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1.  Learning Direction Theory

Learning direction theory (SELTEN and STOECKER 1986, SELTEN and BUCHTA 1999) is a
qualitative theory about learning in repetitive decision tasks. The theory is quite simple and
can best be introduced with the help of an example. Consider an archer who tries to hit the
trunk of a tree. If the arrow misses the tree on the left side, then the archer will tend to aim
more to the right, and in the case of a miss to the right the aim will be more to the left.

The example may seem to be trivial, but it is important to realise that the behaviour of the
archer is based on a qualitative causal picture of the world. The direction of a change of the
aim is seen as resulting in a corresponding change of the direction of the flight of the arrow. If
the archer had to find his aim by looking into a mirror image, the causal relationships could be
reversed.

Another feature of the situation is the fact that the archer sees whether the arrow misses to the
left or to the right. This feedback permits the use of the qualitative causal picture of the
environment in which the decision is made. Learning direction theory does not only require a
qualitative causal picture of the world, but also the right kind of feedback which makes it
possible to make use of it.

The way in which the decision is based on experience may be described as “ex-post
rationality”. One looks at what might have been better last time and adjusts the decision in
this direction.

Learning direction theory is applicable to repetitive decision tasks in an environment which
can be described as follows.

Learning situation:  A parameter pt has to be chosen in periods 1...T. After each
period t the decision maker receives feedback which permits causal inference on what
might have been better in this period.

The decision is guided by the following principle:

Ex-post rationality:  pt # pt–1, if p < pt, but not p > pt might have been the better
parameter choice last period. Similarly pt $ pt–1, if p > pt, but not p < pt might have
been the better parameter choice last period.

Consider the example of a sealed-bid auction. Let b be the bid, v be the value of the object to
the bidder, and p be the price. After an auction, the bidder may find himself in one of three
experience situations:

1.  Success: The bidder receives the object. b = p b possibly too high.

2.  Lost opportunity: b < p < v b too low.

3.  Outpriced bid: p > v

In the first experience condition, the bidder might have obtained the object for a lower bid,
and a higher bid would have been less advantageous. Therefore, in this condition, the bid was
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possibly too high, and according to ex-post rationality one can expect a tendency to a lower
bid next time, if the bid is changed at all. In the case of a lost opportunity, the bidder could
have profitably obtained the object by overbidding p. According to ex-post rationality, one
can expect a tendency to an increase of the bid if it is changed at all.

Learning direction theory is not meant to be a complete explanation of adaptive behaviour.
Therefore, it does not propose the hypothesis that ex-post rationality prevails in all cases.
Sometimes other influences might move the decision in the opposite direction. However, it is
assumed that ex-post rationality is the strongest influence. These considerations can be
summarised as follows.

Prediction: More frequently than randomly expected, parameter changes, if they
occur, are in the direction indicated by ex-post rationality.

Learning direction theory is qualitative. It does not specify probabilities and sizes of
adjustments. However, the principles of learning direction theory can be incorporated into
quantitative theories. In the last part of this paper, we shall introduce the impulse balance
theory, which makes an attempt at the description of long-run consequences of direction
learning.

It should be emphasised that learning direction theory is very different from the usual models
of reinforcement learning (BUSH and MOSTELLER 1955, ROTH and EREV 1995). In these
theories, the degree of reinforcement of an action depends on the size of the payoff obtained
by it. In learning direction theory the level of the payoff obtained for last period’s decision
does not matter at all. What is important is the additional payoff which might have been
gained by other actions. It is not experienced payoffs alone, but rather the comparison of
experienced payoffs with hypothetical payoffs which guides the decision maker. The
counterfactual causal reasoning about the past is a crucial feature of learning direction theory.

There are at least twelve studies in which learning direction theory has been successfully
applied. Table 1 lists them and shortly characterises the area of research to which they belong.
It can be seen that learning direction theory is applicable to a wide variety of contexts.

2. Winner’s Curse

The winner’s curse phenomenon was first observed in the context of oil field auctions by
CAPEN, CLAPP, and CAMPBELL (1971). They pointed out that on the average, those firms who
obtained oil fields as auction winners made a loss. The explanation for this is that every
bidder bases its bid on a value estimate suggested by geological studies. The higher this
estimate, the higher will be the bid. Consequently, the object is likely to be obtained by the
bidder with the highest over-estimate. The bidders do not sufficiently take this into account
and therefore make a loss in the case that they get the object. Of course, in game-theoretic
equilibrium, the right corrections are made, and no losses appear.
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Table 1.  Applications of learning direction theory in the literature

SELTEN and STOECKER (1986)
MITZKEWITZ and NAGEL (1993)
KUON (1994)
RYLL (1995)
NAGEL (1996)
CASON and FRIEDMAN (1997)
BERNINGHAUS and EHRHART (1998)
SADRIEH (1998)
KAGEL and LEVIN (1999)
SELTEN and BUCHTA (1999)
GROSSKOPF, EREV, and YECHIAM (2000)
this study

Prisoners’ dilemma end effect
Ultimatum game
Bargaining
Bargaining
Beauty Contest game
Markets
Co-ordination
Markets
Auctions
Auctions
Individual decision making
Winner’s Curse

The winner’s curse has been experimentally observed in common value auctions (for an
overview see KAGEL 1995). For this study, the experimental work of SAMUELSON and
BAZERMAN (1985) is of special significance because our experimental set-up is very similar to
theirs. They experimented with a situation which was first theoretically investigated by
AKERLOF (1970). The experimental set-up of SAMUELSON and BAZERMAN is as follows.

A sells a firm to B. The value of the firm for A is v, where v is a random variable with a
uniform distribution over the interval 0 # v # 100. The value of the firm for B is 1.5v. The
information about v is different for both players. A knows the realisation of v, but B knows
the distribution of v only. B has to name a price x, and A accepts this offer for x $ v, and
rejects it for x < v. In experiments B is represented by a subject, but A is simulated by a
computer, and B is informed about the behaviour of A. The situation is repeated over many
periods, and after each period B is informed about the realisation of v regardless of whether
his offer was accepted or not.

In the experiments subjects are often guided by the expected values E(v) = 50 for A, and
1.5E(v) = 75 for B. In choosing the price x B may think that he has to give a little more than
50 to A in order to induce him to sell, and that this can be done because B’s expected value is
75. However, this reasoning about absolute expectations is wrong. What matters are not the
absolute expectations, but the conditional expectations

E(v*x # v) = ½ x.

The offer x is accepted only in the case  x # v, and the mean value of x in this case is ½x.
Therefore, B can expect

1.5 E(v*x # v) = ¾ x
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as the mean value of x for B. Since B has to pay the price x, this has the consequence that B
makes a loss of  ¼ x for every x > 0. The only way to avoid losses is the bid x = 0.

BALL, BAZERMAN, and CARROLL (1991) conduct an experiment in which 37 subjects perform
this decision task 20 times. The authors observe average bids which are clearly higher than
the optimal bid of x = 0. Moreover, no tendency of the average bid towards the optimum can
be detected.

In the literature the reason for the winner’s curse phenomenon in the SAMUELSON-BAZERMAN

task is seen in the wrong orientation at absolute values which has been discussed above. It is
plausible that this is the correct explanation for the first period, but one should expect that
over time, the error is corrected by learning. Why does learning fail to produce a tendency
towards the optimum? Learning direction theory provides an explanation for this.

Suppose that B chooses x = 50. Then, B’s offer will be rejected with probability ½ and
accepted with probability ½. Ex-post rationality indicates an increase of the bid in the case of
rejection, and a decrease of the bid in the case of acceptance. Of course, the impulses in both
directions might differ in strength, but somewhere in the middle of the range, the impulses in
both directions will balance each other. In this way it becomes understandable that learning
will not push the process towards the optimum.

3. Design of the New Experiment

In the following, we shall report the results of our own experiments. Our set-up was
analogous to that of BALL et al., with the following differences. Our experiments were
extended over 100 periods rather than only 20, because one might think that the lack of
convergence to the optimum in the study of BALL et al. were due to an insufficient number of
periods. The value v was uniformly distributed over the integers [u,...,99], with u = 1, u = 11,
and u = 21 for 18 subjects each. In the case u = 1, the optimal profit is reached at two bids:
x = 1 and also x = 2. We experimented with different minimum values since it seemed to be
desirable not to restrict the study to conditions under which the optimum is extreme. For
u = 11, the optimum is reached at x = 21 and x = 22, and for u = 21 at x = 41 and x = 42.

The subjects started with initial assets of 250 and received a fixed income of 20 in each period
in addition to the income from the auction. This fixed income had the purpose to prevent
bankruptcies caused by losses due to the winner’s curse. The money payoff was DM 1.50 for
100 experimental money units. Subjects earned payoffs in the range from DM 8.48 to DM
36.65 for a time of about one hour.

The experiments were run in the Laboratorium für experimentelle Wirtschaftsforschung at the
University of Bonn. The subjects were students at the University of Bonn, mostly majoring in
economics or law. The experiment was computerised, with software developed using
RatImage (ABBINK and SADRIEH 1995). Each session began with an introductory talk. A
translation of the written instructions is reproduced in the appendix. The instructions were
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read aloud and explained in detail. After the introduction, the subjects were seated in cubicles,
visually separated from one another by curtains.

4.  Confirmation of Learning Direction Theory

If a subject has made a bid which turns out to be equal to the value, ex-post rationality does
not indicate a change in either direction. Learning direction theory makes predictions for the
case that bid and value differ. There are two such experience conditions.

1.  Overpayment: x > v tendency towards lower x.

2.  Lost opportunity: x < v tendency towards higher x.

In both cases, the best bid in the last period would have been x = v. Therefore, ex-post
rationality indicates a decrease in the case of overpayment and an increase in the case of lost
opportunity, if the bid is changed at all.

Let r be the fraction of changes indicated by learning direction theory within all bid changes,
and let r be the mean of the fractions r over all subjects. Learning direction theory predicts
that this mean is greater than expected under some random theory.

r = 0.5 is not an appropriate random hypothesis. A uniform random bid distribution yields an
expected value E(r) = 0.67 for u = 1.  This is due to the fact that in the case of a high bid in
the last period, it is on the one hand highly probable that next period’s random bid will be
lower and on the other hand also highly probable that last period’s value was below last
period’s bid. The case of a low bid in the last period is analogous. In view of this, there is a
higher probability of 0.5 of moving in the direction indicated by ex-post rationality by a
random bid.

The problem arises how to construct an adequate comparison theory against which learning
direction theory can be tested in a meaningful way. Our answer to this question is based on a
null hypothesis which assumes that there is no relationship between bid and values, or, more
precisely, between the bid change and the experienced situation in the preceding period. Our
approach to derive testable consequences from this supposed absence of a relationship is a
construction involving a randomisation of the 100 values with which a subject was confronted
during the experiment. In this randomisation the bid sequence is kept fixed.

Of course, one could randomise in a different way, with values kept fixed and bids permuted.
However, this seems to be less adequate since often bids are not changed and therefore one
obtains completely different distributions of bid changes if the bids are permuted. Since
learning direction theory in concerned with bid changes rather than bids, an unchanged bid
sequence together with randomly permuted value sequences seems to be the better point of
departure for a comparison theory.

Let p be the expected value of r under a random permutation of the values in the 100 periods
with the bid sequence kept fixed. For every subject, we determined the surplus
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s = r – p

of the observed r over the comparison value p. Let s  be the expected value of s for the
population of subjects. Our null hypothesis is that s  = 0. It is clear that this should be the case
if there is no relationship between bids and values. The alternative hypothesis according to
learning direction theory is s  > 0. The Wilcoxon test applied to the individual surpluses s
yields the following result.

Result 1.  For u = 1, u = 11, and u = 21 separately, the null hypothesis s = 0 is rejected with
0.5% one-tailed significance in favour of s > 0.

The average bids for u = 1, u = 11, and u = 21 are shown in figure 1. It can be seen that there
is no obvious tendency of convergence towards the optimum. However, rank correlations of
bid and period number for individual subjects are more often negative than positive. This
effect is significant according to the Wilcoxon test on the 5% level (one-sided) in the case
u = 1, but not for u = 11 (one-tail p = 0.077) and u = 21 (one-tail p = 0.152). If there is a
tendency towards the optimum, then it must be a very weak one.

Figure 1
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5. Other Influences on Behaviour

After the experiment the subjects had to fill a questionnaire in which the following questions
were asked:

(1) Imagine you would commission somebody to make bids in your place. What
instructions would you give to this person?

(2) What are your reasons for these instructions?

(3) Comments

The answers to these questionnaires revealed influences on behaviour very different from
learning direction theory. Of course, the instructions do not necessarily agree what the person
actually did. Sometimes the subjects even expressed that their own behaviour was wrong and
something different should be done. Not every subject clearly described the rationale of her or
his instructions. Some answers were quite explicit and very suggestive for our analysis, but
others were not very useful.

In his book on the psychology of stochastic thinking, SCHOLZ (1987) makes a distinction
between an intuitive and an analytic style of approaching decision tasks. The intuitive
decision maker does not make any calculations but relies on his feelings, whereas the analytic
decision maker tries to find a way to calculate the decision. Of course, the same person can
sometimes be in an intuitive and sometimes in an analytical mode of decision making, and
may switch between the two styles within an experiment.

Presumably, an intuitive decision maker cannot tell how he arrives at his decision processes,
since they are hidden below the level of consciousness. Analytical decision makers can
describe the way in which they calculate their decision, but they may not be able to express
themselves clearly.

The answers to the questionnaire suggest types of behaviour, but in view of the lack of clarity
of many of them and because of the difference between instructions and own behaviour we
categorise the subjects not on the basis of their questionnaires, but on the basis of their modal
bids. We distinguish the categories listed in table 2. The table shows the modal bids for five of
the categories and the number of subjects in each category. The first three categories are
analytical. In some cases, the subjects did not exactly follow the principles underlying the
modal bids, but rounded to the next number divisible by five, or made a computational
mistake clearly visible in their comments. We now explain the categories and the underlying
principles.
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(1)  Optimisers: A subject is categorised as an optimiser if its modal bid maximises
expected payoff.

(2)  Loss avoiders: These subjects want to avoid losses and, under this constraint, make a
bid as high as possible. In the case u = 1, there is no difference
between optimisation and loss avoidance. We did not count subjects
under the condition u = 1 as loss avoiders.

(3)  Asset conservers: These subjects want to avoid a decrease of their assets and, under this
constraint, make a bid as high as possible. Here, it is important that a
subject receives an additional fixed income of 20 each period and
therefore ca make a loss of up to 20 without decreasing her or his
asset.

(4) Gamblers: These subjects are interested in high gains. The highest possible gain
can be obtained for a bid of 99, in the case that the value is 99.
Clearly, subjects with a modal bid of 99 must be extremely risk-loving
and therefore may be called “gamblers”.

(5)  Refusers: These subjects had modal bids of 0 under the conditions u = 11 and
u = 21 in spite of the fact that they could have risk-less gains like the
loss avoiders. A zero bid can be interpreted as a refusal to enter the
auction.

(6)  Adapters: This is the residual category of all subjects not in the five other
categories.

Table 2: Categories, modal bids of the categories, and number of subjects in each category

u = 1 u = 11 u = 21category

modal bid number of
subjects

modal bid number of
subjects

modal bid number of
subjects

Optimisers
Loss avoiders

Asset conservers
Gamblers
Refusers

0, 2
–
20
99
–

4
–
2
2
–

20, 22
16

34, 35, 36
99
0

3
1
5
0
0

40, 42
29, 31

50
99
0

3
2
1
0
2

The assignment of subjects to categories is based on modal bids. Thus, an optimiser may be
somebody who learned to optimise only relatively late in the game. Therefore, we do not
assert that a subject in one of the categories is exclusively guided by the underlying principle.
We cannot even assert that the underlying principle was the most important determinant of
somebody classified in one of the categories. However, the modal bid suggest that the
principle was probably a substantial influence. One can expect that learning direction theory
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applies more to the adapters than to the members of the other groups, and this is in fact the
case. We test this by an application of the Mann-Whitney U-test to the surpluses s = r – p.

Result 2.  The null hypothesis that the surpluses of adapters and subjects in other categories
come from the same population can be rejected on the one-tailed significance level of 1% in
favour of the hypothesis that adapters conform more to learning direction theory than other
subjects.

This result leaves room for the possibility that learning direction theory to some extent also
influences the behaviour of subjects in the first five categories. In fact, the mean surplus is
positive for all these categories with the exception of that of the gamblers. Both gamblers
have negative surpluses. An explanation in terms of the gambler’s fallacy suggests itself. A
gambler expects that winning will become the more probable the longer a series of losses
becomes. Suppose that last period’s bid was high, but the value was low. Then, a subject
influenced by the gambler’s fallacy expects that now the probability of a high value is greater
than before. This may be a motivation to increase the bid contrary to what is expected
according to learning direction theory. Similarly, the gambler’s fallacy may induce the
lowering of a bid after a high value. Obviously, the influences of direction learning and the
gambler’s fallacy go in opposite direction.

In some cases the experimenters had the impression that subjects wanted to take an analytic
approach, but were unable to find one, and therefore had to remain among the adapters. This
suggests that people with better analytical knowledge may be more likely to take an analytical
approach.

The subjects were asked whether they had taken a game theory course or not. Three subjects
did not reply this question. They were not optimisers. For the other subjects, table 3 shows
that among those who had taken a game theory course there were relatively more optimisers
than among the subjects who had not.

Result 3.  Subjects with game-theory knowledge are more likely to be optimisers. The Fisher
exact test yields a one-tailed significance level of 0.5% for table 3.

Table 3. Influence of game theory knowledge1

Optimisers

yes no

yes 7 8Game theory
course

no 3 33

1 Three subjects did not answer the question about the game theory course. They were all non-optimisers.
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Figure 2 shows the average bid of the adapters for u = 1, u = 11, and u = 21. Figure 2 looks
similar to figure 1, with the difference that fluctuations are wider in figure 2. This is due to the
smaller number of subjects.

For the adapters we also obtain predominantly negative rank correlations of bid and period
number in the condition u = 1 (for 9 subjects out of 10). According to the Wilcoxon test, the
result is significant at the 2.5% level (one-sided). This is not the case for u = 11 and u = 21.
Learning direction theory excludes a tendency towards the optimum, but not necessarily a
weak negative or a positive trend over 100 periods.

Figure 2
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gains and losses differently, because it is well-known that individuals tend to be much more
sensitive to losses than to gains (see e.g. KAHNEMAN and TVERSKY 1979, BENARTZI and
THALER 1995).

One could try to build a full-fledged learning theory on this approach, but it seems to be better
to avoid the modelling details connected to this. Therefore, impulse balance theory only
determines a single parameter value, the impulse balance point, at which expected upward
and downward impulses are equally strong. It is plausible to conjecture that the bulk of the
stationary distribution of the learning process will be placed in the vicinity of the impulse
balance point. The acceptance of impulse balance theory amounts to the assumption that this
is correct.

A downward impulse results if the bid x is greater than the value v. In this case, we speak of
an overpayment. If x is greater than 1.5v, then a loss results from the bid. Upward impulses
are foregone payoffs of 0.5v in the case that the value is greater than the bid x. Accordingly,
we introduce the following notation.

)0,max(),( vxvxa −=−  (overpayment)

)0,5.1max(),( vxvxaL −= (loss)

xv

xv

for

forv
vxa

≤
>





=+ 0
5.0

),( (foregone payoff)

Impulse balance theory concerns the expected values of these variables. The symbol E
denotes the expectation operator. We use the following notation.

A–(x) = E(a–(x, v))

AL(x) = E(aL(x, v))

A+(x) = E(a+(x, v))

The impulse balance point x~ is defined by

)~(A)~(A)~(A L xxx +− =+ (impulse balance equation)

where x~ is a real number. The bids can take only integer values, but this does not mean that
we have to restrict the impulse balance point in the same way, since it has the meaning of a
point in whose vicinity the stationary bid distribution is concentrated. For each of our
conditions u = 1, u = 11, and u = 21 we obtain a uniquely determined impulse balance point.
The values are shown in table 4.

It can be seen easily that the impulse balance point is in fact uniquely determined. The left
side of the impulse balance equation is monotonically increasing in x~ and the right hand side
is monotonically decreasing in x~ . Moreover, the left hand side is smaller than the right hand
side at x~ = 0 and greater than the right hand side at x~ = 99.
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Table 4 also shows the average mean bids of adapters for the three treatments over all periods.
It also shows the estimated standard error of the average mean bid counting each mean bid of
an adapter as one observation. Note that this is the estimated standard error of the sample
mean and not of the individual observation.

It can be seen that in all three conditions the deviation of the impulse balance point from the
average mean bid of adapters is smaller in absolute value than one standard error. Obviously,
impulse balance theory fits the data quite well.

Table 4.  Comparison of impulse balance theory with the data

u number of adapters impulse balance
point x~

average mean bid of
adapters

estimated standard
error of mean

1
11
21

10
9
10

44.5
57.0
65.2

44.5
54.7
64.1

3.0
2.8
2.1

7. Monotonic Ladder Processes and Impulse Balance Theory

In this section, we want to present a very simple mathematical result which throws light on
impulse balance theory. This result concerns special Markov chains which we call monotonic
ladder processes. Consider a Markov chain with a state space 1..n with n > 1. We use the
following notation.

pi probability for the transition from i to i + 1 for i = 1, ..., n–1

qi probability for the transition from i + 1 to i for i = 2, ..., n

The Markov chain is a ladder process if all pi and qi are positive and all transition
probabilities from i to j with *i – j* > 1 are zero.

Figure 3 shows a graphical representation of a ladder process.

Figure 3
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A ladder process is monotonic if we have

pi+1 < pi  and  qi+1 > qi  for  i = 1, ..., n – 1

Consider an experiment in which the subjects can move from one state to an neighbouring
state only. We may for example think of a simplified version of the bidding experiment
described in this paper, in which only the 21 bids 0, 5, ..., 100 are permitted, and bids can be
changed only by 5. Suppose that the probabilities pi and qi are proportional to the
corresponding expected impulses and have the properties required by the definition of a
monotonic ladder process. For the simplified version of our experiment this would be the
case. Then, the following definition adapts the impulse balance theory to the situation under
consideration:

Definition:  k is the left impulse balance point if 
1

11
+

+≥≥
k

k

k

k

q
p

q
p

 holds.

Under the assumptions made above, the impulse balance equation would be exactly satisfied
for pk / qk = 1. However, in general such a k does not exist. The left impulse balance point is
the greatest k at which the expected upward impulse is at least as strong as the expected
downward impulse. One could also define a right impulse balance point in the same way, but
it turns out that the left impulse balance point is more closely connected to the stationary
distribution of the process. This is shown by the following theorem.

Theorem:  Every monotonic ladder process has a unique left impulse balance point k. This k
is a mode of a stationary distribution of the process, the only one unless pk+1 / qk+1 = 1. In this
border case both k and k + 1 are modes.

Proof:  Let xi be the stationary probability of state i. We must have

x1p1 = x2q1

since the outflow from state 1 must be equal to the inflow to state 1. We show by induction
that

xipi = xi+1qi

holds for i = 1, ..., n. We have seen that the statement is true for i = 1. Assume that it is true
for i = 2, ..., m with m < n. The equality of inflow and outflow at state m + 1 requires

xmpm + xm+2qm  =  xm+1pm+1 +  xm+1qm 

or equivalently

xm+2qm – xm+1qm  =  xm+1pm+1 – xmpm 

By assumption the right hand side equals zero. This shows that the induction assumption also
holds for i = m + 1, and therefore for i = 1, ..., n.
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It follows that we have

i
i

i
i x

q
p

x =+1

This together with the monotonicity properties of the pi and qi yields the conclusion that xi

increases until xk is reached. For pk+1 / qk+1 < 1 it decreases from there on. In the exceptional
case pk+1 / qk+1 = 1 we have  xk = xk+1 and xi decreases from there on. This completes the proof.

The theorem suggests that maybe also for more complex cases the impulse balance point is a
prediction for the mode of the stationary distribution. However, the mode is a much less stable
statistic than the average. Therefore, we compare the impulse balance point with average
mean bids rather than average modes. If the stationary distribution is single-peaked and
approximately symmetric, then there will be no great difference between the average and the
mode. The average modes in the experiment are 44.5 for u = 1, and 57.5 for u = 11, and 67.6
for u = 21 (adapters only).

8. Summary and Conclusions

Our experiments clearly suggest an explanation of the winner’s curse phenomenon in the
simple SAMUELSON-BAZERMAN task by learning direction theory. The same explanation may
also be valid in other contexts. As we have seen, the behaviour of the subjects conforms to the
predictions of learning direction theory. However, it can be seen that for a sizeable proportion
of the subject pool other influences on behaviour can be identified. Our categorisation of
subjects by modal bids has shown that the adapters who presumably are mainly influenced by
direction learning in fact conform more closely to learning direction theory.

Impulse balance theory is an attempt to make rough quantitative predictions on the basis of
learning direction theory without fully specifying the learning behaviour. The theory
determines an impulse balance point which is near to the average bids of the adapters for all
three experimental conditions.

Finally, we have looked at a class of simple Markov chains, the monotonic ladder processes.
It has been shown that for processes of this kind arising from situations to which impulse
balance theory applies, the impulse balance point is connected to the mode of the stationary
distribution.

Impulse balance theory, if it turns out to be of predictive value for other experimental
situations, could be an interesting tool of behavioural analysis for many theoretically
important problems.
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Appendix: The Written Instructions

Duration

The experiment lasts for 100 rounds .

Structure

The experiment is an individual decision experiment . The decisions of the participants to not mutually
influence each other.

Decision

In each round you submit a bid out of the range from 0 and 99. Then the Machine randomly draws a value from
1 to 99, where all values are equally likely. If your bid is lower than the value, you do not receive anything. If
your bid is equal to or greater than the value, you receive 1.5 times the value minus your bid.

Lump sum payments

You receive an initial endowment of 250 talers. In the beginning of each further round a lump sum payment of
20 talers is credited to your talers account.

Exchange rate

100 talers correspond to DM 1.50.

Good success!


