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Abstract

We study the effect of secondary markets on equity-linked life insurance contracts
with surrender guarantees. The policyholders are assumed to be boundedly rational
in giving up their contracts, and a proportion of policyholders will access the sec-
ondary markets instead of surrendering the contracts to the insurance company. We
formulate the valuation problems from both the insurance company’s and the policy-
holders’ perspectives and characterize the contract values by deriving the respective
pricing PDEs. Comparative statics are derived indicating the effect of the level of the
policyholder’s rationality and secondary market characteristics such as accessibility
and competition on the contract values. The pricing PDEs are solved numerically via
the Crank-Nicolson scheme to study the implication of the inclusion of a secondary
market. We show that a secondary market generally increases the risk borne by the
insurance company and the policyholders profit from the secondary market only when
the secondary market is sufficiently competitive. Furthermore, we derive the neces-
sary condition for the existence of a fair contract in this context and study the effect
of the secondary market on fair contract design.
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1 Introduction

The world market for life insurance contracts is huge with a premium volume of 2,332 billion

US dollars in 2009.1 Statistics show that roughly 50% of the contracts in most developed

countries are terminated (surrendered) early.2 As the surrender guarantees offered by the

primal insurers are usually far less than the contract values themselves, secondary markets

have been developed, which allow the policyholders to sell their policies to third parties

at relatively better prices. In the US and the UK, which are the world’s largest and the

world’s third largest life insurance markets respectively, these secondary markets have a

long history,3 and have been growing in the last few decades.4 In other countries like Japan

or Germany, secondary markets for life insurance contracts have been established recently

and a substantial increase in the trading volume on these markets could be observed.5

In this paper, we analyze the effect secondary markets have on the valuation of equity-

linked life insurance contracts with surrender guarantees. On the valuation of such contracts

without secondary markets there exists a large literature. The key problem of valuing these

contracts is to model the surrender behavior of the policyholders. Most literature assumes

surrender to be induced purely by endogenous reasons and considers the premature contract

termination as an optimal stopping problem. The contract valuation is hence conducted

within the American-style contingent claim framework. Prominent examples are Grosen

and Jorgensen [21, 22], Bacinello [2, 3], Bacinello et. al. [4]. Recently, there is also the

argument that policyholders surrender contracts for both endogenous and exogenous reasons

and surrender behavior should be modeled with both of these surrender reasons in mind.

Contract valuation in this spirit can be found for example in Albizzati and Geman [1],

DeGiovanni [20] and Li and Szimayer [26].

While the literature on equity-linked life insurance contracts with surrender guarantees

is large, the impact of secondary markets on these contracts is rarely examined. In the

1SwissRe [30].
2Gatzert [17], Bundesverband Vermögensverwalter im Zweitmarkt Lebensversicherung (BVZL) e.V. [9]
3For the UK it can be traced back to 1844, for the US to 1911. See BVZL e.V. [9].
4For the US, BVZL gives a volume of 2 million US dollar in 1990, 12 billion US dollar in 2008, and

estimates a traded volume of 30 billion dollars for 2017. On the UK secondary market, 20,000 contracts
with a price volume of 200 million GBP have been traded in 1996, which increased to 200,000 contracts
with a price volume of 500 million GBP in 2003. See Gatzert [17].

5For example, the price volume of traded policies in Germany raised from e50 million in 2000 to e1.4
billion in 2007. The total volume of terminated contracts increased from e8.2 billion (2000) to e13.8 billion
(2009). See BVZL e.V. [9].
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literature we only find a few articles on secondary markets either in a specialized setting or

for other contract types. Gatzert [17] compares the major secondary markets, evaluates the

market potential and points out possible effects on these markets, but does not address the

quantification of these effects. Gatzert, Hoermann, and Schmeiser [18] simulate surrender

profits in a model of heterogeneous insurance holders, and analyze the effect of asymmetric

surrender behavior on the secondary market. Giacolone [19] reviews the secondary market

for life insurance contracts with viatical transactions6 as do Doherty and Singer [15], who

focus on welfare aspects of secondary markets in this case. Equity-linked life insurance

contracts are also popular contract types on secondary markets, and we aim with our study

to shed some light on this issue.

We address the valuation of equity-linked life insurance contracts with surrender guar-

antees in the presence of secondary markets in two steps. First, we formulate a financial

market augmented for mortality risk. In this market we consider an equity-linked life insur-

ance contract with a surrender option, following Li and Szimayer [26], see also Stanton [29],

Dai et al. [13], and DeGiovanni [20]. As the second step we extend the setup and add as a

new feature the secondary market. For doing so, the surrender strategy of the policyholder

is adapted to also allow for the sale of the contract on the secondary market.

More precisely, we formulate the financial market model consisting of a riskless asset and

a risky asset that is the reference fund for the contract. The financial market is extended

to also include mortality risk, that is the death time of the insured individual, which we

assume to admit a deterministic mortality intensity. Consequently, the mortality risk is

unsystematic and can be diversified for a large pool of similar contracts. Then the surrender

options and the secondary market are added. The policyholder can now walk away from the

contract either by exercising the surrender option, i.e. by giving back the contract to the

insurance company, or, by selling the contract to a third party on the secondary market. To

model this we need to specify two objects, the time when the contract is given up and the

mode of giving up the contract. The time when the contract is given up by the policyholder

is defined by a random time with a stochastic intensity that is bounded from below and from

above. The lower bound represents giving up the contract for exogenous reasons due to the

6Viaticors are policyholders with sharply reduced life expectancy due to severe illness. The first sec-
ondary markets for life insurance products have been established in the US for people with drastically
reduced life expectancy, in particular persons inflicted by HIV (See Giacolone [19]).
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policyholder being exposed to financial constraints, e.g., liquidity needs caused by financial

distress. The intensity increases to its upper bound whenever the policyholder is financially

better off from ending the contract compared to continuing the contract. Therefore, the

upper bound limits the optimal timing for giving up the contract and the setup is referred

to as bounded rationality, see, e.g., Stanton [29].

The two ways of giving up the contract, either by exercising the surrender option or

by selling the contract on the secondary market, are assigned to the representative policy-

holder by randomization. The probability that the representative policyholder can access

the secondary market is therefore a parameter capturing the representative policyholder’s

awareness of the secondary market. Once the secondary market is accessed and the con-

tract is sold to a third party we assume that the contract buyer is a finance professional

exercising the surrender option financially optimal. Then the contract value is given by the

price of the corresponding American claim in the presence of diversifiable mortality risk.

The price for selling the contract on the secondary market thus cannot exceed the price of

the corresponding American option. As well, the price cannot drop below the surrender

value, otherwise the policyholder would rather exercise the surrender option than selling

the contract on the secondary market. The bargaining power of the both parties deter-

mines how the profit that arises from the policyholder’s access to the secondary market is

shared. In the end the policyholder can compute the expected early termination value of

the contract and compares this value to the continuation value. Based on the specification

of the behavior of the policyholder and the respective payoffs the pricing PDEs is derived

for the contract value from the perspective of the representative policyholder. Further, the

stochastic representation of the contract value is provided using Feynman-Kac. The profit

sharing between the policyholder and the potential buyer of the contract on the secondary

market leads to a value differential between the policyholder and the insurer. The value

from the perspective of the insurance company has to account for all costs incurred by the

contract. Using this fact and the behavior of the representative policyholder as input the

pricing PDE for the contract value from the perspective of the insurance company is derived.

Again, the stochastic representation of the contract value is provided using Feynman-Kac.

The contract values from both perspectives, the policyholder’s and insurance company’s,

are then analyzed for their sensitivities when changing relevant parameters. This is then
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followed by a numerical analysis where the pricing PDEs are solved by the Crank-Nicolson

scheme. The analysis highlights the effect of the inclusion of the secondary market on the

surrender behavior of the policyholder. By varying the parameters describing the secondary

market and also the rationality parameters we provide a risk analysis for the insurer. This

is followed by an investigation of the welfare for the policyholder and a fair contract anal-

ysis. Overall, we find that the policyholder may only profit partly from the secondary

market. Although the introduction of the secondary market may increase the payout to

the policyholder, it is not necessarily beneficial for him if the welfare increase is associated

with the increase of the premium. Generalizing from the representative policyholder to two

groups of policyholders, one uninformed and one informed of the existence of the secondary

market, we demonstrate that the secondary market is profitable for no policyholders when

the policyholders have no sufficient bargaining power on the secondary market. If, on the

contrary, the secondary market is competitive enough, the informed policyholders profit

from the secondary market while the uninformed policyholders bear the costs incurred by

it. For the insurance company the secondary market brings a challenge in regard to the

risk management of the contracts. If the secondary market is introduced at a sudden, the

premiums charged before may not be adequate to support the hedging strategies of the

insurance companies. Further, the projected cashflows from the contracts may alter due to

the surrender options being exercised optimally by the contract buyers on the secondary

market, ultimately affecting the insurer’s liquidity management.

The paper is organized as follows. The model is presented in Section 2. In Section 3

the pricing of the insurance contract is carried out. Comparative statics are presented in

Section 4. Numerical results, in particular, the risk analysis for the insurance company, the

welfare analysis for the policyholder and the fair contract analysis are provided in Section 5.

Section 6 concludes.

2 Model

In order to price equity-linked life insurance contracts, a model for both the financial and

the insurance market is necessary. The model presented in this section is based on Li and

Szimayer [26], but extends their market model by a secondary market on which policyholders
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may sell their life insurance contracts. The decision behavior of the policyholder of choosing

between holding the contract, exercising the surrender option or to sell the contract on

the secondary market is a further key component. The model for the decision process is

motivated and formalized for a representative policyholder.

2.1 Financial and Insurance Market

The financial market is defined on a filtered probability space (Ω,G,F,P) and consists of a

risk-less money market account with price process B and risky asset with price process S.

The risky asset is assumed not to pay any dividends and plays the role of the reference fund

for the equity-linked life insurance contract studied in what follows. We fix a time horizon

T > 0 and define the dynamics of the price processes by

dBt = r(t)Bt dt , for 0 ≤ t ≤ T and B0 = 1 , (1)

dSt = a(t, St)St dt+ σ(t, St)St dWt , for 0 ≤ t ≤ T , and S0 = s > 0 . (2)

The deterministic function r denotes the short rate, the functions a and σ > 0 are drift and

volatility of the risky asset, and W is a Wiener process under the real world measure P.

Both price processes are assumed to be Markovian, i.e. they do not depend on past events,

only on the present state. The filtration F = (Ft)0≤t≤T of the financial market is generated

by the Wiener process, i.e. the Wiener process reflects all the information available on the

financial market.

By definition the financial market is arbitrage free and complete. In other words, there

exists a unique equivalent martingale measure Q ∼ P under which the dynamics of the risky

asset satisfy

dSt = r(t)St dt+ σ(t, St)St dŴt, (3)

where Ŵ is a Wiener process under Q with dŴt = dWt + a−r
σ
dt, for 0 ≤ t ≤ T .

The insurance market is modeled by two random times τ and λ potentially ending the

financial contract. The time τ refers to the death time of an individual aged y at time

t = 0 when the contract is signed. The time λ refers to the time when the policyholder
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decides to give up the contract either by exercising the surrender option or by selling

the contract on the secondary market.7 The jump process associated with τ is H with

Ht = 1{τ≤t}, for 0 ≤ t ≤ T , and generates the filtration H = (Ht)0≤t≤T . The hazard rate

of the random time τ (or the mortality intensity) is denoted by µ and is assumed to be a

deterministic function. Under this assumption, the mortality risk can be diversified over a

large pool of policyholders. The jump process associated with λ is J with Jt = 1{λ≤t}, for

0 ≤ t ≤ T . It generates the filtration J = (Jt)0≤t≤T . The hazard rate of the random time λ

is denoted by γ, and is also called the surrender intensity.8 By introducing the random

time λ, and correspondingly, the surrender intensity γ, we can actually represent a large

family of insurance contracts. For the degenerate case where γ = ∞, the insurance contracts

are European style. When γ is allowed to take finite values, the policyholder can walk away

from the contract. In contrast to the mortality intensity µ, the surrender intensity γ is

not deterministic but depends on the monetary rationality of the policyholder in making

surrender decisions by comparing the contract value and the surrender value. Since the

contract value and eventually also the surrender value are linked to the risky asset S, γ is

assumed to be F-measurable. The exact form of γ will be specified in Section 2.2.

The nature of equity-linked life insurance policies is that they are linking the financial

market and the insurance market. To model the information on the linked market, the

filtrations F, H and J need to be combined. Bielecki and Rutkowski [6] give an account

on the technicalities to combine these filtrations, see Section 7, pp.197. We give a brief

summary of their key results relevant to our situation.

Starting under the original probability space (Ω,G,P) we first specify the enlarged filtra-

tion G = (Gt)0≤t≤T carrying all the relevant information by Gt = Ft∨Ht∨Jt, for 0 ≤ t ≤ T .

Recalling that F is the filtration generated by the Wiener process W we assume that W

remains a Wiener process for the enlarged filtration G. The processes H and J both admit

intensities µ and λ that are F-adapted. Now, we additionally assume that µ and λ are the

respective G-intensities, i.e. the processes M̂H = (M̂H
t )0≤t≤T = (Ht −

∫ t∧τ

0
µ(u) du)0≤t≤T

and M̂J = (M̂J
t )0≤t≤T = (Jt −

∫ t∧λ

0
γu du)0≤t≤T are both G-martingales, and that joint

7In case the contract is sold on the secondary market the contract is still alive. However, the policyholder
is no longer holding the contract.

8Surrender is here understood as both ways the policy holder can walk away from the contract, i.e. by
exercising the surrender option and by selling it on the secondary market.
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jumps of H and J occur with zero probability, i.e. P(τ = λ) = 0.

The Radon-Nikodym density process for the measure change P → Q is defined as

ηt =
dQ

dP

∣

∣

∣

∣

Gt

= E[Y |Gt] P− a.s., (4)

where Y is a GT -measurable random variable with P(Y > 0) = 1 and EP[Y ] = 1. Accord-

ing to Bielecki and Rutkowski [6], Proposition 7.1.3, p. 201, it has the following integral

representation

ηt = 1 +

∫

]0,t]

ηu
−

(ϕudŴu + ξHu dM̂H
u + ξJudM̂

J
u ), (5)

where ϕ, ξH and ξJ are G-predictable processes.

Set ϕ = −a−r
σ

and ξH = ξJ = 1, then by Proposition 7.2.1. in Bielecki and Rutkowski [6],

Ŵ in the risk-neutral dynamics of the risky asset in (3) is also Q-Brownian motion on the

enlarged filtration G. Further, µ and γ are the intensities of τ and λ under the equivalent

martingale measure Q and filtration G. Thus, valuation under the risk-neutral measure Q

and on the extended filtration G is possible and carried out in Section 3. However, prior to

carrying out the valuation we have to model the yet unspecified intensity γ governing the

likelihood of the policyholder walking away from the contract.

2.2 Decision Behavior of the Representative Policyholder

In our setup the policyholder of an equity-linked life insurance contract with surrender

guarantees can choose to continue the contract or to end the contract either be exercising the

surrender option or by selling the contract on the secondary market. The related valuation

problem could be addressed as a standard contingent-claim pricing problem assuming a

rational agent in a perfect financial market, however, we follow a different approach.

We develop the decision process of a representative policyholder facing financial con-

straints, e.g., liquidity needs caused by financial distress. Our representative agent is not a

finance expert and may not always realize that he is better off from giving up the contract

and instead continues holding the contract. In case he opts to walk away from the contract

he can exercise the surrender option and give back the contract to the insurance company for
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the prespecified surrender value or he can sell the contract to a third party on the secondary

market. Here, we also assume that the representative policyholder is not fully rational in

his decision. The two ways of ending the contract are assigned by randomization. The

probability that the representative policyholder accesses the secondary market is therefore

a parameter capturing the representative policyholder’s awareness of the secondary market.

Once the secondary market is accessed and the contract is sold to a third party we assume

that the contract buyer is a finance professional exercising the surrender option financially

optimal. Then the contract value is given by the price of the corresponding American claim

in the presence of diversifiable mortality risk. The price for selling the contract on the

secondary market thus cannot exceed the price of the corresponding American option. As

well, the price cannot drop below the surrender value, otherwise the policyholder would

rather exercise the surrender option than selling the contract on the secondary market.

The bargaining power of the both parties determines how the profit that arises from the

policyholder’s access to the secondary market is shared. In the end the policyholder can

compute the expected early termination value of the contract and compares this value to

the continuation value.

The decision process is now formalized. We are given an equity-linked life insurance

contract written on S with maturity T . Denote by V C the contract value from the perspec-

tive of the representative policyholder and by L the surrender benefit. The third party on

the secondary market potentially buying the contract is assumed to be an agent in a perfect

financial market with no frictions and access to all relevant information. Consequently, the

buyer on the secondary market exercises the surrender option financially optimal and the

contract value is then the price of the corresponding American-style option in the presence

of mortality risk and is denoted by V Am. The probability that the representative agent can

access the financial market is p ∈ [0, 1], both under P and Q.9 This is captured by the

random variable X that is independent of GT and is taking the value 1 with probability p

(access to secondary market) and the value 0 with probability 1−p (no access to secondary

market).10 The bargaining power of the representative policyholder on the secondary mar-

9This invariance of the probability is based on the underlying assumption that the associated risk is
unsystematic and hence diversifiable.

10Formally, we have to enlarge the filtration G to also include the information generated by the process
(X 1{λ≤t})0≤t≤T revealing X at λ.
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ket is given by κ ∈ [0, 1] and quantifies the fraction of the additional value created by the

secondary market that remains with the policyholder.

Suppose that at time t the representative policyholder gives up the contract, i.e. λ = t,

and suppose further he is able to access the secondary market, i.e. X = 1. Since the

representative policyholder could give the contract back to the insurance company, he re-

quires at the least the surrender benefit L to sell the contract on the secondary market.

The contract value for a potential buyer on the secondary market is the price of the cor-

responding American-style claim in the presence of mortality risk with price process V Am,

with V Am ≥ L. This is the highest possible price offered on the secondary market. The

added value created by the secondary market is thus V Am − L. Now, using the bargaining

power parameter κ ∈ [0, 1] the price offered for the contract on the secondary market is

(1− κ)L+ κV Am = L+ κ (V Am −L). Taking into account the randomization given by X,

the expected contract value when giving up the contract at t is then

(1− p)L(t) + p (L(t) + κ [V Am
t − L(t)]) = L(t) + p κ (V Am

t − L(t)) . (6)

Now, we specify the surrender intensity γ of the representative policyholder for ending the

contract following the approach Li and Szimayer [26] that is dating back to Stanton [29].

The representative policyholder tends to terminate the contract for exogenous reasons, e.g.,

caused by financial constraints, at rate ρ ≥ 0. In case the expected proceeds from ending

the contract in (6) exceed the continuation value of the contract V C then the contract

termination occurs at a higher intensity ρ, with ρ ≥ ρ, i.e.

γt =











ρ , for L(t) + pκ
[

V Am
t − L(t)

]

< V C
t ,

ρ , for L(t) + pκ
[

V Am
t − L(t)

]

≥ V C
t .

(7)

The intensity difference ρ − ρ can be interpreted as a the level of rationality of the repre-

sentative policyholder.
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3 Contract Valuation

Given the market model and the policyholder’s decision behavior, the pricing of the in-

surance contract is now possible. This is carried out first from the perspective of the

representative policyholder to obtain V C . Then the value from the perspective of the insur-

ance company V I is derived using as input the behavior of the representative policyholder

captured by γ. The difference in the contract values is the premium (or cost) for introducing

the secondary market.

We consider the case of single premium contracts, the results can be extended to the

case of continuous premiums without much difficulty. The payoff structure of the insurance

contract is divided into three parts: the benefit at maturity, denoted Φ(ST ), the benefit at

death Ψ(τ, Sτ ) and the benefit if the contract is terminated early, given by L(λ).11 The

payoff functions considered here are

Φ(T, ST ) = P max

(

α (1 + g)T ,

(

ST

S0

)k
)

, (8)

Ψ(τ, Sτ ) = P max

(

α (1 + gd)
τ ,

(

Sτ

S0

)kd
)

, (9)

L(λ) = (1− βλ)P (1 + h)λ . (10)

Here, α is the fraction of the premium guaranteed to yield the minimum rate g, usually

smaller than the risk free rate,12 P the single premium and k the participation coefficient

specifying the degree to which the policyholder participates in gains of the risky asset

underlying the insurance contract. Mostly, g = gd and k = kd, i.e. death is not penalized

by the insurer.13 Surrendering the contract early is penalized however, captured by the time

dependent function β. In most cases, β is a function decreasing in time, aiming to punish

early surrender over continuation of the contract. Bernard and Lemieux [5] state that for

example in Canada, by law the cash surrender value cannot be lower than the guaranteed

minimum rate, i.e. g ≤ h.14

11The payoff structure is taken from Bernard and Lemieux [5] and also employed by Li and Szimayer [26].
12See [5], p. 446. Note that by g < r early surrender may be attractive if the stock market does not

perform well, so that investing in the money market account will provide a higher return that is risk-less.
13See [5], p. 446.
14See Bernard and Lemieux [5], p. 447.
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Remark 1. The value of an American option in the presence of mortality risk then describes

the maximal possible value of the contract and assumes that the contract holder is facing no

financial constraints in an efficient market. On {t < τ ∧ λ ∧ T} the value of the American

option is V Am
t = vAm(t, St) where vAm : [0, T ] × R+ → R satisfies the free boundary value

problem given by the PDE

0 =
∂vAm

∂t
(t, s) + r(t)s

∂vAm

∂s
(t, s) +

1

2
σ2(t, s)s2

∂2vAm

∂s2
(t, s) + µ(t)Ψ(t, s)

− (r(t) + µ(t)) vAm(t, s) ,

with constraint vAm(t, s) ≥ L(t) on [0, T ) × R+ and terminal condition vAm(T, s) = Φ(s),

for s ∈ R+.

3.1 Representative Policyholder’s Contract Value

In the following, we derive the pricing PDE for the contract value from the perspective of

the policyholder V C . Our derivation extends Li and Szimayer [26] to allow for a secondary

market. The basis of the derivation remains the balance law as stated by Dai et. al. [13]. The

expected return of the contingent claim specified by the insurance contract has to equal the

risk free rate under the risk-neutral measure as this is a no-arbitrage condition. Contracts

that have not terminated for any reason, i.e. on {t < λ ∧ τ ∧ T} with x ∧ y := min(x, y),

satisfy

r(t)V C
t dt = EQ

[

dV C
t |Gt

]

. (11)

On the above set, the following possible cases may happen:

1. The conditional probability that death occurs over (t, t + dt) while surrender does

not is µ(t) dt (1 − γtp dt − γt(1 − p) dt) = µ(t) dt. Note that the decision to access a

secondary market is irrelevant here.

2. The conditional probability that death does not occur over (t, t+dt) while surrender

does and the secondary market is used is γtp dt(1− µ(t) dt) = γtp dt.

3. The conditional probability that death does not occur over (t, t+dt) while surrender

12



does and the secondary market is not used is γt(1− p) dt(1− µ dt) = γt(1− p) dt.

4. The conditional probability that both surrender and death happen over (t, t + dt)

is 0 as in Li and Szimayer [26]. Again, the decision to enter a secondary market is

irrelevant, as the probability to get to a point where this decision matters is zero

anyway.

Analogous to Li and Szimayer [26] the contract value at time t ≤ λ ∧ τ ∧ T is assumed to

take the form

V C
t =1{t<τ∧λ}v(t, St) + 1{t=τ≤λ}Ψ(τ, Sτ ) + 1{t=λ<τ,X=0}L(λ)

+ 1{t=λ<τ,X=1}

[

L(λ) + κ
(

V Am
λ − L(λ)

)]

, (12)

where v is a suitably differential function v : [0, T ]×R+ → R. By (7) we see that γ depends

on the current continuation value V C and the expected termination payoff driven by V Am.

V Am can be expressed as functions of time t and price of the risky asset s, see Remark 1,

and therefore γ can be written as a function of (t, s, v), i.e. γ : [0, T ]×R+×R → R+, and set

γt = γ(t, St, v(t, St)). As given by Li and Szimayer [26] the occurrence of the event of death

changes the contracts payoff Ψ(t, s) leaving a change in payment that is Ψ(t, s) − v(t, s).

Basically, the claim to receive v is lost and replaced by the payment of Ψ. Similarly, the

payment liability is effected by the surrender action. The secondary market changes the

payoff to be dependent on the state of the decision variable X. The change in payment

remains to be L(t)− v(t, St) if X = 0, but if the secondary market is accessed then X = 1

and the payoff change is L(t)+κ[vAm(t, St)−L(t)]−v(t, St). The representative policyholder

does not know in advance whether the secondary market will be accessed or not.

Using the above changes in payment liabilities, the balance law (11) can be written as15

r(t)v(t, St)dt =EQ [dv(t, St) |Ft ] +
[

L(t) + κ
(

V Am
t − L(t)

)

− v(t, s)
]

pγtdt

+ [L(t)− v(t, St)] (1− p)γtdt+ [Ψ(t, St)− v(t, St)]µ(t)dt. (13)

Equation (13) carries economic interpretation: The change in the contract’s value can be

split up in the changes in value due to the different surrender and death events and the

15See Li and Szimayer [26].
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change in value originating in the continuation value. All these components have to equal

the risk free rate in total, since the pricing takes place under the risk neutral measure. The

expected change in the continuation value is based on filtration F as, in economic terms,

the death risk process does not influence the stock prices. Expanding the increment of the

continuation value by Itó’s Lemma gives

EQ [dv(t, St)|Ft] = EQ

[

Lv(t, s) dt+ σ(t, St)
∂v

∂s
(t, St)dWt

∣

∣

∣

∣

Ft

]

= Lv(t, St)dt, (14)

where the differential operator L is given by

Lf(t, s) =
∂f

∂t
(t, s) + r(t)s

∂f

∂s
(t, s) +

1

2
σ2(t, s)s2

∂2f

∂s2
(t, s).

Thus, the balance law produces

0 =Lv(t, s) + µ(t)Ψ(t, s) + γ(t, s)(1− p)L(t)

+ γ(t, s, v(t, s))p
[

L(t) + κ
(

vAm(t, s)− L(t)
)]

− (r(t) + µ(t) + γ(t, s, v(t, s))) v(t, s).

A further no-arbitrage condition is v(T, s) = Φ(s), for all s > 0, i.e. the value of the contract

that has survived up to maturity will be the same as the value of the payout specified for

this case. This completes the derivation of the following proposition:

Proposition 1 (Pricing PDE, Representative Policyholder). For the contract value V C

given by (12) the price function v is the solution of the partial differential equation

0 =Lv(t, s) + µ(t)Ψ(t, s) + γ(t, s, v(t, s))
[

L(t) + pκ
(

vAm(t, s)− L(t)
)]

− [r(t) + µ(t) + γ(t, s, v(t, s))]v(t, s) , (15)

for (t, s) ∈ [0, T ) × R+ with terminal condition v(T, s) = Φ(s), for s ∈ R+. The solution

of (15) together with Remark 1 and equation (7) then characterize the intensity γ.

In the following corollary, a stochastic representation formula of the Feynman-Kac type

is obtained:

Corollary 1 (Stochastic Representation Formula, Representative Policyholder). The value

14



of the contract V C can be represented on {t < τ ∧ λ ∧ T} by

V C
t =EQ

[

e−
∫ T

t
r(y)+µ(y)+γydyΦ(ST )

∣

∣

∣
Ft

]

+ EQ

[
∫ T

t

e−
∫ u

t
r(y)+µ(y)+γydyµ(u)Ψ(u, Su)du

∣

∣

∣

∣

Ft

]

(16)

+ EQ

[
∫ T

t

e−
∫ u

t
r(y)+µ(y)+γydyγu

[

L(u) + pκ
(

V Am
u − L(u)

)]

du

∣

∣

∣

∣

Ft

]

.

3.2 Insurance Company’s Contract Value

The derivation of the contract value for the insurance company is broadly similar to that for

the representative policyholder. However, there are some distinct differences. The contact

value from the perspective of the insurance company V I depends on the behavior of the

representative policyholder as described by γ. Thus γ and indirectly also v serve here as

an input parameter. Further, in case the contract is sold on the secondary market the

insurance company has to account for the full costs.

In the spirit of (12) we express the contract value V I by

V I
t =1{t<τ∧λ}u(t, St) + 1{t=τ≤λ}Ψ(τ, Sτ ) + 1{t=λ<τ,X=0}L(λ) + 1{t=λ<τ,X=1}V

Am
λ , (17)

where u : [0, T ]× R+ → R is the related value function.

Proposition 2 (Pricing PDE, Insurance Company). Suppose that the contract value for

the representative policyholder is given by v and the intensity is given by γ, respectively,

both according to Proposition 1. For the contract value V I given by (17) the price function

u is the solution of the partial differential equation

0 =Lu(t, s) + µ(t)Ψ(t, s) + γ(t, s, v(t, s))(1− p)L(t) + γ(t, s)pvAm(t, s)

− [r(t) + µ(t) + γ(t, s, v(t, s))]u(t, s) (18)

for (t, s) ∈ [0, T )× R+ with terminal condition u(T, s) = Φ(s) for s ∈ R+.

Again, we have an immediate corollary giving the stochastic representation of the price

function.

15



Corollary 2 (Stochastic Representation Formula, Insurance Company). The value of the

contract V I can be represented on {t < τ ∧ λ ∧ T} by

V I
t =EQ

[

e−
∫ T

t
r(y)+µ(y)+γydyΦ(ST )

∣

∣

∣
Ft

]

+ EQ

[
∫ T

t

e−
∫ u

t
r(y)+µ(y)+γydyµ(u)Ψ(u, Su)du

∣

∣

∣

∣

Ft

]

(19)

+ EQ

[
∫ T

t

e−
∫ u

t
r(y)+µ(y)+γydyγu

[

(1− p)L(u) + pV Am
u

]

du

∣

∣

∣

∣

Ft

]

.

The relationship between the insurance company’s value and the representative poli-

cyholder’s value is that, as expected, the insurance company’s value is greater than that

of the representative policyholder. This is made precise below and follows directly from

Corollary 1 and Corollary 2

Corollary 3. The value difference of the contract from the perspective of the insurance

company and from the perspective of the representative policyholder, respectively, can be

represented on {t < τ ∧ λ ∧ T} by

V I
t − V C

t =p (1− κ)EQ

[
∫ T

t

e−
∫ u

t
r(y)+µ(y)+γydyγu

[

V Am
u − L(u)

]

du

∣

∣

∣

∣

Ft

]

, (20)

and is non-negative.

Remark 2. The pricing PDE and the stochastic representation formula can be extended to

incorporate continuous premiums. Further, the constant surrender parameters ρ and ρ and

can be allowed to be functions of the time and the price of the risky asset. Then the results

are still valid under the extended setup.

In the traditional sense, an equity-linked life insurance is fair if and only if the expected

payment to the policyholder equals the premium paid by the policyholder at the initial date.

Such a fair contract does not necessarily exist if the insurer charges V I but the policyholder

is paid only V C in expectation.

Proposition 3. If a fair equity-linked life insurance contract exists on the insurance market

with a secondary market, then one of the following conditions must be satisfied

1) p = 0, i.e., there is no possibility to access the secondary market;
16



2) κ = 1, i.e., the secondary market is completely competitive;

3) (ρ, ρ̄) = (0,∞), i.e., the policyholder faces no financial constraints and acts monetarily

rational.

Proof. From Corollary 3 we see that V I = V C if one of the above conditions is met. The

contract parameters can then be specified so that the expected payment to the policyholder

equals the expected premium paid by the policyholder at the initial date.

4 Comparative Statics

In the following, the effects of changes in the model parameters are analyzed. The analysis

is restricted to the single premium case, but can be extended to the continuous premium

case, as the premium will cancel immediately when studying value differentials.

For the representative policyholder we can derive a comprehensive set of comparative

statics. The more rational the representative policyholder is, or, the less financial constraints

he is facing, the higher is the contract value. Thus the contract value is increasing for

decreasing likelihood of exogenous surrender (ρ) and for increasing rationality (ρ). The

impact of the secondary market parameters is that the increasing probability of access to the

secondary market (p) and increasing bargaining power of the representative policyholder (κ)

result in an increasing contract value.

Proposition 4 (Comparative Statics for Representative Policyholder). For 0 ≤ ρ ≤ ρ and

0 ≤ p, κ ≤ 1 denote by v the representative policyholder’s value function, and for the set of

parameters 0 ≤ ρ′ ≤ ρ′ and 0 ≤ p′, κ′ ≤ 1, denote the respective value function by v′, both as

given in Proposition 1. Suppose that ρ′ ≤ ρ, ρ′ ≥ ρ, and p′ κ′ ≥ p κ, then v′(t, s) ≥ v(t, s),

for all (t, s) ∈ [0, T ]× R+.

Proof. The pairs (v, γ) and (v′, γ′) are solutions to the PDE (15) with respective parameters,

see Proposition 1. Consider the difference z = v′ − v. First, the boundary condition of z is

computed, i.e. z(T, s) = v′(T, s)− v(T, s) = Φ(s)−Φ(s) = 0, for all s ∈ R+. By taking the
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difference of (15) for v′ and v we obtain the PDE describing z on [0, T )× R+, i.e.

0 =Lz(t, s) + [γ′(t, s, v′(t, s))− γ(t, s, v(t, s))]
[(

L(t) + p′ κ′(vAm(t, s)− L(t))
)

− v′(t, s)
]

+ γ(t, s, v(t, s))(p′ κ′ − p κ)[vAm(t, s)− L(t)]− [r(t) + µ(t) + γ(t, s, v(t, s))]z(t, s) .

We see that the sign of z depends on the sign of A given by

A(t, s) =(γ′(t, s, v′(t, s))− γ(t, s, v(t, s)))
([

L(t) + p′ κ′(vAm(t, s)− L(t))
]

− v′(t, s)
)

+ γ(t, s, v(t, s))(p′ κ′ − p κ)[vAm(t, s)− L(t)] ,

what can be inferred, e.g., from the Feynman-Kac stochastic representation formula, i.e.

z(t, s) = E
Q
t,s

[
∫ T

t

e−
∫ u

t
r(y)+µ(y)+γ(y,Sy ,v(y,Sy))dyA(u, Su) du

]

.

Now, A ≥ 0 implies exactly what we want to show, i.e. z ≥ 0, or, equivalently v′ ≥ v. To

establish this we analyze the first component of A. For the case v′ > L+ p′ κ′(vAm −L) we

have γ′ = ρ′ by (7). Thus (γ′ − γ) ≤ ρ′ − ρ ≤ 0 by assumption. Both factors constituting

the first component of A are non-positive, hence their product is non-negative. For the

case v′ ≤ L + p′ κ′(vAm − L) we have γ′ = ρ′ by (7). And then (γ′ − γ) ≥ ρ′ − ρ ≥ 0 by

assumption. Now, both factors are non-negative and so is there product. It remains to

investigate the second component of A. Note that γ ≥ 0, p′ κ′ ≥ p κ by assumption, and

vAm ≥ L, to see that also the second component of A is non-negative. This finishes the

proof.

In economic terms, the above proposition states that a contract is more valuable, if the

option to surrender the contract is used “more rationally”. This means that such an insur-

ance contract has higher value compared to a second one if the number of surrenders during

periods in which it is rational to lapse the contract, is higher (i.e. surrender takes place after

a shorter period of waiting). We have a further natural interpretation of the above results

relating to the secondary market. Given all else remains constant, an increased willingness

to access a secondary market for the contract raises the value of this life insurance. Further,

a raise in the policyholder’s share of the profits made through optimal exercise increases
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the contracts value also.

For the insurance company’s contract value the dependence on the parameters is complex

since the policyholder’s contract value also has an impact via the policyholder’s behavior (γ).

We can provide the following result.

Proposition 5 (Comparative Statics for Insurance Company). For 0 ≤ ρ ≤ ρ and 0 ≤

p, κ ≤ 1 denote by u the insurance company’s value function, and for the set of parameters

0 ≤ ρ′ ≤ ρ′ and 0 ≤ p′, κ′ ≤ 1, denote the respective value function by u′, both as given in

Proposition 2. Suppose that ρ′ = ρ, ρ′ = ρ, p′κ′ = p κ, and κ′ ≤ κ, then u′(t, s) ≥ u(t, s),

for all (t, s) ∈ [0, T ]× R+.

Proof. First note that the corresponding contract values from the perspective of the rep-

resentative policyholder we have v′ = v by Proposition 1 and assumption ρ′ = ρ, ρ′ = ρ,

p′κ′ = p κ. Consequently, we have that γ′ = γ, where we have also used (7). Now, we can

apply Corollary 2 for u′ and u. Taking the difference we see that the first two summands

cancel out and we obtain

u′(t, s)− u(t, s) = (p′ − p)EQ
t,s

[
∫ T

t

e−
∫ u

t
r(y)+µ(y)+γydy(vAm(u, Su)− L(u)) γu du

]

.

Observe that κ′ ≤ κ implies p′ ≥ p by the assumed constraint p′κ′ = p κ. Finally, it follows

that u′ ≥ u.

5 Numerical Analysis

5.1 Numerical Methodology

Four major steps are undertaken to solve the pricing PDEs (15) and (18) via finite differ-

ences. In the beginning of the analysis, boundary conditions for the PDE are derived to

solve the problem with and without secondary markets. Then the optimal stopping values

needed in the PDEs are computed numerically via the Crank-Nicolson scheme that is set

up in the second step. Especially, when solving the pricing PDE for the policyholder the

surrender intensity has to be determined simultaneously. The methodology used to deal

with this issue is presented in step three. This allows the solution of the generalized PDE

including secondary markets in the final step.
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First, we address the boundary conditions for the PDE given in (15). Because a grid

with the two dimensions time and price is used, three boundary conditions have to be found.

In a similar context, DeGiovanni [20] derives boundary conditions that are adapted to fit

the problem under consideration. The boundary condition for maturity is already given

by Φ, i.e. an alive contract will pay out the value at maturity specified by the insurance

contract. The two other conditions are more demanding, however.

For s = 0, a suitable boundary condition of the PDE is obtained numerically. At s = 0,

the PDE given in (15) satisfies

0 =Lv(t, 0) + µ(t)Ψ(t, 0)− [r(t) + µ(t) + γ(t, 0, v(t, 0))]v(t, 0)

+ γ(t, 0, v(t, 0))(1− p)L(t) + γ(t, 0, v(t, 0))p
[

L(t) + κ(vAm(t, 0)− L(t))
]

This is equivalent to

0 =
∂v

∂t
(t, 0) + µ(t)Ψ(t, 0) + ρ(1− p)L(t) + γ(t, 0, v(t, 0))p

[

L(t) + κ(vAm(t, 0)− L(t))
]

.

In addition, the PDE for the pure American-style contract given in Remark 1 satisfies for

s = 0

∂vAm

∂t
(t, 0) + µ(t)Ψ(t, 0) = 0 ,

with constraint vAm(·, 0) ≥ L. These two ODEs are of the Ricatti type and can be solved

numerically by a straight-forward finite difference scheme that is omitted here.

The third boundary condition required is the one for the case s → ∞, where infinity

has to be replaced by a suitable value smax in the numerical procedure. This condition is

based on a discrete approximation of the derivative of v with respect to s. For large values

of s, surrender will only happen for exogenous reasons. This boundary does not require

the operator splitting method suggested by DeGiovanni [20], as there is no interaction

of an interest rate model and the insurance value in contrast to the problem studied by

DeGiovanni. However, one insight of this paper is that the lapse rate has to be ρ, as there

are no incentive to surrender the contract for endogenous reasons. This means that the
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discretized version of the contract value for smax is given as

v(t, smax) = µ(t)∆tΨ(t, smax)e
−r∆t + (1− µ(t)∆t)e−r∆t

[

ρ∆L(t) + (1− ρ∆t)v(smax, t+∆t)
]

,

where ∆t is a small but not infinitesimal time step.

These three boundary conditions set up the boundaries of the discretized grid on which

the contract value can be established using the Crank-Nicolson finite difference scheme.

5.2 Analysis of Financial Implications

This section studies some examples of the contracts analysed in Section 3. In particular,

the setting of Li and Szimayer [26] is used to get numerical results that capture the effect

of secondary markets for equity-linked life insurance contracts of the above type. The

following issues are to be investigated. Firstly, we study the effect of the secondary market

on policyholders’ surrender behavior, which at the same time depends on the policyholders’

monetary rationality degree. Secondly, we compare the contract values with and without

a secondary market for both the insurance company and the policyholders and investigate

the impact of the secondary market for both parties. Thirdly, we conduct the fair contract

analysis from the insurance company’s perspective and call for more care in contract design

when the existence of a secondary market is not negligible.

The parametrization is specified to be identical to the one used in Li and Szimayer [26]

for comparability: The risky asset has a volatility of σ = 0.2 and S0 = 1000 as a starting

value. The interest rate is taken to be constant and equal to r = 4%. The single premium is

P = 100, and the time to maturity is T = 10 years. The percentage of the premium covered

by the guarantee is α = 0.85, while the guaranteed rates for both the final payment as well

as for premature termination, whether due to death or surrender, is g = gd = h = 2%. The

participation coefficient for gains of the underlying asset is k = kd = 0.9. The policyholder

is assumed to be forty years old when he enters the contract. The penalty function for early

surrender, β, is assumed to have the penalty rates β1 = 0.05, β2 = 0.04, β3 = 0.02, β4 = 0.01

and βt = 0 for t ≥ 5. The deterministic mortality intensity takes the form µ(t) = A+Bcy+t,

where A = 5.0758× 10−4, B = 3.9342× 10−5, and c = 1.1029.
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5.2.1 Effect of Secondary Market on Surrender Behavior

Li and Szimayer [26] have studied policyholders’ surrender behavior by developing a sepa-

rating boundary between the high and the low surrender intensities. Policyholders are more

likely to surrender the contracts (represented by the high surrender intensity ρ̄) when the

underlying asset has a relatively low value. While surrender events take place less likely

(represented by the low surrender intensity ρ) when the underlying asset value is relatively

high. The interest rate effect, the time effect and the penalty effect were analyzed to ex-

plain the non-smooth increase of the separating boundary. In this section we analyze how

the separating boundary, and correspondingly the surrender behavior, is affected by the

introduction of the secondary market.

As we have addressed above, the secondary market is featured by the competitiveness of

the secondary market κ and the policyholder’s access probability p. The surrender behavior

is assumed to be affected by the product of p and κ in our model. Assuming that we increase

p× κ, the average surrender benefit is increased, say, to L̃, see (6), and hence the contract

value V C increases. If the contribution of L̃ to the contract value is very high, so that

V C ≥ L̃ is still satisfied even when S is lower, we would expect the separating boundary

to move downwards. On the contrary, if the contribution of L̃ is not high enough, the

separating boundary may stay unchanged or move upwards. The exact effect of p×κ could

only be investigated numerically, which we present in Figure 1. p = κ takes the value of 0,

0.2, 0.5 and 0.8 respectively. The surrender intensity is ρ above the separating boundary

and ρ̄ below the separating boundary.

It is clear that when p× κ = 0, we are back to the model of Li and Szimayer [26] where

a secondary market is not accessible to the policyholders. For p × κ > 0, the secondary

market comes into play. The surrender intensity in this case indicates the policyholder’s

surrender behavior either to the insurer or to the secondary market, instead of solely to the

insurer when there is no secondary market. We see from Figure 1 that compared to the

case with p × κ = 0, the ρ̄ region is enlarged while the ρ region shrinks for all the cases

with p × κ > 0. In the ρ̄ region, we would expect more policyholders to be more likely

to give up their contracts when it is monetarily better to do so. Since a fixed proportion

(indicated by p) among these policyholders go to the secondary market, we would expect

more contracts to be surrendered monetarily optimally in the future. At the same time, the
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Figure 1: Separating Boundary for p = κ = 0 (blue), p× κ = 0.04 (turquoise), p× κ = 0.25
(yellow), and p× κ = 0.64 (red).

shrink of the ρ region indicates that fewer policyholders will give up the contracts when it is

monetarily disadvantageous to do so. Moreover, a proportional amount among them go to

the secondary market which triggers the optimal surrender later on. Both of these aspects

indicate that the insurer bears more risk when a secondary market emerges. As mentioned

in Li and Szimayer [26], the kinks displayed in all the graphs are due to the discontinuous

levels of penalties for early surrender. If early surrender is not penalized, e.g. by βt = 0

for all t ≥ 0, the graphs turn out to be smooth. This case does not alter the economic

interpretation offered above in any way, however.

5.2.2 Risk Analysis for the Insurer

The separating boundary presented in Figure 1 has indicated that the emergence and the

growth of the secondary market increases the risk borne by the insurer. In this section,

we quantify the magnitude of the risk by comparing the contract values when there is and

when there is not a secondary market. Besides, we study the interaction of policyholder’s

monetary rationality with the secondary market on the contract values by calculating the

true contract values when ρ and ρ̄ vary.

In Table 1 we present the contract values for ρ ∈ {0, 0.03, 0.3}, ρ̄ ∈ {0, 0.03, 0.3,∞}, p ∈
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{0.0, 0.2, 0.5, 0.8, 1.0} and κ ∈ {0.0, 02, 0.5, 0.8, 1.0}. The first row with (p, κ) = (0.0, 0.0)

displays the contract values when there is no secondary market. We use it as the benchmark

to investigate the risk for the insurer caused by the secondary market. For (ρ, ρ̄) = (0, 0),

the contract is actually of the European type and is hence not influenced by the secondary

market. For (ρ, ρ̄) = (0,∞), both the policyholder and the secondary market are supposed

to be able to exercise the surrender option monetarily optimally. Hence, it does not matter

who is actually to exercise it, and the secondary market does not play a significant role in

this case either. For the other cases we always observe the increase of the contract values

whenever the secondary market is introduced.

For given (p, κ) combinations, we always observe that the contract value increases mono-

tonically with the decrease of ρ and the increase of ρ̄. For the insurance company, the lower

ρ is, the lower would be the probability that the policyholder surrenders the contract sub-

optimally which increases the contract value. On the other hand, the lower would be the

probability that the contract is sold to the secondary market and hence the lower is the

chance that the optimal surrender is triggered. This aspect tends to decrease the contract

value for given (p, κ). From the table we infer that the first effect dominates. With regard

to ρ̄, the higher ρ̄ is, the higher is the probability that the contract is surrendered opti-

mally and meanwhile the higher is the probability that the contract is sold to the secondary

market. Hence, overall, a higher ρ̄ indicates a higher contract value.

Now we further study the impact of p and κ separately. The insurer does not care about

how the profits are shared between the secondary market and the original policyholder

but only the total amount of extra money which is to flow out of the company due to

the existence of the secondary market. Since the access probability p determines directly

the profits generated by the secondary market, we observe the monotonic increase of the

contract value with p for given κ. On the contrary, the competitiveness index κ only matters

through the decision rule of the policyholder. The behavior of the contract value with κ can

be distinguished in three cases. First, when (ρ, ρ̄) = (0.03, 0.03), (0.3, 0.3), the policyholder’s

surrender decision is exogenously determined which is independent of κ. Hence, we do not

see the change of contract value with κ. Second, when (ρ, ρ̄) = (0.03,∞), (0.3,∞), the

contract value is not influenced by κ either. Analogous to our analysis in Section 5.2.1,

the increase of L̃ due to the increase of κ is not high enough to change the relationship
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(ρ, ρ̄)

(p
,
κ
)

(0, 0) (0, 0.03) (0, 0.3) (0,∞) (0.03, 0.03) (0.03, 0.3) (0.03,∞) (0.3, 0.3) (0.3,∞)
(0.0,0.0) 101.4769 102.7011 107.2225 112.6733 98.4722 102.7793 106.7845 92.6242 95.0194
(0.2,0.0) 101.4769 102.8649 107.7913 112.6733 99.6142 104.308 107.9235 96.4809 98.5502
(0.5,0.0) 101.4769 103.1107 108.6445 112.6733 101.3273 106.6011 109.6320 102.266 103.8464
(0.8,0.0) 101.4769 103.3565 109.4976 112.6733 103.0403 108.8941 111.3406 108.0511 109.1426
(1.0,0.0) 101.4769 103.5204 110.0664 112.6733 104.1824 110.4228 112.4796 111.9078 112.6734
(0.2,0.2) 101.4769 102.8691 107.7986 112.6733 99.6142 104.3136 107.9235 96.4809 98.5502
(0.5,0.2) 101.4769 103.1391 108.6922 112.6733 101.3273 106.6357 109.6320 102.266 103.8463
(0.8,0.2) 101.4769 103.4340 109.6270 112.6733 103.0403 108.9903 111.3406 108.0511 109.1429
(1.0,0.2) 101.4769 103.6474 110.2771 112.6733 104.1824 110.5760 112.4796 111.9078 112.6734
(0.2,0.5) 101.4769 102.8742 107.8068 112.6733 99.6142 104.3194 107.9235 96.4809 98.5501
(0.5,0.5) 101.4769 103.1797 108.7567 112.6733 101.3273 106.6841 109.6320 102.266 103.8463
(0.8,0.5) 101.4769 103.5741 109.8370 112.6733 103.0403 109.1472 111.3407 108.0511 109.1425
(1.0,0.5) 101.4769 103.9224 110.6742 112.6733 104.1824 110.8796 112.4797 111.9078 112.6737
(0.2,0.8) 101.4769 102.8773 107.8117 112.6733 99.6142 104.3232 107.9235 96.4809 98.5501
(0.5,0.8) 101.4769 103.2125 108.8047 112.6733 101.3273 106.7204 109.6322 102.266 103.8463
(0.8,0.8) 101.4769 103.7236 110.0638 112.6733 103.0403 109.3226 111.3407 108.0511 109.1425
(1.0,0.8) 101.4769 104.2366 111.3373 112.6733 104.1824 111.4217 112.4798 111.9078 112.6733
(0.2,1.0) 101.4769 102.8779 107.8126 112.6733 99.6142 104.3238 107.9235 96.4809 98.5501
(0.5,1.0) 101.4769 103.2217 108.8170 112.6733 101.3273 106.7298 109.6321 102.2660 103.8463
(0.8,1.0) 101.4769 103.7669 110.1648 112.6733 103.0403 109.4063 111.3382 108.0511 109.1425
(1.0,1.0) 101.4769 104.3767 112.1153 112.6733 104.1824 112.0841 112.6754 111.9078 112.6745

Table 1: Contract values from the insurer’s perspective for ρ ∈ {0, 0.03, 0.3}, ρ̄ ∈
{0, 0.03, 0.3,∞}, p ∈ {0.0, 0.2, 0.5, 0.8, 1.0} and κ ∈ {0.0, 02, 0.5, 0.8, 1.0}.

between L̃ and V C , so that the decision rule does not change with κ. This leads to the

fact that the contract value does not vary with κ when the secondary market exists. Third,

when (ρ, ρ̄) = (0, 0.03), (0, 0.3), (0.03, 0.3), the contract value increases slightly with κ. The

reason can be interpreted from Figure 1. Since the ρ̄ region increases with κ for given p,

the policyholder is more inclined to give up the contract when it is advantageous to do so.

With a certain probability, the contract would be sold to the secondary market. Moreover,

the shrink of the ρ region also contributes to the increase of the contract value. Thus, on

the whole, the contract value increases with κ.

To study the interaction of the policyholder’s monetary rationality with the secondary

market, we present in Table 2, for policyholders with different monetary rationality degrees

(ρ, ρ̄), the relative deviation of the contract values when there is a secondary market from

the contract values when a secondary market does not exist. Comparing the columns for

(ρ, ρ̄) = (0.03, 0.03), (0.03, 0.3), (0.03,∞), we see that the impact of the secondary market

first increases with the rise of the endogenous surrender intensity and then decreases with

it for given (p, κ) combinations. Since the relative deviation is 0 when (ρ, ρ̄) = (0,∞),

which we have not displayed in the table, the same pattern can also be observed for (ρ, ρ̄) =

(0, 0.03), (0, 0.3), (0,∞). This pattern is the joint work of the endogenous surrender intensity

ρ̄ and the margin from the secondary market (V Am−V ) where V refers to the contract value
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without the secondary market. Although the increase of ρ̄ indicates that the policyholder is

more likely to surrender the contract to the secondary market when it is monetarily rational

to do so, the margin decreases when the policyholder is more capable of surrendering the

contract optimally by themselves. In which degree the contract value increases due to the

introduction of the secondary market depends on the change of ρ̄(V Am − V ) with ρ̄ at

any time when the contract is likely to be surrendered endogenously by the policyholder

to either the insurer or the secondary market. With the increase of ρ̄, at the beginning,

its increase dominates the decrease of the margin (V Am − V ) so that the relative deviation

increases. When ρ̄ further increases, its increase is dominated by the decrease of the margin.

This causes the decrease of the relative deviation. Differently, we observe the monotonic

increase of the relative deviation with the exogenous surrender intensity ρ when we compare

the columns with (ρ, ρ̄) = (0, 0.3), (0.03, 0.3), (0.3, 0.3). A higher ρ indicates the lower

monetary rationality degree of the policyholder. Hence, the margin from the secondary

market increases. The double effect, i.e., ρ(V Am − V ), leads to the increase of the relative

deviation of the contract value with the secondary market from the contract value without

the secondary market.

(ρ, ρ̄)

(p
,
κ
)

(0, 0.03) (0, 0.3) (0.03, 0.03) (0.03, 0.3) (0.03,∞) (0.3, 0.3) (0.3,∞)
(0.2,0.0) 0.1595 0.5305 1.1597 1.4874 1.0666 4.1638 3.7159
(0.5,0.0) 0.3988 1.3262 2.8994 3.7185 2.6666 10.4096 9.2897
(0.8,0.0) 0.6382 2.1218 4.6390 5.9494 4.2666 16.6554 14.8635
(1.0,0.0) 0.7978 2.6523 5.7988 7.4368 5.3333 20.8192 18.5794
(0.2,0.2) 0.1636 0.5373 1.1597 1.4928 1.0666 4.1638 3.7159
(0.5,0.2) 0.4265 1.3707 2.8994 3.7521 2.6666 10.4096 9.2896
(0.8,0.2) 0.7136 2.2425 4.6390 6.0430 4.2666 16.6554 14.8638
(1.0,0.2) 0.9214 2.8488 5.7988 7.5859 5.3333 20.8192 18.5794
(0.2,0.5) 0.1685 0.5449 1.1597 1.4985 1.0666 4.1638 3.7158
(0.5,0.5) 0.4660 1.4309 2.8994 3.7992 2.6666 10.4096 9.2896
(0.8,0.5) 0.8500 2.4384 4.6390 6.1957 4.2667 16.6554 14.8634
(1.0,0.5) 1.1892 3.2192 5.7988 7.8813 5.3334 20.8192 18.5797
(0.2,0.8) 0.1716 0.5495 1.1597 1.5022 1.0666 4.1638 3.7158
(0.5,0.8) 0.4979 1.4756 2.8994 3.8345 2.6668 10.4096 9.2896
(0.8,0.8) 0.9956 2.6499 4.6390 6.3664 4.2667 16.6554 14.8634
(1.0,0.8) 1.4951 3.8376 5.7988 8.4087 5.3335 20.8192 18.5793
(0.2,1.0) 0.1722 0.5504 1.1597 1.5027 1.0666 4.1638 3.7158
(0.5,1.0) 0.5069 1.4871 2.8994 3.8437 2.6667 10.4096 9.2896
(0.8,1.0) 1.0378 2.7441 4.6390 6.4478 4.2644 16.6554 14.8634
(1.0,1.0) 1.6315 4.5632 5.7988 9.0532 5.5166 20.8192 18.5805

Table 2: Relative deviation (in %) of contract values with sec-
ondary market from contract values without secondary market for
(ρ, ρ̄) ∈ {(0, 0.03), (0, 0.3), (0.03, 0.03), (0.03, 0.3), (0.03,∞), (0.3, 0.3), (0.3,∞)} from
insurer’s perspective.
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5.2.3 Welfare Analysis for the Policyholder

In this section we study the effect of secondary market for the representative policyholder.

In Table 3 we present the contract values from the policyholder’s perspective. We compare

the values when the secondary market exists and when it does not. Similar to Table 1,

we do not observe its effect when (ρ, ρ̄) = (0, 0), (0,∞). When κ = 0, all the profits are

transferred to the contract buyer. The policyholder is in principle indifferent, whether to

sell the contract back to the insurer or to the contract buyer on the secondary market. His

welfare increases when both p and κ are different from 0. As is indicated in Proposition 1,

it is p×κ that determines the contract value for the policyholder. Hence, we see in Table 3

that the contract values are identical for the (p, κ) combinations with the same p× κ value

and the same degree of monetary rationality. The higher p×κ is, the higher is the increase

in the welfare of the policyholder which is brought by the secondary market.

Furthermore, to study the interaction of policyholder’s monetary rationality with the

(p, κ) combinations and its effect on the welfare of the representative policyholder, we

present in Table 4 the relative deviation of the contract values when there is secondary

market from the values when there is no secondary market. We observe the same pattern

as is demonstrated in Table 2, i.e., the relative deviation increases first with ρ̄ and then

decreases with it for ρ̄ ∈ {0.03, 0.3,∞}, and the relative deviation increases monotonically

with ρ. The reason for this phenomenon is the same as is analyzed in Section 5.2.2.

Now we compare Tables 1 and 3. When κ = 1.0, the policyholder obtains all the profits

generated by the secondary market. There is no difference between the contract values from

the insurer’s and the policyholder’s perspectives. Moreover, since the secondary market has

no effect for (ρ, ρ̄) = (0, 0), (0,∞), we do not see the difference in these cases either. In the

other cases, we observe that the true contract values for the policyholder are always lower

than the values for the insurer, because the profits generated by the secondary market are

shared with contract buyer. Besides, the difference between them are higher for higher p.

This is because higher p indicates that the policyholder is more likely to go to the secondary

market and more profits are to be generated by the secondary market due to its competence

to exercise the surrender option optimally. On the contrary, the difference between the two

values shrinks with the increase of the κ since the benefits obtained by the policyholder is

closer to premium charged by the insurer for higher κ. Through this comparison, we see that
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the introduction of the secondary market is not necessarily profitable to the policyholder

if the increase of the welfare is associated with the increase of the premium. If the insurer

takes the secondary market into account when calculating the premium, then the secondary

market is only desirable for the representative policyholder when it is very competitive.

We know that the policyholder actually represents a large pool of policyholders. The

surrender behavior of the representative policyholder summarizes the average behavior of

the pool of policyholders. Within this pool, some policyholders are more informed of the

existence of the secondary market than the others. Even when the secondary market is not

competitive enough and the insurer charges a higher premium, those policyholders who are

better informed may benefit from the secondary market and those who are less informed

may bear the costs caused by the secondary market. Now we study which policyholders are

really profiting from the secondary market.

We assume there are two types of policyholders. 50% of the policyholders are of type 1

and they have no access to the secondary market. The other 50% are of type 2, who have

full access to the secondary market. This indicates that p = 0.5. Moreover, we assume that

the policyholders of the two types have on average the same degree of monetary rationality,

namely, (ρ, ρ̄) = (0.03, 0.3). We look at the secondary markets with different degrees of

competitiveness, κ = 0, 0.2, 0.5, 1.0. Since the secondary market is irrelevant for the type 1

policyholders, the contract value for this policyholder type is the same for different κ values,

namely, 102.7793. When κ = 0, the contract value for the type 2 policyholders is 102.7793.

However, if the insurer takes it into account that some policyholders will go to the secondary

market, the premium could be 106.6011, see the {(p, κ), (ρ, ρ̄)} = {(0.5, 0.0), (0.03, 0.3)}

entry in Table 1. The secondary market harms both types of policyholders. When κ = 0.2,

the contract value for the type 2 policyholders is 104.3238, while the insurer may calculate

the premium as 106.6357. Thus, on the secondary market with little competitiveness, no

policyholders benefit from it either. When κ = 0.5, the type 2 policyholders benefit from

the secondary market. Not only does their welfare increases from 102.7793 to 106.7298,

but also they may pay lower premium than the welfare they have gained, i.e., 106.6841.

The type 1 policyholders bear the costs incurred by the secondary market. At last, when

κ = 1.0, it is still the type 1 policyholders who pay more premium to eliminate the higher

risk faced by the insurer, while the type 2 policyholders profit from the existence of the
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secondary market.

(ρ, ρ̄)

(p
,
κ
)

(0, 0) (0, 0.03) (0, 0.3) (0,∞) (0.03, 0.03) (0.03, 0.3) (0.03,∞) (0.3, 0.3) (0.3,∞)
(0.0,0.0) 101.4769 102.7011 107.2225 112.6733 98.4722 102.7793 106.7845 92.6242 95.0194
(0.2,0.0) 101.4769 102.7011 107.2225 112.6733 98.4722 102.7793 106.7845 92.6242 95.0194
(0.5,0.0) 101.4769 102.7011 107.2225 112.6733 98.4722 102.7793 106.7845 92.6242 95.0194
(0.8,0.0) 101.4769 102.7011 107.2225 112.6733 98.4722 102.7793 106.7845 92.6242 95.0194
(1.0,0.0) 101.4769 102.7011 107.2225 112.6733 98.4722 102.7793 106.7845 92.6242 95.0194
(0.2,0.2) 101.4769 102.7343 107.3369 112.6733 98.7006 103.0855 107.0123 93.3955 95.7255
(0.5,0.2) 101.4769 102.7859 107.5117 112.6733 99.0432 103.5472 107.3540 94.5526 96.7847
(0.8,0.2) 101.4769 102.8402 107.6907 112.6733 99.3858 104.0120 107.6957 95.7096 97.844
(1.0,0.2) 101.4769 102.8779 107.8126 112.6733 99.6142 104.3238 107.9235 96.4809 98.5501
(0.2,0.5) 101.4769 102.7859 107.5117 112.6733 99.0432 103.5472 107.3540 94.5526 96.7847
(0.5,0.5) 101.4769 102.9271 107.9681 112.6733 99.8997 104.7159 108.2082 97.4451 99.4328
(0.8,0.5) 101.4769 103.0919 108.4606 112.6733 100.7563 105.9115 109.0627 100.3376 102.0809
(1.0,0.5) 101.4769 103.2217 108.8170 112.6733 101.3273 106.7298 109.6321 102.266 103.8463
(0.2,0.8) 101.4769 102.8402 107.6907 112.6733 99.3858 104.0120 107.6957 95.7096 97.8440
(0.5,0.8) 101.4769 103.0919 108.4606 112.6733 100.7563 105.9115 109.0627 100.3376 102.0809
(0.8,0.8) 101.4769 103.4418 109.3737 112.6733 102.1267 107.9202 110.4294 104.9657 106.3179
(1.0,0.8) 101.4769 103.7669 110.1648 112.6733 103.0403 109.4063 111.3382 108.0511 109.1425
(0.2,1.0) 101.4769 102.8779 107.8126 112.6733 99.6142 104.3238 107.9235 96.4809 98.5501
(0.5,1.0) 101.4769 103.2217 108.8170 112.6733 101.3273 106.7298 109.6321 102.266 103.8463
(0.8,1.0) 101.4769 103.7669 110.1648 112.6733 103.0403 109.4063 111.3382 108.0511 109.1425
(1.0,1.0) 101.4769 104.3767 112.1153 112.6733 104.1824 112.0841 112.6724 111.9078 112.6715

Table 3: Contract values for ρ ∈ {0, 0.03, 0.3}, ρ̄ ∈ {0, 0.03, 0.3,∞}, p ∈
{0.0, 0.2, 0.5, 0.8, 1.0} and κ ∈ {0.0, 02, 0.5, 0.8, 1.0} from the policyholder’s perspective

5.2.4 Fair Contract Analysis

In Proposition 3, we have presented the necessary condition for the existence of a fair

contract. When p = 0, it is actually equivalent to the absence of a secondary market.

When (ρ, ρ̄) = (0,∞), the policyholder is assumed to be fully monetarily rational, which

is hardly true in reality. The remaining necessary condition requires that the secondary

market develops to a completely competitive market, i.e., κ = 1, so that a fair contract

exists.

In this section, we conduct a brief fair contract analysis under the assumption that

the secondary market is completely competitive. Furthermore, the policyholder’s monetary

rationality is supposed to satisfy (ρ, ρ̄) = (0.03, 0.3), and the access possibility to the sec-

ondary market is p = 0.5. We study how the participation coefficient k should be modified,

so that the contract issued is fair. Alternatively, other parameters could be adjusted in the

similar way when keeping k constant and are hence not analyzed here.

In the case without a secondary market for the analyzed insurance contract, the con-

tract is at par for k = 0.8196. When a secondary market does exist and it is completely
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(ρ, ρ̄)
(p
,
κ
)

(0, 0.03) (0, 0.3) (0.03, 0.03) (0.03, 0.3) (0.03,∞) (0.3, 0.3) (0.3,∞)
(0.2,0.2) 0.0323 0.1067 0.2319 0.2979 0.2133 0.8327 0.7431
(0.5,0.2) 0.0826 0.2697 0.5799 0.7471 0.5333 2.0820 1.8578
(0.8,0.2) 0.1354 0.4367 0.9278 1.1994 0.8533 3.3311 2.9727
(1.0,0.2) 0.1722 0.5504 1.1597 1.5027 1.0666 4.1638 3.7158
(0.2,0.5) 0.0826 0.2697 0.5799 0.7471 0.5333 2.0820 1.8578
(0.5,0.5) 0.2201 0.6954 1.4496 1.8842 1.3332 5.2048 4.6447
(0.8,0.5) 0.3805 1.1547 2.3195 3.0475 2.1335 8.3276 7.4316
(1.0,0.5) 0.5069 1.4871 2.8994 3.8437 2.6667 10.4096 9.2896
(0.2,0.8) 0.1354 0.4367 0.9278 1.1994 0.8533 3.3311 2.9727
(0.5,0.8) 0.3805 1.1547 2.3195 3.0475 2.1335 8.3276 7.4316
(0.8,0.8) 0.7212 2.0063 3.7112 5.0019 3.4133 13.3243 11.8907
(1.0,0.8) 1.0378 2.7441 4.6390 6.4478 4.2644 16.6554 14.8634
(0.2,1.0) 0.1722 0.5504 1.1597 1.5027 1.0666 4.1638 3.7158
(0.5,1.0) 0.5069 1.4871 2.8994 3.8437 2.6667 10.4096 9.2896
(0.8,1.0) 1.0378 2.7441 4.6390 6.4478 4.2644 16.6554 14.8634
(1.0,1.0) 1.6315 4.5632 5.7988 9.0532 5.5166 20.8192 18.5805

Table 4: Relative deviation (in %) of contract values with sec-
ondary market from contract values without secondary market for
(ρ, ρ̄) ∈ {(0, 0.03), (0, 0.3), (0.03, 0.03), (0.03, 0.3), (0.03,∞), (0.3, 0.3), (0.3,∞)} from
policyholder’s perspective.

competitive, the contract is at par for k = 0.72552 which is about 11.5% lower than the

k value in the former case. The lower participation coefficient helps to offset the profits

generated from the secondary market and earned by the policyholder. Similar to our anal-

ysis in section 5.2.3, we now generalize from the representative policyholder to two groups

of policyholders and see which group is hurt by the secondary market. Policyholders of

group 1 have no information about the secondary market and policyholders of group 2 have

knowledge about it. The fair participation coefficient k for group 1 is k = 0.8196 and for

group 2 is k = 0.6348. Thus, group 1 is worse off for not being able to participate fairly in

the return of the underlying assets. While group 2 is better off for profiting not only from

the secondary market but also from the policyholders of group 1.

In this paper we have focused more on the effect of the secondary market on the poli-

cyholders with average monetary rationality. If we further generalize from the two groups

of policyholders with different information about the secondary market to more groups of

policyholders with different degrees of monetary rationality as well, we would find that

the policyholders with the highest rationality and the full information about the secondary

market profit the most from the secondary market. A comprehensive fair contract analysis

concerning different degrees of monetary rationality is provided by Li and Szimayer [26].

Their analysis can be easily extended to our setting with secondary market and is hence

omitted here.
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6 Conclusion

To our knowledge this is the first paper which includes a secondary market in the valuation

of equity-linked life insurance contracts with surrender guarantees. We have analyzed the

effect of a secondary market within an intensity based framework where the surrender

intensity of the policyholder is assumed to be bounded from below and from above. The

access to the secondary market is modeled by randomization.

We have shown that the surrender behavior of the representative policyholder is affected

by the secondary market. The existence of a secondary market increases the likelihood that

the policyholder sells his contract either back to the insurer or to the secondary market when

it is financially optimal to do so. Besides, the likelihood of surrendering in disadvantageous

situations decreases, where we need to keep it in mind that with a certain possibility the

secondary market will take over the contract. On the whole, the risk borne by the insurer

increases due to the introduction of the secondary market and it increases further with the

growth of the secondary market.

With the existence of a secondary market, the contract values from the insurer’s perspec-

tive are usually not identical with the values from a representative policyholder’s point of

view. We have derived two pricing PDEs and Feynman-Kac type stochastic representations

to characterize the contract values from the two perspectives. Comparative statics as well

as our numerical analysis have shown that the contract value for the representative policy-

holder increases with the product of the access probability to the secondary market p and

the competitiveness indicator κ. For the insurer, the contract value increases monotonically

with the access probability p but not always with κ. This is because the insurer takes into

account during the contract valuation that the contract buyers on the secondary market

have the expertise to exercise the surrender option financially rational and κ influences the

contract value from the insurer’s perspective only through the surrender behavior modeled

in equation (7).

We have also investigated the interaction of the policyholder’s monetary rationality

with the secondary market. Numerical results have shown that higher endogenous surren-

der intensity decreases the margin generated by the secondary market and thus does not

necessarily increase the impact of the secondary market on contract values. On the con-
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trary, higher exogenous surrender intensity increases the margin and hence enhances the

effect of the secondary market.

Since the policyholder may only profit partly from the high rationality of the contract

buyers on the secondary market, the contract values from the policyholder’s perspective

are usually lower than the values from the policyholder’s perspective. Hence, although the

introduction of the secondary market may increase the payout to the policyholder, it is not

necessarily beneficial for him if the welfare increase is associated with the increase of the

premium. Generalizing from the representative policyholder to two groups of policyholders,

one uninformed and one informed of the existence of the secondary market, we have demon-

strated that the secondary market is profitable for no policyholders when the policyholders

have not bargaining power on the secondary market. If, on the contrary, the secondary

market is competitive enough, the informed policyholders profit from the secondary market

while the uninformed policyholders bear the costs incurred by it.

Only in special cases would the contract values from the two perspectives be identical.

One of the special cases is κ = 1, i.e., the secondary market is completely competitive.

Under this assumption, we have conducted the fair contract analysis. We have compared

the contract parameters when the the secondary market exists and when it does not, and

hence highlighted the influence of a secondary market on contract design.

The secondary market brings a challenge to the insurance companies in regard to the

risk management of the contracts. Insurance contracts usually have long maturity time and

may already have existed before the insurance companies’ awareness about the emergence

of the secondary market. If the secondary market is introduced at a sudden, the premiums

charged before may not be adequate to support the hedging strategies of the insurance com-

panies. In particular, although the policyholders may not rush to surrender their contracts

simultaneously, the contract buyers on the secondary market may be able to do so due to

their expertise in managing the contracts. Hence, once the secondary market comes into

play, the insurance companies have to deal with the potential liquidity problem caused by

the simultaneous surrender of the contracts.
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A Proof of Corollary 1

Proof. Suppose V satisfies the PDE (15) with the given boundary condition v(T, ST ) =

Φ(ST ), and define the process X via

dXs = a(t, s)X(s)dt+ σ(t, s)X(s)dW (s).

Consider the function Z(s), defined as

Z(s,X(s)) = e
∫ s

t
r(y)+µ(y)+γ(y,X(y))dyv(s,X(s)).

Expanding the function Z by Itó’s Lemma yields

Z(T,X(T )) =z(t, x) +

∫ T

t

e
∫ u

t
r(y)+µ(y)+γ(y,X(y))dy

(

vu(u,X(u))− (r(u) + µ(u) + γ(u,X(u)))v(u,X(u))
)

du

+

∫ T

t

e
∫ u

t
r(y)+µ(y)+γ(y,X(y))dyr(u)xvx(u,X(u))du

+

∫ T

t

e
∫ u

t
r(y)+µ(y)+γ(y,X(y))dyσxvx(u,X(u))dWu

+
1

2

∫ T

t

e
∫ u

t
r(y)+µ(y)+γ(y,X(y))dyσ2x2vxx(u,X(u))du.

The left hand side is expanded by

±

∫ T

t

e
∫ u

t
r(y)+µ(y)+γ(y,X(y))dyµ(u)Ψ(u,X(u)) + γ(u,X(u))L(u) + pκ(V Am(u,X(u))− L(u)),
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which can be rewritten as

Z(T,X(T )) =z(t, x) +

∫ T

t

[

e
∫ u

t
r(y)+µ(y)+γ(y,X(y))dy

[

vu(u,X(u))− (r(u) + µ(u) + γ(u,X(u)))v(u,X(u))
]

+ r(u)xvx(u,X(u)) +
1

2
σ2x2vxx(u,X(u))

+ µ(u)Ψ(u,X(u)) + γ(u,X(u))L(u) + pκ(V Am(u,X(u))− L(u))

]

du

+

∫ T

t

e
∫ u

t
r(y)+µ(y)+γ(y,X(y))dyσxvx(u,X(u))dWu

−

∫ T

t

e
∫ u

t
r(y)+µ(y)+γ(y,X(y))dyµ(u)Ψ(u,X(u)) + γ(u,X(u))L(u)

+ pκ
(

V Am(u,X(u))− L(u)
)

du.

Recognising that v satisfies the PDE (15), meaning that the first integral vanishes, and

rearranging results in

Z(T,X(T )) +

∫ T

t

e
∫ u

t
r(y)+µ(y)+γ(y,X(y))dy

µ(u)Ψ(u,X(u)) + γ(u,X(u))L(u) + pκ
(

V Am(u,X(u))− L(u)
)

du

= z(t, x) +

∫ T

t

e
∫ u

t
r(y)+µ(y)+γ(y,X(y))dyσxvx(u,X(u))dWu.

Applying expectations to this equation finally yields, assuming sufficient integrability,

E

[
∫ T

t

e
∫ u

t
r(y)+µ(y)+γ(y,X(y))dyΦ(X(T ))

]

+ E

[
∫ T

t

e
∫ u

t
r(y)+µ(y)+γ(y,X(y))dyµ(u)Ψ(u,X(u))du

]

+ E

[
∫ T

t

e
∫ u

t
r(y)+µ(y)+γ(y,X(y))dyγ(u,X(u))L(u)du

]

+ E

[
∫ T

t

e
∫ u

t
r(y)+µ(y)+γ(y,X(y))dypκ

(

V Am(u,X(u))− L(u)
)

du

]

= z(t, x),

which is the required stochastic representation formula of the Feynman-Kac type and thus

the proof is completed.
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B A Martingale Approach to Corollary 1

This appendix proves Corollary 1 using a martingale approach. Based on the model setup

provided in Section 2, the time t value of an alive contract, i.e., t < λ ∧ τ ∧ T , from the

policyholder’s perspective can be expressed as

V C
t = EQ

[

e−
∫ T

t
r(u)du

1{τ>T,λ>T}Φ(ST )
∣

∣

∣
Gt

]

(Part 1)

+ EQ

[

e−
∫ τ

t
r(u)du

1{t<τ≤T,τ<λ}Ψ(τ, Sτ )
∣

∣

∣
Gt

]

(Part 2)

+ EQ

[

e−
∫ λ

t
r(u)du

1{t<λ≤T,λ<τ}L(λ)
∣

∣

∣
Gt

]

(Part 3)

+ EQ

[

e−
∫ λ

t
r(u)du

1{t<λ≤T,λ<τ}pκ(V
Am(λ, s)− L(λ))

∣

∣

∣
Gt

]

(Part 4)

Proposition 6. Suppose the setup detailed in Section 2 and Section 3, the value process

V C
t has the following representation on {t < λ ∧ τ ∧ T}

V C
t =EQ

[

e−
∫ T

t
r(y)+µ(y)+γ(y,s)dyΦ(ST )

∣

∣

∣

∣

Ft

]

+ EQ

[
∫ T

t

e−
∫ u

t
r(y)+µ(y)+γ(y,s)dyµ(u)Ψ(u, Su)du

∣

∣

∣

∣

Ft

]

+ EQ

[
∫ T

t

e−
∫ u

t
r(y)+µ(y)+γ(y,s)dyγ(u, Su)L(u)du

∣

∣

∣

∣

Ft

]

+ EQ

[
∫ T

t

e−
∫ u

t
r(y)+µ(y)+γ(y,s)dyγ(u, Su)pκ

(

V Am(u, Su)− L(u)
)

du

∣

∣

∣

∣

Ft

]

. (21)

Proof. For the first three terms, Proposition 3 in Li and Szimayer [26] is applicable. Thus,

the only remaining term that requires proof is term four. For that, we have precisely the

same steps as for part 3 in Li and Szimayer, but with a modified payment. This is due to

the nature of the decision to access the secondary market. It only influences the payment

received once the contract is surrendered, but it does not affect the probabilities to get to

time where this is relevant. Neither the flow of information modeled by the σ-algebras nor

the probabilities are affected here. We have

Part 4 =EQ

[

1{t<λ≤T}1{λ<τ}pκ
(

V Am(λ, s)− L(λ)
)

e−
∫ λ

t
r(y)dy

∣

∣

∣

∣

Ft ∧Ht ∧ Jt

]

=1{λ>t}E
Q

[

1{t<λ≤T}1{λ<τ}e
∫ t

0
γ(y,S(y))dypκ

(

V Am(λ, s)− L(λ)
)

e−
∫ λ

t
r(y)dy

∣

∣

∣

∣

Ft ∧Ht

]

.

Here, Corollary 5.1.1 of Bielecki and Rutkowski [6], equation (5.13) has been applied. We
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now rewrite the expectation as an integral w.r.t Q in order to remove the indicator function,

which gives

1{λ>t}E
Q

[
∫ T

t

1{τ>u}e
∫ t

0
γ(y,S(y))dypκ

(

V Am(λ, s)− L(λ)
)

e−
∫ u

t
r(y)dydQ(λ ≤ u

∣

∣FT )

∣

∣

∣

∣

Ft ∧Ht

]

.

Changing the order of integration and rewriting the integral as an integral w.r.t Lebesque

measure produces

1{λ>t}

∫ T

t

EQ

[

1{τ>u}e
−

∫ t

0
γ(y,S(y))dypκ

(

V Am(λ, s)− L(λ)
)

e−
∫ u

t
r(y)dyγ(u, S(u))e−

∫ u

0
γ(y,S(y))dy

∣

∣

∣

∣

Ft ∧Ht

]

du.

Collecting terms and applying Corollary 5.1.1 to pull out the remaining indicator for mor-

tality gives

1{λ>t}

∫ T

t

1{τ>t}E
Q

[

e−
∫ u

t
r(y)+µ(y)+γ(y,S(y))dypκ

(

V Am(λ, s)− L(λ)
)

∣

∣

∣

∣

Ft

]

du.

Changing the order of integration again (Fubini’s theorem) results in

1{λ>t}1{τ>t}E
Q

[
∫ T

t

e−
∫ u

t
r(y)+µ(y)+γ(y,S(y))dypκ

(

V Am(λ, s)− L(λ)
)

du

∣

∣

∣

∣

Ft

]

.

This proofs the result, as both indicator functions are always equal to one because the

function is only analyzed on {t < λ ∧ τ ∧ T}.
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