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Abstract. It is shown that moments of negative order as well

as positive non-integral order of a nonnegative random variable X

can be expressed by the Laplace transform of X . Applying these

results to certain �rst passage times gives explicit formulae for mo-

ments of suprema of Bessel processes as well as strictly stable L�evy

processes having no positive jumps.
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0. Introduction

In the sequel (Bt) denotes a d-dimensional standard linear Brownian

motion starting at 0 2 IRd (denoted BM(d)). In Shiryaev (1999,p.251)

a beautiful trick is used in order to show that if (Bt) is a BM(1),

(0.0.1) E
h
sup
0�s�1

jBsj
i
=
p
�=2:

In fact, the veri�cation of (0.0.1) can be based on the stopping time

(0.0.2) T (1) := infft � 0j jBtj = 1g

and its Laplace transform

(0.0.3) '1(t) = E
�
exp(�t T (1))

�
=

1

cosh(
p
2t)

; t � 0:

The latter is easily obtained by applying the optional stopping theorem

to the martingale

cosh(sBt) exp(�s2t=2) (t � 0) for �xed s � 0;

see, e.g., Revuz/Yor (1991,p.68) or Rogers/Williams (1994,p.19). Al-

though there is no explicit inversion of the Laplace transform in (0.0.3)

in any particularly useful form, it turns out, however, that (0.0.3) con-

tains enough information in order to yield (0.0.1). In fact, putting

(0.0.4) M(t) = sup
0�s�t

jBsj; t � 0;
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we get by Brownian scaling, for any t > 0,

P
�
M(1) � t

�
= P

�
sup
0�s�1

jBs=t2j � 1
�
= P

�
M(1=t2) � 1

�
= P

�
T (1) � 1=t2

�
= P

�
(T (1))�1=2 � t

�
;

i.e.,

(0.0.5) M(1) and (T (1))�1=2 have the same distribution

which implies

(0.0.6) E[M(1)] = E
h
(T (1))�1=2

i
:

Next, using the density of a normal distribution with mean 0 and vari-

ance s2=2 we get

(0.0.7) s =
2p
�

1Z
0

exp(�(t=s)2) dt; s > 0:

Hence if X � 0 is a random variable having Laplace transform 'X we

obtain from (0.0.7) by using the Fubini-Tonelli theorem,

(0.0.8) E
�
X�1=2

�
=

2p
�

1Z
0

'X(t
2) dt:

Applying (0.0.8) to X = T (1) and taking into account (0.0.6) as well

as (0.0.3) we arrive at

E[M(1)] =
2p
�

1Z
0

1

cosh(
p
2t)

dt:

Using the substitution u = exp(
p
2t) we end up with (0.0.1).

In the sequel we �rst extend (0.0.8) in two di�erent ways (see The-

orems 1.1 and 1.2 in the next section). Using the same pattern of

proof as before allows us to obtain results similar to (0.0.1) for Bessel

processes as well as for a certain class of L�evy processes.

1. Calculation of Moments via Laplace Transforms

We �rst derive an extension of (0.0.8). In order to achieve this it is

natural to start with the identity

�(1=�) =

1Z
0

u1=��1 exp(�u) du; � > 0:
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Using the substitution u = (t=s)� (s > 0; � > 0 being constants) we

get

(1.0.1) s =
�

�(1=�)

1Z
0

exp
�
� (t=s)�

�
dt; s � 0; � > 0:

1.1. Theorem. Let X � 0 be a random variable having Laplace trans-

form 'X . Then

(1.1.1) E[X�r] =
1

r �(r)

1Z
0

'X(t
1=r) dt; r > 0:

Proof. Apply (1.0.1) to s = X�r, � = 1=r and use the Fubini-Tonelli

theorem. �

There are interesting connections between (1.1.1) and the "fractional

calculus" (see Ross (1974) and Wolfe (1974)). It has been noticed in

Wolfe (1974) that it is possible to calculate moments of positive non-

integral order of a nonnegative random variableX by using the Laplace

transform 'X of X. In fact, we have the

1.2. Theorem. Let X � 0 be a random variable having Laplace trans-

form 'X . Then,

(1.2.1) E[Xr] =
r

�(1� r)

1Z
0

1� 'X(t)

tr+1
dt; 0 < r < 1:

More generally, we have for any integer n � 0 and n < r < n+ 1

(1.2.2) E[Xr] =
r � n

�(n+ 1� r)

1Z
0

(�1)n('(n)

X (0)� '
(n)

X (t))

tr+1�n
dt:

Proof. In order to prove (1.2.1) we use the identity

(1.2.3)

1Z
0

1� exp(�st)
tr+1

dt =
1

r
�(1� r) sr; 0 < r < 1; s � 0

which can be derived by using partial integration and the de�nition

of the gamma function (see, e.g., Gradshteyn/Ryzhik (1965,p.333)).

Applying (1.2.3) to s = X and using the Fubini-Tonelli theorem we

obtain (1.2.1). In a similar way we get (1.2.2), noting that

'
(n)

X (t) = (�1)n E
�
Xn exp(�tX)

�
; t � 0; n � 0:

�
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2. Bessel Processes

In the sequel (Bt) denotes a BM(d). Then (jBtj) is a realization of

a d-dimensional Bessel process starting at 0 2 IRd (jBtj denoting the

Euclidean norm of Bt). Consider the stopping time

(2.0.1) T (s) := infft � 0j jBtj = sg; s � 0:

The Laplace transform 's of T (s) is given by

(2.0.2) 's(t) = (s
p
2t)�

�
2� �(�+ 1) I� (s

p
2t)
��1

; s > 0; t > 0

(see, e.g., Getoor/Sharpe (1979) and Getoor(1979)). Here,

(2.0.3) � := (d� 2)=2 � �1=2;
and I� is denoting the modi�ed Bessel function of order � given by

(2.0.4) I�(t) =

1X
m=0

(t=2)�+2m

m! �(� +m + 1)
; t > 0; � � �1=2:

In particular,

(2.0.5) I�1=2(t) =
p
2=(�t) cosh(t); t > 0:

(Note that, in the one-dimensional case, this yields the Laplace trans-

form

(2.0.6) E
�
exp(�t T (s))

�
=

1

cosh(s
p
2t)

; s � 0; t � 0:)

Putting

(2.0.7) M(t) = sup
0�s�t

jBsj; t � 0

we obtain by Brownian scaling

(2.0.8) M(1) and (T (1))�1=2 have the same distribution.

By (1.1.1) this implies for any r > 0

E
�
(M(1))r

�
= E

�
(T (1))�r=2

�
=

2

r �(r=2)

1Z
0

'1(t
2=r) dt:

Using (2.0.2) and substituting u =
p
2t1=r yields, for any r > 0,

(2.0.9) E
�
(M(1))r

�
=

4

2(d+r)=2 �(d=2) �(r=2)

1Z
0

ud=2+r�2

I�(u)
du

(� = (d� 2)=2). In the case d = 1 we get from (2.0.9) (using (2.0.5))

E
�
(M(1))r

�
=

2

2r=2 �(r=2)

1Z
0

ur�1

cosh(u)
du; r > 0:
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The substitution t = exp(u), i.e. u = log t, yields for any r > 0

(2.0.10) E
�
(M(1))r

�
=

4

2r=2 �(r=2)

1Z
1

(log t)r�1

t2 + 1
dt (d = 1)

In the special case r = 2n+ 1 (n � 0) the integral in (2.0.10) equals

(2.0.11)

1Z
1

(log t)2n

t2 + 1
dt =

1Z
0

(log t)2n

t2 + 1
dt =

�2n+1

22n+2
jE2nj

(see Gradshteyn/Ryzhik (1965,p.549)), E0; E2; : : : denoting the Euler

numbers determined by

1

cosh(t)
=

1X
n=0

E2n

t2n

(2n)!
:

The �rst Euler numbers are E0 = 1; E2 = �1; E4 = 5; E6 = �61; E8 =

1385; E10 = �50521; E12 = 2702765; E14 = �199360981. Combining

(2.0.10) and (2.0.11) gives for n = 0; 1; : : :

(2.0.12) E
�
(M(1))2n+1

�
=

r
�

2

��2
2

�n n!

(2n)!
jE2nj (d = 1)

In order to investigate the asymptotic behaviour of E
�
(M(1))r

�
(as

r!1) we need

2.1. Lemma. As t!1
(2.1.1) �(t) � (t=e)t

p
2�=t

and

(2.1.2) I�(t) � (2�t)�1=2 exp(t)

independently of � � �1=2.
Proof. For a proof of (2.1.1) see Bender/Orszag (1978,p.275); a proof

of (2.1.2) can be found in Courant/Hilbert (1966,p.526) (see also Ben-

der/Orszag (1978,p.271)). �

2.2. Proposition. As r!1

(2.2.1) E
�
(M(1))r

�
� 4

p
� r(d+r�1)=2

2d=2 �(d=2) er=2
:

In particular

(2.2.2) E
�
(M(1))r

�
� 2

p
2(r=e)r=2 (d = 1)

Proof. For the integral in (2.0.9) we get

1Z
0

ud=2+r�2

I�(u)
du � 2�

er
rd=2+r�1 (r!1)
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by using some routine estimates and applying (2.1.2). Combining this

with (2.1.1) gives (2.2.1). �

2.3. Corollary. For any d � 1 the distribution of M(1) is uniquely

determined by its moments

�n = E
�
(M(1))n

�
; n = 0; 1; : : :

Proof. It suÆces to show that

(2.3.1)

1X
n=0

�
�1=(2n)
2n =1

(see Feller (1966,p.224)). But, by (2.2.1),

�
1=(2n)
2n �

p
2n=e (n!1)

which implies (2.3.1). �

2.4. Remark. Comparing (2.0.12) and (2.2.2) we obtain for the as-

ymptotic behaviour of the Euler numbers E2n

(2.4.1) jE2nj �
8
p
np
�

�4n
e�

�2n
:

3. Strictly Stable L�evy Processes

Let X = (Xt) be a one-dimensional L�evy process starting at 0 such

that X1 is not a.s. constant. Furthermore X is assumed to be a.s.

c�adl�ag, i.e. almost all paths of X are right continuous and have �nite

left-hand limits at every point. In the sequel � denotes a real number

such that

(3.0.1) 1 < � < 2:

The distribution � ofX1 is assumed to be strictly �-stable with parame-

ters (�; �; c) for constants �1 � � � 1 and c > 0, i.e. the characteristic

function b� of � is of the form

(3.0.2) b�(t) = exp(�	(t)); t 2 IR:

Here, 	 is the characteristic exponent given by

(3.0.3) 	(t) = cjtj�
h
1� i�(sgn t) tan

���
2

�i
; t 2 IR

where sgn t is equal to 1,0,-1 when t is > 0;= 0; < 0, respectively (see

Bertoin (1996,p.217) or Sato (1999,p.86)). It follows from the above

assumptions that, for any a > 0,

(3.0.4) (Xat) has the same law as
�
a1=� Xt

�
:

From now on we will additionally assume

(3.0.5) � = �1:
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This implies (see Bertoin (1996,p.217) or Sato (1999,p.346)) that the

L�evy measure of X has support in ]�1; 0], and X has no positive

jumps, i.e.

(3.0.6) P
�
Xt � Xt� for all t > 0

�
= 1:

Furthermore (see Sato (1999,p.350))

(3.0.7) P
�
lim sup
t!1

Xt =1
�
= 1:

Let R(s) denote the �rst passage time de�ned by

(3.0.8) R(s) = infft > 0jXt > sg; s � 0:

Note that, by (3.0.7), R(s) < 1 a.s., s � 0. For the following result

see Sato (1999,pp.346,347).

3.1. Theorem. We continue to assume (3.0.1) and (3.0.5). Then the

following results hold.

(a) P
�
XR(s) = s for all s � 0

�
= 1:

(b) The function

(3.1.1)  (t) := �	(�it) = � c

cos(��
2
)
t�; t � 0

(	 given by (3.0.3)) is strictly increasing, continuous and sat-

is�es  (0) = 0 and  (t)!1 (t!1).

(c) The Laplace transforms of the �rst passage times R(s) (s > 0)

are given by

(3.1.2) E
�
exp(�t R(s))

�
= exp(�s  �1(t)); s > 0; t � 0

( �1 denoting the inverse function of  ).

It follows from (3.1.1) that  �1 is given by

(3.1.3)  �1(t) =
�1
c

��� cos���
2

�����1=� t1=�; t � 0:

Combining Theorems 3.1 and 1.1 gives

3.2. Proposition. We continue to assume (3.0.1) and (3.0.5). Then

the following results hold.

(a) For any r > 0,

(3.2.1) E
h
( sup
0�s�1

Xs)
r
i
=
� �(r)

�(r=�)

�
c�� cos ���

2

���
�r=�

:

(b) We have, as r!1,

(3.2.2) E
h
( sup
0�s�1

Xs)
r
i
�
p
�

�
� c r��1�� cos ���

2

���e��1
�r=�

:
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Proof. In order to prove (3.2.1) �rst note that it follows from (3.0.6)

that fM(t) := sup
0�s�t

Xs � 1() R(1) � t a.s.; t > 0;

which, by (3.0.4), implies that fM(1) and (R(1))�1=� have the same

distribution. Hence, by Theorem 1.1 and (3.1.2),

E
�
(fM(1))r

�
= E

�
(R(1))�r=�

�
=

�

r �(r=�)

1Z
0

exp
�
�  �1(t�=r)

�
dt; r > 0:

Taking into account (3.1.3) and putting

(3.2.3) ec := �
1

c

��� cos���
2

�����1=�

;

we get, using the substitution u = ec t1=r,
E
h
(fM(1))r

i
=

� �(r)

�(r=�) ecr ;
i.e. (3.2.1). The assertion (3.2.2) is immediate from (3.2.1) and (2.1.1).

�

As a �nal result we mention

3.3. Proposition. We continue to assume (3.0.1) and (3.0.5). Then,

for any s > 0,

(3.3.1) E
�
(R(s))r

�
=

�(1� �r)

�(1� r)

��� cos ���
2

���
c

�r

s�r; 0 � r < 1=�

and

(3.3.2) E
�
(R(s))r

�
=1; r � 1=�:

Proof. Put Æ := s ec (s > 0; ec given by (3.2.3)). Taking into account

(3.1.2), (1.2.1) and (3.1.3) we obtain, for any 0 < r < 1,

E
�
(R(s))r

�
=

r

�(1� r)

1Z
0

1� exp(�Æt1=�)
tr+1

dt:

Using the substitution u = Æt1=� we arrive at

E
�
(R(s))r

�
=

� r Æ�r

�(1� r)

1Z
0

1� exp(�u)
u� r+1

du; 0 < r < 1:

This clearly entails (3.3.2) and (using partial integration) also (3.3.1).

�
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