has N,, equally likely types, it is enough that R>4/6. Figure 2
depicts the price and probability of allocation under the optimal mechanism for N,,=100, § =0, 6=10,
and R=1.

The key idea of the proof is to show that, when Condition (2) is satisfied, the optimal deterministic
mechanism can be slightly perturbed to increase expected profits. The perturbation involves augmenting
the deterministic mechanism by including a single additional option to get the good probabilistically. This
option is made attractive only to an arbitrarily small set of types.

It is worth noting there are some antecedents to our results. In Liu and van Ryzin (2008), Proposition
9 implies the optimality of random allocations in a model with CRRA utility and a continuum of types.
The literature on auctions with risk aversion also finds random allocation; for instance, see Theorem 1 of
Matthews (1983). However, we require a separate analysis because we restrict attention to settings where

the buyer pays only when receiving the good.

4 Pricing with dynamic arrivals

This section aims at understanding stochastic price paths in the dynamic environment of interest where
buyers arrive over time. Time is continuous and the horizon infinite, with time indexed by t €[0, c0).
There is a seller and a continuum of buyers. The seller faces no capacity constraints and zero production

costs, while each buyer has a unit demand. Both the seller and buyers have a common discount rate



r>0. Buyers arrive to the market at a fixed rate y>0 and we therefore refer to this set-up as the model
with dynamic arrivals. The parameter y simply scales demand and hence will scale the realised profits.
It is convenient to normalize by setting y=r, implying that f Ooo ye "'dt=1. We can then conveniently
understand the seller’s expected profits as a per-buyer (weighted) average over the profits from all arrival
times t>0.” We assume that buyers observe the entire history of past prices upon arrival (Section 5 relaxes
this assumption).

As in Section 2, buyers’ enjoyment of the good depends on their types, labeled {8, |n=1,...,N}, with
Oy >...>6;>0. For each arrival time, a fixed proportion 3,,>0 has type 6,, where 25:1 B.=1. Each
buyer can transact at most once with the seller; that is, allocation of the good and payment must occur on
the same date. If a buyer of type 0, obtains the good at time t at price p, his payoff in date-zero terms

r

is e"'v,(p), where v, satisfies the same properties as in Section 2. The seller’s profit from selling to this

buyer (again in date-zero terms) is e " p.

There is naturally a close connection between the dynamic model specified here and the static model of
Section 3. In considering the dynamic model, we sometimes refer to the corresponding static model. This
is simply the static model with the same type distribution (i.e., the same set of types and type probabilities
B.), and with the same utility functions v, (p). We denote the seller’s optimal profits in the static model by
IT*. These static profits will be shown to be an upper bound on the expected discounted profits attainable
in the dynamic environment. Our main question will be whether and how random price paths can generate

expected discounted profits equal or close to this bound.

Price-path mechanisms: We take a mechanism design approach to defining the seller’s choice. This means
that we specify not only the random price path to which the seller commits, but also view the acceptance
decision of buyers as being determined by the seller subject to incentive compatibility. We introduce the
notation that B, represents the Borel sigma algebra on a set ACR, while A;®.4, is the product sigma
algebra associated with two sigma algebras .4; and A,. Then we have:

Definition 1. A price-path mechanism is a pair (P, 7) and a filtered probability space (Q, F,(F;)¢er,,P)
satisfying that:

1. P=(P;)er, is a non-negative valued, bounded, and progressively measurable stochastic process defined
on (Q, F,(F¢)eer,» P), where the filtration (F;).cg, is the one generated by P.

2. 7=(Tp,ednef1,2,..N} ter, 15 a collection of stopping times. For each pair (n,t), T, is a stopping time
with respect to the given filtration and satisfying that 7, (w)>t for all w €. A stopping time may
be finite or infinite valued. We impose the additional restriction that, for each 6,, 7, (w) is Br, ® F

measurable as a function from R xQ into the non-negative extended real numbers.

A price-path mechanism prescribes a random price path P, and a buyer acceptance strategy v, with
the acceptance strategy specifying the stopping times 7, .. The filtered probability space is generally left
implicit. A realization of P consists of the path of prices posted by the seller. For each n and t, the realization

"While a constant arrival rate is a convenient simplification, all our arguments and results extend also to settings with time-
varying arrival rates.



of 7, . is the time at which a buyer of type 6, arriving at time t purchases the good. A realization equal to
+00 indicates that he never purchases the good.

We say that (P, 7) is incentive compatible if, for all n and all t,
E[e™ "t vy(P;, )= E[e vy (P, )] 3)

for all stopping times %, , with respect to the given filtration satisfying that 7, () >t for all weN.® The
left side of Equation (3) corresponds to the expected payoff of a buyer of type 6, who arrives at time
t and purchases according to the prescribed stopping time 7, ., while the right side corresponds to his
expected payoff if he deviates and purchases according to the stopping time 1, ,. The assumption that
buyers observe the past prices is encoded by the requirement that the stopping times are with respect to
the filtration (F;);eg, , which is the filtration generated by P.

We say that the price-path mechanism (P*, 7*) is optimal if it maximizes the seller’s expected discounted

profits

oo N
IE[ J > Bue P, rdt] 4
0 n=1

among all incentive compatible price-path mechanisms (P, 7).°

Analysis of Price-Path Mechanisms. We now present one of the paper’s central results, which pertains to

our model with dynamic arrivals as described above.

Proposition 4. Consider the model with dynamic arrivals. The seller’s expected discounted profits are no
greater than IT*. For any £>0, there is a price-path mechanism such that the seller’s expected discounted

profits are at least IT*—e¢.

The first part of the result bounds expected discounted profits by the optimal profits in the static model
and thus establishes that the dynamic environment does not provide any screening advantage to the seller.
Our finding here follows from a mathematical equivalence between allocation probabilities and discount
factors. Dynamics introduces the possibility of delayed allocation, but delay has an analogous effect on
expected discounted payoffs as a reduction in the allocation probability. This observation is familiar from
the literature. For instance, Rochet and Thanassoulis (2019) write (p 953), “the discount factor in the
intertemporal pricing problem can be interpreted as a probability of delivery [in a static problem]”. They
attribute this idea to Salant (1989).

Now consider the second part of Proposition 4: price-path mechanisms can at least approach, or pos-
sibly exactly attain, the seller expected discounted profits IT*. In fact, whether expected discounted profits
of IT* can be attained turns on the number of distinct prices that occur in the optimal mechanism of the

corresponding static problem. Let J denote the number of distinct prices at which purchase occurs with

(e} —0Q0

8Throughout, we define e™*°, e 00 (@), and eV, (P, o, (w)) to be zero for all wef. Measurability of the integrands on
each side of Equation (3) is established in the proof of Proposition 4.
“Measurability of the integrand in Equation (4) is established in the proof of Proposition 4.
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positive probability in the optimal static mechanism; equivalently, this is the number of distinct positive
values of x”. For instance, J =1 indicates that the optimal static mechanism is deterministic. For the two-
type model of Proposition 2, for parameters such that allocation to the low type is random, we have J=2.
Expected discounted profits of IT* can be exactly attained when J is equal to 1 or 2, but — as we show in
the Online Appendix — not exactly attained when J > 3.

To start understanding the argument behind the second part of Proposition 4, recall that (x, P:;)I,Ll
denotes the optimal static mechanism. Let xj=0, and let (nj)j=1 be the (unique) increasing sequence
containing all indices satisfying x;"lj_l <x;';j. This means that, for each j=1,...,J, type an is the smallest
type receiving the good with the positive probability x:]_ (the price paid when purchasing with this prob-
ability is p;“lj). Hence, for all j€{1,...,J} and n€{nj,...,n;;;—1}, we have p;“l:p:j and x;"lzx:j, where
nyy:=N+1.

Now, consider the case of J=1. The seller can attain expected discounted profits IT* in the model
with dynamic arrivals through a constant price path with price equal to p:‘ll =0, . All buyers with type
weakly above 6, buy upon arrival, and all buyers with type strictly below 6, never buy. Considering the
date-t value of the payoffs associated with buyers arriving at date t, this replicates the outcome in the
static problem. For instance, buyers with types 6, =6, earn payoff vn(p;;l) while generating profit of p:‘ll
for the seller. We can note that the absence of delayed purchase in the dynamic model corresponds to the
sure allocation in the static model. The optimality of a constant price path here is familiar, for instance,
from Conlisk et al. (1984) who show in a setting with risk-neutral buyers arriving over time that the seller
optimally commits to a constant price path.

If J=2, the seller can attain expected discounted profits IT* with a stochastic process for prices (or
price process) consisting of a constant “high” price p::z, punctuated by random reductions to price pzl =0,
arriving at a constant Poisson rate A, = rx;"l1 /(1 —xj‘ll) and which last only an instant before the resumption
of the high price. In this case, all buyers with type weakly above 6,, buy upon arrival at the high price, all
buyers with type strictly below 6, and weakly above 6, wait and buy at the reduced price, and all buyers
with type strictly below 6, never buy. Note that the arrival rate of price reductions A, is calculated so that,
when the price is high, the expected discount factor associated with the time to the next price reduction
is x,’;l (i.e., we have 4, / (r+7tn1)=x:1). Incentive compatibility of the stopping times described above
follows from incentive compatibility of the static mechanism. For instance, for any type 6,=>6,,, we have
from the static incentive compatibility constraints that vn(p:Z)ZX:1 vn(pil), which ensures 6, prefers to
purchase immediately at the high price rather than wait for the arrival of the reduced price.

Now, consider the case where J>3. Our approach to show the approximation of expected discounted
profits IT* is, in essence, to spread episodes of sequential discounts over intervals of short duration. We
construct price-path mechanisms where the price process is a stationary Markov process with J states.
In each state j, the price is P:j' In state J, the state transitions to state J—1 at rate A, . =rx:H /(1—
x,’;H) (note the similarity with the case J=2). In each state j, with 2<j<J—1, the state transitions at
a high rate to either state j—1 or to state J. Thus, when the state is in state j with 2<j<J—1, the state
quickly transitions to either state J (and the sequential discount episode ends) or to state j—1 with a more

discounted price. In state j=1, the state transitions at a high rate to state J.

11



The proof of Proposition 4 shows that the transition rates can be constructed so that, conditional on

state J, the expected discount factor associated with stopping only once reaching state j is x; . We can
J

then show that, as a consequence of incentive compatibility in the static mechanism, each type 0, finds

it optimal to follow an acceptance strategy that specifies a highest purchase price equal to p;. Expected

*

discounted profits from buyers of type 6, arriving in state J are then x,

p;,, the same as the expected profits
in the optimal static mechanism. Then, by choosing high enough transition rates, the seller’s expected
discounted profits are close to the static profits IT*. Expected discounted profits are less than IT* only
because, for some values of n, buyers of type 6,, who arrive during a discounting episode (i.e., when the
state is not J) may purchase at a price lower than p’.

It is worth commenting on the price patterns generated by the price processes that approximate profits
IT* as the transition rates between states increase. As we increase the transition rates out of state J—1 and
below, the transition rate from J to J—1 is held fixed at rx:;H / (1—x:H). Prices therefore hold in state
J at sz except for occasionally being discounted, at first instance, to p:‘lH. But once a price reduction
has occurred, further price reductions follow in quick succession over a short period, with the episode of
price discounting terminating randomly as the process returns to state J. Note that a buyer of type an,
1<j<J, finds it optimal to purchase when the price reaches pr*lj rather than waiting for further discounts
even though these may occur very soon. The reason the buyer optimally chooses not to wait is the threat
of the price returning to the non-discounted price p:‘”.

The price patterns exhibited by the process can be described in lay terminology. It is common to refer
to a retailer’s “regular price” as the price before any discount has been applied. Our price processes can
then naturally be thought of as consisting of a regular price p;;J, interrupted by short-lived episodes of
price discounting, where the depth of the price discount reached in each episode is uncertain. Figure 3(a)
provides an example of a sample price path with N=3 types and 0<x} <x;<xj=1, where the regular
price is p3. Figure 3(b) provides an example with N =100 types and parameters as in Figure 2. Note that in
the price paths in the figures, there are several discounting episodes, each of them involving a price decline
that stops at a random time.

We have demonstrated that price-path mechanisms can either attain or approach the static profits IT*
in the model with dynamic arrivals. We can show that randomness in the price path is necessary for this
end whenever J > 2. Towards this goal, we consider deterministic price-path mechanisms, with the natural
interpretation that the price path (P;);cg, that the seller commits to is deterministic. Formally, a pair (P, )
is a deterministic price-path mechanism if there is some bounded function p:R, — R, such that P,(w)=p,
for all we.

Proposition 5. Consider the model with dynamic arrivals and suppose the optimal static mechanism involves
random allocation, i.e. J=>2. There exists € >0 such that no deterministic price-path mechanism achieves

seller expected discounted profits greater than 1" —e.

The reason for this result can be understood by comparing outcomes in the dynamic setting with those
in the static model. For a deterministic price-path mechanism to achieve discounted profits IT* for some
cohorts, the seller must drop the price to pzl =0,,, say at some date t*>0. But then higher buyer types
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Figure 3: (a) Example of a realization of a price path for N=3 when 0 <x] <xj <x3=1. In the example,
there are four discount episodes from the regular price p3. In the first and the last, only p} is offered before
p; is offered again. In the other two discount episodes a second discount at price p] occurs after the first
discount. (b) Example of a realization of a price path for the parameters used in Figure 2.

entering the market shortly before have the opportunity to purchase at a low price with little delay. The
outcome for these buyers is a lower purchase price than in the unique optimal static mechanism, and this
represents a loss in expected discounted profits.

We have concluded that, with J > 2, there is a loss in discounted profits from a restriction to determin-
istic price-path mechanisms. This loss turns out to be the result of dynamic arrivals. To see this, suppose a
unit mass of buyers arrive to the market at a fixed date, say zero, and no buyers arrive thereafter. For each
j with 1<j<J, the seller can set a price p:j at a date t:j satisfying e_”::f :x;“lj. Prices at other times can
be set at 8y (so no buyer has a strict preference to purchase at these prices). Then a buyer who purchases

at price p’; in the optimal static mechanism can be asked to purchase at the same price p; under the price
J J

. . . . .t -

path, and the discount factor associated with this purchase is e "y =x, . This is enough to conclude that
J

the seller’s discounted profits are IT*.

5 Timing of discounts

As mentioned in the Introduction, work in macroeconomics and industrial organization has been interested
to understand patterns of price discounts. For instance, Pesendorfer (2002), Février and Wilner (2016) and
Lan et al. (2022) find an increasing hazard rate for discounts: a long spell without a price discount predicts
that one will occur relatively soon. In this section, we examine what our theory implies for the timing of
discounts. We do so by focusing on the case where N =2 and where f8,€(f3, 3), the interval identified in
Proposition 2 (hence, the probability of allocation to the 6;-buyer in the op_timal static mechanism, x7, is
interior). Our findings extend readily to the case of N >2 but J=2.

As explained in Section 4, an optimal price-path mechanism exists when N =2, generating expected

discounted profits II*. As demonstrated in the proof of Proposition 4, attaining expected profits of IT*
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requires that for almost all cohorts ¢ (i) high types 6, purchase immediately and at a price p; almost surely,
and (ii) low types 6; purchase almost surely at a price p] =0;, and with delay to purchase such that the
associated expected discount factor is E[e " (1:70)] =xj.

Motivated by these observations and to avoid technicalities, we focus throughout this section on price-
path mechanisms with the following Regularity Conditions. First, sample paths of the price process (P;);er,
are constant at p; except at isolated points (“sales”) when the price is p] =0;. Also, the stopping times for
high types are given by 7, (w)=t for all t and all w. To specify stopping times for low types, we assume
for each w and each t that either (i) there is a minimum date s>t such that the price P,(w) is equal to
0,, or (ii) the price is never 0, after t. In the first case 7, ,(w) is equal to the minimum date, and in the
second 7, ,(w)=+00. It then makes sense to describe the low type 6, as purchasing on the next sales date
if there are any future sales.

Optimal price-path mechanisms satisfying the Regularity Conditions exist: the case where sales arrive
according to a Poisson process with parameter A; =rx]/(1—x}) is considered above and in the proof of
Proposition 4. When sales are optimally determined according to a Poisson process, at any t and irrespective
of the history of past prices, the time until the next sale at date s>t is exponentially distributed with
parameter A;. Thus, buyers are not able to use the price history to better predict future sales. We can
show that this property is in fact shared by any optimal price-path mechanism satisfying the Regularity
Conditions in the following sense.

Proposition 6. Consider the model with dynamic arrivals and number of types N =2, and with x7 €(0, 1). Fix
any optimal price-path mechanism satisfying the Regularity Conditions. For any date t >0, any positive prob-
ability event A€ F,, the distribution of the time to the next sale is exponential with parameter A; conditional
on A That is, for any s>t, P(11,(w)<sl|A)= 1—e M0G0,

An explanation for this result is that maximising profit from (almost) every cohort of buyers requires
treating buyers who arrive at different times, or at different price histories, symmetrically. The exponential
distribution achieves this as the only distribution with the memoryless property ensuring that the distribu-
tion of the waiting time to the next sale is the same irrespective of the price history.

The analysis to this point views buyers as observing the entire history of past prices: purchase times
are stopping times with respect to the filtration generated by the entire price history. We now argue that
the findings are quite different to the one in Proposition 6 if buyers are unable to observe prices before their
arrival to the market. This is arguably realistic and allows us to better reconcile empirical price patterns as
we argue below.'?

To capture the limited observability of prices, price-path mechanisms (P, ) are now modified by chan-

ging the filtration for the stopping times 7. In particular, each 7, , is now a stopping time with respect to

107t is worth comparing our analysis to Ory (2017), who considers a model where buyers do not observe prices before or after
their arrival and also are uncertain about their arrival time.
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the filtration generated by P='=(PZ"),cg, defined by

Pt 0 ifs<t,

N

b, ifs>t.

(We still require that 7,, ,(w) >t for all w €2 as well as B, ® F measurability of 7,, (w).) We refer to these
mechanisms as price-path mechanisms with unobserved pre-arrival prices. Note that now, (P, T) is incentive
compatible if, for all n and all ¢, condition (3) holds for all stopping times 1, . with respect to the filtration
generated by PZ' and satisfying that £, (w)>t for all w€Q.

An initial observation is that it remains optimal for the seller to determine sales according to a Poisson
process with rate A;. Specifying that high types stop immediately and low types stop at the next sale date,
as described above, satisfies the new restrictions on stopping times. The seller obtains what is still an upper
bound on expected discounted profits, IT*.

A range of patterns of sales is now consistent with optimality. The reason is that, because buyers
cannot condition their deviations on prices before arrival, the incentive compatibility constraints are easier
to satisfy. To understand these patterns, we consider price-path mechanisms with unobserved pre-arrival
prices satisfying the Regularity Conditions as well as the requirement that E[e " (*1:78)] =x] for all t. This
last requirement is necessary for obtaining expected discounted profits of IT* from the cohort arriving at t.
We show the following result that provides a condition for incentive compatibility and thus defines a class
of price-path mechanisms with unobserved pre-arrival prices that achieve optimality.

Proposition 7. Consider the model with dynamic arrivals and number of types N =2, and with x}€(0, 1).
Consider a price-path mechanism with unobserved pre-arrival prices subject to the Regularity Conditions, and
satisfying that E[e ™" (F1:7] =x] for all t. Such a price-path mechanism is incentive compatible if and only if,

for all t and all s> t such that T, ,>s with positive probability,
]E[e_r(ﬂ’[_s)hl,t>s]ZXT‘ (5)

To understand Condition (5), consider the incentive compatibility condition for high types (incentive
compatibility for low types is straightforward). Note that the assumption E[¢ ™" (F1:70] =x] implies that a
high type arriving at date t expects the same payoff either from purchasing immediately or waiting and
purchasing at the next sale. That is, there is no profitable deviation for high types to simply waiting and
purchasing at the next sale. Next, because high types always find it optimal to purchase at sales, only one
other kind of deviation needs to be checked. This is where the buyer waits and purchases after a fixed

amount of delay, or at the next sale if one comes earlier. Such strategies, however, do not generate higher
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payoffs under Condition (5). Indeed, for any t and s>t such that Pr(t; ,>s)>0,

vo(ph)= Pr(ty €[t,sDE[e 1707y €[t,5]]v,(6;)
+Pr(7y, >s)e_r(5_t)IE[e_r(T1"_5)|Tl’t >s5]v9(6;)

> Pr(7y  €[t,sDE[e 0|y  €[t,511v2(61)+€ I Pr(Ty  >5)v(p3) -

The equality follows from the condition that v,(p3)=x]v,(6;) =E[e ""1:70]y,(6,). The inequality follows
from the fact that Condition (5) holds. Because the expression on the right side of the inequality is the
payoff the high type obtains by deviating by purchasing at the first sales date in [t,s) or at s if there is no
discount in [t,s), such deviation is not profitable for the buyer. If, instead, Condition (5) does not hold,
the inequality is reversed, and then the price-path mechanism with unobserved pre-arrival prices is not
incentive compatible.

To further interpret Condition (5), suppose it is satisfied for a buyer arriving at a given date t. If he
delays purchase until s>t and observes no sale (i.e., in case of the event {7, ,>s}), then this absence of
a sale is effectively “good news” in that he expects the next sale relatively sooner at date s than at date
t (as measured in terms of expected discounting). Hence, the condition accommodates discount patterns
where the hazard rates for sales are increasing with time since the last sale, as found in the empirical work
mentioned above. That is, we can anticipate a rich multiplicity of optimal discount patterns, some of which
may coincide with the ones found in practice.

To further illustrate, consider the following example where the time between sales is constant. Suppose
that the first sale is uniformly distributed on [0, A] and then sales occur a fixed time A apart, where A>0
is determined below. Buyers arriving at any date t with no information on past prices then believe the next

sale is uniformly distributed on [t, t+A]. The appropriate choice of A satisfies

A
e rs .
ds=x7.

0 A

It is easy to check that Condition (5) is satisfied: i.e., a buyer who delays purchase becomes more optimistic

about the wait time to the next sale in the relevant sense. This price process is then part of an optimal

price-path mechanism with unobserved pre-arrival prices.!?

6 Loss aversion

We have used expected utility theory to capture the trade-offs faced by consumers averse to risk and there-
fore the problem of the seller. In doing so, we have been able to demonstrate random discounts in a dynamic
pricing model while remaining close to existing literature on auctions (e.g., Matthews, 1983, Maskin and
Riley, 1984, and Moore, 1984).

In this section, we show that our results are robust to replacing expected utility by loss aversion.

Stopping times are as described above. The measurability conditions can be verified by similar arguments as for the Poisson
price-path mechanism in the proof of Proposition 4.
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Our motivation for doing so is that the stakes involved in individual markets are often small. Rabin (2000)
shows how risk aversion with respect to small-stakes gambles considered at a range of wealth levels implies
implausible levels of risk aversion for modestly larger gambles. This observation, and the fact that aversion
to small risks is often observed, is sometimes viewed as favoring loss aversion instead of expected utility.'?
While we concur with the view that expected utility models with risk-averse agents are illuminative even in
settings with small risk (as these models capture economic forces in a simple and canonical manner; e.g.,

see Rubinstein, 2002), that our theory can be couched in a model of loss aversion is reassuring.

Model of loss aversion. We now present a model that adapts ideas in work such as Kahneman and Tversky
(1979) and Készegi and Rabin (2006) to our economic environment. We first consider the static model
with one seller and one buyer. Our starting point is to posit gain-loss utility for each type of buyer 6,,>0
that depends on a type-specific reference point p, > 0. For simplicity, we focus on the case of two consumer
types: the low type 0; and the high type 6,, with 6; < 6,. The probability of each type 8, is f8,,. We specify
the payoff of type 0, from purchasing at price p€R, to be

V(P§ Qna pn)E en_p+;u(pn_p):

where

Anx if x <0,

p(x)=

nx  if x>0,
and where >0 and A>1. That A>1 captures the idea that losses, i.e. paying a price about the reference
point, are experienced more intensely than gains. We specify the payoff in case not purchasing to be zero;
as in the earlier models, the buyer makes no payment if not receiving the good. The seller has no cost of
providing the good.

We now consider the seller’s problem when reference points are fixed to be deterministic scalars p; =6,
for type 6; and p, (6, 6,) for type 0,. For now, these reference points are exogenous; we later argue that
these choices can reflect consumer expectations about market prices. We find an optimal static mechanism
with random allocation to type 6; whenever parameters satisfy

(6)

6:(1+n) 6:(1+n+n(A-1)) ]

pac| ,
271 0,+npy " Oy +npy+6im(A—1)

(an interval of positive length). In particular, we establish the following result.

Proposition 8. Consider the model of loss aversion with two types and reference points 0, for the low type
and p,€(04, 0,) for the high type. Then if Condition (6) is satisfied, there is an optimal static mechanism in
which the low type has a random allocation while the high type receives the good for sure. The prices paid by

each type are equal to their reference points.

To understand the form of the optimal mechanism described in Proposition 8, suppose that Condition

(6) holds and the seller offers an optimal direct mechanism as described in Proposition 8. Let the probability

12Evidence from experimental settings includes Read et al. (1999), Fehr and Goette (2007), and Géchter et al. (2022).
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of allocation to the low type in this mechanism be x; (with value derived in the appendix). We want to
explain why i; €(0,1). Note that, given this allocation probability to the low type, the high type is just
indifferent to mimicking the low type when charged a price equal to his reference point p, to receive the
good for sure. Consider reducing the low type allocation probability x; below ¥; while increasing the price
to the high type to maintain indifference to mimicry. Because the price increase is above the high type’s
reference point, the high type experiences this as a loss. This means that the high type is particularly price
sensitive, and so the price increase permitted by the reduction in x; is relatively small. Similar logic applies
to increases in x; above x;. There, maintaining the high type’s indifference to mimicking the low type calls
for a reduction in the high type’s payment, which the high type experiences as a gain. Because the high type
is less sensitive to gains, the price reduction needed for the high type not to mimic the low type is relatively
large. This explains why, for some parameter values (those indicated in Condition (6)), there is an interior
“sweet spot” allocation probability i; that maximizes seller profits. This is the allocation probability such

that the high type, made indifferent to mimicry, experiences neither gains nor losses.

Dynamic analysis with an inflow of buyers. Now consider a dynamic environment where buyers arrive
over time. Here, we view v(p; 6,, p,) as type 6,’s instantaneous utility of a purchase at price p, so that
intertemporal payoffs from a purchase after delay t are given by e "*v(p; 6,, p,,) where r >0 is the common
discount rate. We assume a constant inflow of buyers at rate r. Proportion f3, of arrivals are high types, with
the remainder low types. Reference points are fixed at p, €(60;, 6,) and 6, respectively, and also therefore
do not depend on the arrival time to the market. The seller has no costs and no capacity constraints.
Suppose that parameters satisfy the condition in Equation (6). We can define price-path mechanisms
analogously to in Section 4 to be a price process and stopping times subject to incentive compatibility
constraints. There is then an optimal price-path mechanism in which the seller sets a constant price p,,

while a Poisson process determines instantaneous discounts to price 6; that target the low type. The Poisson
rXy
T—%;

is 0y is x;. Given this price process, high types purchase immediately on arrival at price p,, while low types

arrival rate for discounts is

. This is the rate that ensures that the expected discounting until the price

purchase at discounts at price ;.

Reference point determination. For the parameter values where the condition in Equation (6) is satisfied,
we have seen that there is an optimal static mechanism and also an optimal price-path mechanism in
the dynamic environment where both types of buyer purchase at prices equal to their reference points.
If reference points are formed by anticipating (as “lagged rational expectations” in the terminology of
Heidhues and Készegi (2008)) the prices to be paid when purchasing in equilibrium, then there is a natural
sense in which reference points can be self-fulfilling. Suppose that high types anticipate paying p, <(6;, 6,)
in case of a purchase, while low types anticipate paying 6 in case of a purchase, and that these expectations
determine buyers’ reference points.!> Then the seller, taking these reference points as given, determines
an optimal mechanism (in either of the static or dynamic environments described above) that induces
each type to obtain the good paying prices equal to the reference points as shown above. This idea is
closely related to the concept of “market equilibrium” introduced by Heidhues and Készegi (2008). In the

1%In the static model above, the low type purchases with probability less than one. Assume the reference point is based on the
price to be paid conditional on purchase.
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Online Appendix, we explain in more detail the sense in which reference points are determined in a market

equilibrium of the static model.

7 Alternative theories for discounting and further discussion

We conclude by comparing our theory of price discounting with several others in the literature, highlighting
possible advantages of our own. An early explanation for price discounting is mixed-strategy pricing by
competing firms, as for instance in Shilony (1977), Varian (1980), and Rosenthal (1980). Such theories
are generally developed in a static framework, and rely on the assumption that not all consumers in the
market can access all competing price offers on the same terms (especially, due to search frictions). The
models can be extended to dynamic settings by considering non-durable goods sold in every period with
sellers redrawing prices in each period. Varian seems to see this idea as integral to his theory, writing for
example (p. 651) “because of intentional fluctuations in price, consumers cannot learn by experience about
stores that consistently have low prices”.!4

One reason it can be difficult to reconcile these theories with price data is that equilibrium prices are
drawn from a continuous distribution. In practice, it is often the case that retail prices spend most of the
time at their highest level, often termed the “regular price”, and are then only occasionally discounted (see
the references in the first paragraph of the Introduction). In this sense, the models of price fluctuations
based on competition and search frictions fail to explain the “mass point” in prices at the regular price.

An important related point is that extending the static models with search frictions to dynamic settings
by assuming prices are redrawn in each period (as seems to be suggested by Varian, 1980) means that the
amount of price variation over a given interval depends crucially on the frequency with which prices are
redrawn. This approach does not provide a way to determine how often prices are redrawn and therefore
has little to say about the number of occasions on which the lowest prices are offered in a given time
interval.!> In contrast, we have provided clear predictions on the frequency of price discounting. For
instance, see Section 5.

The popularity of theories of price discounts based on competition and search frictions can, however,
be partly explained by the observation that many of the relevant markets have several sellers. What the
ingredients of our theory imply when introduced to settings with more than one seller is likely to depend on
the details of the model. For instance, we would expect the forces examined in our paper to remain relevant
with many sellers in the presence of collusion. Another possibility is that search frictions are sufficiently
strong that most consumers consider only one among many sellers, or perhaps one seller at a time subject
to infrequent switching. The predictions of such a model could well be similar to the ones in our paper.
The fact that our theory only requires a monopolist seller could also perhaps be viewed as broadening its

4Note that Fershtman and Fishman (1992) do consider an explicitly dynamic model of durable goods pricing where firms
re-choose prices in every period. Consumers cannot recall prices and firms are viewed as choosing prices independently in every
period.

15 A similar point is made by Myatt and Ronayne (2019) who argue that the usual models of price discounts based on competition
and search produce more price variation than encountered in real-world markets. They propose a variation of the model that
addresses this.
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applicability (e.g., to explain price discounts that occur even in markets with little competition).

Another theory of random price discounts that does not involve competition is Heidhues and Készegi
(2014). This considers a monopoly model with loss averse consumers, where loss aversion is specified in
both the payment dimension and the quantity dimension. This theory captures the empirical regularity of
a mass point in the distribution at the highest price, and also a gap below the highest price. Again this
model is static and extending it to make dynamic predictions about sales seems to require a view on how
often prices are redrawn.

As described in the Introduction, our theory is closest to work on intertemporal price discrimination
which has presented a range of reasons why prices may fluctuate. For instance, it could be that buyer
values change deterministically over time as in Stokey (1979), or they could change randomly over time as
in Garrett (2016). Another idea is that different cohorts of buyers have different demand elasticities as in
Board (2008). Or; it could be that buyers are more impatient than the seller as in Landsberger and Meilijson
(1985). None of these papers, however, point to the seller profiting from random price discounting. Some
of the work contains arguments why randomisation is not a feature of the optimal price path. In Garrett
and Board, the optimality of deterministic pricing can be seen from the maximisation of virtual surpluses
which are linear in the probability of allocation.

As explained in the Introduction, because the dynamic pricing models with intertemporal price dis-
crimination do not predict random discounting, prices fall gradually when prices are lowered to sell to low
value buyers. This is not the case, however, if high-valuation buyers are simply myopic. In this case, sellers
occasionally reduce prices to sell to low-value consumers and can do so without affecting the willingness
of high-value consumers to purchase at other times. While this idea can be expressed in a monopoly set-
ting, its first expression appears to be Sobel (1984) in a model with competition. A difficulty with this
theory is that the myopia assumption can seem too strong in many markets; for evidence that buyers are
forward-looking see Chevalier and Goolsbee (2009) and Février and Wilner (2016).

It is worth pointing out that there are other papers on dynamic pricing to risk-averse buyers, in par-
ticular Liu and van Ryzin (2008) and Bansal and Maglaras (2009). Liu and van Ryzin show that price
discrimination can be optimal in settings with risk-averse consumers, while Bansal and Maglaras consider
a related problem. Neither work considers models with dynamic arrival of buyers.
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Proofs of the formal results

Proof of Lemma 1

Proof. Let k and [ satisfy the conditions in the statement. Suppose that x”v(p”)=>x"v(p’). Note that,
using that higher types have higher willingness to pay, v;(p”)>0. Hence, x”v;(p”")> x'v;(p’) is immediate
if p” <p’ or if x’=0. Hence, we may assume x’ >0 and p’ <p” <0,. Then,
vi(p”) i(p’)

ARA0) v®)
_ el (G-

>x"vi(p"), 7

x"vi(p")=x"v(p")

where the strict inequality follows from Assumption A1, and because v;(p’)>0 (since v;(p”)>0 and p’ <
1/
). O

Proof of Lemma 2

Proof. Consider an arbitrary (incentive compatible and individually rational) mechanism M =(x,, Hn)ﬁ’:1
that assigns a non-degenerate price distribution H, to at least one type 0,. Then, for each n with x,>0,
let p,, be the unique (certainty equivalent) price satisfying

Vn(pn):f vo(p)dH,(p).

This determines a mechanism with deterministic prices MP =(x,,, pn)ﬁ’zl. Note that (by Jensen’s inequality
and strict concavity of each v,,) this is strictly more profitable than the original mechanism M if the buyer
reports the truth. However, truth-telling may not be incentive compatible. The remainder of the proof then
involves constructing an indirect mechanism which, when the buyer follows an optimal strategy, generates
profits at least as high as if the buyer were truthful in MP.

For each n, let m,=p,x, be the seller’s expected profit if type 6, reports truthfully in M. We can
construct a set of types J of cardinality J=|J| along which expected profit strictly increases. We begin
by letting 6, be the lowest type assigned the good with strictly positive probability in MP . Then, having
determined an, we let 9nj+1 be the next smallest type such that profits exceed those for an- That is, for
each j>1, we let n;,; =min{n:n>n;, m,> 7'Enj} if the set is non-empty, and stop otherwise so that J =j.
This determines J ={6nj :j=1,...,J}. We then denote MR the “restricted” indirect mechanism which is
the same as MP except that the buyer is permitted to choose only among messages in 7.

Consider now the reporting decision of any type On]_ in MR, with an € J. Because the original mech-
anism M was individually rational, Pn, < an. Because higher types are less risk averse in the sense of
Assumption A2, type an prefers message an to an, with j'<j. This implies two important observations.

First, by asking type an to send a message at least his true type, such a type generates expected profit at

least 7, in MR, Second, because Tp, >0, , for any j’'<j, we must have Xy, > Xy, for all such j'.1e

6Note that Ty > T, requires that Xp; > Xy, OF Py >Py, (or both). If Py; > Py, then, given that type an prefers message an
to 6, , it must be that X, >x,,. Hence, in either case, X > X,
J )

nis>
J
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Finally, consider a type 6, with n#n; for any j. If n<n, then, whether 6, participates in MR or not,
profits are higher for this type than in the original mechanism M. Suppose instead n;<n<n;, for some
J, or that n>n; for j=J. Then we recall that for any j’<j, we have X, > Xn,,, and also an prefers message
0,. to 0, ,. Therefore, by Lemma 1, 0, strictly prefers message 6, to 8, ,. Hence, 8,, can be asked to report

J J J J
a message at least an, generating profit at least Ty which in turn is at least 7, by construction of 7. O

Proof of Proposition 1

Proof. Initial observations. Note that, following a “taxation principle” (see for instance Rochet, 1985),
any mechanism with deterministic payments can be viewed as presenting a choice to the buyer among
pairs of strictly positive allocation probabilities and payments.!” There is no loss in supposing that all
combinations are chosen by some type, so there is one price for each allocation probability. By Lemma 1,
higher types choose weakly higher allocation probabilities. Also, because all combinations are chosen by
some type, the prices associated with allocation must be weakly increasing in the allocation probability.
Considering momentarily the corresponding direct mechanism, this shows that it can be represented as a
weakly increasing sequence (x7, p; IrY:l'

Downward incentive constraints bind. Now consider why downward incentive constraints bind, and
continue to view the mechanism as a set of options of (strictly positive) allocation probabilities and ac-
companying payments. We can first use our initial observations to show that the seller’s profits are strictly
increasing with the allocation probability for any optimal mechanism. Because prices are weakly increas-
ing, it is enough to observe that, in an optimal mechanism, every purchase is at a strictly positive price.
In fact, we can show that no type pays a price less than 6;. A mechanism that does charge a price less
than 6, to some types can be adjusted by revising upwards the price of every lower-priced option to ;.
Every type that chooses an option with a price higher than 6, in the original mechanism remains willing
to choose the same option, while the other types can be taken to choose an allocation probability that is at
least the highest one associated with price 6;. The seller then makes strictly higher profits for every type
that obtained a price below 6, in the original mechanism. That the adjusted mechanism is strictly more
profitable contradicts the optimality of the original.

We now claim that, if 6y, is the lowest type making some choice (x, p) in an optimal mechanism, then
this type must be indifferent to the alternative (x’, p’) which has the next highest allocation probability, or
to not participating if there is no such alternative. Suppose for a contradiction this is not true for some
choice (x, p) and lowest type choosing this option, 6. The first case is where there is an alternative (x’, p”)
with the next highest allocation probability relative to (x, p). Then (x’,p’) is chosen by type 6;_;, and 6y
strictly prefers (x, p) to (x’, p’). Since 0,_; prefers (x’, p’) to any option with a lower allocation probability,
0, strictly prefers (x’,p’) to any such option by Lemma 1. Therefore, if we raise the price of the option
(x,p) to some p where type 60, is indifferent between (x,p) and (x’, p’), type 6 then prefers (x,p) to any
smaller allocation probability. Again by Lemma 1, any type higher than 6, then strictly prefers (x, p) to any
option with a smaller allocation probability. It follows that it is incentive compatible for any type choosing
the original option (x, p) to choose at least the probability of allocation x when the price p is changed to
D. Because profits are strictly increasing with the allocation probability, these types now generate strictly
higher profits than before. Also, types not choosing the original option (x, p) continue to make the same
choice as before. Thus we arrive at a new mechanism that is strictly more profitable than the original,
contradicting the optimality of the original.

The second and remaining case is where there is no allocation probability lower than (x,p). By as-
sumption, then, p < 6, where 6;, is the lowest type receiving the good with positive probability. Analogous

17The buyer can also choose not to participate, which means zero allocation probability and zero payment.
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to the previous case, we consider raising this price to p =0;. Any type willing to participate in the original
mechanism remains willing to participate. Because (x, p) represents the least profitable option for the seller
in the original mechanism, it follows that profits strictly increase in the adjusted mechanism. This again
contradicts the optimality of the original mechanism.

Finally, note that we have shown each type is indifferent to mimicking the choice of the downward
adjacent type, or to not participating in the case of the lowest type, 6;. This is either because the lower type
makes the same choice, or because of the indifference to the next highest allocation probability, or to non-
participation, as shown above. Therefore, considering the direct mechanism, we have for all n=1,...,N,

X va(pr)=x;_,va(p;_;), where we put x;=p;=0.

Highest type receives allocation probability one. Now consider the highest allocation probability. If this
is less than one, the probability can be increased to one and the payment adjusted (weakly) upwards so that
the lowest type that chooses this option in the original mechanism remains indifferent to the next highest
allocation probability. Since this type prefers the highest allocation probability to all other options, all
higher types also prefer the highest probability by Lemma 1, and profits in the mechanism strictly increase.
Considering direct mechanisms, this shows that optimality requires xy =1.

Existence and uniqueness of the optimal mechanism. Existence of an optimal mechanism can be seen
from the following observations. Given that downward incentive constraints bind, profits can be determ-
ined simply from the choice of allocations (x,)~ 1> and are continuous in these allocations. Also, the
allocations themselves are from the compact set 2(3{1, o X)E[0, 1V ix; <. SxN}.

Let us therefore now show that the optimal mechanism is unique. Suppose for a contradiction that
there are distinct mechanisms (xn, pA)N , and (xn , pn n=1 both of which are optimal.

We show first that there is a type 6,, such that xﬁ, x >O and pA;é pf Suppose for a contradiction this
is not true; that is, assume that for all types 6, with x x >0 We have p pB Consider the smallest
value n? such that x ! >0 and the smallest value n® such that x .>0. If n*>n® then, from the above

characterization of an opt1ma1 mechanism, we have p? = =0pa> pB > contradlctlng our previous assumption
which implies pnA = pnA. Given that a contradiction can also be reached for the case n<nB, it must be that

n*=n®=n. Since downward constraints bind in both mechanisms, for all n>n, we have

A A B B
X, va(Ph)  valppg)  xp
AT - ~ B
x2 0 valpf)  va(PB) x|
Therefore, for all n>n,
A B
Xn _n
A~ yB®
xﬂ XE
: A — A_
Since xy =xy =1, we have x, x for all n, but then the mechanisms (xn, pn k , and (xn , p , are not
distinct.

Now, consider the mechanism determined as follows. The buyer reports his type 6, then the allocation
probability and payment is determined by one of the two distinct mechanisms according to a 50/50 random-
ization. This can be described by the “reduced” mechanism that has allocation probability x,f = %x‘;‘+ %xf

for report 6,. For 0, such that xg >0, it specifies H S to put mass on p;‘ and the remaining mass on

A B
xn+xn
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pg. Incentive compatibility of the new mechanism is equivalent to the requirement that, for all n, k,

A B
(1XA+ 73X )(x;‘._nxgvn(PA)‘i'xAﬁxsvn(pn))
X
> (3 1) o+ g )
or
v, (e +xBv, (pB) > xtv, (p) +xF n(pk)

This inequality holds by incentive compatibility of (x%, p)¥_, and (xZ, pB)Y__ | so (x H C)N_ is incentive
compatible. Individual rationality similarly is inherited from (xn, Pn)lr\[ , and (xn, pn h—1+ Moreover, it is
readlly checked that the new mechanism (xn ,H ,f )N , attains the same optimal profit as (xn, pn)ﬁ’ , and
(xn, pn 1—1- However, it does not have deterministic payments, which contradicts Lemma 2. O

Proof of Proposition 2

Proof. Because the expression in Equation (1) is continuous and strictly concave in x;, it has a unique
maximizer x} €[0, 1]. Using that 3; =1—f3,, the derivative of this expression with respect to x; at x; =0 is

(=)0 62721
Hence, strict concavity of the expression implies that x] =0 if and only if 3, >p= GI—QV% > Z—;.ls Similarly,
the derivative of the expression in Equation (1) with respect to x; at x; =1 is R

(=o)6r 62721
Strict concavity implies x7 =1 if and only if 3, E =—7>1— o M < %.19 It is then necessarily the case that
x7€(0,1) if and only if [326(@,/3). - O

Proof of Proposition 3

Proof. The proof plan is the following. We first construct a model with a continuum of types, referred to
as the “continuum model”. Such a model can be seen as the limit of a sequence the models defined in
the main text as N,, —» 00. We first establish a sufficient condition for a deterministic mechanism not to be
optimal in the continuum model (Proposition 9). We then establish that, under the sufficient condition, not
only the optimal mechanism is stochastic for N,, large enough, but that such stochasticity does not vanish
as N, —» oo (Proposition 10).

Continuum model. Our proof approach is to first provide conditions under which deterministic mechan-
isms are less profitable than mechanisms with random allocations in environments with a continuum of
types, and then extend the finding to the nearby discrete-type models.

'8The last inequality follows from the concavity of v,, which implies the inequality v;(6,)(6,—6,) <v,(8,)—v,(6,), together
with our normalization v,(6,)=0.

“The last inequality follows from the concavity of v,, which implies the inequality v;(6;)(6,—06,)>v,(6,)—v,(6,), together
with our normalization v,(6,)=0.
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It comes at little cost to generalise preferences in the main text: here we denote the payoff of type 6 €
[6, 8] who acquires the good paying p >0 by v(p; 6). As mentioned in the main text, type 6 is the buyer’s
willingness to pay (i.e., v(9; 8)=0). We assume that v(p; 6) has the same properties as in the model set-up,
except that we now impose a continuous-type version of Condition A. We denote by v/(p; 8) and v”'(p; 0)
the first and second derivatives with respect to p. We then assume that, for any p>0, —v/(p; 0)/v(p; 0) is
strictly decreasing in 6 for 6 > p. Also, forany p>0, v”(p; 6)/v'(p; 0) is weakly decreasing in 6. We impose
the additional condition that v(-;-) is continuous. This additional continuity will be used to extend our
finding for a continuum-type model to the discrete-type models of interest. The CARA utility specification
introduced in the main text (where v(p;6)= 1—eR(9-P) with R>0) satisfies all these restrictions.

The distribution F together with buyer preferences v(p; 6) define a continuum-of-types model. Under
the regularity condition on F in the main text, expected profits in the deterministic mechanism are uniquely
optimised by posting a price (for sure acquisition of the good) interior to the type space. We now refer
to this price as 8* (equivalently, 6* is the “marginal type” in the optimal deterministic mechanism for a
continuum of types). We show the following.

Proposition 9. Consider the continuum-type static model and a unique optimal posted price 6*€(6, 0). Then
there is a mechanism with a random allocation that is more profitable than the optimal deterministic mech-
anism provided that

V(07507 _ £/(67)6°+2£(0")

v/(6+;6%) 1-F(6%) ®

Proof. Note that for 6%, the interior optimum price for the deterministic posted-price mechanism, we have
1-F(6")—0*f(6*)=0.

Now consider perturbing the optimal posted-price mechanism by introducing mechanisms that will induce
a small interval of types to purchase with probability a<(0, 1). For e €(0, 8*—0), we consider mechanisms
in which types 6 > 6* obtain the good with certainty, types 8 €[8*—¢, 8*) obtain it with probability a, and
types 0 < 6*—e do not obtain the good at all. To represent the original deterministic mechanism, we will
set e=0.
Such a mechanism can be obtained by setting the payment for obtaining the good with probability
a to 6*—¢ and setting the payment for purchasing with certainty so that type 6* is indifferent between
purchasing with probability a or 1. That is, the payment in case purchasing with certainty is p(e)e(0*—
€, 0*) satisfying
v(p(e); 6*)=av(6*—e; 6%). ©)

Note that, when £ =0, we have p*(g)=06".

Let us verify that these payments induce the purchasing strategy of the buyer as specified above. All
types above 0*—¢ prefer one of the options that involves receiving the good with positive probability to
receiving it with probability zero, while all lower types prefer not receiving the good. Types in [6*—
¢,p(e)] prefer the option of acquiring the good with probability a, using that the payoff from acquiring
with certainty is non-positive. That types in (p(¢), 0*) prefer to acquire with probability a follows from
Lemma 1. In particular, fix 6, €(p(¢), 6*) and 6;=06"*. By contraposition of the claim in Lemma 1, because
v(p(e); 6))<av(8*—e; 6;), we have v(p(e); 6;) <av(0*—e; 0,), establishing the result. That types 6 > 6*
strictly prefer to obtain the good with certainty follows a direct application of Lemma 1.

Now let us write profits from the new mechanism as

M(e)=a(F(0")—F(0"—¢))(0"—&)+(1—F(6"))p(e).
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We are interested in determining whether I1(¢)>I1(0)=60*(1—F(6*)) for some £>0; i.e., whether a small
perturbation in our class can deliver higher profits than the optimal deterministic mechanism. For this, it
is useful to determine the derivatives of p(¢) at e=0. Considering Equation (9) and the implicit function
theorem, we see that p(-) is differentiable and

p'(e)v'(p(e); 0" )=—av'(8"—¢; 07).
Differentiating again with respect to ¢ yields
p"(e)v'(p(e); 0)+p'(e)*V" (p(e); 0 ) =av" (6" —e; 6%).
Substituting the previous equation, we have

V/(0*—¢; 0%)

2
el EACOTRETCEETS

P (e (p(e); 07)+ (—a

or

v/(p();6%)
v/(p(e); 6%)
Now consider the derivative of profits with respect to €. This is

/ * Q% 2
(6" —e;0")—(a 5t ) v (p(e); 6%
1
p(e)= :

'(e)=af (0*—&)(0"—e)—a(F(6*)—F (0" —&))+(1—F(6*)p’(e).
Note therefore that

II'(0)=af(6%)0*+(1—F(6*))p’(0)
=af(69)0*—(1—F(6"))a.

This is equal to zero by the optimality condition for 6*.
Next, consider the second derivative:

1" (e)=—af (6" —)(0*—e)—af (6" —&)—af (6" —e) +(1~F(6")p" (e)
=—af'(0*—e)(0* —e)—2af (0*—¢)
av"(6"—e;6)—(a L0y (pe); %)

umren) V() 6)

Therefore,
(a—a®)v"(6*;6")
v/(0%*; 6%)
We then observe that, if I1”(0)>0, then II(¢)>TI(0) for £>0 sufficiently small. This condition can be
written as

1(0)=—af'(0")0*—2af (0*)+(1—F(6%))

(1—a)v”(0%;6%)

—f(0%)0*—2f(0%)+(1—F(O*
a(=f'(6")0" =2 (6)+(1=F(6")— o s=—)>0
for some a€(0,1). There exists such an « if and only if
g s 1 eV (07307
f1(O10°=2f (67)+(1-F(67) 7720 5> 0.
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This can be written as Equation (8). O

(End of the proof of Proposition 9. The proof of Proposition 3 continues.)

Discrete approximation. We now extend the finding in Proposition 9 to discrete-type approximations of
the continuum model. These approximations feature discrete type distributions as introduced in the main
text. Paired with the utility functions v(p; 0), these sequences of type distributions define a sequence of
environments (E m)°° , as in the main text. The (unique) optimal mechanism in environment E™ is denoted

(7, py . We now state and prove our generalisation of the result in the main text.?°

Proposmon 10. Suppose Condition (8) holds. Then there exists € >0 and K suﬁ‘iciently large that, for all
m>K, the following is true: There exist adjacent types 677,06 , 07 with x™, x™ ,xm ele,1—¢]

n/+1°°° "> “n” n’> " n'+1°° n”
and 07, —0]! > ¢.

Proof. First, note that we can use the allocation to define a function L,,(-) on [,0) given for each 6

by L,,(0)=x]"if 0€[0,",0," ), where recall that 91(,” +1 =0. Note that since each L,,(-) is monotone and

bounded, there is a pointwise convergent subsequence (L, (-)) by Helly’s Selection Theorem. The following
lemma concerns such a subsequence.

Lemma 3. Suppose there is éE[Q,é] such that: (i) for all 6<6, Ly, (80)—0, while (ii) for all >0,
LAmk(Q)—: 1. Then profits in the optimal mechanisms along the sequence of environments (E™) converge to
6(1—F(0)).

Proof. Step 1. Suppose the sequence (L, (6)) satisfies the assumption of the lemma. We want to show that

for any £ >0, we can find K, large enough that, for all k>K,, xp'* <¢ forall 6% <9 —¢ and x* >1—e¢ for all
O, > 0 +¢. Otherwise, there is some &> 0 such that this is not the case. Then, using monotonicity of each
L, (0), either there is not convergence of Lmk(é—s) to zero where § —g> 0, or there is not convergence
of Lmk(é +¢) to 1 where §+¢<6 , contradicting the assumption of the lemma.

Step 2. We now show that for any >0 we can find Q, > 0 large enough that, for all k> Qn’ if n is such that

0% >0 +n then pi*>0—n.2! Note first that, by Proposition 1, the claim must hold if 6 = 0 so suppose
that 6 > 6 and suppose for a contradiction that the claim is not true. Then there is an 1’ €(0, 6 — 6) and a
further subsequence of environments (Ek) (e, a subsequence of (E™k)) such that, for each k, there is a
type 9,11’1‘1( >6+n’ with piflk <@—n'. Then, pick £>0 but small enough that

(1—&Ww(b—n';6—n'/2)>&v(8;6—7'/2). (10)

That such a value of ¢ exists follows because v(é—n’ ; é—n’ /2)>0. From Step 1, we have that there is a
value k’ large enough that we are assured of the existence of an A such that 9;1’“ e(é—n’ /2,0) and such
type is assigned the good under the optimal mechanism for environment E'¥ with a probability no greater
than £, while type 9,11’1‘;/ receives the good with probability at least 1—¢.

First note that, by the inequality (10) and Lemma 1, we have

(=W (B—n';0,)>v(0; 6,°).

20proposition 10 is more general than Proposition 3 because v(p; ) not restricted to be CARA and Condition (8) is a general-
ization of Condition (2).

21Recall that, as stated in the main text, py' represents the price paid by type 6" in the optimal mechanism for environment
E™.
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We therefore have | 1 1 l L. gl
¥ L (p 9"/)> "/ (pk/ Ak/)

nlk/ nl >

. l o1 A _ . .
after using that xn"l’/ >1—¢, pn"l'/ <6—7’, xﬁ’" <&, and p ﬁ"' >0 if xﬁ"' >0. Therefore, the assumed optimal
k S -

mechanism in environment E'¥ is not incentive compatible, as type Oﬁ"’ strictly prefers the option designed

l . .
for type an’/. This is a contradiction.
k

Step 3. We show that for any >0, there exists Q,, large enough that, for all k>Q,, all types in the
optimal mechanism for environment E™ pay no more than 6+ 1. Note that this is clearly true when 6=0,
by individual rationality of optimal mechanisms. So suppose that 6 <6 and suppose for a contradiction
that the claim is not true. Then there is an 7/ >0 and a further subsequence of environments (E%) along
which there is some type paying more than é+n’; without loss of generality let this be the highest type
0 (recall that payments in the optimal mechanism are increasing in the buyer’s type). By Step 1, there

Ny,
is a choice of types (Q,i’l‘k) such that xfl"lk —1 and Q,i’l‘k — 6. Note then that types (9,11’1‘k) are assigned by the
optimal mechanism a probability of allocation approaching one, and these types pay no more than 9’%;(
Now note that
v(0;0)>v(0+7";0).
Using continuity of the function xv(y;z) in (x, y,2), for all k sufficiently large, we have
xﬁflkv(erll’;k; 9]2‘1 )>xl" v(O+n'; 91" )

l
le v(p ; Oy ).

We conclude that, for all k sufficiently large, type 9;}‘1 strictly prefers to mimic type 9,11’1‘k than to report
k
truthfully, implying a violation of incentive compatibility of the optimal mechanism.

Step 4. We have established that, for any >0, there is K large enough that the following hold for all
k>K: (i) types 6, © above é+n make payments in the optimal mechanism for model E™ that are within 7
of 6, (ii) types 0, above é+n acquire the good with probability at least 1—1), (iii) types 8, * below é—n
acquire the good with a probability no greater than 7). This permits us to conclude that an upper bound on
revenues for the optimal mechanism in environment E™ with k>K is given by

nF(6—n)(@—n)+(@+n)(1—F(6—n)).

Now, take K large enough so that, in addition to points (i)-(iii), the probability of types above 6+ 7 is at
least 1—F (é +2n) for all k>K. Then a lower bound on revenue in the optimal mechanism in environment
E™ with k>K is given by

(1—F(§+2n))(A—-n)(G—n).

This follows because, for k>K, types above é+n, which have probability at least 1—F € +27), acquire
the good with probability at least 1—n and when doing so pay at least é—n.

Finally, using continuity of F, both lower and upper bounds converge to §(1—F(8)) as —0, which
shows that profits converge to 6(1—F(0)) considering optimal mechanisms along the sequence of envir-
onments (E™). O

(End of the proof of Lemma 3. The proof of Proposition 10 continues.)

We now show that the convergence hypothesized in the previous lemma cannot occur.
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Lemma 4. Suppose that Condition (8) is satisfied. Consider any subsequence (E™) of (E™) such that the
corresponding sequence of functions (Lp, (6)) converges pointwise. Then there is no 6 €[0,0] such that

L, (6)—0 for 6 <6 and Ly, (0)—1 for 0>0.

Proof. Suppose for a contradiction that there is such a 0 with L, (6)—0 for 6 <6 and Ly, (0)—1 for

6>0. Then, by Lemma 3, optimal profits along the sequence of environments (E™*) converge to a value
no greater than 6*(1—F(0*)), where recall that 6* maximizes 6(1—F(0)). However, we argue that there
exists 17> 0 such that, for all large enough k, profits are at least 6*(1—F(6*))+n.

This can be seen by adapting the proof of Proposition 9. In particular, pick a>0 and ¢ > 0 small enough
that the perturbed mechanism in that proof generates strictly higher profits than the optimal deterministic
mechanism which is a take-it-or-leave-it offer with payment 6*. This mechanism offers a probability of
awarding the good a with a payment 6*—¢ upon award, and a payment p(g)e(6*—e¢, 8*) to receive the
good with certainty. We saw that only types above 6*—¢ pick one of these options, with all types in
(6*—e, 6*) picking probabilistic award, and types above 8* choosing award with certainty. Now consider
these mechanisms in the environments E™<. As k— oo the probability that the probabilistic option is
chosen converges to F(0*)—F(8*—¢). The probability that the sure option is chosen converges to 1—F(6*).
Therefore, using the same calculations as in the proof of Proposition 9, profits converge to a level strictly
greater than 8*(1—F(6*)). In particular, for any k sufficiently large, we have that the specified mechanism
generates profits that are above 8*(1—F(8%))+n for some fixed n>0. This contradicts the supposed
optimality of mechanisms in environments E™ for large k. O

(End of the proof of Lemma 4. The proof of Proposition 10 continues.)

We now conclude the proof of Proposition 10. In environment E™, attribute a property to a “sequence

9 . . .« e . m m
of types of length at least ¢” if the property is satisfied for some adjacent types 67,60, ,,...,07 with
67, —0.) = ¢. Suppose for a contradiction that the result in the Proposition is not true. Then, for any £>0
and any Z €N, we can find m>Z such that, in the optimal mechanism for environment E™, there is no
sequence of types of length at least ¢ for which the allocation probability is in [¢,1—¢]. This means that

there are three mutually exclusive possibilities: (i) there is a smallest type 9’” for which x; >¢ and a
largest type 9’” for which x™ n <1l—¢,and 6™ —Gm < g, (ii) the allocation for all types is strlctly below ¢,

n!
and (iii) the allocatlon for all types is strictly above 1—e.

We can pick a subsequence (E™k) where, for each k, in the optimal mechanism of environment E™*,
there is no sequence of types of length at least 1/k for which the allocation probability is in [1/k, 1—1/k].
Along this subsequence, one of (i)-(iii) occurs infinitely often, taking ¢ to equal 1/k. That is, one of the

following occur infinitely often: (i) there is a smallest type 6 , " for which X, "k >1/k and a largest type 9

mk mk mk

for which x ,,k <1-1/k, and 9 Qm" <1/k, (ii) the allocation for all types in the optimal mechanism
my

of env1ronme1§t E™k is strictly below 1/ k and (iii) the allocation for all types in the optimal mechanism of
environment E™k is strictly above 1—1/k.

If (ii) occurs infinitely often, then pick a subsequence that we now denote (E" % ) along which it always
occurs. Then (Lmkj(Q)) converges pointwise to a constant 0. If (iii) occurs infinitely often, then pick a

subsequence (E"*) along which it always occurs. Then (L, (8)) converges pointwise to a constant 1. In
J
either case, we have a violation of Lemma 4. So suppose (i) occurs infinitely often and pick a subsequence

(E™4) along which it always occurs. Recall that Gn,lkj is the smallest type for which the probability of
mk
allocation is at least 1/k;. We can pick a further subsequence of (E™), call it (E%), such that 9q1 —0 for
ql
some O €[ 6, 6]. That such a subsequence exists follows from the Bolzano-Weierstrass Theorem. By Helly’s
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Selection Theorem, we may suppose this subsequence is such that (L, (8)) is convergent pointwise. For

any 0 < 0, we have Lq,(8)—0 and for any 6> 0, we have Ly, (8)—1. Again we have a violation of Lemma
4. This completes the proof of Proposition 10. O

(End of the proof of Proposition 10. The proof of Proposition 3 continues.)

As we explain above (recall Footnote 20), Proposition 10 is a generalization of Proposition 3, hence
the proof of Proposition 3 is complete. O

Proof of Proposition 4

Proof. Determining the upper bound on seller profits. We begin by showing the first part of the propos-
ition: that the seller’s expected discounted total profits in any incentive-compatible price-path mechanism
are no greater than IT*.

Measurability of payoffs. We begin by showing the measurability of the players’ payoffs so that the
expressions for expected payoffs are well-defined. First, we show that r Zfl]:l Prne Tt P, ., the integrand
in Equation (4), is B, ® F measurable. To do so, we extend the function P,(w) by setting P, (w)=0 for all
w e and recall e~ =0, leaving the value of the integrand in Equation (4) unchanged. We now note that,
for each 6, e Tni(@) jg g Bg, ® F measurable function into the unit interval, which follows because (i) e™"*
is measurable as a function of z€R_ (where R, denotes the non-negative extended reals) by continuity of
the exponential function and by our definition of e~ °, (ii) because 7, .(w) is assumed By, ® F measurable,
and (iii) because the composition of measurable functions is measurable. The result then follows (using
the measurability of the product of measurable functions, as well as of sums of measurable functions) if
we can show that, for each 6, PTn’t(w)(co) is also By, ® F measurable.
We show the measurability ofPTn,[(w)(w) by viewing it as the composition (t, w)— (7,(w), w)— me(w)(co).

The first mapping is measurable from (R, x Q, B ® ) into (R xQ, By, ®F) because the component func-
tions are measurable.?”> Then, we want to show that (t, w)— P,(w) is measurable from (R, xQ, Bz ®F)
to (R4, Bg, ). Considering the preimage A of any Borel subset B of R, either A€ B ® F if B excludes zero
(by the measurability of P, as originally defined), or otherwise A=A"U({oc0} x Q) where A’ €Bg, ®F and
{oo} xQeBg, ®F. The result then follows because B, ® F C By, ® F 23

Because r Zle Bne " "nP;  is non-negative, and by the established measurability, we may apply Ton-
elli’s Theorem to conclude the seller’s expected discounted total profits satisfy

oo N (e e] N
IE[ J Z Bne TPy rdt} :f E[ Z ﬂne_”"’fPTn’[]rdt.
0 n=1 0 n=1

We view ]E[ Z],Y:l Bpe " Py t] as (the date-zero value of) expected per-buyer profits from arrivals at date
t. We will show that these profits are no greater than e "'II* for any incentive-compatible price-path
mechanism (P, 7), thus establishing that expected discounted total profits over all buyers are bounded by
IT*.

Now, consider briefly the measurability of the integrands in Equation (3); take that on the left side
for instance. Similar to above, for given t and 6,, we have that e_”nxt(‘”)vn(PTm(w)(w)) is measurable

22This guarantees, in particular, that the preimages of “rectangular” sets C x D with C €Bg, and DEF are measurable; and
this is sufficient because these rectangular sets generate Bz, ® F.

BTo see this, define the sigma algebra S={EN(R, xQ): E€Bg, ® F}. It contains any set C xD with C€Bg, and DEF as any
such set CxD€Bg, ®F (since By, CBg, ). Therefore, By, ® FCS. Also, R, xQ€Bg, ® F, so (using that Bz, ® F is closed under
intersections) S CB@+ ®F.

33



with respect to F. For instance, measurability of P (.)(w) can be seen by considering the composite
mapping w— (7, (w), OJ)HPTn,t(w)(O))- The first map’is measurable from (2, F) to (R, x, Bg, ®F). For
the second map, we note Py(w) is measurable (as a function of s and w) from (R, xQ, Bz, ® F) to (R4, By, )
as established above.

Necessary conditions for incentive compatibility. For a candidate price-path mechanism, incentive com-
patibility requires that no type 8, arriving at t strictly prefers to purchase according to the stopping time
Tm,¢» M#n, and also that no such type 6, strictly prefers not to purchase. These requirements represent
a subset of the incentive constraints, allowing us to formulate a relaxed program. The optimum in this
program represents an upper bound on the principal’s expected profits.

Relaxed program. The relaxed program can be formally stated as maximising by random price path P and
stopping times {7y, To .-+, TN ¢}

N

et BE[e " OP, ] (11)

n=1

subject to, for all 8, and 6,,,

E[e " "ne Dy, (P, )]1=E[e " Cmc Dy (P, )]

Lt

and to
E[e"n Dy, (P, )]=0,

where we have removed the factor e™"* from inside the expectations.

For any random price path P and stopping times {7, ;, T3 ,..., Ty}, We specify, foreachne{1,...,N},
%, =E[e"(*n=07], There are then CDFs H,, n=1,..., N, for bounded random variables, such that, for any
0, and 6,,,

E[e~ 0P, |=4%, f pdH,(p), and (12)

E[e ey (P )]=%m J va(p) dH,, () - (13)

Hence the objective and constraints are exactly the same as in the static mechanism design problem of
Section 3. This shows that, given satisfaction of the constraints in the relaxed program stated above, (11)
is no greater than e "'IT* as required.

Verifying expected payoffs. We now show the equality in Equation (13) and derive H,,(p). The proof
for Equation (12) follows the same reasoning and is omitted. We may assume the event {7, , <00} has
positive probability, as otherwise the claim is immediate.

Note that

E[e~ Cmi=0v, (P, )I=Pr({Tp, <00 DE[eTne Dy, (P )Ty, < 00]

=Pr({,,, <o DE[E[e ""ne™Dy, (P, )IP; 1T, <00].

The first conditional expectation conditions on the positive probability event {7, , <©o}. This allows us to
define the random variable e_r(f'"’t_t)vn(PTm ) on a restricced probability space
({Tm,e <00}, Fiz, <00} Pir, <c0}) Such that Fp. _={A€F:Ac{r,,,<oo}} and, for any
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A€ Fiz <oo}s P{Tm’t@o}(A):%. Moreover, given the boundedness of the stopped price P .

the random variable e_r(fm’f_t)vn(PTm’t) is bounded and hence integrable on {7,, , <oo}. This allows us
to define (see, e.g., p. 445 of Billingsley, 1995) an integrable random variable IE[e_r(Tm_t)vn(PTm P ]
which is the conditional expectation on {7, , <©0}. ’ ’

By Theorem 34.3 of Billingsley (1995), we have that E[e_r(Tm)t_f)vn(PTm JIP;
Since the conditional expectation ]E[e_r(fm’f_t)lpfm] is a measurable random variable on the sigma field
generated by p, . on {7, <00}, we may assume that there is a measurable function Ym:R,—[0,1]such
that I[-E[e_r(fm’t_t)lPTm J=¢n(P; ) and we will write IE[e_r(Tm_t)lpfm ,=p]=¢n(p) (see Definition 8.24
of Klenke, 2013). We have that ’

m,t

E[v,(P, )E[e " m|p ]

Tm,t < OO]:J Vn(PTm’t(w))ﬂom(PﬂrmJ[(w))dp{rm’t<oo}(C‘))
{Tm,t<oo}

:J Vn(P)‘Pm(P)dGm(p)’
Ry

where G, (p) is the conditional CDF given by G,,(p)=P;, .<co}({P:,, <P}
After dividing and multiplying by E[e_r(fm»f_t)lrm’t < oo ], we have shown that

E[e " me Dy, (P, )]
E[eme 0|, =p]
E[e™" ("m0, , <00]

E[e""mD|p, =p]
=E[e "(Fme—t) v.(p) e dG,,(p).
[ ] L p Rle Gz, <00] ™ p

=E[e” "7, <00 IP({7p, < 00})J Va(P) dGp(p)
R,

We are now in a position to specify H,,. First, define H,,:R, —R, by

. f E[e " ("neD|P,  =q]
H,(p)= ~ dG,,(q).
" (0p] Ele7Cmelr,  <o0] "

Note that lim,_, o, H,,(p)=1 by the law of total expectation and we can extend H,, by letting H, (p) equal
zero for p<0. H,, is non-decreasing as the integrand is non-negative and G,, is non-decreasing. We can
show that H,,, is right continuous by considering any sequence (pr)p2, with py approaching p from above.
Then

E[e™t" 0P, =q]

E[e"(n D]z,  <00]

ﬁm(pk)—ﬁm(p)=f 15,5.0(q) dG,,(q)
R,

—0

E[e "m0, =q]

1(p’pk](q)]E[e_r(Tm’f_t)lfcm,t<oo] —0 almost everywhere.?* Hence

by the dominated convergence theorem, as

24This argument, and indeed the remainder of the proof, follows closely the proof of Lemma 1.16 in Seppéldinen (2012).
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H,, is a CDE To conclude the proof, it will then be enough to show that

J E[e " 0P, =p]
) m t
R, E[ —1(Th t_f)l oo]

dG,(p)= J v (p)dH,, (p). (14

For sets A€ By, define

_r(Tm,t_t)lp =q]
Um(A)= JE[ ST Oo]dGm(q)-

E[e"CmimO|p,  =p]
]E[e_r(fm"_t)lfm,;<oo]
on the support of G,,, the integral on the left side of Equation (14) is equal to fR+ v,(p)du,(p) (see
Billingsley, 1995, Theorem 16.11).

We now show that Equation (14) holds if the domain of integration on each side were restricted to
(0,+00). To see this, consider the Lebesgue-Stieltjes measure v,, obtained from H,,,; it is enough to show
that v,, and u,, agree on the Borel subsets of (0,+00). We can note that, for any interval (a, b] contained
in (0, +00),

Note that u,, is a measure (Billingsley, 1995, Theorem 16.9). Using that v,(p) is bounded

E[e"Cn 0[P, =g

]
dG,,(q)=um((a, b]).

v ((a,b])=H, (b)—H, (a)=
(0, D=0 (@)= | e

We can then assume that v,,((0,+00))=u,,((0,+00))>0 as otherwise the result is immediate. Then
> ((J o)) and m ((g ooy are probability measures on B ;o). Also, the collection of subsets (a, b] con-
tained in (0, +oo) together with the empty set, form a n-system. Theorem 10.3 of Billingsley (1995) then
states that " ((0 o)) and Hm(((’iﬁoo)) are equal on B ; o), and so v,, and u,, are also equal.

We can then note additionally that

E[e” r(Tm,e— t)|pT :0]

|: _r(Tm’t_t)l/rm,t < oo]

um({0})= Gm(0)=H,(0)= v, ({0}),

and hence conclude (again using Theorem 16.9 of Billingsley, 1995) that Equation (14) holds for the stated
domain of integration R,.

Attaining or approaching expected profits IT*. We now show that there exist price-path mechanisms for
which seller expected discounted total profits at least approach the upper bound IT* in the sense of the
proposition. Recall the assignment of the J indices in the main text. In particular, we let x;=0 and let
(n; )}(:1 be the (unique) increasing sequence containing all indices satisfying x;';j_l <x;';j, where each x; is
the probability of allocation in the optimal static mechanism. Then, (p:j )1<j<J gives the prices in the static
mechanism.

The main text describes price-path mechanisms achieving profits IT* for J=1 and J =2, however we
have not yet verified the measurability conditions. We do this now for J =2 (they are immediate for J =1).
To formally define the price process, we let (N;);cg, be a Poisson counting process defined on a filtered prob-
ability space (Q, F, (F;);er,,P), and with arrival rate A, =rx;§l / (1—x;’;1). We follow Billingsley (1995, p
298) and associate each outcome w with a sample path satisfying a certain Condition 0°. This states: “For
each w, N,(w) is a [finite] non-negative integer for t >0, Ny(w)=0, and lim,_,, N;(w)=00; further, for
each w, N,(w) as a function of t is nondecreasing and right-continuous, and at the points of discontinuity
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the saltus N;(w)—sup,, Ny(w) is exactly 1." We take (F;).cg, to be the natural filtration.
We then define the price process (P;);cr, by

{9n if t =inf{s:N;(w)>m} for some meN\{0},
P (w)=1 1

P:2 otherwise.

The underlying probability space is the same, and note that the filtration (F;);cg, introduced above is still
the natural filtration.?> This process is progressively measurable. To see this, we can define, for each >0,
a process (Ptn)teR+ by

P:)(w):{enl if te[inf{s:Ns(w)Zm}, inf{s:Ns(co)Zm}+n) for some meN\ {0},

p:Z otherwise.

The underlying probability space is the same. The process is adapted to the same filtration (F;);cg, and has
right-continuous sample paths, implying it is progressively measurable (see, e.g., Theorem 25.8 of Klenke,
2013). That is, for any s>0, P,’(w) restricted to a function on [0,5]xQ is measurable with respect to
Bio,5)®F;. But, P(w)=lim,_,, P'(w) is similarly measurable as a pointwise limit (see, e.g., Theorem 13.4
(ii) of Billingsley, 1995), establishing the result.

Now, consider the stopping times. We can write, for all t and cw,

t ifnan,
Tp(w)=1 inf{s€[t,00):P(w)=0,} ifn;<n<ny,

+00 n<n,.

For any type 0, and positive integer m, we can define 7' (w)=7 |mJ(w). Then, for any Borel set B of R,

U [a a+-= )XT 1(B)

{a:a=% for geNU{0}}

. m o
the preimage under 777, is

where 7_1 B)={we:1, (w)€B}. Each [a,a+;; 1 )XT_l (B), with a=q/m for qENU{O}, isin By, ®F,

and so the above countable union is also in Bg, ®]: showmg the measurability of 7)',. If n<n;, then

T (W)= Tn m (w)=+00. For n>n;, noting the left continuity of 7, ,(w) in t for glven w, we have that

lim;, o0 T (@)=7, () and so 7, ;(w) is measurable with respect to By, ® F as a pointwise limit (again,
see Theorem 13.4 (ii) of Billingsley, 1995).

Assume from now on that J >3. We consider price processes with J states {o; }JJ.=1 and parameterised

by A>0, anticipating that our result will be shown by taking A— co. The price when the state is j is p;“lj.

Transitions of the price process for each A are described as follows:

*

1. In state o the state changes to state 0;_; at rate A, = 7=
nj—1

2. In state o, for j=1,...,J—1, the state changes to state o at rate A and, if j>1, the state changes
to state 0j_; at rate mj\A, where mj.\ is determined below.

rx

ZSFor any w, the dates s at which P,(w)=6, | for s <t contains the same information as the path (N;(w));co,]- See Billingsley
(1995, p 299).

37



For each j=2,...,J—1, we choose mj.\ so that the following equation is satisfied:
A . mtA A ((1—36,’2].)/\+r)x,’§j_1
xnj_l _xnj(A+m9A+r xnj—l + A+m;§A+r) = mj = A(X;‘lj —xp )

nj_1

>0. (15)

For a given initial distribution of states (q;,qs,-..,q;), with Z;ﬂ qj=1, we have defined a finite-state
continuous-time Markov process that is irreducible and positive recurrent. There is then, for each A, a
unique stationary distribution (q{‘, qé\, . ..,qﬁ\) (e.g., see p 396 of Beichelt, 2016). We take the date-zero
distribution over states to be this stationary distribution.

Consider now the acceptance strategy T of the buyers. Because the price process is time homogeneous,
it is optimal for buyers to follow a stationary strategy, described simply in terms of the set of prices (or states)
at which purchase occurs. We can then restrict attention to acceptance strategies that depend only on type
and state (and not, for instance, arrival date, nor calendar time).

Below we only partially determine the strategy by specifying the highest price/state at which a buyer
of each type purchases; this is enough to determine buyer discounted payoffs in state J. Buyers’ decisions
of whether to purchase at lower prices must be chosen to be buyer-optimal so as to guarantee incentive
compatibility. However, the effect on the seller’s discounted expected profits will be negligible as A— oo
and so the choice can be ignored in the analysis. This follows, in particular, because the probability of state
J approaches one as A— 00. To see this, note the balance equation for state J is given by

J—1
OZAZq{\_AnJ,lq_/]\;
i=1

where the first J—1 terms represent flows into state J and the final term represents flows out of this state.
J—1 A . . A
As A— 0o, we must have Zi:l q;' —0, implying that g7 —1.
We now show that, if j’ is the highest state in which a buyer of type 0, purchases, then his expected
discounted payoff in state J is x; v,(p; ). To see this we can write a system of Bellman equations for states
J ]

j=j’, with V; giving the expected discounted continuation payoff in that state. We have V;, =vn(pj;]_/). For
ji=j’+1,j'+2,...,J—1,
rV;=A(V;—=V;)+m;A(V,_,—V)),
and
rVy=2n,_ (Vo1 =Vy).

*
n
J

Using Equations (15), the system is uniquely solved by V;= vn(p;‘;_/).26 In particular, because X:J =1 by
J

x,’;_
Proposition 1, we have shown that V; =x:j/ vn(pflj/).

We now note that it is optimal for a type 0, to set the highest price at which he purchases to p;. This
follows from the above expression for buyer expected discounted payoffs in state J together with incentive
compatibility of the static mechanism. We specify our price-path mechanism by taking a buyer-optimal
acceptance strategy with p} being the highest price at which purchase occurs for each type 6,.2” Then,
analogous to the argument for buyer expected discounted payoffs, expected discounted profit from type

26To see uniqueness, initially let V, to be determined and consider solving for V; recursively, starting with Vj,,,. By an inductive

argument, for j>j'+1 we have V;=A;+B;V; for constants A;€R and B;€(0,1) that can be determined in the recursion. In
Ay

particular, we have V;=A;+B,V; with B; €(0,1) and so V, is given uniquely by 5 -
27This strategy can be determined as follows. First, fix the highest price at which purchase occurs to be Py Then let the decision
whether to stop in state j=1 be optimal and recursively determine an optimal purchase decision for all higher states, up to the

state immediately below the one with price p.
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0,, conditional on state J, is x;p;. Hence, the seller’s expected discounted profit from a buyer arriving to

the market in state J (with probability of each type 6, given by f3,,) is IT*.

Now consider per-buyer expected profits at any date t whose date-t value (given stationarity of the
price process and buyer acceptance strategy) is independent of t. Recalling that the probability of state
J approaches one as A— oo, per-buyer profits also approach IT*. It is then easily seen that expected
discounted total profits also approach IT*, as required.

It remains to consider the admissibility requirements. We can consider a filtered probability space
(Q, 7, (F¢)ter, , P) that associates outcomes with right-continuous sample paths taking values equal to the
prices in the optimal static mechanism, and the filtration can be taken as the natural one. As the process is
adapted and sample paths are right-continuous, the price process is progressively measurable.

For each 0,, let S, be the set of prices at which the buyer stops according to the above stationary
strategy. We can let, for each 6,, each t€R,, and each weQ, 7, (w)=inf{s€[t, 00):P(w)€S,}. Note
that this stopping time is right continuous in t.2®6 We can define Tr’zt(w)=fn7 (@) which, as in the
case of J=2, is easily shown to be By ®F measurable. Then, the right continTlity of 7, (w) implies
lim,,_, 00 T;’;’t(co):rn’t(w), showing that 7, ,(w) is Bg, ® F measurable as the pointwise limit of measur-
able functions (again, see Theorem 13.4(ii) of Billingsley, 1995). O

Proof of Proposition 5

Proof. Suppose J>2. Fix a sequence of deterministic price-path mechanisms determined by p™:R, =R,
and ™. Assume for a contradiction that the payoff the seller achieves in the m-th mechanism, denoted
IT", approaches the static optimal payoff IT* as m— co. For each £>0 and m, let T" be the set of times
satisfying that

— m __
mﬁlx{le (T, t)—x:|, |pZ11T,t_p:;|}<E.

That is, T." is the set of times for which the price and discounting under (p™, t™) is similar to the price
and probability of allocation under the optimal static mechanism for all types. By the uniqueness of the
optimal static mechanism (Proposition 1), we have that, for all €>0,

J e trdt>1—c¢ (16)
Tm

if m is large enough.
Fix some me€N, a small £>0, and some t € Tgm. Define

t1:=t—log(xzj_1+8)/r and t2:=t—log(xflj_l—€)/r-

Note that t <t; <t and, since t€T;", we have that 7' €(ty,t2) and pT, <py,_, T€- The incentive
1 o _

compatibility of the type 6, implies that, for all t'e€[t, t;], we have

r(t

—r(t™
e

n t,—t/) m —r(zt —t) m —r(ty—t’) *
2 (Pl )Ze ety (pT ) >e Vo, (P, t+E).
J nyt! J ny_q,t 7 J—1

The second inequality holds because 77! — t' <t,—t’ and anm y
J—1»

*
<an +e€.

28To define the topology on the extended real numbers, we take the base for open sets to be the open intervals in R plus sets
of the form [—00,a) and (b, c0], a,beR.
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Let { satisfy
Dy, (b +e)=v, (b7, )

Note that t,— is independent of m, and it is close to —log(xzj_l) /r if € is small enough (recall that, from

. Vn, (pzjil)). Hence, for all t’ €(f, t;) we have

Proposition 1, we have that v, (pflj)zxnji1

nJ,t/_t

—r(ty g m —r(ty—t") * *
¢ Vo (P )> ey (0 ), (o], ).
ny,t
m / * __ ra l : m * / m
Note that, because TnJ,t’_t >0 and X, = 1, this implies that anm , <p, —&sot ¢ Tr.

We have then shown that, for each t&T[", there is an interval (i, t;) satisfying that (¢, t;)NT"=@. It
is easy to see that, if £>0 is small, t,—{ is close to _IOg(X:J,l) /1 (as we argued above) and that t,—t; is

close to 0 (note also that, when ¢ is small, {—t is close to 0). Hence, for each small € and t € T, thereisa
closeby inteval of approximate size —log(x:;H )/r>0 not intersecting with T.". This proves that equation
(16) cannot hold, hence profits are bounded away from the static profits IT* for all m, a contradiction. [

Proof of Proposition 6

Proof. We begin by showing the following result.
Lemma 5. For all dates t>0, any positive probability event A€ F;, expected discounting to the next sale

E[e—r(ﬁ,t_t)] is equal to XT.

Proof. We have argued in the main text that ]E[ Zizl ﬁne_r(”,f_f)PTn,t ] =1IT* for almost all t. For any such
t, this conclusion can be extended to expected profits conditional on positive probability events A€ F,. In
particular, consider the expected discounted profits Zizl ﬂnE[e_r(T“’I_t)PTn)t |A] and note that the value
that can be obtained is limited by the following incentive constraints: for all 8,, and 6,,, we must have

E[e " ney, (P, JIA]=E[e "m0y, (P, )IA] and E[e"("uy (P, )A]>0.

>t Lt
To see, for instance, that the first inequality is necessary for 7, , to be an incentive compatible stopping

time, suppose that inequality fails for 6,,7# 6,,. Then, we can define the stopping time

Tme(w) if w€EA,

%n,t(w)z {

Tpt(w) otherwise,

which represents a profitable deviation (i.e., a failure of incentive compatibility).
Letting J?’::E[e_r(%f_t)lA] (where recall e~°° =0), we can follow the steps in the proof of Proposition
4 to show that there is a collection of distributions (PVI;*) such that the objective can be rewritten as

> B f pdHA(p)

n=1

and the incentive constraints as

%Z‘J vn(p)dﬁf}(p)ziﬁj vin(p)dH, (p) and %Z‘J vu(p)dH.(p)=>0.
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By reference to Proposition 1, the objective is then bounded above by IT* and attained only if, for n=1, 2,
Jvc‘:l‘zx: and PVI;‘ is degenerate at p*. Therefore, if t is such that ]E[ Zi:l ﬁne_r(fmf_t)PTn,t]zl'[*, we must
have in particular ¥4 =x}

We now extend E[e_r(Tlvf_t)IA]zxj‘ to all t>0 and positive probability events A€ F,. To first show
that E[e‘r“l’f_t)IA]ZxT, note that for any s> t, we have E[e " (*1.:79]|A]> ¢ "C~DE[e7(*1575)|A] because
71, <71, The claim then follows because A€ ¥, C F; and we can take s arbitrarily close to t and such that
E[e_r(flys_s)lA]sz.

Now suppose for a contradiction that t >0 and E[e"("1:70]A]> x} for some positive probability event
A€ F,. In case A has probability less than one, note that ]E[e_r(“’f_t)lAC]ZxT where A° € F; is the comple-
ment of A. Therefore, we can conclude using the law of total expectation that E[e (1.7 ]> x3. Then, for
s<t, we have E[e "("1s™)]> ¢ T(=)E[e"(71:7D)] implying JE[e_r(Tl:S_S)]>xiK for s sufficiently close to t.
But this contradicts that E[e " (F1s75)] =Xx] almost everywhere. O

(End of the proof of Lemma 5. The proof of Proposition 6 continues.)

Now, for any t>0, any A€.F, with positive probabilityy, and all s>t, we can define
Mf(s)=P(w:rl’t(w)Ss|A) to be the distribution of the time to next sale at t conditional on the event
A. Tt is easy to see that Mf(s) <1 for all s>t and that Mf(t)zo. We then have, for all s>t,

E[e "M DAl= | eTEOAMAR) +(1-MAG))E[e T TD|A, T, >5],
(ts]

which yields
Xi= J e TETOAMA(Z) +(1—MA(s))e It (17)
(t.5]

This equation can be used to show that Mf‘(~) is absolutely continuous on compact intervals and hence
has a density, call it m?, on the restriction to R,. Consider s” and s” with t <s’<s”. Then,

X} =f e_r(z_t)de(z)—l—f e ETIAMA(z) +(1—MA(s"))e ¢ x;
(t’sl] (S/,S”]
and indeed
x} Zf e_r(z_t)de(z)+e_r(sﬁ_t)(M?(s”)—M‘;‘(s'))+ (1—Mf(s”))e_r(sﬁ_t)x;‘.
(t:s']
Moreover,
x]< J e TEAMA(R) + e_r(sl_t)xi‘ —e_r(sn_t)Mf(s/)xi‘.
(t,s]

Subtracting the latter inequality from the former we obtain
x3 "
MA(s")—MA(s") < m(er“ —~)-1).
1

This establishes the claim.
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We can then write Equation (17) as
xi= f e_r(z_t)m‘?(z)dz + (1 —Mf(s))e‘r(s_t)xf.
(ts]

Differentiating in s yields a first-order linear non-homogeneous ODE

dMm4 rx¥
C=(1-M)—,
ds 1—x1k

which is solved by Mf(s)= 1—e ™60 with A, = % Because the right side of the ODE is Lipschitz in
1
Mf‘, the solution is globally unique by the Picard-Lindel6f Theorem. This completes the proof. O

Proof of Proposition 7

Proof. Sufficiency. Incentive compatibility for low types is immediate so consider the stopping time of
high types 7, , which prescribes stopping at t. It is always optimal for a high type to stop at the first sale, so
the only deviations we need to consider are to stopping times 1, , where either (i) the buyer simply waits
forasale (i.e., t5 (w)=inf{s>t:P(w)=61}), or (ii) the buyer purchases either at some date s’> t or at the
first sale, whichever is earlier (i.e., t5,(w)=min{s’,inf{s>t:P(w)=6;}}). For the second specification
of the stopping time to yield different expected payoffs than the first requires the event 7, ,>s’ to have
positive probability; so assume this is true when considering the second case.

In the first case, the high type’s expected payoff is ]E[e_r(flﬁ_t)vz(Gl)]zxi‘vz(el). By Proposition 1,
this is equal to the expected payoff from immediate purchase, v,(p3).

In the second case, let A be the (positive probability) event that 71 ,>s’, so that its complement A° is
the event 7, , €[t,s’]. Then the high type’s expected payoff under %, is

E[e 70wy (0))ATP(AT) +e " Ovy(p5)P(A)
=E[e 1 y,(0))|A°TP(A) +e " v, (6,)P(A)
<E[e™" 1y (6))|ATTP(A) +E[e " Dvy(61)IATP(A)
=XTV2(91)
=v,(p3),
where v;(p3) is the expected payoff under 7, ;. The inequality follows by Condition (5).

Necessity. Now, consider a t and s>t such that Condition (5) fails. Let A denote the event that 7, ,>s,
and let A° be its complement. Then we have P(A)>0 and E[e " ("1.:79)|A] <xj.
Since E[e ("7 ]=x%, we have

xi( :'P(AC)E[(Z_r(T“_t) |AC:|+'P(A)e_r(s_t)E[e_r(TLf_s) IA].

So, necessarily,
PAE[e 1 D]A]> (1—P(A)e D )xt. (18)

For a high type arriving at t, consider the deviation 7, , defined by purchasing at the next price discount
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or at date s, whichever comes first. This yields an expected payoff
PAELe 1A Tvo(01) + P(A)e ™™y (p)). (19)

The first term of Equation (19) is strictly greater than (l—P(A)e_’”(S_t))xj‘vz(Gl) by Equation (18), while
the second term is equal to P(A)e_r(s_t)xi‘vz(el). Therefore, the expression in Equation (19) is strictly
greater than xv,(6,), which is equal to v,(p3). This shows that purchasing immediately with probability
one gives a strictly lower payoff than the defined deviation. That is, incentive compatibility fails. O

Proof of Proposition 8

Proof. To characterize an optimal static mechanism, first the usual replication argument permits us to
conclude that it is without loss of generality to consider incentive compatible and individually rational
direct mechanisms. As in the baseline model, we may assume that the direct mechanism specifies, for each
type 6,,, an allocation probability x,, and a distribution over payments conditional on allocation, H,. We
first show that it is optimal for the seller to specify deterministic prices.

Lemma 6. It is optimal to set a payment equal to 0, for the low type and a deterministic payment p, €[ 67, 6,)
for the high type.

Proof. The utility of type 0, when reporting 6, is

Up e =X f (6,—p+ulp,—p))dH(p).

Incentive compatibility is the requirement that, for all 6, and 0y, U, , <U,, ,,. Individual rationality is the
requirement that, for all 6,, U, ,>0.

Consider an incentive-compatible and individually-rational mechanism. We want to show that there
is a weakly more profitable mechanism with the properties in the lemma.

If the probability of allocation to the low type is zero, the seller can (without sacrificing profits) specify
a payment for the high type equal to the high type’s willingness to pay.2?° The payment specified to the
low type is irrelevant since it is never charged (so we can let this equal 6;). So, in this case, the statement
of the lemma holds. We can then focus on the case where the original mechanism allocates with positive
probability to the low type.

Next note individual rationality implies that, in any mechanism, the low type does not make an ex-
pected payment higher than 6; for receiving the good. We may then assume that the high type makes an
expected payment at least 0; for receiving the good, otherwise the seller could instead offer the weakly
more profitable mechanism that has both types purchase at price 8; (say a take-it-or-leave-it offer for the
good at price 6;). This mechanism satisfies the properties in the lemma.

We can take as given then that the low type is awarded the good with positive probability and the
price distribution conditional on purchase is given by H;. We can replace the random payment with a
deterministic payment which is the certainty-equivalent payment for the low type, (weakly) raising the
seller’s profits because the low type’s payoff is concave in the payment. Because the low type earns a non-
negative payoff in the original mechanism (by individual rationality), this certainty-equivalent payment is

2This is the price p that sets 8,—p+An(p,—p)=0. That is, the high type’s willingness to pay is 921:/1# €(p, 0,).
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no greater than 6,. Denote this new payment p;. It is given by

(6:—p1)(1+n)=Uy,

where
U1:J (91—p+n(91—p))dH1(p)+f (61—p+An(6;—p))dH,(p)
[0191) [

61,00)

is 8;’s payoff in the original mechanism. We therefore have
p1=6,—U;/(1+n).

We now show that 6,’s incentive compatibility constraint is satisfied in the new mechanism (6;’s in-
centive compatibility constraint is unaffected by the adjustment to the mechanism, and both individual-
rationality constraints are also unaffected). Note that 6,’s payoff from mimicking 8, in the original mech-
anism is

xq U (6,—p+n(p2—p))dH; (p)+f (92—p+7m(pz—p))dH1(p))- (20)
[0’p2) [Pz’oo)
After the adjustment to the mechanism (where we replaced 6,’s payment by p,), 65’s payoff from mimicry

is
x1(0,—p1+n(p2—P1))- (21)

The decrease in payoff for type 6, when mimicking 6; due to the change in the mechanism is the
expression in Equation (20) less that in Equation (21). This is equal to

xl(J n(k—l)(p—91)dH1(p)+n(1—H1(pz))(7t—1)(92—91)) >0.
[61,p2]

We conclude that, given the original mechanism satisfied the high type’s incentive constraint, the new
mechanism does too. In addition, by the concavity of type 6,’s payoffs, the new mechanism is weakly more
profitable for the seller. So we have found a weakly more profitable mechanism that is incentive compatible
and individually rational, and where the low type makes a deterministic payment p .

Next, noting p; < 60, consider further (weakly) raising the payment of the low type to 6;. This relaxes
the high type’s incentive constraint, keeps individual rationality constraints intact, and raises the profits of
the mechanism. To see that the low type does not prefer to mimic the high type, recall we could assume that
the high type makes an expected payment upon receiving the good of at least 6;. The low type therefore
earns a non-positive payoff from mimicking the high type.

Now make a final adjustment to the mechanism by replacing the high type’s payment with its certainty
equivalent. Because the high type has concave payoffs, this payment is again at least 6;. Again, the low
type’s incentive constraint, and hence all incentive and individual rationality constraints remain intact.

We have constructed, then, our weakly more profitable mechanism where the low type pays 6; and the
high type pays at least 6;. Because the high type obtains a non-negative payoff, the high type’s payment as
determined above is no greater than his willingness to pay, i.e. GptAnps (see footnote 29). This is strictly

1+An
less than 6, as we assumed p, < 6,. O

(End of the proof of Lemma 6. The proof of Proposition 8 continues.)

Now, to establish Proposition 8, consider maximizing seller profits among mechanisms where the pay-
ment distribution H,, is degenerate for each n. Among mechanisms in the class considered in Lemma 6, we
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t.30

only need to impose the high type’s incentive constraint.®” This constraint can be written as:

X9(02—py+u(p2—p2))=x1(0,—01 +1(p3—061)), (22)

where p,€[6,,60,) is the price charged to the high type 6,. Here, the left-hand side is the high type’s
payoff from truthful reporting, while the right-hand side is the payoff from mimicking 6;, in which case
the buyer makes a payment 8; when receiving the good. When the constraint (22) is satisfied, the high type
earns a non-negative rent. Setting x, =1 therefore relaxes the constraint. It does so without introducing
any violation of the low type’s incentive constraint or in either of the individual rationality constraints.
Therefore, it is indeed profit maximizing to set x,=1. Moreover, raising p,, provided it does not lead to a
violation of the constraint (22), increases profits. We can therefore assume that the constraint binds. That
is, p, is given by
O2—pa+u(pa—p2)=x1(0,—0; +n(p2—61)).

Viewing p, now as a (decreasing) function of x;, there is a value of x, call it x;, at which the high
type’s payment equals the reference point. This value is given by
_ 02—p2
0,—61+n(p2—61)

X1

For x; > X, the high type’s payment is below the reference point and the high type experiences gains. For
x1 <Xy, the high type’s payment is above the reference point and so the high type experiences losses. We
can observe that, for x; >X;, we have

_ 0, +npa—x1(0,—60; +1(p2—61))
1+n '

P2

For x; <X, we have
_ 0, +nApy—x1(0,—0,+n(py—6,))
1+nA '

P2

We conclude that p, decreases in x; at rate

0,—0;+1(p2—6,)
1+nA

for x; below X, and at rate
0,— 01 +n(py—61)
1+n

above X;. Since the former is smaller than the latter, this shows that profits, as a function of x;, have a
concave kink at X;.
It is then readily checked that x; =X, in the optimal mechanism if and only if

0,—61+n(p2—61) 0,—61+m(p2—061)
2 U1 TIP3 1+91(1—ﬂ2)S0S—/322 1T P2—5%

P 141 1+nA

+61(1—p).

This is equivalent to Condition (6). O

30The low type’s incentive constraint is satisfied whenever the high type pays at least 6;. Because the low type pays his
valuation 6, for the good, the high type’s individual rationality constraint is then satisfied whenever his incentive constraint is
satisfied.
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