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Abstract

This paper analyzes the sequential admissions procedure for medical subjects at public

universities in Germany. Complete information equilibrium outcomes are shown to be

characterized by a stability condition that is adapted to the institutional constraints of

the German system.

I introduce matching problems with complex constraints and the notion of procedural

stability. Two simple assumptions guarantee existence of a student optimal procedu-

rally stable matching mechanism that is strategyproof for students. In the context of

the German admissions problem, this mechanism weakly Pareto dominates all equilib-

rium outcomes of the currently employed procedure. Applications to school choice with

affirmative action are also discussed.

Keywords University Admissions · Matching · Stability · Strategyproofness · Complex

Constraints

JEL classification C78 · D02

1 Introduction

According to German legislation, every student who obtains the Abitur (i.e., successfully fin-

ishes secondary school) or some equivalent qualification is entitled to study any subject at any

∗This paper previously circulated under the title “Failures in the German College Admissions System”. I
thank Benny Moldovanu for continuous guidance and support during this project. I have also greatly benefitted
from discussions with and comments from Al Roth. The editor and two anonymous referees provided very
helpful suggestions for improving the quality of this paper. I would like to thank Peter Coles, Lars Ehlers,
Fuhito Kojima, and Konrad Mierendorff for their insightful comments and suggestions. Financial support
by the Deutsche Forschungsgemeinschaft (DFG) and the Deutscher Akademischer Auslandsdienst (DAAD) is
gratefully acknowledged.
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public university. Given capacity constraints at educational institutions and the ensuing need

to reject some applicants, this principle has long been reinterpreted as meaning that everyone

should have a chance of being admitted into the program of his or her choice. In order to

implement this requirement, places in those fields of study that are most prone to overdemand

have been allocated by a centralized nationwide assignment procedure for over 25 years. In

the first part of this paper I analyze the most recent version of this procedure that is currently

used to allocate places for medicine and three specialities (dentistry, pharmacy, and veterinary

medicine). In the winter term 2010/2011 more than 56 000 students applied for one of the

less than 13 000 places available in these four subjects, meaning that ultimately three in four

applicants had to be rejected. What sets this part of my study apart from previous investiga-

tions of real-life centralized clearinghouses is the sequential nature of the German admissions

procedure: In the first step, the well known Boston mechanism is used to allocate up to 40

percent of the total capacity of each university among special applicant groups, consisting of

applicants who have either obtained excellent school grades or have had to wait a long time

since finishing school. About one month later, all remaining places - this includes in particular

all places that could have been but were not allocated to special student groups - are assigned

among remaining applicants according to criteria chosen by the universities using the college

(university) proposing deferred acceptance algorithm (CDA). Applicants belonging to special

student groups, who were not assigned one of the seats initially reserved for them, have an-

other chance of obtaining a seat in this part of the procedure. Despite the complexities of the

admissions procedure and the strategic incentives induced by it, I show that, under reasonable

assumptions, the set of (complete information) equilibrium outcomes can be characterized by a

stability condition with respect to the true preferences of participants. The concept of stability

used here differs from the previous literature since it accounts for the fact that (i) each university

has different types of places (corresponding to the places allocated in the different parts of the

procedure) with differing admissions criteria, and (ii) vacant seats can be redistributed across

quotas. I show that, even in the absence of information asymmetries, the procedure supports

Pareto dominated equilibrium outcomes (with respect to the true preferences of applicants).

Motivated by this finding, I develop an alternative assignment procedure in the second part

of my paper. For the redesign I interpret the current procedure’s sequential design as reflecting
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the constraint that a fraction of total capacity of each university should initially be reserved

for special student groups (excellent and wait-time applicants) and should be allocated on

basis of universities’ criteria if (and only if) there is insufficient demand from these groups.1

Similar constraints can play an important part in applications to school choice: For example,

schools are sometimes required to offer guaranteed access to specific student groups,2 and may

have preferences over how any potentially remaining capacity should be distributed among

applicants (e.g. a strict preference for an equal distribution among sexes). Any mechanism that

implements such constraints by sequentially allocating parts of the total capacity, such as the

current German procedure, and that depends on submitted preferences in a reasonable way, e.g.

by producing a stable matching, necessarily induces incentives to manipulate the assignment

procedure. Given that incentive compatibility is an important goal, it is thus important to study

when and how complex constraints of the above type can be implemented by mechanisms that

simultaneously assign all available places and achieve a satisfactory allocative performance. To

study these questions in sufficient generality, I introduce a model of matching with complex

constraints, where college preferences are given by choice protocols that can be thought of as

an explicit representation of how a college chooses from a given set of applicants. Abstracting

from details, a choice protocol consists of (i) a sequence in which student groups are to be

considered, and (ii) an associated sequence of capacities, which, for each point of the sequence,

describes how many places can be allocated as a function of the numbers of seats left empty

by previously considered groups. I introduce a concept of procedural stability for this class of

matching problems and show that as long as choice protocols satisfy two simple restrictions

of monotonicity and non-excessive reduction, a student optimal procedurally stable matching

always exists and the associated direct mechanism is (group) strategyproof for students. These

results rest on a transformation of a matching problem with complex constraints to an associated

“standard” two-sided matching problem, where constraints are not explicitly present, for which

well known results (see Section 2 for references) apply. In case of the German admissions system,

1While some changes to the current quota system may be feasible, at least the quota for applicants with
a long waiting time is generally seen as necessary. It ensures that that every applicant with the necessary
qualification (i.e. finishing secondary school) has a chance to study any subject she wants. This has been
put forth as a basic requirement for university admissions by the German constitutional court in its Numerus
Clausus Urteil from 1972.

2Most public schools in Boston have to admit any student with an older sibling already attending the school
(see Abdulkadiroglu et al 2006), while some public schools in New York City have to admit all students whose
performance in a standardized English language exam is among the top 2 percent (see Abdulkadiroglu et al
2009).
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procedural stability reduces to the stability notion that characterizes complete information

equilibrium outcomes of the current admissions procedure studied in the first part of this paper.

The choice protocols needed to implement the constraints of the German admissions system

turn out to be monotonic and satisfy non-excessive reduction. Hence, a redesign based on the

above ideas would provide (groups of) applicants with dominant strategy incentives to submit

preferences truthfully and would thus lead to an assignment procedure that Pareto dominates

all equilibrium outcomes of the current procedure with respect to applicants’ true preferences.

Complementary to the analysis of this paper, Braun et al (2010) study the German university

admissions system from an empirical perspective. Using data for the winter term 2006/2007,

for which the rules of the centralized admissions procedure were slightly different from the rules

of the procedure analyzed here, they find considerable support for the hypothesis that appli-

cants try to manipulate the centralized admissions procedure. My paper, which was drafted

independently of this empirical study, complements this research since it shows precisely how

these findings can be explained by applicants’ strategic incentives. A major benefit of the more

theoretical approach is that I am not only able to design a promising alternative but can also

compare it directly to the equilibrium outcomes of the current procedure.

Given that the German admissions system and my proposal for a redesign are closely related

to the deferred acceptance algorithms and the Boston mechanism, the theoretical and applied

literatures on these mechanisms are of course related to this paper. Excellent comprehensive

surveys of some of these applications are Roth and Sotomayor (1990), Roth (2008) and Sönmez

and Ünver (2010).

Variants of the college proposing deferred acceptance (CDA) algorithms have been used to

allocate medical students to their first professional position in the US (Roth 1984a; see Roth

and Peranson 1999 for an account of the efforts to redesign the resident matching procedure)

and to assign students to public universities in Turkey (Balinski and Sönmez 1999). Variants

of the student proposing deferred acceptance (SDA) algorithm have been and are used to

assign students to public schools in Boston and New York City (Abdulkadiroglu et al 2006,

Abdulkadiroglu et al 2009), to allocate on campus housing among students of the Massachusetts

Institute of Technology (Guillen and Kesten 2012), and to assign medical graduates to residency

programs in Japan (Kamada and Kojima 2011).
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The Boston mechanism has been studied extensively since Abdulkadiroglu and Sönmez

(2003) seminal paper on school choice mechanisms. Ergin and Sönmez (2006) show that if

each school has a strict priority ranking of all potential students, the set of complete infor-

mation equilibrium outcomes coincides with the set of stable matchings with respect to the

true preferences of participants. Pathak and Sönmez (2008) show that when some students are

naive in the sense that they always submit preferences truthfully, equilibrium outcomes of the

Boston mechanism coincide with the set of matchings that are stable for a modified economy

in which naive students lose their priorities to students who behave strategically. Chen and

Sönmez (2006) and Abdulkadiroglu et al (2006) provide experimental and empirical evidence

that students or their parents try to manipulate the Boston mechanism and that strategic

behavior can lead to welfare losses. A more positive perspective on the Boston mechanism is

provided by Abdulkadiroglu et al (2011b) who show that when schools have no priorities and

all students have the same ordinal preferences but differ in their (privately known) preference

intensities, any symmetric Bayes-Nash equilibrium of the Boston mechanism weakly ex-ante

Pareto dominates the SDA mechanism with any symmetric tie-breaking rule. Arguments in

support of the Boston mechanism in similar environments are also provided by Miralles (2008)

and Featherstone and Niederle (2008). While the results in favor of the Boston mechanism are

certainly relevant for school choice problems, where priorities are typically very coarse, they

are arguably less so for my application to university admissions since evaluation criteria such

as average grades or standardized tests typically yield a much finer ranking of students.

To the best of my knowledge, this paper is the first study of a dynamic assignment procedure

that combines the Boston and deferred acceptance algorithms.3 Apart from the practical

relevance of this study for the current German admissions system, redesigning it poses new

theoretical challenges due to its complex constraints and the proposed solutions yield new

insights that are applicable outside of the specific context of the German system.

Additional literature is reviewed in context below (see the next section and Section 4.2,

where I compare matching problems with complex constraints to the existing literature on

matching problems with constraints).

3Chen and Kesten (2011) have recently studied a family of school choice mechanisms which contains the
Boston and student proposing deferred acceptance (SDA) mechanisms as special cases. In contrast to the
German admissions system, the mechanisms studied by Chen and Kesten (2011) are simultaneous in the sense
that all available school seats are allocated within one coherent procedure.
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The remainder of this paper is organized as follows. In Section 2, I introduce three known

matching algorithms that are important for the analysis. Section 3 contains a simplified ver-

sion of the current admissions procedure for German universities and an analysis of the induced

revelation game. In Section 4, I introduce a theory of matching with complex constraints and

then show how this theory can be applied to develop a redesign of the German admissions sys-

tem. Section 5 conclude and Section 6 contains proofs of the main results. The supplementary

appendix, Section 7, contains some omitted proofs as well as details and data on the current

procedure.

2 Basic model and assignment algorithms

A college admissions problem consists of

• a finite set of students I

• a finite set of colleges C,

• a profile of student preferences PI = (Pi)i∈I , where Pi is a strict ordering of C ∪ {i}, and

• a profile of college preferences PC = (Pc)c∈C , where Pc is a strict ordering of 2I .

Given a strict ordering Pi for a student i ∈ I, let Ri denote the associated weak ordering,

that is, cRic
′ if and only if either cPic

′ or c = c′. Define associated weak orderings for colleges

analogously. College c is acceptable to student i according to Pi, if cPii, and group of students

J is acceptable to college c according to Pc if JPc∅.

A matching is a mapping µ from I∪C into itself such that (1) for all students i, µ(i) ∈ C∪{i}

for all i ∈ I, (2) for all colleges c, µ(c) ⊆ I, and (3) i ∈ µ(c) if and only if µ(i) = c. I make the

usual assumption that agents only care about their own partner(s) in a matching so that their

preferences over matchings coincide with their preferences over (sets of) potential partners.

The sets of students and colleges are assumed to be fixed so that a college admissions problem

is given by a profile of student and college preferences P = (PI , PC). Given c’s strict ordering

Pc, its choice from J ⊆ I, denoted Chc(J |Pc), is the Pc-most preferred subset of J .

The key allocative criterion in the literature is (pairwise) stability as introduced by [18].

Given a college admissions problem P , a matching µ is pairwise stable if (1) no student is
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matched to an unacceptable college, that is, for all i ∈ I, µ(i)Rii, (2) no college prefers to reject

some of its assigned students, that is, Chc(µ(c)) = µ(c), and (3) there is no student-college pair

that blocks µ, that is, there is no pair (i, c) such that cPiµ(i) and i ∈ Chc(µ(c) ∪ {i}).

Next, I introduce three important restrictions on college preferences over groups of students.

College c’s strict ranking Pc

(a) is substitutable (Kelso and Crawford 1982), if for all subsets J ⊆ I whenever i ∈

Chc(J |Pc) ∩ J̃ for some J̃ ⊆ J then i ∈ Chc(J̃ |Pc).

(b) satisfies the law of aggregate demand (Hatfield and Milgrom 2005), if J ⊆ J̃ ⊆ I implies

|Chc(J |Pc)| ≤ |Chc(J̃ |Pc)|.

(c) is responsive (Roth 1985), if there is a strict ordering P ∗c of I ∪ {c} and a quota qc ∈ N

such that

(c1) ∅PcJ for all J ⊆ I such that |J | > qc, and

(c2) for all J ⊆ I with |J | < qc and all i, j ∈ I \ J , J ∪ {i}PcJ ∪ {j} if and only if iP ∗c j

and J ∪ {i}PcJ if and only if iP ∗c c.

An important special case of the college admissions problem with responsive preferences is

the priority based allocation problem in which colleges’ rankings of individual students and their

capacities are exogenously assigned. In particular, a colleges’ ranking of individual students

does not represent its preferences and thus has no intrinsic meaning for welfare evaluations. To

emphasize this important interpretational difference, college c’s strict ranking of I ∪{c} will be

called a priority ranking and denoted by �c if we are dealing with a priority based allocation

problem.4

A (direct) matching mechanism is a mapping f from the set of feasible preference profiles

to the set of possible matchings. In a college admissions problem, the set of feasible preference

profiles consists of all preference profiles of colleges and students that satisfy appropriate re-

strictions (e.g. substitutability or responsiveness). In a priority based allocation problem, the

“preferences” of colleges are fixed, so that the set of feasible preference profiles consists of all

4If all students are acceptable to all colleges and there is no shortage of total seats, a priority based allocation
problem is usually referred to as a school choice problem, following the seminal article by Abdulkadiroglu and
Sönmez (2003). See Erdil and Ergin (2008), Abdulkadiroglu et al (2009), Ehlers and Erdil (2010), and Ehlers
and Westkamp (2011) for analyses of the priority based allocation problem when priorities are not necessarily
strict.
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profiles of student preferences. Given a matching mechanism f and a feasible preference profile

P , fi(P ) denotes the assignment of agent i ∈ I ∪ C. A matching mechanism f is stable, if

it selects a stable matching for each profile in its domain. A matching mechanism f is group

strategyproof for students, if for all feasible preference profiles P and all sets of students J ⊆ I,

there is no joint manipulation P ′J = (P ′j)j∈J such that fj(P
′
J , P−J)Pjfj(P ) for all j ∈ J . If

this condition holds for all singleton subsets of students, f is strategyproof for students. I now

describe three assignment procedures that play an important role in the literature and the

remainder of this paper.

2.1 The student proposing deferred acceptance algorithm

The student proposing deferred acceptance algorithm (SDA), developed by Gale and Shapley

(1962) (and extended to college admissions problems with substitutable preferences by Roth

and Sotomayor 1990), will play an important role in my proposal for a redesign of the German

admission system and proceeds as follows

In the first round, every student applies to her favorite acceptable college. Each

college c temporarily accepts its choice from the set of applicants in this round and

rejects all other applicants.

In the tth round, every student applies to her most preferred acceptable college (if

any) among those that have not rejected her in any previous round of the algorithm.

Each college c temporarily accepts its choice from the set of applicants in this round

and rejects all other applicants.

Given some preference profile P , let f I(P ) denote the matching chosen by the SDA. If

all colleges have substitutable preferences, f I(P ) is the most preferred stable matching for all

students and the least preferred stable matching for all colleges (Roth 1984b).5 If, in addition,

colleges’ preferences satisfy the law of aggregate demand, f I is group strategyproof for students

5Student optimality of the SDA was first established by Gale and Shapley (1962) and then later extended
to matching problems with substitutable preferences by Roth (1984b).
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(Hatfield and Kojima 2009).67

2.2 The college proposing deferred acceptance algorithm

The college proposing deferred acceptance algorithm (CDA) lets colleges take an active role. This

algorithm plays an important role in the current German admission procedure and proceeds as

follows:

In the first round, each college offers admission to its choice from the set of all

students. Each student i temporarily holds on to her most preferred offer and

rejects all other offers.

In the tth round, each college offers admission to its choice from the set of all

students that have not rejected one of its offers in any previous round. Each student

i temporarily holds on to her most preferred offer and rejects all other offers.

Given a feasible preference profile P , let fC(P ) denote the matching chosen by the CDA.

For any preference profile P such that colleges’ preferences are substitutable, fC(P ) is the most

preferred stable matching for all colleges and the least preferred stable matching for all students

(Kelso and Crawford 1982). Furthermore, the set of pure strategy complete information Nash

equilibrium outcomes of the preference revelation game induced by fC(·, PC) coincides with the

set of stable matchings with respect to P if colleges’ preferences are substitutable (Sotomayor

2007).8

6Strategyproofness of the SDA for the proposing side was first established independently by Dubins and
Freedman (1981) and Roth (1982). Hatfield and Milgrom (2005) then extended this result to matching prob-
lems (with contracts) for which college preferences are substitutable and satisfy the law of aggregate demand.
For the same setting, Hatfield and Kojima (2009) showed that these assumptions actually guarantee group
strategyproofness.

7As shown by Roth (1982) there is no stable matching mechanism that is strategyproof for agents on both
sides of the market. Consequently, the literature has studied the possibility of implementing stable matchings in
Nash equilibrium when both sides of the market act strategically. Kara and Sönmez (1996) show that the stable
correspondence is Nash implementable in one-to-one matching markets. This finding was extended to college
admissions problems with responsive preferences by Kara and Sönmez (1997) and to many-to-one matching
problems with substitutable preferences (and contracts) by Haake and Klaus (2009).

8Haeringer and Klijn (2009) show that there is no corresponding result for the SDA if students are allowed to
rank more than one college: Unstable equilibrium outcomes can exist. However, if students are allowed to rank
as many colleges as they want, any such equilibrium would involve some students playing (weakly) dominated
strategies.
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2.3 The Boston mechanism

The Boston mechanism is a popular real-life assignment procedure for priority based allocation

problems. Given the fixed priority structure �C and a profile of strict student preferences PI ,

the following algorithm is used to determine assignments

In the first round, every student applies to her top choice college. Each college

c admits the qc highest priority students who apply in this round (or all those

students if there are fewer than qc). All other students are rejected. Let q2c denote

the remaining capacity of college c.

In the tth round, every remaining student applies to her tth most preferred accept-

able college (if any). Each college c admits the qtc highest priority students who

apply in this round (or all those students if there are fewer than qtc). All other

students are rejected. Let qt+1
c denote the remaining capacity of college c.

Fix a priority structure �C and given some profile of student preferences PI , let fB(PI)

denote the matching chosen by the Boston mechanism. As first pointed out by Abdulkadiroglu

and Sönmez (2003), the outcome of the Boston mechanism is guaranteed to be efficient with

respect to reported preferences but may fail to be efficient with respect to true preferences,

since the Boston mechanism typically gives students strong incentives to misrepresent their

preferences. For any profile of student preferences PI , the set of pure strategy complete infor-

mation Nash equilibrium outcomes of the preference revelation game induced by the Boston

mechanism coincides with the set of stable matchings with respect to PI (Ergin and Sönmez

2006). Note that this result implies that for any equilibrium outcome of the Boston mecha-

nism, all students weakly prefer the outcome of the SDA under truth-telling. An example in

Ergin and Sönmez (2006) shows that this dominance relation does not carry over to the case

of incomplete information.
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3 The German university admissions system

The centralized admissions procedure for public universities in Germany is used to allocate

places in human medicine, dentistry, veterinary medicine, and pharmacy.9 The basic outline of

the admissions procedure is as follows:

1. In the first part, up to 40 percent of total capacity is allocated among special applicants.

2. In the second part, all remaining places, are allocated according to universities’ preferences

among those applicants not assigned in the first part.

In the actual procedure, the group of special applicants consists of applicants who have

earned an excellent, which in Germany means very low, average grade in school leaving ex-

aminations, and of applicants who have waited a long time since finishing high school. There

is a separate procedure for each of these two groups and in each of the two procedures up to

20 percent of total capacity are allocated. To simplify the description and analysis, I assume

that the group of special applicants consists only of those with exceptional average grades and

that 20 percent of total capacity is allocated in the first part. Under reasonable assumptions,

all of the analysis below extends to the case where the set of special applicants also includes

wait-time applicants. This and some other omitted details of the German admissions procedure

are discussed in the supplementary appendix, Section 7.

I now introduce some notation and assumptions that will be used in the analysis below.

There is a finite set of applicants A and a finite set of universities U . University u has qu

places to allocate among applicants. To avoid integer problems, assume throughout that qu

is a multiple of five and let q1u = 1
5
qu. The average grade of applicant a will be denoted by

g(a) ∈ R+. Applicant a has a better average grade than applicant a′ if g(a) < g(a′). I assume

throughout that there are no ties in average grades so that g(a) 6= g(a′) whenever a 6= a′. Only

the applicants with the q1 =
∑

u q
1
u lowest/best average grades are allowed to participate in the

first part of the procedure. In the following, these applicants will be called top-grade applicants.

I assume throughout that all universities have objective evaluation procedures. By this I

mean that universities’ preferences for the second part of the procedure are based on objective

criteria such as, but not restricted to, average grades, results from study-specific tests, practical

experience, and so on. More formally, I assume that for each university u there is a strict

9The main reference for this section is the Verordnung über die zentrale Vergabe von Studienplätzen durch
die Stiftung für Hochschulzulassung (VergabeVO Stiftung), which can be found at www.hochschulstart.de.
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ranking �u of A∪{u} that is fixed and known prior to the application deadline. University u’s

preferences over any set of applicants B ⊆ A that remains in the procedure until the second

part are then given by the restriction of � to B, �u |B∪{u}. This essentially assumes that

universities do not act strategically.10 While this assumption is certainly not without loss of

generality, the majority of universities rely on objective evaluation procedures. For example, in

the assignment procedure for places in Pharmacy, only 2 out of 22 universities chose to employ

any subjective criteria for the winter term 2010/2011 (see Section ??).

We are now in place to provide a formal description of the German admissions procedure.

In order to participate, applicants have to submit two strict preference lists. There is no

consistency requirement across the two lists and the list submitted for part t ∈ {1, 2} is used

only to determine assignments in part t. All preference lists are submitted simultaneously

before any assignments are determined. Let Qa = (Q1
a, Q

2
a) denote the profile of preference

lists submitted by applicant a ∈ A and QA = (Q1
A, Q

2
A) = ((Q1

a)a∈A, (Q
2
a)a∈A) denote the profile

of reports by all applicants. Given QA and �U= (�u)u∈U , the admissions procedure works as

follows:

The German admissions procedure

Part 1: Assignment for top-grade applicants

Apply the Boston mechanism to determine assignments of top-grade applicants: University u

can admit at most q1u applicants, the preference relation of a top-grade applicant a is Q1
a, and

an applicant’s priority for a university is determined by her average grade.

Denote the matching produced in part 1 by fG1(Q1
A), the set of admitted applicants by A1,

the number of empty seats at university u by r(u,1) = q1u − |fG1
u (Q1

A)|, and the set of remaining

applicants by A2 = A \ A1.

Part 2: Assignment according to universities’ preferences

Apply the university proposing deferred acceptance algorithm to assign remaining places

among remaining applicants: University u can admit at most q2u := 4
5
qu + r(u,1) applicants, the

10More formally, under this assumption the admissions procedure induces a sequential revelation game where
in the first stage universities choose their evaluation procedures and in the second stage applicants choose their
application strategies. My analysis focuses on the second stage of this revelation game.
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preference relation of an applicant a ∈ A2 is given by Q2
a, and u’s preferences are responsive to

�u. Denote the matching produced in the second part of the procedure by fG2(Q2
A,�U).

�

Given QA and �U , let fG(QA,�U) = (fG1(Q1
A), fG2(Q2

A,�U)) denote the pair of matchings

chosen by the German admissions procedure. Since I will take �U to be fixed throughout, the

dependency of fG on �U will usually be omitted in the following.

Example 1. Suppose that A = {a1, . . . , a6} and U = {u1, u2, u3}. For simplicity, assume that

each university has two places to allocate among students and that one place at each university

is available in both parts of the assignment procedure.11 Applicants are indexed in increasing

order of their average grades, so that ai has the ith best/lowest average grade among a1, . . . , a6.

Given the above assumptions, applicants a1, a2, a3 are the top-grade applicants. Universities’

preferences are as follows

�u1 a1 a4 a5 a2 a6 a3

�u2 a1 a6 a2 a3 a5 a4

�u3 a1 a4 a5 a2 a6 a3

Finally, applicants’ (true) preferences are given by

Pa1 Pa2 Pa3 Pa4 Pa5 Pa6

u1 u1 u3 u2 u2 u3

u2 u3 u2 u1 u3 u2

u3 u2 u1 u3 u1 u1

I now calculate the assignment chosen by the German admissions procedure under the as-

sumption that all participants submit their preferences truthfully for each step of the procedure.

This assumption is made for illustrative purposes only and as we will shortly see, applicants

can in fact profit from misrepresenting their preferences. In the above example, the German

11It is unproblematic to enlarge the example so that each university’s capacity is some multiple of five. Larger
examples do not facilitate understanding of the assignment procedure and all points made below apply equally
well to larger, more realistic settings.
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admissions procedure yields the following assignments

fG1(PA) =
u1 u2 u3

a1 a2 a3

fG2(PA) =
u1 u2 u3

a4 a6 a5

It is easy to see that applicants a2 and a5 could both secure a place at a more preferred

university within the part of the procedure that they were assigned in. For example, applicant

a2 would obtain a place at her second most preferred university u3 in part 1 of the procedure

if only she had ranked it first. While these problems are known (cf Section 2.3), applicant a2

could do even better than securing a place at u3 in the first part: Suppose that a2 truncated

her ranking and declared only u1 as acceptable for all parts of the procedure. Assuming all

others continue to submit their preferences truthfully, applicants a2, a4, a5, a6 will remain in the

procedure by the beginning of the third part, while the assignments of the other applicants

are left unchanged. This implies in particular that the one place at u2 initially reserved for

applicants with excellent average grades is left unassigned in the first part and thus becomes

available again in the second part of the procedure. It is easy to see that the assignment chosen

in the second part of the procedure is then

u1 u2 u3

a2 {a4, a6} a5.

Hence, a2 can obtain a place at her most preferred university u1 if she declares all other

universities unacceptable. This suggests that in particular for applicants who can expect to

be eligible for the first part of the procedure, finding an optimal application strategy is more

difficult than in a one-shot application of the Boston mechanism: Such applicants first need

to figure out what the best possible assignment is that they could get in the first part of

the procedure. As in the example above, achieving this best possible assignment will often

involve over-reporting preferences for some universities. This part of an applicant’s optimization

program is exactly the same as in a one-shot application of the Boston mechanism. However,

in the German admissions system applicants face an additional problem since they also have to

consider the trade-off between being assigned in the first part of the procedure and participating

in the third part of the procedure. As seen above, truncating preferences increases the chances
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of participating in the third part, where an even better assignment might be obtained. This

is, however, often risky since applicants who fail to secure a place in the first part lose their

guaranteed priority over others. In the next section, I analyze this trade-off and characterize

equilibrium outcomes of the revelation game induced by the German admissions procedure.

�

3.1 Analysis

The above example shows that applicants sometimes have strong incentives to manipulate the

German admissions procedure by submitting a ranking of universities that does not correspond

to their true preferences. Strategic behavior is encouraged by the ability to submit different

preference lists for the two parts of the procedure since study conditions are the same no

matter in which part of the procedure an applicant receives a place at a given university.

Furthermore, applicants are explicitly advised that stating preferences truthfully may not be

in their best interest. On the official website of the administrator of the centralized procedure,

www.hochschulstart.de, applicants are cautioned that (1) for the first part, their chances of

admission at a university may significantly decrease if they do not rank it at the top, and

(2) they should truncate their preference lists for the first part of the procedure if they want

to be considered in the second part. Using data on submitted preference lists for the winter

term 2006/2007, Braun et al (2010) provide empirical evidence that applicants do act upon the

incentives to manipulate the admissions procedure.12 In particular, a significant percentage of

applicants reported different preference lists for the two parts of the procedure.

In order to evaluate the performance of the university admissions system it is thus impor-

tant to analyze the strategic incentives induced by the assignment procedure. In this section,

I provide a full characterization of complete information Nash-equilibrium outcomes of the

revelation game induced by the current assignment procedure. While complete information is

admittedly a strong assumption, data on previous outcomes of the admissions procedure are

publicly available on the website of the centralized procedure’s administrator. Assuming some

stationarity, this provides applicants with relatively detailed information on the environment.13

12The admissions procedure for the winter term 2006/2007 is slightly different from the one used for the
winter term 2010/2011 in terms of the rule for redistributing unused capacity. However, the basic structure and
incentives of applicants have remained the same.

13While the assumption of complete information becomes less compelling without the assumption of ob-
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For the analysis, I need some auxiliary definitions and assumptions. First, I define an

outcome (of the centralized admissions procedure).

Definition 1. An outcome (of the centralized admissions procedure) is a pair of match-

ings of applicants and universities µ = (µ1, µ2) such that

(i) for t ∈ {1, 2}, capacity constraints of part t are respected, i.e. r(u,t)(µ) ≥ 0 for t ∈ {1, 2},

where r(u,1)(µ) = 1
5
qu − |µt(u)| and r(u,2)(µ) = 4

5
qu + r(u,1)(µ)− |µ2(u)|, and

(ii) each applicant is matched to at most one university, that is, |(∪tµt(a)) ∩ U | ≤ 1.

Given an outcome of the centralized procedure µ = (µ1, µ2), let applicant a’s assignment

under µ, µ(a), be µt(a) if µt(a) ∈ U , and a if (µ1(a)∪ µ2(a))∩U = ∅. I assume that top-grade

applicants have lexicographic preferences in the sense that when comparing two assignments a

top-grade applicant primarily cares about the university she is assigned to and if two outcomes

assign her to the same university, but in different parts of the procedure, she prefers the outcome

that assigns her in the first part of the procedure. More formally, this means that applicant a

has a strict ranking Pa of U ∪ {a} such that she strictly prefers an outcome (of the centralized

procedure) µ over an outcome ν if and only if either µ(a)Paν(a), or µ1(a) = ν2(a) = u for some

u ∈ U . This assumption is reasonable since assignments in the first part are determined more

than one month before the second part is conducted. Since study conditions do not depend on

the particular part of the procedure in which an applicant is admitted by a given university,

the additional time to search for an apartment, prepare to move, and so on, motivates strict

preference for early assignment. Finally, it will prove useful to define for each university u ∈ U

one strict ordering �(u,1) of A∪ {u} by setting a �(u,1) u if and only if a is a top-grade student

and a �(u,1) a
′ if and only if g(a) < g(a′), and a second strict ordering of A ∪ {u} by setting

�(u,2)=�u. Here, �(u,t) is the preference/priority ranking that is used to allocated u’s places in

the tth part of the admissions procedure (t ∈ {1, 2}).

We are now ready to analyze the revelation game induced by the German admissions pro-

cedure. In this game, applicants simultaneously submit two preference rankings which are then

jective evaluation procedures, no university relies exclusively on subjective criteria for its evaluation pro-
cess. In particular, it is required that in the determination of an applicant’s position [in universities’
rankings] average grade has to be a decisive factor (Merkblatt M09: Auswahlverfahren der Hochschulen,
http://hochschulstart.de/fileadmin/downloads/Merkblaetter/M09.pdf; translation by the author). This should
allow applicants to form relatively reliable estimates of universities’ preferences, so that the subsequent anal-
ysis should, to some extent, remain valid even when the partly subjective nature of evaluation procedures is
acknowledged.
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used to compute an outcome according to the rules explained above. Throughout the analysis,

I assume that all of the assumptions introduced above (no ties in average grades, objective

evaluation procedures, lexicographic preferences over assignments) are satisfied. I will now

characterize equilibrium outcomes of the revelation game induced by the German admissions

procedure by means of the following stability condition.

Definition 2. An outcome µ = (µ1, µ2) is stable with respect to PA if

(i) no applicant is matched to an unacceptable university, that is, µ(a)Raa, for all a ∈ A,

(ii) no applicant receives a place for which she is unacceptable, that is, a �(u,t) u for all

a ∈ µt(u) and t = 1, 2,

(iii) there is no applicant-university pair that blocks µ, that is, there is no pair (a, u) such that

uPaµ(a) and for some t ∈ {1, 2} such that a �(u,t) u either r(u,t)(µ) > 0 or a �(u,t) a
′ for

some a′ ∈ µt(u),

(iv) applicants are matched as early as possible, that is, if µ2(a) = u and a �(u,1) u, then

r(u,1)(µ) = 0 and a′ �(u,1) a for all a′ ∈ µ1(u).

This definition of stability takes into account that different criteria are used to regulate

admission in the two parts of the assignment procedure. Part (iv) of this definition ensures

that in case of multiple possibilities of admission at a university, an applicant takes the place

that was intended for her. Finally, note that this definition of stability takes into account

that places reserved for, but not taken by top-grade applicants can be allocated according to

universities’ criteria. The following is the main result of this section.

Theorem 1. Let PA be an arbitrary profile of strict applicant preferences.

The set of pure strategy Nash equilibrium outcomes of the game induced by the German

admissions procedure coincides with the set of stable outcomes with respect to PA.

While this result is related to the equilibrium characterizations for the Boston mechanism

by Ergin and Sönmez (2006) and for the revelation game induced by the CDA by Sotomayor

(2007), its proof is significantly more difficult due to the sequential nature of the German

admissions procedure and the possibility of capacity redistribution. To get some intuition (the

formal proof is in the Appendix) for this result, suppose a top-grade applicant a is matched

in the first part of the German admissions procedure but could be admitted at some strictly
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preferred university u in part 2 (given the set of applicants admitted in that part). In this

case a could profitably deviate by ranking only u for both parts of the procedure: Since a was

matched in the first part under her original report, only a subset of applicants have to wait

for part 2 when she deviates in the just described way. But this implies that all universities

make more offers in the CDA of part 2 and in particular a must receive an offer by u given the

assumed instability. Next, I calculate the set of stable matchings in Example 1.

Example 2. Consider again the setting of Example 1. The following are the only two stable

outcomes:

µ1 =
u1 u2 u3

a1 ∅ a3

, µ2 =
u1 u2 u3

a2 {a4, a5} a6

,

and

ν1 =
u1 u2 u3

a1 a3 a2

, ν2 =
u1 u2 u3

a4 a6 a5

.

By Theorem 1, there are thus two pure strategy equilibrium outcomes of the revelation

game among applicants. Note that all applicants weakly prefer µ over ν. One strategy profile

that implements the first matching is the following: All top-grade applicants (a1, a2, a3) rank

only their most preferred university for part 1 and submit their true ranking for part 2. The

remaining three applicants (a4, a5, a6) rank only their most preferred university for part 2. For

a2 this means that she truncates her true preferences so that she will stay in the procedure

until part 2, where she can be assigned a place at her most preferred university u1 given the

reports of the others. The empirical analysis in Braun et al (2010) suggests that such strategies

are indeed used since top-grade applicants’ lists for the first part are relatively short.

However, note that a2 is guaranteed to obtain a place at u3 in part 1 if she ranks this

university first - irrespective of the reports of the other applicants. On the other hand, a2 has

to rely on others to follow the right equilibrium strategy in order to reach the Pareto dominant

equilibrium. If coordination fails, this strategy might even lead to a2 being assigned to her

third choice u2.
14 In this sense the Pareto dominant equilibrium is more risky for a2 so that

14This would happen, if e.g. a6 ranks u2 higher than u3. In contrast to standard college admission problems,
this is not necessarily a dominated strategy for a6 here since u2 may consider only students who ranked it

18



she might be inclined to use the safe strategy of over-reporting her preference for u3 in part 1.

�

Theorem 1 shows that the potential instabilities of the centralized admissions procedure we

saw in Example 1 are “corrected” by the strategic behavior of applicants. This will prove to be

a useful benchmark for a comparison between my proposed redesign and the current procedure

in Section 4.1. We will later see that the set of stable outcomes for the university admissions

problem coincides with the set of stable matchings for a related college admissions problem with

substitutable preferences.15 Since for such problems there exists a student/applicant optimal

stable matching that all students/applicants (weakly) prefer to any other stable matching, this

implies that the German admission procedure supports Pareto dominated outcomes, as was

already exemplified above.

4 Towards a New Design: Matching with complex con-

straints

The analysis of the current German admission system showed that it provides students with

strong incentives to try to manipulate the procedure by strategically misrepresenting their

preferences and that strategizing by students can lead to inefficiencies. But are there matching

mechanisms that are immune to strategic manipulation by students and at the same time

achieve a satisfactory allocative performance? Since top-grade applicants are, in principle, also

eligible to obtain one of the places that universities are allowed to assign according to their

own criteria, immunity to manipulations by applicants requires all places at each university

to be allocated simultaneously. For example, even when the two assignment procedures in

the current German admissions procedure were abandoned in favor of the student proposing

deferred acceptance algorithm, the resulting direct mechanism would not be strategy-proof

for top-grade applicants if the sequential structure is maintained: These applicants would

still sometimes have an incentive to submit short preference lists in order to not forfeit their

first. Such ranking constraints are popular with German universities. As discussed in the Online Appendix, the
presence of such constraints does not change the equilibrium characterization.

15This will also establish the existence of pure strategy equilibria of the game induced by the German admis-
sions procedure.
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chances in the second part of the procedure. An important problem in developing an appealing

alternative admission system is thus to find ways of reconciling the simultaneous allocation

of all seats with the institutional constraint that some places are reserved for special student

groups and should only become available to other students if there is insufficient demand

from these groups. This institutional constraint is an important cornerstone of the German

university admissions system since quota for top-grade students represents the political will to

give prioritized access to the very best high school graduates.16 Constraints similar to those

of the German admissions system also play an important role in school choice. Here, public

schools often have a desire to achieve some target distribution of student types in their entering

classes (e.g. an even distribution of sexes) but cannot afford to waste capacity to achieve this

distributional goal, so that they sometimes have to accept violations of their affirmative action

policies. However, a school may prefer some violations over others and it is thus important to

provide it with enough flexibility to express such preferences. This issue has not been studied in

the previous matching literature. Major differences to other matching problems with constraints

that have been studied in the existing literature are discussed in Section 4.2.

I now introduce a general class of matching problems with complex constraints that can

accommodate both of the applications mentioned above. Formally, a matching problem with

complex constraints consists of

• a finite set of colleges C,

• a finite set of students I,

• for each student i ∈ I, a strict ordering Pi of C ∪ {i}

• for each college c a choice protocol consisting of

(i) a vector �c= (�(c,t))
Tc
t=1, where for all t ≤ Tc, �(c,t) is a strict ordering of I ∪ {c},

(ii) a sequence of capacities qc = (q(c,t))
Tc
t=1, where q(c,1) ∈ {0, . . . , |I|} and

q(c,t) : {0, . . . , |I|}t−1 → {0, . . . , |I|} for all t ≥ 2.

The idea behind this class of problems is that a college c may decide or be required to reserve

certain parts of its capacity for special student groups (e.g. siblings, students with excellent

16The quota for wait-time students on the other hand, which I have abstracted from in the main body of
this paper, is necessary in order for the admissions process to satisfy the constitutional requirement that every
applicant with the appropriate qualification (i.e. having successfully finished secondary school) should have a
chance of studying any subject she wants.
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average grades, and so on) and may want to make some of these reserved seats available to

other student groups to accommodate to the characteristics of applicants. Such constraints are

encoded in the choice protocol of c: First, it specifies an order in which special student groups

are to be considered, where the tth group to be considered is the set of acceptable students with

respect to �(c,t). Note that a student may belong to multiple special student groups, so that

(�(c,t))t may not partition the set of students into disjoint acceptable subgroups. In particular,

a given student may be considered multiple times by a choice protocol. Secondly, it dictates how

much capacity is reserved for each group as a function of seats left vacant by groups considered

earlier, starting from some fixed value for the first group to be considered. I will usually refer

to the sequence (q(c,t)(0, . . . , 0))Tct=1 as the target distribution of college c. The idea behind this

is that college c initially intends to allocate qc :=
∑

t q(c,t)(0, . . . , 0) places and has a strict

preference for filling these places according to its target distribution. If its target distribution

cannot be achieved because too few students from one or more of the Tc student groups apply,

a college can express its preferences over possible alternate distributions of student groups by

specifying how capacity is to be redistributed through its choice of the functions q(c,t). For my

purpose it is without loss of generality to assume that Tc = Tc′ for all colleges c, c′ (since we

can always set q(c,t)(r1, . . . , rt−1) ≡ 0 if t > Tc) and I will henceforth let T denote the common

final step of all colleges’ choice protocols. Finally, note that the above formulation implicitly

assumes that there are no specific advantages or disadvantages associated with being admitted

because one belongs to a particular special student group so that students do not care about

the type of place they receive, but only about their assigned colleges. I now illustrate these

concepts by a simple but important practical example

Example 3 (Siblings and affirmative action constraints). Consider a school (college) c with

a fixed number of total seats qc. Suppose the school has to offer admittance to students who

have a sibling already attending the school. If possible, the school then wants to distribute any

remaining capacity equally among male and female students.

This can be implemented by a choice protocol as follows: First, let �1 be some strict

ordering of I ∪ {c} such that only students with siblings attending c are acceptable. Next, let

�2 be a strict ranking such that only male students are acceptable and �3 be a strict ranking

such that only female students are acceptable. To complete the description of the choice
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protocol, let q1 ≡ qc. If l1 < q1 students with siblings apply, r1 := q1 − l1 can be allocated

among remaining applicants. To ensure that seats not taken by students with siblings are

distributed (approximately) equally between male and female students, set q2(r1) = b r1
2
c and

q3(r1, r2) = d r1
2
e.

�

I now proceed to define a concept of stability adapted to matching problems with com-

plex constraints. A matching sequence is a finite sequence of matchings µ = (µ1, . . . , µT )

such that for all t ≤ T , µt is a matching of students and colleges. Given a matching se-

quence µ, define the associated sequence of empty seats by first setting r(c,1)(µ) := q(c,1) −

|µ1(c)|, and then, assuming that r(c,1)(µ), . . . , r(c,t−1)(µ) have already been defined, r(c,t)(µ) :=

q(c,t)(r(c,1)(µ), . . . , r(c,t−1)(µ))−|µt(c)|. I now define a notion of feasibility with respect to a given

profile of choice protocols.

Definition 3. Given a profile of choice protocols (�c, qc)c∈C, a matching sequence µ = (µ1, . . . , µT )

is feasible, if

(i) for all t and c, r(c,t)(µ) ≥ 0, and

(ii) for all i ∈ I, |(∪tµt(i)) ∩ C| ≤ 1.

Feasibility requires that each student is matched to at most one college and that all capacity

constraints of all colleges are satisfied. Given a feasible matching sequence µ let student i’s

assignment under µ, µ(i), be µt(i) if µt(i) ∈ C, and i, if (∪tµt(i)) ∩ C = ∅. Student i receives

a place in quota t of college c (und µ), if i ∈ µt(c) and the set of students matched to c is

µ(c) := ∪tµt(c). I now define a concept of stability that is adapted to the specific structure of

a matching problem with complex constraints.

Definition 4. Fix a profile of choice protocols (�c, qc)c∈C.

A feasible matching sequence µ = (µ1, . . . , µT ) is procedurally stable with respect to a

profile PI of student preferences, if

(i) µ(i)Rii,

(ii) i �(c,t) c for all i ∈ µt(c),
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(iii) if cPiµ(i) then there is no t such that i �(c,t) c and either r(c,t)(µ) > 0, or i �(c,t) j for

some j ∈ µt(c), and

(iv) if i ∈ µt(c), there is no s < t such that i �(c,s) c and either r(c,s)(µ) > 0, or i �(c,s) j for

some j ∈ µs(c).

Condition (i) is the standard individual rationality constraint for students. Condition (ii)

requires that a college’s desire to restrict certain parts of its capacity to special student groups

is respected. Condition (iii) requires that a matching sequence is not blocked by a student-

college (i, c) pair in the sense that i strictly prefers c to her allocation under µ, and that c would

strictly prefer to admit i in at least one of its quotas given the matching sequence. Note that

whether i and c form a blocking pair does not only depend on the set of students matched to

c, but also on the particular distribution of these students across c’s different quotas. Finally,

condition (iv) requires that a student who receives a place in quota t of college c could not

have been admitted in an earlier quota given the set of applicants µ(c). This requirement can

be understood as a desire to stay as close as possible to the target distribution since the more

students take the places that were intended for them (i.e. the earliest quota in which they

can be admitted), the less capacity redistribution. The concept of procedural stability is a

natural and desirable allocative criterion in the spirit of the stability concepts that have been

used in theory and practical applications of matching models. The next example shows that a

procedurally stable matching does not always exist.

Example 4. There are two colleges c1, c2, and two students i1, i2. The choice protocols of the

two colleges are given by

�(c1,1) �(c1,2) qc1 �(c2,1) �(c2,2) qc2

i1 i2 q(c1,1) = 1 i2 c2 q(c2,1) = 1

c1 c1 q(c1,2)(0) = 1 i1 i2 q(c2,2)(0) = 0

i2 i1 q(c1,2)(1) = 0 c2 i1 q(c2,2)(1) = 0

.

Note that the target capacity of c1 is two, while the target capacity for c2 is one. Now suppose

students’ preferences are given by Pi1 : c2, c1 and Pi2 : c1, c2.

Then no procedurally stable matching exists: Suppose first that both students are matched

to c1. Then i1 would strictly prefer to be matched to c2 and c2 has one place available, so that
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the matching could not have been stable. If only one student is matched to c1, it must be i1.

In this case, however, i2 and c1 would block the matching. Finally, if no student is matched to

c1, we must have that i2 is matched to c2, as otherwise they would block the matching. But

then i1 and c1 would block the matching.17

�

Thus, in order to guarantee the existence of a procedurally stable matching, one has to

restrict choice protocols. I now introduce two independent restrictions, which guarantee that

situations such as in the example cannot occur.

Definition 5. (i) A choice protocol (�c, qc) is monotonic, if for all t and all pairs of se-

quences (rs, r̃s)
t−1
s=1 such that r̃s ≥ rs for all s ≤ t− 1,

q(c,t)(r̃1, . . . , r̃t−1) ≥ q(c,t)(r1, . . . , rt−1).

(ii) A choice protocol (�c, qc) satisfies non-excessive reduction, if for all t and all pairs

of sequences (rs, r̃s)
t−1
s=1 such that for s ≤ t− 1, r̃s = rs + ks for some ks ≥ 0,

t∑
s=1

[q(c,s)(r̃1, . . . , r̃s−1)− q(c,s)(r1, . . . , rs−1)] ≤
t−1∑
s=1

ks.

The first requirement is that whenever weakly more seats are left unassigned in every quota

from 1 to t− 1, weakly more quota t seats should be made available to applicants. The second

requirement says that in response to greater demand in steps 1 through t− 1, students should

not suffer too much in the sense that the total capacity reduction in steps 1 up to and including

t,
∑t

s=1[q(c,s)(r̃1, . . . , r̃s−1) − q(c,s)(r1, . . . , rt−1)], should not exceed the increase in demand in

quotas 1 up to t,
∑t−1

s=1 ks. The first requirement rules out a situation such as the one in

Example 4. The second requirement basically rules out applications in which a college would

like to decrease total capacity in response to increased demand in some quotas. This may be

relevant in particular for applications to school choice, where a school may reserve some part

of its capacity for students with, say, low reading scores. If students with lower reading scores

17The problem in this example is that students i1 and i2 are complements for college c1 in the sense that it
wants to admit i2 only if it is able to attract i1 as well. It is by now well known (see Hatfield and Milgrom
2005, and Hatfield and Kojima 2008) that in presence of complementarities stable matchings may fail to exist.

24



demand more attention than students with higher reading scores, a school may prefer to reduce

the number of seats available to other students by, say, two for each additional student with

low reading scores. The following is the main result of this section.

Theorem 2. (i) Suppose all choice protocols are monotonic.

Then for each profile of student preferences there exists a unique student optimal proce-

durally stable matching.

(ii) Suppose all choice protocols are monotonic and satisfy non-excessive reduction.

Then the student optimal procedurally stable matching mechanism is group strategy-proof

for students.

The proof of this theorem, the formal argument can be found in Section 6, rests on a trans-

formation of a matching problem with complex constraints to an associated college admissions

problem (CAP), where choice protocols are eliminated from the description of the problem.

For any profile of choice protocols, stability in this associated CAP turns out to be equivalent

to procedural stability. Hence, given a profile of student preference PI the student optimal

stable matching for the associated college admissions problem, f I(PI),
18 should it exist, would

also be the student optimal procedurally stable matching. If choice protocols are monotonic,

college preferences in the associated CAP satisfy substitutability. If choice protocols are mono-

tonic and satisfy non-excessive reduction, college preferences also satisfy the law of aggregate

demand. Hence, Theorem 2 can be derived using the results of Roth (1984b) and Hatfield and

Kojima (2009) described in Section 2.1.

Note that the choice protocol in Example 3 is monotonic and satisfies non-excessive reduc-

tion: Any place initially reserved for siblings becomes available to other students if there is

insufficient demand from these groups, so that the choice protocol is monotonic. For each addi-

tional sibling admitted, the number of remaining places available for male and female students

is reduced by at most one, so that the choice protocol also satisfies non-excessive reduction. I

now discuss how to embed the German system into the framework developed in this section.

18Of course, this matching also depends on the choice protocols/induced choice functions. Given that I take
choice protocols to be exogenous and only consider students’ incentives for preference manipulations, I chose to
suppress this dependency.
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4.1 Application to the German System

The exogenous inputs of the German admissions system are the sets of universities U and

applicants A, the vector of capacities q, average grades of applicants g(·), and universities’

preferences �U . The main constraint here was that

(i) 20 % of total capacity at each university is reserved for top-grade applicants, and that

(ii) all places reserved for, but not demanded by, top-grade applicants should be allocated on

basis of the criteria chosen by universities (as represented by �U).

This policy can be implemented as a matching problem with complex constraints where the

choice protocol of a university u is given by �u:= (�(u,1),�(u,2)), q(u,1) = 1
5
qu, and q(u,2)(r1) =

3
5
qu + r1. These choice protocols are clearly monotonic and satisfy non-excessive reduction.

Since procedural stability is equivalent to the notion of stability introduced in Definition 2, we

obtain the following corollary to Theorems 1 and 2.

Corollary 1. (i) For all profiles of applicant preferences PA,

(i.1) there exists a unique applicant optimal procedurally stable matching fA(PA),

(i.2) the set of pure strategy equilibrium outcomes of the game induced by the German

admissions procedure is non-empty, and

(i.3) the applicant optimal procedurally stable matching Pareto dominates any pure strat-

egy equilibrium outcome of the current German admissions procedure with respect to

applicants’ true preferences, that is, for all pure strategy equilibria Q of the game

induced by the German admissions procedure, fAa (Pa)Raf
G
a (Q) for all a ∈ A.

(ii) The direct mechanism fA is group strategy-proof for applicants.

Thus, applicants are unambiguously better off under the applicant optimal procedurally

stable matching mechanism than under the current German matching mechanism. Note that

in the alternative mechanism, applicants submit only one preference list, opposed to the two

lists they can submit in the current German admissions procedure.

To develop some intuition for the above result, it is helpful to consider how a university u

determines who to (temporarily) accept when applicants in B ⊆ A apply to it in some step of

the SDA used to compute the applicant optimal procedurally stable matching:
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(1) Among applicants in B, temporarily accept the q(u,1) top-grade applicants with the best

average grades.

Let B1 be the set of temporarily accepted applicants, B2 = B \B1, and r1 = q(u,1)− |B1|.

(2) Among applicants in B2, temporarily accept the q(u,2)(r1) = 3
5
qu + r1 highest ranking

acceptable applicants with respect to �(u,2).

Let B3 be the set of temporarily admitted applicants.

This mimics the current admissions procedure in the sense that an applicant’s admission

chances are always checked in the order top-grade/general admissions. However, in contrast

to the current German admissions procedure top-grade applicants can claim one of the places

initially reserved for them in any round of the assignment procedure. In particular, those

applicants never have an incentive to over-report their preference for a university in order to

“match early” and thus avoid losing their guaranteed priority. This may free up additional

capacity that can be allocated on basis of universities’ criteria, potentially leading to better

assignments for those applicants not eligible for top-grade places. While one may worry that

increased competition from top-grade applicants can also be harmful to other applicants, this

can never happen: In an equilibrium of the current German admissions procedure, it can never

be beneficial for a top-grade applicant matched in the first part to displace an applicant who

was matched in the second part of the procedure due to Theorem 1.

4.2 Other matching problems with constraints

I now discuss some other approaches to and models of matching models with constraints to

outline the most important differences. For the discussion, fix a profile of monotonic and

consistent choice protocols (�c, qc)c∈C where for each c ∈ C, (�c, qc) = (�(c,t), q(c,t))
T
t=1.

Suppose first that for all c, c′ ∈ C and each t, the set of acceptable students with respect to

�(c,t) is the same as the set of acceptable students with respect to �(c′,t). In this case, say that

student s has characteristic t, if he or she is acceptable with respect to �(c,t) for all c ∈ C. Note

that at least q(c,t) := q(c,t)(0, . . . , 0) places are exclusively reserved for students having character-

istic t given the monotonicity of choice protocols. Even for this special case a matching problem

with complex constraints cannot be reduced to a college admissions problem with responsive

preferences. First, a procedurally stable outcome cannot in general be achieved by splitting
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each college into T “mini” colleges c1, . . . , cT with capacities q(c,1), . . . , q(c,t) and “preferences”

�(c,1), . . . ,�(c,T ), and then running separate assignment procedures for each characteristic. This

approach is only guaranteed to work if students have at most one characteristic and if capacity

cannot be redistributed. Second, it is not in general possible to eliminate the possibility of ca-

pacity redistribution by modifying colleges’ priority/preference orderings. This would only be

feasible if, for all characteristics t and all colleges c, there is an ordering t = t0 < t1 < . . . < tn

such that, for all j, all places that c initially reserved for students with characteristic t are

supposed to become available to students with characteristic tj+1 whenever there is insufficient

demand from students with characteristics t0, . . . , tj. In this case capacity redistribution can

be accommodated by replacing �(c,t) with a ranking �′(c,t) which ranks all students with char-

acteristics t0, . . . , tn as acceptable and ranks all students with characteristic tj who do not have

characteristics t0, . . . , tj−1 below all students who have at least one of those characteristics.

This approach is no longer feasible if, as in Example 3, remaining seats for some characteristics

are supposed to be split between several other characteristics.

Next, consider the matching problem with affirmative action constraints of Abdulkadiroglu

and Sönmez (2003) and Abdulkadiroglu (2005). In this problem, each school c has a fixed upper

bound qc on the total number of students it can admit and evaluates all individual students

according to the same preference ordering Pc. Each student i has one characteristic τ(i) (e.g.

being male or female or belonging to a minority) and for each characteristic t ∈ T := ∪i∈I{τ(i)}

each school c has a fixed upper bound qtc on the number of students with characteristic t it is

willing to admit. Abdulkadiroglu (2005) shows how the SDA can be modified to cope with such

affirmative constraints while maintaining its desirable allocative and incentive properties. The

main differences between matching problems with affirmative action constraints and matching

problems with complex constraints are that in the latter (1) seats are exclusively reserved

for students that have the corresponding characteristic, (2) students may have more than one

characteristic, and (3) capacity may be redistributed between different type-specific quotas.

This is not meant to imply that the matching problem considered in Abdulkadiroglu and

Sönmez (2003) and Abdulkadiroglu (2005) is a special case of the matching problem with

complex constraints considered here. Rather, matching problems with complex constraints are

better suited for applications where the main concern is to achieve a particular distribution of
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student characteristics and schools have preferences over how capacity is to be redistributed

between quotas if the desired distribution cannot be met. Matching problems with affirmative

action constraints on the other hand are better suited when the main concern is to limit the

number of students with a given characteristic.

Recently, Hafalir et al (2011) have analyzed a model of school choice with minority and

majority students in which each school reserves a number of its seats for minority students. They

consider a stability concept that differs in the blocking opportunities it allows for minority and

majority students, respectively. Minority students are allowed to block a non-wasteful matching

whenever some strictly preferred school has not met its minority reserve or has admitted at

least one strictly less preferred student. Majority students, on the other hand, are only allowed

to block a non-wasteful matching if a strictly preferred school has admitted at least one strictly

less preferred student who could be rejected without violating its minority reserve. All students

are allowed to block a wasteful matching, however. Hafalir et al (2011) show that there exists

a mechanism that always finds a student optimal stable matching with minority reserves and

that is group-strategyproof for students. This result is a special case of my Theorem 2. To

see this note that a minority reserve of rc can be implemented by a choice protocol that first

considers only minority students and allocates up to rc places to these students and then

allocates all remaining places among remaining applicants. It is not hard to see that these

choice protocols are monotonic and satisfy non-excessive reduction. Furthermore, procedural

stability with respect to these choice protocols is equivalent to the concept of stability with

respect to minority reserves that was explained above. A formal argument for these claims can

be found in Section 7.1.2. I should emphasize at this point that the main focus in Hafalir et al

(2011) is to compare hard and soft affirmative action constraints and that they also consider

these questions for efficient mechanisms. In another paper, Ehlers et al (2011) consider school

choice problems with upper and lower bounds on the number of students of a given type. They

show that while the existence of “stable” and strategyproof matching mechanisms cannot be

guaranteed when these bounds are “hard”, such mechanisms do exist for soft bounds that allow

violations of type-specific quotas under certain conditions. The affirmative action constraints

considered in Ehlers et al (2011) can not be implemented by the type of choice protocols that

I consider. The reason is that in presence of (soft or hard) upper bounds on more than one
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student type, choice protocols would have to condition the number of available seats in each

step not only on the numbers of previously unfilled seats, but also on the types of previously

admitted students. However, the model in Ehlers et al (2011) is not more general than my model

of matching with complex constraints since they do not allow schools to have preferences over

the way in which capacity is redistributed.

Finally, I compare matching problems with complex constraints to the model of matching

with regional caps introduced by Kamada and Kojima (2011). In their model each college

(hospital in their paper) belongs to a region, each region has a cap on the total number of

students that can be admitted by its colleges, and students have strict preferences over colleges

(and the option of remaining unmatched). In addition, each region has preferences over how

its capacity is to be distributed among its colleges. This problem is conceptually similar to a

matching problem with complex constraints in the sense that regional capacities are fixed, but

the capacity of a given college c depends on how many students apply to the different colleges

in c’s region. However, a crucial difference is that in the application of Kamada and Kojima,

students have strict preferences over individual colleges, whereas in a matching problem with

complex constraints students are indifferent about which type of place they receive. In par-

ticular, their techniques for transforming a matching model with constraints to a two-sided

matching problem with contracts cannot be applied to matching problem with complex con-

straints. It should be stressed at this point, however, that their model is neither more nor less

general than the model I consider here.

5 Conclusion and Discussion

This paper analyzed the assignment procedure that is used to allocate places at public univer-

sities for medicine and related subjects in Germany. The procedure uses two mechanisms, the

Boston and the college optimal stable mechanism, that have been studied extensively in the

matching literature. Assuming universities are not strategic, it was shown that complete infor-

mation equilibria are characterized by a stability notion which takes the specific constraints of

the German university admissions system into account.

To develop an alternative assignment mechanism, I introduced matching problems with

complex constraints where college preferences are represented by choice protocols. It was shown
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that if these protocols are monotonic and satisfy non-excessive reduction, a matching problem

with complex constraints gives rise to a well defined associated college admissions problem

for which a group strategy-proof (for students) and stable assignment procedure exists. I then

showed that the German university admissions problem can be understood as matching problem

with complex constraints in which colleges’ choice protocols are monotonic and consistent. This

implies in particular that the applicant optimal stable mechanism for the associated college

admissions problem (i) provides (groups of) applicants with dominant strategy incentives for

truthful preference revelation, and (ii) produces a matching that Pareto dominates (with respect

to applicant preferences) any pure strategy equilibrium of the current admissions procedure.

Since the assignment mechanism developed in this paper allocates all places simultaneously,

it requires universities to evaluate all applicants prior to the start of the procedure. This

might be problematic if evaluation is costly, for example since it is based on interviews with

applicants. In this case a university may interview an applicant who ends up taking one of the

places reserved for top-grade applicants. While such wasteful investment into the evaluation

of applicants can occur in the alternative mechanism, universities will usually have a good

estimate of whether it makes sense for them to interview top-grade applicants. Furthermore,

the above mechanism could be augmented by allowing applicants to send a signal to one of the

universities that they are interested in being interviewed. As in Abdulkadiroglu et al (2011a),

this would preserve ordinal strategyproofness of the alternative mechanism and would alleviate

the problem of wasteful investments since universities could restrict attention to evaluating

those top-grade applicants who signaled their interest.

6 Appendix

Proof of Theorem 1

I show first that for any profile of strict applicant preferences PA, if Q is a pure strategy

Nash equilibrium of the game induced by the German admissions procedure then fG(Q) must

be a stable outcome at PA. Note that stability condition (i) is satisfied since applicants can only

be matched to a university that is on their submitted preference lists and it can thus never be

optimal for an applicant to end up matched to an unacceptable university. Stability condition
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(ii) is satisfied since only top-grade applicants are considered in the first part of the procedure

and since the CDA never assigns an unacceptable applicant to a university. Stability conditions

(iv) and (iii) for t = 1 follow since applicants prefer to be matched as early as possible and

since a top-grade applicant who ranks a university u first for part 1 is guaranteed to receive a

place at u unless q1u or more top-grade applicants with better average grades also rank it first

for part 1.

Now suppose that fG(Q) := (µ1, µ2) violates (iii) for t = 2 and satisfies all remaining

stability conditions. Let (a, u) be a pair such that uPaµ(a) and either (a �(u,2) u and r(u,2)(µ) >

0) or (a �(u,2) ã for some ã ∈ µ2(u)). I will show that Q cannot be a Nash-equilibrium. Let

Q̃a be an alternative report for applicant a that lists only u for both parts of the procedure.

Let Q̃ = (Q̃a, Q−a) and fG(Q̃) = (µ̃1, µ̃2). It is clear that unless µ̃(a) = a, Q̃a is a profitable

deviation for a. I now show that µ̃(a) = a is impossible. Assume the contrary and let A2 and Ã2

denote the sets of applicants apart from a who remain in the procedure by the beginning of part

2 under Q and Q̃, respectively. Similarly, let q2 and q̃2 be the vectors of remaining capacities

for the second part under Q and Q̃, respectively. Note that µ̃(a) = a implies Ã2 ⊆ A2, q̃2u = q2u,

and q̃2v ≥ q2v for all v ∈ U \{u}. This implies that if a does not receive an offer by u in the course

of the CDA under Q̃, all applicants in Ã2 receive a superset of the set of offers they got when

the profile of submitted preferences was Q. In particular, any applicant in Ã2 who received and

declined an offer by u in the CDA under Q will also decline an offer by u in the CDA under Q̃.

Hence, if r(u,2)(µ) > 0, we would have r(u,2)(µ̃) > 0 as well. But if r(u,2)(µ̃) > 0, u must have

made an offer to a in the CDA under Q̃ provided that (a, u) block µ. This contradicts µ̃(a) = a.

Hence, we must have r(u,2)(µ) = 0. Since (iii) is violated, there has to be an applicant ã ∈ µ2(u)

such that a �(u,2) ã. As shown above, under Q̃ all applicants in Ã2 ⊆ A2 receive a superset

of the set of offers they received under Q. This implies that for all â such that â �(u,2) ã and

â /∈ µ2(u) we must also have â /∈ µ̃2(u). But then µ̃2(u) has to contain at least one applicant

who ranks strictly lower on �(u,2) than a and u would have made an offer to a in the CDA

under Q̃, a contradiction.

Now let µ = (µ1, µ2) be a stable outcome with respect to PA. If µ(a) = a, let a submit her

true preferences for both parts of the procedure. If µ(a) = u, let a rank only u for both parts

of the procedure. Let Q be the resulting strategy profile.
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I show first that fG(Q) = µ. Let fG(Q) = (µ̃1, µ̃2). It is easy to see that (iii) and (iv) imply

µ̃1 = µ1. Given this, any applicant a with µ2(a) ∈ U will not be assigned in parts 1 or 2 of the

centralized procedure under Q. Since all of these applicants rank only their assigned university

under µ2 for part 2 while all other unassigned applicants submit their true preferences, (iii)

would be violated if one of the unassigned applicants received a place in part 2 of the centralized

procedure under Q. Hence, we must have µ2 = µ̃2.

Next, I show that Q is a Nash equilibrium profile. Let Q̃a be an alternative report for

applicant a, Q̃ = (Q̃a, Q−a), and fG(Q̃) = (µ̃1, µ̃2). Note that it cannot be the case that

µ̃1(a) = u = µ2(a) since all applicants in µ1(u) apply to u in the first round of the Boston

mechanism under Q̃ so that µ could not satisfy (iii) or (iv) otherwise. A similar argument

shows that a cannot obtain a university strictly preferred to µ(a) according to Pa in part 1. It

remains to be shown that a cannot strictly prefer µ̃2(a) over µ(a). Consider first an applicant

a such that µ1(a) = a. Given that µ satisfies (iii) and (iv) (and given the construction of

Q), no alternative report Q̃a that leads to different assignments in part 1 can be profitable

for a. We can hence assume w.l.o.g. that Q̃1
a = Q1

a. But then if µ̃2(a)Paµ2(a) we obtain an

immediate contradiction to (iii) for t = 2 since all applicants in µ2(u) are available in part 2

of the centralized procedure under Q̃ and rank only u. Now consider an applicant a such that

for some u ∈ U , µ1(a) = u. By (iii) and the construction of Q, there is no alternative report

for a such that she obtains a strictly preferred university in part 1 according to Pa. Thus the

only way that a could potentially improve upon her assignment under µ is that µ̃1(a) = a. But

the only applicants who could take the leftover seat at u in part 1 are those who are either

unassigned under µ or who are matched to u under µ2. In particular, for all universities v 6= u,

all applicants in µ2(v) remain in the procedure by the beginning of part 2 under Q̃ and q̃2v = q2v .

If µ̃2(a)Pau, we must thus obtain a contradiction to (iii). This completes the proof.

�

Proof of Theorem 2

The proof proceeds in four steps: In the first step, I construct an associated college ad-

missions problem (CAP) for an arbitrary matching problem with complex constraints. Next, I

show that stability in the associated CAP is equivalent to procedural stability in the original

33



matching problem with complex constraints. In the third step, monotonicity of choice pro-

tocols is shown to imply substitutability of colleges’ choice functions in the associated CAP.

Together with the second step and the student optimality of the SDA for college admissions

problems with substitutable preferences (Roth 1984b; cf Section 2.1), this establishes part (i)

of Theorem 2. In the fourth step, I show that monotonicity and non-excessive reduction imply

that colleges’ choices also satisfy the law of aggregate demand. An application of the result by

Hatfield and Kojima (2009) (cf Section 2.1) then yields part (ii) of Theorem 2 and completes

the proof.

Step 1: Construction of the associated college admissions problem (CAP)

Given a choice protocol (�c, qc), college c’s choice from a set of applicants J ⊆ I is

determined as follows:

In the first step admit the q(c,1) highest ranking acceptable students in J ac-

cording to �(c,1) (or all acceptable students in J if there are fewer than q(c,1)).

Denote the set of admitted students by I(c,1)(J), the number of unused seats

by r(c,1)(J) = q(c,1) − |I(c,1)(J)|, and let I(c,2)(J) = J \ I(c,1)(J) be the set of

remaining students.

...

In the tth step admit the q(c,t)(r(c,1)(J), . . . , r(c,t−1)(J)) highest ranking accept-

able students in I(c,t)(J) according to �(c,t). Denote the set of admitted students

by I(c,t)(J), the number of unused seats by r(c,t)(J) = q(c,t)(r(c,1)(J), . . . , r(c,t−1)(J))−

|I(c,t)(J)|, and let I(c,t+1)(J) = J \ I(c,t)(J) be the set of remaining students.

...

College c’s choice from J ⊆ I induced by (�c, qc) is then Chc(J) = Ch(J | �c, qc) :=

I(c,1)(J) ∪ . . . ∪ I(c,T )(J).

Given some matching problem with complex constraints (C, I, PI , (�c, qc)c∈C), define the

associated college admissions problem by (C, I, PI , (Chc(·))c∈C).

Step 2: Equivalence of stability concepts
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Given a feasible matching sequence µ = (µ1, . . . , µT ), define a matching νµ for the associ-

ated CAP by setting νµ(c) := µ(c) for all c ∈ C and νµ(i) := µ(i) for all i ∈ I. Similarly,

given a matching ν for the associated CAP, define a feasible matching sequence µν by

setting µνt (c) = I(c,t)(ν(c)) for all c ∈ C and, for all i ∈ I, µνt (i) = c if i ∈ I(c,t)(ν(c)) for

some c ∈ C and µνt (i) = i if i /∈ ∪c∈CI(c,t)(ν(c)).

Given these definitions, it is straightforward to check that if µ is procedurally stable, then

νµ is stable for the associated simple problem, and that if ν is stable for the associated

simple problem, then µν = (µν1, . . . , µ
ν
T ) is procedurally stable (a formal proof can be

found in the Online Appendix).

This implies that if ν is the student optimal stable matching in the associated CAP, then

µν is the student optimal procedurally stable matching for the matching problem with

complex constraints.

Step 3: Monotonicity of choice protocols implies substitutability of colleges’ choice func-

tions in the associated CAP

For the following, fix some college c ∈ C with choice protocol (�c, qc). Suppose J̃ ⊆ J ⊆ I.

Let (J̃t, r̃t, J̃
t+1)t and (Jt, rt, J

t+1)t denote the associated sequences of admitted students,

remaining capacities, and remaining students for each step of c’s admission process from

J̃ and J , respectively.

I show first that if (�c, qc) is monotonic, then Ch(·| �c, qc) is substitutable. To prove

this, I show by induction that (Jt ∩ J̃ t) ⊆ J̃t.

The statement is trivial for t = 1. Furthermore, it is easy to see that we must have

r1 ≤ r̃1. So suppose that for some t ≥ 1, (Js ∩ J̃s) ⊆ J̃s and rs ≤ r̃s for all s ≤ t. I show

that the same statements hold for t+ 1 as well.

Note first that by the inductive assumption we must have J̃ t+1 ⊆ J t+1: Otherwise there

would be an agent i ∈ (J1 ∪ . . . ∪ Jt) ∩ J̃ t+1, which is impossible given the inductive

assumption of (Js∩ J̃s) ⊆ J̃s for all s ≤ t. By monotonicity and the inductive assumption

we obtain that qt+1 := q(c,t+1)(r1, . . . , rt) ≤ q(c,t+1)(r̃1, . . . , r̃t) =: q̃t+1. This already yields

(Jt+1 ∩ J̃ t+1) ⊆ J̃t+1, since J̃ t+1 ⊆ J t+1 together with q̃t+1 ≥ qt+1 implies that the q̃t+1st

lowest ranking applicant in J̃t+1 with respect �(c,t+1) must rank weakly lower than the
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qt+1st lowest ranking applicant in Jt+1.

It remains to be shown that rt+1 ≤ r̃t+1. By definition r̃t+1− rt+1 = q̃t+1− qt+1 + |Jt+1| −

|J̃t+1|. If |Jt+1| < qt+1, note that J̃ t+1 ⊆ J t+1 implies |Jt+1| = |{i ∈ J t+1 : i �(c,t+1) c}| ≥

|{i ∈ J̃ t+1 : i �(c,t+1) c}|. Since q̃t+1 ≥ qt+1 this implies |Jt+1| ≥ |{i ∈ J̃ t+1 : i �(c,t+1)

c}| = |J̃t+1| and we obtain r̃t+1 − rt+1 ≥ q̃t+1 − qt+1 ≥ 0. If |Jt+1| = qt+1, we obtain

r̃t+1 − rt+1 = q̃t+1 − |J̃t+1| ≥ 0.

Step 4: Monotonicity and non-excessive reduction imply that colleges’ choice functions

in the associated CAP satisfy the law of aggregate demand

Next, I show that if (�c, qc) is monotonic and satisfies non-excessive reduction, Ch(·| �c

, qc) also satisfies the law of aggregate demand. Let t be arbitrary. For s ≤ t, let

qs := q(c,s)(r1, . . . , rs−1) and qs := q̃(c,s)(r̃1, . . . , r̃s−1). As shown above, monotonicity

implies that, for all s ≤ t, we must have r̃s = rs + ks for some ks ≥ 0, if J̃ ⊆ J . The

definitions of r̃s and rs imply |Js| = qs − q̃s + |J̃s|+ ks. Hence,

t∑
s=1

|Js| =
t∑

s=1

|J̃s|+
t∑

s=1

[ks − (q̃s − qs)]

≥
t∑

s=1

|J̃s|+ q̃t+1 − qt+1

≥
t∑

s=1

|J̃s|,

where the first inequality follows from non-excessive reduction and the second inequality

follows from monotonicity. Since t was arbitrary, this implies |Chc(J)| =
∑T

s=1 |Js| ≥∑T
s=1 |J̃s| = |Chc(J̃)|, which proves the statement.

�

References

[1] Abdulkadiroglu, A.: College admissions with affirmative action. Int J Game Theor 33,

535–549 (2005)

36



[2] Abdulkadiroglu, A., Che, Y.-K., Yasuda, Y.: Expanding “Choice” in School Choice.

Columbia University, Mimeo (2011a)

[3] Abduladiroglu, A., Che, Y.-K., Yasuda, Y.: Resolving conflicting preferences in School

Choice: The Boston mechanism reconsidered. Am Econ Rev 101, 399–410 (2011b)

[4] Abdulkadiroglu, A., Pathak, P. A., Roth, A., Sönmez, T.: Changing the Boston School

Choice Mechanism. Harvard University, Mimeo (2006)

[5] Abdulkadiroglu, A., Pathak, P. A., Roth, A.: Strategy-proofness versus efficiency in match-

ing with indifferences: Redesigning the NYC High School Match. Am Econ Rev 99, 1954–

1978 (2009)

[6] Abdulkadiroglu, A., Sönmez, T.: School Choice - A Mechanism Design approach. Am Econ

Rev 93, 729–747 (2003)

[7] Balinski, M., Sönmez, T.: A tale of two mechanisms: Student placement. J Econ Theor 84,

73–94 (1999)
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7 Supplementary Appendix

7.1 Omitted proofs

7.1.1 Equivalence of stability concepts

As in the proof of Theorem 2, given a feasible matching sequence µ = (µ1, . . . , µT ), define a

matching νµ for the associated CAP by setting νµ(c) := µ(c) for all c ∈ C and νµ(i) := µ(i)

for all i ∈ I. Similarly, given a matching ν for the associated CAP, define a feasible matching

sequence µν by setting µνt (c) = I(c,t)(ν(c)) for all c ∈ C and, for all i ∈ I, µνt (i) = c if

i ∈ I(c,t)(ν(c)) for some c ∈ C and µνt (i) = i if i /∈ ∪c∈CI(c,t)(ν(c)). We have the following.

Proposition 1. (i) If µ is a procedurally stable feasible matching sequence, νµ is a stable

matching for the associated college admissions problem.

(ii) If ν is a stable matching for the associated college admissions problem, µν is a procedurally

stable feasible matching sequence.

Proof:

(i) I show first that Chc(ν
µ(c)) = νµ(c) (individual rationality for students is obvious). By

(iv) of Definition 4, µ1(c) contains the q(c,1) highest ranking acceptable students in νµ(c)

with respect to �(c,1) (or all such acceptable students if there are fewer than q(c,1)). This

implies I(c,1)(ν
µ(c)) = µ1(c) and r(c,1)(ν

µ(c)) = q(c,1)−|µ1(c)|. Proceeding inductively, sup-

pose I(c,s)(ν
µ(c)) = µs(c) for all s ≤ t. This implies q(c,t+1)(r(c,1)(ν

µ(c)), . . . , r(c,t)(ν
µ(c))) =

q(c,t+1)(r(c,1)(µ), . . . , r(c,t)(µ)). Again by (iv) of Definition 4, µt+1(c) contains the

q(c,t+1)(r(c,1)(µ), . . . , r(c,t)(µ)) highest ranking acceptable students in νµ(c) \ (µ1(c) ∪ . . . ∪

µt(c)) with respect to �(c,t+1) (or all such acceptable students if there are fewer than

q(c,t+1)(r(c,1)(µ), . . . , r(c,t)(µ))). This implies I(c,t+1)(ν
µ(c)) = µt+1(c).

Next, I show that if cPiν
µ(i) for some student i ∈ I, then i /∈ Chc(ν

µ(c) ∪ {i}). Note

that if i �(c,1) c and i ∈ I(c,1)(νµ(c) ∪ {i}), we must have either |µ1(c)| < q(c,1) or i �(c,1)

j for some j ∈ µ1(c), so that (iii) of Definition 4 must be violated with respect to

t = 1. This and the individual rationality of νµ in the associated college admissions

problem imply I(c,1)(ν
µ(c) ∪ {i}) = µ1(c). Proceeding inductively, suppose I(c,s)(ν

µ(c) ∪
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{i}) = µs(c) for all s ≤ t. This implies q(c,t+1)(r(c,1)(ν
µ(c) ∪ {i}), . . . , r(c,t)(νµ(c) ∪ {i})) =

q(c,t+1)(r(c,1)(µ), . . . , r(c,t)(µ)). Hence, if i �(c,t+1) c and i ∈ I(c,t+1)(ν
µ(c) ∪ {i}), we must

obtain a contradiction to (iii) of Definition 4 with respect to t+1 as above. This inductive

argument shows i /∈ I(c,1)(νµ(c) ∪ {i}) ∪ . . . ∪ I(c,T )(νµ(c) ∪ {i}) = Chc(ν
µ(c) ∪ {i}) and

completes the proof of (i).

(ii) I show first that if Chc(ν(c)) = ν(c), then µν satisfies condition (iv) of Definition 4

(that conditions (i) and (ii) are satisfied is obvious). To see this, consider an arbitrary

t ≤ T and note that by the rules of c’s admission process, µνt (c) = I(c,t)(ν(c)) consists of

the q(c,t)(r(c,1)(ν(c)), . . . , r(c,t−1)(ν(c))) = q(c,t)(r(c,1)(µ
ν), . . . , r(c,t−1)(µ

ν)) highest ranking

acceptable applicants in ν(c) \ (I(c,1)(ν(c)) ∪ . . . ∪ I(c,t−1)(ν(c))) = (µνt (c) ∪ . . . ∪ µνT (c)) \

(µν1(c) ∪ . . . ∪ µνt−1(c)) with respect to �(c,t) (or all such acceptable students if there are

fewer than q(c,t)(r(c,1)(µ
ν), . . . , r(c,t−1)(µ

ν))). Hence, for all s < t, any student in µt(c)

must rank lower than all students in µs(c) with respect to �(c,s).

Next, suppose that (iii) is violated for some t so that cPiν(i), i �(c,t) c, and either

|µνt (c)| < q(c,t)(r(c,1)(µ
ν), . . . , r(c,t−1)(µ

ν)) or i �(c,t) j for some j ∈ µνt (c). The stability of

ν for the associated CAP implies i /∈ I(c,1)(ν(c)∪{i})∪ . . .∪ I(c,t−1)(ν(c)∪{i}). Hence, we

must have I(c,s)(ν(c)∪{i}) = I(c,s)(ν(c)) = µνs(c) for all s ≤ t−1. This implies in particular

that q(c,t) := q(c,t)(r(c,1)(ν(c)), . . . , r(c,t−1)(ν(c))) = q(c,t)(r(c,1)(µ
ν), . . . , r(c,t−1)(µ

ν)). Given

the assumed violation of (iii) for t, this implies that we must have i ∈ I(c,t)(ν(c) ∪ {i}).

But then i ∈ Chc(ν(c) ∪ {i}), contradicting the assumed stability of ν for the associated

CAP.

7.1.2 The connection to stability under minority reserves

Given a problem with minority reserves (C, S, (�i)i∈C∪S, (qc, rmc )c∈C), as introduced by Hafalir

et al (2011), define an associated problem with complex constraints (C, S, (�s)s∈S, (�(c,1),�(c,2)

)c∈C , (q(c,1), q(c,2))c∈C) as follows: For any school/college c ∈ C,

• for all s, s′ ∈ Sm, set s �(c,1) s
′ �(c,1) c if and only if s �c s′,

• for all s ∈ SM , set c �(c,1) s,
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• set �(c,2)=�c, and

• set q(c,1) = rmc and q(c,2)(r1) = qc − rmc + r1 for all r1 ∈ {0, . . . , rmc }.

Given a matching µ for the problem with minority reserves, define a matching for the

problem with complex constraints by

• letting νµ1 (c) consist of the rmc highest ranking students in µ(c) ∩ Sm with respect to �c

(or all students in µ(c) ∩ Sm if there are less than rmc ) and

• setting νµ2 (c) = µ(c) \ νµ1 (c)

for all colleges c ∈ C.

Similarly, given some matching ν = (ν1, ν2) for problem with complex constraints, define a

corresponding matching µν for the problem with minority reserves by setting µν(c) = ν1(c) ∪

ν2(c) for all colleges c ∈ C.

A matching µ is stable with respect to minority reserves (Hafalir et al 2011)19 if

(a) it is individually rational for students,

(b) whenever c �s µ(s) for some s ∈ Sm and c ∈ C, then |µ(c)| = qc, |µ(c) ∩ Sm| ≥ rmc , and

s′ �c s for all s′ ∈ µ(c),

(c) whenever c �s µ(s) for some s ∈ SM and c ∈ C, then either

(c.1) |µ(c) ∩ Sm| > rmc and s′ �c s for all s′ ∈ µ(c), or

(c.2) |µ(c) ∩ Sm| ≤ rmc and s′ �c s for all s′ ∈ µ(c) ∩ SM .

A matching ν = (ν1, ν2) for the problem with complex constraints is procedurally stable if

(a’) it is individually rational for students,

(b’) s �(c,t) c for all s ∈ νt(c)

(c’) whenever c �s ν(s) then there is no t such that s �(c,t) c and either r(c,t)(ν) > 0, or

s �(c,t) s
′ for some s′ ∈ νt(c), and

19This is exactly the same definition as in Hafalir et al (2011). I just reformulated it slightly to make it easier
to read.
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(d’) whenever s ∈ νt(c), there is no t′ < t such that s �(c,t′) c and either r(c,t′)(ν) > 0, or

s �(c,t′) s
′ for some s′ ∈ νt′(c).

Proposition 2. (i) If µ is stable with respect to minority reserves, then νµ is procedurally

stable.

(ii) If ν is procedurally stable, then µν is stable with respect to minority reserves.

Proof.

(i) That νµ satisfies (a’) and (b’) of procedural stability follows immediately from the con-

struction of νµ and the corresponding properties of µ. Property (d’) also follows im-

mediately from the construction of νµ, since νµ1 (c) always contains the highest priority

minority students from µ(c).

To see that (c’) must be satisfied, consider first a minority student s ∈ Sm and assume

that c �s νµ(s) = µ(s) for some c ∈ C. By (b) of stability with respect to minority

reserves, we must have |µ(c) ∩ Sm| ≥ rmc and s′ �c s for all s′ ∈ µ(c). But then, we must

clearly have |νµ1 (c)| = rmc and s′ �c s for all s′ ∈ νµ1 (c) ∪ νµ2 (c) = µ(c).

Next, consider a majority student s ∈ SM and assume that c �s νµ(s) = µ(s) for some

c ∈ C. We need to show that s′ �c s for all s ∈ νµ2 (c). If |µ(c) ∩ Sm| > qc, then (c.1)

of stability with respect to minority reserves implies that s′ �c s for all s′ ∈ µ(c) =

νµ1 (c) ∪ νµ2 (c). If |µ(c) ∩ SM | ≤ qc, the construction of νµ implies that we must have

νµ2 (c) ⊂ SM and (c.2) implies s′ �c s for all s′ ∈ µ(c) ∩ SM = νµ2 (c).

(ii) If ν is procedurally stable, µν must be individually rational for students by (a’).

To see that (b) must be satisfied, consider a minority student s ∈ Sm and assume that

c �s µν(s) for some c ∈ C. Since this implies that c �s ν1(s), we must have that

|ν1(c)| = rmc and s′ �c s for all s′ ∈ ν1(c) by (c’) for t = 1. On the other hand, (c’) for

t = 2 implies that s′ �c s for all s′ ∈ ν2(c). Hence, |µν(c)∪Sm| ≥ |ν1(c)| = rmc and s′ �c s

for all s′ ∈ µν(c) = ν1(c) ∪ ν2(c).

To see that (c) must be satisfied, consider a majority student s ∈ SM and assume that

c �s µν(s) for some c ∈ C. Suppose first that |µν(c) ∩ Sm| ≤ rmc . Since ν satisfies (d’)

of procedural stability, this implies that ν2(c) ⊂ SM . By (c’) for t = 2, we must have
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s′ �c s for all s′ ∈ ν2(c) = µ(c) ∩ SM . Next, assume that |µν(c) ∩ Sm| > rmc . By (c’) for

t = 2, we must have s′ �c s for all s′ ∈ ν2(c). Since |ν1(c)| ≤ rmc , there must be at least

one s′′ ∈ ν2(c) ∩ Sm. Since ν also satisfies (d’), we must have s′′ �c s′ for all s′′ ∈ ν2(c),

so that by transitivity of �c, s′′ �c s for all s′′ ∈ ν2(c).

7.2 A more detailed model of the German admissions procedure

In this section I provide a more detailed model of the German admissions procedure. The most

important difference between the model presented in the main body of my paper and the actual

assignment procedure is that the latter consists of three parts. In the first part, the Boston

mechanism is used to allocate up to 20 percent of total capacity among applicants with excellent

average grades. In the second part, the same mechanism is used to allocate another 20 percent

of total capacity among applicants who have waited a long time since finishing high-school.

Finally, all remaining capacity is allocated among all remaining applicants in the third part

of the procedure on basis of criteria chosen by the universities using the university proposing

deferred acceptance algorithm. I now describe the system in more detail and then argue that

under reasonable assumptions the analysis from the main body of my paper carries through.

In order to participate in the centralized assignment procedure applicants have to submit one

ordered (preference) list of universities for each part of the procedure. There is no consistency

requirement across the three lists and the list submitted for part t ∈ {1, 2, 3} is used only

to determine assignments in part t. All preference lists are submitted simultaneously before

any assignments are determined. For the first and third part of the procedure at most six

universities can be ranked, while for the second part any number of universities can be ranked.

Let Qa := (Q1
a, Q

2
a, Q

3
a) denote the profile of strict preference lists submitted by applicant

a ∈ A and QA := (Q1
A, Q

2
A, Q

3
A) := ((Q1

a)a∈A, (Q
2
a)a∈A, (Q

3
a)a∈A) denote the profile of reports by

all applicants. An applicant applies for a place in part t, if she ranks at least one university

for part t of the procedure. Let qu denote the total number of places that university u has

to offer. To avoid integer problems, I assume that all capacities are multiples of five. Let

q1u = q2u = 1
5
qu and q1 = q2 = 1

5

∑
u∈U qu denote the number of places at university u and the

total number of places available in the first two parts of the procedure. As in the main body
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of the paper, I assume throughout that all universities have objective evaluation procedures :

for each university u ∈ U , there is a strict ranking �u of A ∪ {u} that is fixed and known

prior to the application deadline. University u’s preferences over any set of applicants B ⊆ A

who remain in the procedure until the third part are then given by the restriction of �u to

B, �u |B∪{u}. With these preparations, the German admissions procedure can be described as

follows.

The German admissions procedure

Part 1: Assignment for top-grade applicants

(Selection) Select q1 applicants from those who applied for a place in part 1. If there are

more than q1 such applicants, order applicants lexicographically according to (i) average

grade, (ii) time since obtaining qualification, (iii) completion of military or civil service,

(iv) lottery.20 Select the q1 highest ranked applicants in this ordering.

(Assignment) Apply the Boston mechanism to determine assignments of selected applicants:

University u can admit at most q1u applicants, the preference relation of a selected appli-

cant a is Q1
a, and an applicant’s priority for a university is determined lexicographically

by (i) average grade, (ii) social criteria,21 (iii) lottery. Denote the matching produced in

part 1 by fG1(Q1
A), the set of admitted applicants by A1, the number of empty seats at

university u by r(u,1) = q1u−|fG1
u (Q1

A)|, and the set of remaining applicants by A2 = A\A1.

Part 2: Assignment for wait-time applicants

(Selection) Select q2 applicants from those in A2 who applied for a place in part 2. If there

are more than q2 such applicants, order applicants lexicographically according to (i) time

20This means that an applicant A ranks higher than an applicant B if and only if either (a) A has a better
(which in Germany means lower) average grade than B, (b) A and B have the same average grade, but A has a
longer waiting time than B, (c) A and B have the same average grade and waiting time, but A has completed
military or civil service and B has not, or (d) A and B do not differ with respect to the first three criteria and
A was assigned higher priority than B by lottery. Analogous comments apply to the priority rankings in the
other parts of the procedure.

21In this category, applicants are ordered lexicographically according to the following criteria: 1. Being
severely disabled. 2. Main residence with spouse or child in the district or a district-free city associated to the
university. 3. Granted request for preferred consideration of top choice. 4. Main residence with parents in the
area associated with the university. Note that, in contrast to the selection stage, an applicant’s priority may
thus differ across universities.
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since obtaining qualification, (ii) average grade, (iii) completion of military or civil service,

(iv) lottery. Select the q2 highest ranked applicants in this ordering.

(Assignment) Apply the Boston mechanism to determine assignments of selected applicants:

University u can admit at most q2u applicants, the preference relation of a selected appli-

cant a is Q2
a, and an applicant’s priority for a university is determined lexicographically by

(i) social criteria, (ii) average grade,(iii) lottery. Denote the matching produced in part 2

by fG2(Q2
A), the set of admitted applicants by A2, the number of empty seats at university

u by r(u,2) = q2u − |fG2
u (Q2

A)|, and the set of remaining applicants by A3 = A2 \ A2.

Part 3: Assignment according to universities’ preferences

Apply the university proposing deferred acceptance algorithm to determine an assignment

of applicants in A3 to universities: University u can admit at most q3u = 3
5
qu + r(u,1) + r(u,2)

applicants, the preference relation of an applicant a ∈ A3 is given by Q3
a, and u’s preferences

are responsive to �u. Denote the matching produced in the third part of the procedure by

fG3(Q3
A,�U).

Given QA and �U , let fG(Q) = (fG1(Q1
A), fG2(Q2

A), fG3(Q3
A,�U)) denote the three tuple of

matchings chosen by the German admissions procedure.

I now introduce some additional assumptions. First, as in the main body of the text,

I assume that the priority rankings used in the first two parts of the procedure are strict.

Applicants who are selected in the first part of the procedure will be called top-grade applicants

and applicants who are selected in the second part of the procedure will be called wait-time

applicants. Second, all applicants are assumed to always rank at least one university for each

part of the procedure. This is important since otherwise the sets of top-grade and wait-time

applicants would depend on the profile of submitted preferences since an applicant is considered

for part t ∈ {1, 2} only if she has ranked at least one university for part t. While this is not

without loss of generality, as there are rare cases in which it can be in an applicant’s best interest

to list no university for some part of the procedure (an example can be found in Section 7.2.2),

the empirical evidence in Braun et al (2010) offers strong support in favor of this assumption.

Third, I assume that an applicant can be eligible for a place in at most one of the first two
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parts. Given that all potentially eligible applicants always apply for a place in the respective

part of the procedure, it is reasonable to assume that top-grade applicants will not be eligible

for a place reserved for wait-time applicants, since all universities (have to) rely partly on the

average grades of applicants. Applicants with excellent average grades will typically find a place

to study before they would become eligible in the wait-time quota, where the minimal waiting

time to be eligible ranges from 2.5 years (veterinary medicine) to 5 years (general medicine).

Finally, I assume that top-grade and wait-time applicants have lexicographic preferences in

the sense that when comparing two outcomes such an applicant primarily cares about the

university she is assigned to and, if the two outcomes assign her to the same university but in

different parts of the procedure, she prefers the outcome that assigns her in the first (top-grade

applicants) or second part (wait-time applicants) of the procedure.

Under these four assumptions, Theorem 1 from the main body of the text continues to

hold for the more detailed model of the German admissions procedure presented above. The

only change in the proof is that now one needs to take care of two special applicant groups

and corresponding reserved quotas. Given the assumptions introduced above, these groups are

disjoint and their composition is independent of the submitted preferences. It is straightforward

to establish that then the presence of two special applicant groups poses no problem for the

validity of Theorem 1. Details are available upon request.

One other potential problem for the validity of Theorem 1 is that in the actual procedure

universities are allowed to use their rank in the preference lists that applicants submitted for

part 3. For example, a university may decide to consider only applicants who ranked it first and

order these applicants according to their average grade. The assumption of objective evaluation

procedures above can be interpreted as saying that the other criteria a university u uses apart

from such ranking constraints induces the strict ranking �u. In the just mentioned example

�u would simply list applicants in decreasing order of average grade. The ranking �u can

thus be understood as the ranking that would result if all applicants had ranked u sufficiently

high to satisfy its ranking constraint. While I have abstracted from ranking constraints in

the above, Theorem 1 remains valid without this restriction. This follows since the proof

of this result shows that any stable matching can be achieved by a strategy profile in which

matched applicants only rank their assigned university and that the deviations used to show that
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any equilibrium outcome must be stable similarly use a preference list of length one. Thus,

the ranking constraints set by universities never come into play in a complete information

equilibrium. An interesting corollary of Theorem 1 is therefore that neither ranking constraints

nor the constraint that applicants can rank at most six universities for parts 1 and 3, have

any effect on the set of matchings that are attainable as complete information equilibrium

outcomes. The application strategies used in the proof are of course very risky since they

entail a potentially high probability of being left unassigned by the end of the procedure if

applicants are only slightly mistaken about the preferences of universities and other applicants.

The discussion is meant to point out that if applicants had a very reliable estimate of their

chances of admission at each university then constraints would be irrelevant.

7.2.1 Further details

The main legal text that governs the centralized assignment procedure is the Verordnung über

die zentrale Vergabe von Studienplätzen durch die Stiftung für Hochschulzulassung (VergabeVO

Stiftung) (Stand: Wintersemester 2010/2011),22 available at

http://hochschulstart.de/fileadmin/downloads/Gesetze/G03.pdf. The text is only available in

German and I now briefly summarize the sections of the text that are most relevant for the

presentation of the procedure that is found in the main body of this text.

In §3, the text states that for the first and third part of the procedure applicants should

list up to six universities in decreasing order of preference, and that for the second part they

should list universities in decreasing order of preference. The division of the total capacity of

each university is described in detail in §6 of the text and §6, section 6, sentence 2 describes

capacity redistribution between the three quotas. The timing of the procedure is described in

§7. The selection of applicants for the first two parts of the procedure is described in §11 - 13

(first part) and §14 (second part). The rules for the assignment stages of the first two parts are

summarized in §20, which says that the stated preference rank is paramount for admission and

describes how to determine rejections if more applicants have listed a given university at the

same preference rank than can be admitted. The rules for the last part of the procedure are

described in §10, section 5. Here it is stated that once universities’ preference lists have been

22This can be translated as Decree about the centralized allocation of places of study by the foundation for
university admissions.
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received, the foundation for university admissions aligns these lists by iteratively deleting all

but the most preferred (according to the applicants’ submitted preference lists) possibility of

admission for each applicant. This means that the foundation first checks who can be admitted

at which university given the rankings submitted by universities and the number of available

places at each university. Each applicant is temporarily assigned his or her most preferred

university and is deleted from the lists of all other universities at which he or she could have

been admitted. In the second round, the foundation checks who can be admitted at which

university on basis of the modified lists, applicants are again temporarily assigned the most

preferred university at which they can be admitted and are deleted from the lists of all other

universities at which they could have been admitted. Iterating this procedure, we arrive at the

description of the college/university proposing deferred acceptance algorithm as stated in the

main body of this paper.

I now describe some of the additional simplifications made in the main body of the text.

Readers interested in all details of the current German admissions procedure may still want

to consult the Verordnung über die zentrale Vergabe von Studienplätzen durch die Stiftung für

Hochschulzulassung (VergabeVO Stiftung) (Stand: Wintersemester 2010/2011).

Capacities: The total number of places at each university is determined by the application of

federal laws. For each state there is a so called Kapazitätsverodnung (KaPVO) (available

at http://hochschulstart.de/fileadmin/downloads/Gesetze/G05.pdf) which prescribes a

formula for calculating the number of applicants a university can admit on basis of the

number of professors, available teaching facilities, and so on.23

Special Quotas: Up to approximately fifteen percent of total available places are allocated in

advance among foreign applicants, applicants pursuing a second university degree, and so

on. These applicants are not allowed to participate in the regular assignment procedure.

Part 1: The education system in Germany is federalized and the general opinion is that average

grades are not directly comparable across federal states. For this reason, there are actually

sixteen separate assignment procedures in part 1, one for each federal state. This is

achieved by splitting the 20 percent of (remaining) capacity available in part 1 into sixteen

23There has been some discussion about the KaPVO in recent years, see e.g. Die fiese Formel in Die Zeit,
Nr. 39(2007).
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quotas for the different federal states. Within each of these federal quotas only those

applicants are considered who have received their high school diploma in this state.

Part 3: – Once assignments are determined by the centralized admissions procedure, suc-

cessful applicants have to enroll at their assigned university. If some applicants fail

to do so, their places are allocated according to the rules of part 3. Here, only those

applicants are considered who did not receive a place in previous rounds of the as-

signment procedure. Again, students have to enroll at their assigned university (if

any) and if they fail to do so, another round of part 3 is used to allocate remaining

places (again only students who were not previously assigned a place are considered).

Any places that remain after all of this are allocated via lottery by universities.

– In order to prevent multiple rounds of the assignment procedure in part 3, a univer-

sity can demand the foundation for university admissions to overbook its capacities.

Thus, a university with, say 100 places, may to be assigned 150 applicants since it

expects some students not to accept their assigned places.

Lotteries: If a university does not fill its capacity in the centralized procedure, remaining

places are allocated on basis of lottery. Each university conducts its own lottery and

applicants have to apply directly to universities in order to participate.

7.2.2 An example showing that “No Empty Lists” is restrictive

The following example shows that the “No Empty Lists” assumption is restrictive, so that

applicants may sometimes benefit from not participating in (one of) the first two steps of the

German admissions procedure. There are seven applicants a1, a2, a3, a4, a5, a6, a7 indexed in

order of increasing average grades. For simplicity, I assume that there are only two universities

u and u′ who have one place to allocate in each of the three steps of the admissions procedure.

Preferences of applicants are as follows:

P Pa1 Pa2 Pa3 Pa4 Pa5 Pa6 Pa7

u u u′ u′ u′ u u′

u

Assume that a6 and a7 are the applicants with the longest waiting time, a3 �(u,3) a2 as well
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as a5 �(u′,3) a4 �(u′,3) a3, and that all applicants submit their true ranking of universities for

each step of the procedure. In this case the outcome of the admissions procedure is

fG1(PA) =
u u′

a1 ∅
, fG2(PA) =

u u′

a6 a7

, fG3(PA) =
u u′

a3 {a4, a5}
.

Note that if we keep the profile of reports by everyone but a2 fixed, a2 cannot obtain a place

at u if she applies for a place in part 1. Suppose then that she decides to apply only for part

3 and submits Q3
a2

= u. If everyone else submits the same preferences as before, a3 would be

a top-grade applicant and could obtain a place at her most preferred university u′ in part 1 of

the admissions procedure. But then a2 would receive a place at u in part 3 of the procedure

since no one else will apply to u in that part. Thus, she benefits from not applying for a place

in part 1.

7.3 Evaluation of applicants in the German admissions procedure

In this section of the supplementary appendix I provide some further details on the different

evaluation procedures used by universities in part 3 of the current German admissions proce-

dure. A comprehensive (German language) overview can be found at

http://hochschulstart.de/fileadmin/downloads/Studienangebot/adh-kriterien-ws10.pdf. All of

the below concerns the procedure for the winter term 2010/2011. The evaluation process takes

place after assignments in parts 1 and 2 have been determined and only those applicants who

did not receive a place in these parts are considered. In principle, the administrator of the

centralized procedure informs each university about all remaining applicants who have listed

the university in their ranking for part 3.

A university may, however, limit the set of applicants it will consider for part 3 in advance

on basis of its rank in the preference lists submitted for part 3, average grades, or a combination

of the two criteria. For example, a university with, say, a hundred seats to be allocated in part

3 may consider only the 300 applicants with the best average grades among those who ranked

it first. This practice is called pre-selection and universities are only informed about those

applicants who “survived” its pre-selection process.
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In case an applicant is not rejected in the pre-selection process of a university, the univer-

sity is provided with detailed information including its rank in the submitted preference list

(for part 3), average grade, waiting-time, and so on. Universities can then use average grades,

interviews, statements of purpose, completion of on-the-job training in a relevant field, prizes

in scientific competitions, and so on, to evaluate remaining applicants. Rules of the evaluation

procedures of all universities are made available to applicants on the website of the admin-

istrator of the centralized admissions procedure and the websites of universities prior to the

application deadline. Descriptions list all relevant criteria and specify a rule for using these

criteria to calculate a score for each applicant, which is then used to rank order applicants.

As an example, consider the evaluation procedure that was used by the university of Mainz to

evaluate applicants for medicine:

Applicants who had taken a standardized test for medical subjects (the TMS ) and had

achieved a better grade in this test than the average grade of their school leaving exami-

nations, were assigned a score of 0.51×( average grade of school leaving examinations )+

0.49× ( grade of TMS ).

The score for all other applicants coincided with their average grades.

While universities are, in principle, free to rank order applicants in any way they want, the

official information brochure of the centralized procedure’s administrator states that in the

determination of an applicant’s position [in universities’ rankings] average grade has to be a

decisive factor.24 In practice, this is usually implemented by assigning a weight of at least 50

percent to the average grade of an applicant for the calculation of an applicant’s score.

In the following, I provide some aggregate data on the evaluation procedures of universities.

Say that a university uses an objective evaluation procedure, if it relies only on characteristics of

applicants that are known prior to the application deadline, such as average grades, completion

of on-the-job training etc. In the first table, #U lists the number of universities, #Prek

lists the number of universities that consider only applicants who ranked them at least kth

(k = 1, . . . , 4), #O lists the number of universities that use only objective evaluation criteria,

and #AG lists the number of universities that exclusively rely on average grades to evaluate

applicants in the third part of the procedure.

24Merkblatt M09: Auswahlverfahren der Hochschulen, available at
http://hochschulstart.de/fileadmin/downloads/Merkblaetter/M09.pdf. Translation by the author.

53



Subject # U #Pre 1 #Pre 2 #Pre 3 #Pre 4 # O # AG
Vet. Med. 5 3 0 0 0 3 0
Pharmacy 22 0 3 4 0 20 7
Dentistry 29 4 4 5 1 23 10
Medicine 34 11 5 5 0 25 9

Table 1: Preselection and objective evaluation

Subject #S #S≤0.5 #S>0.5 #S1.0

Vet. Med. 2 0 0 2
Pharmacy 2 0 0 2
Dentistry 6 2 2 2
Medicine 9 3 3 3

Table 2: Subjective criteria in the evaluation process

Note that for all subjects more than two thirds of all universities use objective evaluation

procedures. Furthermore, out of those universities who rely on objective evaluation procedures,

less than half rely exclusively on average grades.

The next table provides more detailed information on universities which rely on subjective

criteria to allocate at least part of their total capacity in the third part of the centralized

procedure. Universities are allowed to split their available capacity for the third part of the

procedure into several quotas and to apply different admission criteria across these quotas. For

example, a university may decide to allocate 50 percent of places (available in the third part of

the admissions procedure) according to average grade and 50 percent on basis of performance in

an interview. In this case, the university has to specify which place an applicant receives if she

could be admitted in more than one of these quotas. In the following table, #S is the number

of universities that use subjective criteria to allocate at least part of their total capacity, #S≤0.5

is the number of universities that assign at most half and at least one of their seats on basis

of subjective criteria, #S>0.5 is the number of universities that assign more than half but less

than all of their seats on basis of subjective criteria, and #S1.0 is the number of universities

that assign all of their seats on basis of subjective criteria.
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