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Abstract

Participants of dynamic competition games may prefer to play with the
rules of the game by systematically withholding effort in the beginning.
Such behavior is referred to as sandbagging. I consider a two-period con-
test between heterogeneous players and analyze potential sandbagging of
high-ability participants in the first period. Such sandbagging can be ben-
eficial to avoid second-period matches against other high-ability opponents.
I characterize the conditions under which sandbagging leads to a coordina-
tion problem, similar to that of the battle-of-the sexes game. Moreover, if
players’ abilities have a stronger impact on the outcome of the first-period
contest than effort choices, mutual sandbagging by all high-ability players
can arise.
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1 Introduction

In dynamic contests, sandbagging can take two different forms. First, a player
may withhold effort! in a current round in order to hide his strength. As a result,
the opponents’ beliefs about the player’s ability are adjusted downwards, which
leads to a reduction of the opponents’ effort choices in future rounds. This form
of sandbagging belongs to situations, where the same players meet in repeated
contests. Second, a player can withhold effort to exploit the rules of the dynamic
contest. In particular, the player can voluntarily lose a current contest in order
to be matched with weaker opponents in the future. This kind of sandbagging
is aimed at the contest designer and not at the current opponents. From the
viewpoint of society, sandbagging is detrimental for two reasons — it leads to an
underprovision of effort and to a possible misallocation of players to higher-order
contests.

There are several real-world examples for either kind of sandbagging. The
first class of sandbagging problems is based on signal jamming, where one player
chooses an unobservable action (e.g., effort) to manipulate the beliefs of other
players regarding his true ability. In the case of sandbagging, a player tries to
appear as a weak contestant to make his opponents choose only low efforts in the
next round. Examples can be observed in sports when individual athletes or teams
try to win only with a small lead at the beginning of a tournament to hide their
true abilities until meeting stronger opponents in later rounds. At the beginning of
a military conflict, one party can withhold military resources to make the opposing
party believe that one is easy prey in future battles. In poker, a player that has
a strong hand bets weakly to convince the other players to stay in the game. In
a litigation contest, one lawyer starts with rather weak arguments to deter the
lawyer of the other party from further collecting evidence.

The second class of sandbagging problems is not based on signal jamming.

Instead, the sandbagger withholds effort to play with the rules of the game or

!Effort can take different forms. In sports, "effort" consists of training intensity as well as
effort during the match. In military conflicts, "effort" describes the military resources used by
the conflicting parties. In business and litigation contests, "effort" is given by money and time
invested in the competition.



even manipulate them. In a sales contest, individuals sometimes hold aside re-
alized sales when clearly having outperformed their opponents or when being a
clear loser in order to use these realized sales in the next-period contest. In many
(professional) sports, handicap systems are used for leveling out the playing field.
Here, sandbagging happens when individuals deliberately perform poorly in less
important contests to accumulate additional handicap for key contests in the fu-
ture. Such practice can be frequently observed in bowling and golf. In certain
racing series, drivers may prefer to underperform in qualifying rounds to obtain
a better starting position as handicap. Soccer tournaments like the FIFA soccer
world championship often consist of two parts — the group phase and the sub-
sequent knock-out phase. Typically, in the round of sixteen, group winners are
matched with second-best teams of other groups. A soccer team that wants to
be matched with the first instead of the second-best team of another group can
gain a strategic advantage by deliberately losing the final group match and be-
coming second instead of first in its respective group. In games like professional
chess, Go, billiards or BMX racing, players can voluntarily lose unimportant con-
tests to decrease their average rating and, thus, to start in the next contest in a
lower class. In this class, the sandbagger can more easily win against less stronger
opponents. However, such sandbagging has the drawback that winner prizes in
lower classes are typically smaller than prizes in higher classes. In dynamic career
contests, workers may prefer to underperform at some time to be assigned to a
less demanding career track in which they can easily outperform their opponents.
Similarly to the previous example, sandbagging leads to the disadvantage that the
player forgoes larger incomes at higher career tracks.

Whereas several contest papers have discussed the signal-jamming argument
of sandbagging,? to the best of my knowledge there do not exist contest papers
on sandbagging as means of playing with the rules of the game. My note aims at
narrowing this gap. The analysis will proceed in two steps. I start by considering
a heterogeneous contest between a high-ability player and a low-ability one. The

contest winner is assigned to a high-prize contest in the second period (major

2See the conjecture by Rosen (1986), p. 714, as well as the papers by Amegashie (2006),
Horner and Sahuguet (2007), Zhang and Wang (2009), Miinster (2009).
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contest), whereas the contest loser is relegated to a low-prize contest (consolation
contest). In both second-period contests, there will be random matching with
an unknown opponent. The two first-period players only know a discrete type
distribution over the second-period opponents for each kind of match.

In the benchmark case of an isolated first-period contest without the exis-
tence of subsequent second-period contests, both the high-ability player and his
low-ability opponent would choose identical equilibrium efforts. I show that the
assignment to different second-period contests can make the high-ability player
sandbag by withholding effort in the first round. Such sandbagging will be ra-
tional if saved effort costs from avoiding another high-ability player in a possibly
homogeneous major contest exceed expected income losses from being assigned to
the consolation match. The corresponding sandbagging condition also shows how a
contest designer can choose the characteristics of the contest to avoid sandbagging.
A high winner prize for the major contest does not necessarily solve the sandbag-
ging problem since this winner prize also influences equilibrium efforts and, thus,
effort costs in equilibrium. However, optimally designing the distributions over
the second-period opponents’ types is a very effective device against sandbagging.

In a second step, I consider a situation with two heterogeneous contests that
simultaneously take place in period one. This setting is used to address the prob-
lem of endogenous matching in the second period. While first-period winners are
assigned to the major contest, the first-period losers are relegated to a consolation
contest. This more complicated setting renders a complete solution of the game
impossible but I can still characterize situations in which sandbagging happens.
In particular, there are cases in which the high-ability players face a coordination
problem similar to that of the battle-of-the sexes, since each high-ability player can
only profit from sandbagging if the other one prefers not to sandbag. Moreover,
if the impact of players’ abilities dominate the impact of effort on the outcome
of the first-period contests, even mutual sandbagging by both high-ability players
can be an equilibrium.

One immediate implication of my results is that the current rules for the soccer

world championship’s group phase should be redesigned in order to avoid sand-



bagging. According to these rules, the final matches within a certain group have
to take place simultaneously, which should restore suspense. However, in order to
prevent sandbagging, the final matches of each two adjacent groups whose best
and second best teams are seeded together within the round of sixteen should take
place at the same time. This redesign would come at a cost since customers would
like to visit several of these matches which is only possible if the matches proceed

sequentially.

2 The Model

I consider a contest game that lasts two periods.®> In the first period, there is a
heterogeneous match between a player with low ability a; and a player with high
ability ay (> ar). Let Aa := ay — ar, denote the ability difference. Each player i

(1 = H, L) exerts non-negative effort e; to influence his score function
Z; (61) =h (61) +a; +¢&; (1)

with h being monotonically increasing and concave and ¢; describing random noise.
Following the seminal paper by Lazear and Rosen (1981), I assume that e and £,
are stochastically independent and identically distributed (i.i.d.). The cumulative
distribution function of ey — ¢, is denoted by G and the corresponding density by
g. Let g be unimodal and symmetric about zero.* Exerting effort e; leads to cost
¢ (e;) for player i with ¢(0) = ¢ (0) = 0 and ¢ (e;), " (e;) > 0 for e; > 0. Player
H (L) is declared contest winner if xg (ey) > xp (er) (xgy (eg) < zr(er)). The
contest winner receives income Y > 0, whereas the loser gets zero.

In the second period, the two players H and L are assigned to two different
contests — depending on the outcome of the first-period contest. The winner of
the first-period contest participates in the major contest M where he is randomly

matched with another player. This opponent has ability ay with probability pa, €

3The game is based on the difference-form contest-success function used, e.g., by Lazear and
Rosen (1981), Dixit (1987), Baik (1998), Che and Gale (2000).

‘E.g., if eg and e are normally (uniformly) distributed, the convolution g will be normal
(triangular). If e and e, are exponential, g follows a Laplace distribution.



(0,1) and ability a; with probability 1 — py;. After having entered contest M but
before choosing efforts, both players observe individual abilities. The two players
have the same score function (1) as in the first-period contest. The contest winner
(i.e., the player with the higher score) earns income Yy, = a - Y with a > 1, and
the loser gets zero.

The loser of the first-period contest is assigned to a consolation contest C.
Here, he meets an opponent of ability ay with probability pc € (0,1) and an
opponent of ability a; with probability 1 — po. Analogously to the major contest,
individual abilities become common knowledge before both players exert efforts,
each of the two players has the same score function (1), and the player with the
higher score is declared contest winner. This player gets income Yo = 5 - Y with
b < «a, whereas the loser of contest C' earns zero.

Finally, let all players have zero reservation values in both periods, which guar-
antees participation in each contest. The game is solved by backward induction,
starting with the second-period contests M and C. The main concern is with the
players’ equilibrium efforts (e}, e}) in the first-period contest. Since without the
existence of second-period contests both players would exert identical efforts in pe-
riod one,” the equilibrium (e, e ) will be called a sandbagging equilibrium, if the

high-ability player exerts less effort than his low-ability opponent (i.e., e}; < e} ).

3 Solution to the Game

In the second period, two players (the first-round winner and a randomly matched
opponent) meet in the major contest and two players (the first-round loser and a
randomly matched opponent) have to participate in the consolation match. Con-
sider either of these two contests k € {C, M} with participants ¢ and j having
talents a; and a; (i, € {H, L}) competing for prize Y,, € {Y¢,Ya} by choosing
efforts e; and e, respectively. Let EUS; (EUY) denote the second-round expected

This claim can be immediately checked by the solution of the second-period contests, because
the game ends after these contests.



utility of player ¢ (j) from competing against opponent j (¢) in contest k € {C, M }:

EUE = Y. G(h(e)+ai —h(ej) —a;) —cle)
and EUj; = Y. [1-G(h(e;)+a;—h(e;)—az)]—cle).

I assume that an equilibrium in pure strategies exists and that it is characterized

by the first-order conditions®

Yeg (h(e;) +a;—h(ej) —a;) = ‘. -

Thus, if a pure-strategy equilibrium exists, it will be unique and symmetric with
both players choosing effort level ¥ (Y,g (a; — a;)) where ¥ denotes the (monotoni-
cally increasing) inverse of ¢ /h’. Note that, in equilibrium, a player has effort costs
¢ (VU (Y9 (0))) when competing in a homogeneous match and ¢ (¥ (Y,g (Aa))) when

competing in a heterogeneous match. Let
ACy = c(¥ (Yeg (0)) — ¢ (¥ (Yeg (Aa))) >0

denote a player’s additional equilibrium effort costs in contest x from being matched
with an equally strong opponent instead of a weaker or stronger opponent, where
AC, > 0 follows from the unimodality of g.

In the first-period contest, both players H and L anticipate the possible out-
comes in the second period when choosing optimal efforts. Let EU;;* denote the
equilibrium expected utility of player i from competing against player j in second-

period contest x. Then, player H maximizes

(Y + par - BUNG + (1 — par) - BUYY) - G (h(en) + Aa — h(er))
+(pc - BUg + (1 = pe) - BUgy) - [L = G (h(em) + Aa— h(er))] - c(ex)

6The problem that the existence of pure-strategy equilibria cannot be guaranteed in general
is well-known in the contest literature; see, e.g., Lazear and Rosen (1981), p. 845, and Nalebuff
and Stiglitz (1983), p. 29. Instead of using a certain specification for f, ¢ and ¢ so that an
existence condition can be fixed, I follow the usual procedure by assuming existence of pure-
strategy equilibria and then describing their characteristics.



and player L

(Y+pM CEUMY 1+ (1 —pyy) - EU%J*) 1 =G (h(eg)+ Aa—h(er))]
+ (pc - EUS: 4+ (1 —pe) - EULCL*) -G (h(eyg)+Aa—h(ey)) —c(er),

yielding the following result:

Proposition 1 In the first-period contest, a pure-strategqy equilibrium will be a
sandbagging equilibrium (e, e} ) with €5, < €5, if and only if

(1 —2pc) ACe + (2py — 1) AC)y > <G (Aa) — 1) (a—p)Y. (2)

2

Proof. See Appendix. =

The right-hand side of condition (2) is strictly positive. It describes player H’s
worst-case opportunity costs from sandbagging. If sandbagging is successful and
player H is assigned to contest C' instead of contest M, the worst thing that can
happen is to meet another ag-player in contest C' whereas player L is matched
with another ay-player in contest M. Now, player H would deeply regret not to
be assigned to contest M, because switching to contest M in this situation would
increase his winning probability by G (Aa) — % and the winner prize by (o — ) Y.

The left-hand side of condition (2) may be positive or negative. It is negative
if pc > 1/2 and py < 1/2, which makes (2) impossible to be satisfied. The
intuition for this finding is clear, because the exclusive aim of sandbagging is to
avoid another ag-player. If, on the contrary, pc = 0 and py; = 1 then sandbagging
can be quite attractive for H, since he would avoid (meet) another ag-player for
sure by entering contest C' (contest M). In that case, player H realizes gains
from sandbagging in form of saved effort costs — he directly realizes a relative cost
advantage AC¢ from being matched with an az-player in contest C' and indirectly
gains cost savings AC}, from not being matched with an ag-player in contest M.

Interestingly, the winner prize of the first-period contest does not play a role
for the sandbagging condition (2). At first sight, this observation seems puzzling,

because not winning the first-period contest due to sandbagging is directly associ-



ated with the loss of this winner prize. However, the proof of Proposition 1 shows
that the winner prize of the first-period contest influences the effort choices of H

and L in the same way so that this influence cancels out when comparing e}, and

*

€7 .

Condition (2) shows that a sufficiently high winner prize in the major contest
(i.e., a large value of ) does not necessarily work against sandbagging. On the one
hand, a high Y;; makes participation in the major contest quite attractive for player
H: the right-hand side of (2) increases in «, which works against sandbagging.
On the other hand, « also influences AC); on the left-hand side of (2) so that
the overall effect of « is not clear. The influence of the ability difference Aa is
ambiguous, too. The higher Aa the larger are the expected opportunity costs of
sandbagging (via G (Aa)). However, saved effort costs from avoiding a match with
another ay-player also increase in Aa (i.e., 0AC,/0Aa > 0, Kk = C, M, by the
unimodality of g).

We obtain clear-cut results for the influence of the probabilities pc and py;, as
highlighted above. The impact of the shape of the cost function ¢ on the left-hand
side of (2) is twofold. On the one hand, the steeper the cost function, the larger are
the cost savings from sandbagging, AC,, (k = C, M), for given equilibrium efforts.
On the other hand, the steeper the cost function the flatter is ¥, and hence the
smaller are the equilibrium efforts in each match. If equilibrium effort levels are
very small anyway, the cost-saving advantage of sandbagging will be negligible.
For a wide range of convex cost functions, this second effect dominates the first
effect. Let, for simplicity, h (e;) = e; and ¢ belong to the family of cost functions
c(e;) = ¢-e"/m with ¢ > 0 and m > 2. Then, according to (2), there exists a
cut-off value so that a sandbagging equilibrium exists if and only if ¢ is smaller
than this cut-off:

m—1

(oo™ —9(2a)71) " (1~ 2p0) 75 + 2o~ D]y
[m (a— B) (G (Aa) - 1) -

Intuitively, only if the cost function is not too steep, equilibrium effort levels will

sufficiently differ in homogeneous and heterogeneous matches, and the cost-saving



advantage for player H from avoiding another high-ability player via sandbagging

can be sufficiently large.

4 Endogenous Matching

The comparative static results have shown that a contest designer has several
possibilities to influence sandbagging behavior. Following condition (2), the most
successful way to prevent sandbagging seems to be an appropriate choice of po
and py;. For example, the contest designer could create maximal uncertainty
about the opponents’ types in contests C' and M (i.e., condition (2) cannot be
satisfied if po = py = 1/2). However, such policy is not possible in situations
with two simultaneous contests in period one combined with the natural rule that
the first-period winners are both assigned to the major contest M, whereas the
two first-period losers are matched together in the consolation contest C.” In that
case, matching is generated endogenously, which can lead back to the problem of
sandbagging.

Consider such situation with two heterogeneous first-period contests A and B
between one ag-player and one ar-player, respectively. Let e;; denote the effort
choice of the a;-player in contest j (i = H,L; j = A, B) and G, := G(h(eg;) +
Aa — h(er;)) the winning probability of the ay-player in contest j. The objective
function of the ag-player in contest k (k = A, B; k # j) can be written as

(Y + G- EUYE + (1= G)) - EUYY) - G (h(emy) + Aa — h(err))
+((1=Gy) - EUGy + G- BUG;) - [1— G (h(emr,) + Aa — h(erk))] — ¢ (enr)

whereas the ay-player in contest k£ maximizes

(Y + G- BUMN; + (1—G)) - EUYY) - [L— G (h(em) + Aa — h(ery))]
+ ((1 - GJ) . EUg;} + Gj : EUS;) -G (h <€ch) + Aa—h <€Lk)) — C<€Lk) .

"This scenario captures the career-contest example from the introduction as well as the sports
cases where a sandbagger wants to decrease his average rating to start in the next contest in a
lower class.

10



The two first-order conditions read as follows:

/
(Y + [EUM; — BUS:] G + [EUNy — EUSH] (1= G5)) -gx = - (emr)

(

with g, == g (h (emr) + Aa — h(erg)). As /B is a monotonically increasing func-

tion, in a pure-strategy equilibrium we will have ey, < er; if and only if

Y + [EUYY — EUG;] Gy + [EUYF — EUGH] (1 - G)) <
Y + [EUY; — EUSE] G+ [EUN — EUSS] (1-Gj),

which — by inserting for the second-period expected utilities from the proof of

Proposition 1 — can be rewritten, so that we obtain the following result:

Proposition 2 A pure-strategy equilibrium in contest k (k = A, B) will exhibit
sandbagging by the ag-player (i.e., €5, < €5,.) if and only if
1 [G(Aa)-Li](@—-p)Y

Gi> 5+ yaciiacy ~ U=AB Ak, 3)

Proposition 2 shows that an extreme sandbagging result h (e ,) > h (e}, 4)+Aa
in combination with & (¢} 5) > h (¢};5) + Aa is impossible. Suppose that G; < 1,
i.e., h(erj) > h(em;) + Aa. In this situation, the q;-player is more likely to win
than the a,-player in contest j, but the same cannot be true in contest %k, because
here the ay-player already leads by Aa and, in addition, chooses more effort than
his opponent according to (3). Thus, it is impossible that in both first-period
contests the two a;-players have higher winning probabilities than their respective
opponents. Intuitively, if an a,-player anticipates that in the other contest the
less able player has a higher winning probability than the more able one, for three
reasons he prefers to enter the major contest and, thus, to win the first round.
First, by winning the first-period contest the a,-player would earn Y, whereas
losing is associated with zero first-period income. Second, the a,-player wants to

avoid being matched with the other aj-player in the next round, which would imply

11



high effort costs, due to the homogeneous competition, and a rather low winning
probability. Third, in the major contest he can win aY but in the consolation
contest only Y < aY.

The proposition also points to a non-trivial coordination problem of the players
in period one. Condition (3) shows that if in contest j (j = A, B) the high-ability
player has a high winning probability, it will be quite attractive for the high-
ability player in the other contest k& # j to sandbag. Inequality (3) is more easily
satisfied if, for given G}, the expression [G (Aa) — 1] (a — 8) Y takes small values
and AC); + AC¢ large values.® If, for example, Y > 0 but a — 3 both ay-players
will face a serious coordination problem since winning either second-period contest
is equally attractive. Now a major aim of the ag-players is to avoid meeting one
another in period two. The coordination problem is comparable to that of the
battle-of-the sexes game since achieving a heterogeneous match in contest M and
directly earning first-period income Y is more preferable for an ay-player than
being matched with an ap-player in contest C'. Note that Proposition 2 does not
rule out the possibility that even both high-ability players sandbag in period one.
In particular, if the right-hand side of condition (3) is close to 1/2, the condition
can be satisfied for e};; < e7,.

However, even if parameterized functions are used to specify h, ¢, and G,
the complicated structure of the two simultaneous first-period contests does not
allow for an exact computation of the equilibria. Note also that, aside from the
ag-players, an ay-player may be interested as well to be matched with a weak ay-
player instead of a strong ag-player in period two. For these reasons, I refer to the
tractable case of binary efforts to check the robustness of the previous conjectures.
I do not consider all 2* = 16 effort combinations but focus on the two possibilities

of sandbagging equilibria sketched in the paragraph before:’

Proposition 3 Suppose that, in the first-period contests, players can only decide

between ey and eq with h(e1) := hy > 0 =: h(eg) and c(e1) := ¢; > 0 =: c(eo).

8The intuition for this finding is analogous to the intuition for the finding of Proposition 1.
9The proof is relegated to the "Additional material for the referees".
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(a) If

G (Aa) 2] (a = )Y

2

—hy 4 Aa) <
G (= + Aa) 2(ACy + ACo)

Ly
=2

SG(hl—FAG),

there exist feasible parameter constellations leading to multiple sandbagging equilib-
. * * * * _ * * * * _
ra (eHA> €ra>€up> eLB) - (607 €1, €1, 60) and (eHAv €ras€aB, eLB) - (61, €0, €0, 61)'

(b) If
[G(Aa) — %} (a—B)Y

2(ACc + ACy)

1
G(—h1+Aa) Z §+

there exist feasible values of ¢y so that both ay-players sandbag in equilibrium (i.e.,

(€Fa> €145 €rps €18) = (€0, €1, €0, €1) ).

The proposition confirms that indeed there exist feasible parameter values lead-
ing to a coordination problem of the ag-players in period one. In these cases, the
impact of higher effort (i.e., h1) must be sufficiently large so that the players can ef-
fectively influence the outcome of the first-period contests. If, however, the impact
of higher effort is dominated by player heterogeneity (i.e., Aa > hq), even both
ag-players may prefer to sandbag and rest on their lead Aa, while both ay-players

choose higher effort to assure themselves a sufficiently high winning probability.
Appendix: Proof of Proposition 1

Computing the players’ first-order conditions gives

(Y + pu EUY + (1 — pur) EUY)
— (pcEUG 3 + (1= pe) BUGL)| B (er) g (R (en) + Aa — h(er))

= (eq)
and [(Y—f—pMEU%fﬂL(l—pM)EULNF)
— (pcEULS + (1 —pe) BULE)| B (eL) g (h (en) + Aa — h(eL))
= (er).

13



Thus, both players have the same marginal costs of exerting effort, but potentially
different marginal returns, as indicated by the expressions in square brackets.
Comparing these expressions shows that player H will choose less effort than player

L in the first-period contest, if

(Y + puEUYE + (1= pu) EURY) — (pcEUG 3 + (1 — pe) EUGL) <
(Y + pu EU + (1 — pu) EULY) — (pcBULS + (1 —pe) EULY)

Inserting for

aY

Uy = EUL =Y c(waYg(0)
EUM = aY -G (Aa) —c(¥ (aYg(Aa)))
Uy = BUS; =" (@ (3vg (0)

EUf; = BY -G (Aa) - c(¥ (5Yg(Aa)))
EUMY = oY -[1 -G (Aa)] —c(¥ (aYg(Aa)))
EUrpy = BY -[1-G(Aa)] - c(¥ (BY g (Aa)))

and rewriting yields condition (2).
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Additional material for the referees:

(a) Multiple sandbagging equilibria:

Note that the same conditions for (ega,era,enn,eLs) = (€o,€1,€1,€0) to be an
equilibrium must also hold for an equilibrium (e 4, era, enn, ers) = (€1, €o, €, €1).
Therefore, we have to consider only one of them. The expected utility of the ay-

player in contest A under (eya,era,enn,ers) = (€o, €1, €1, €g) is given by

EUpya(e0) = (Y + BUSG (b + Aa) + EUY [1 — G (b 4 Aa)]) G (—hy + Aa)
+ (BUG; 1= G (b1 + Aa)] + EUG; G (b + Aa)) [1 — G (=hy + Aa)]
= (Y + EUSf} — (BUY; — EUE) G (ha + Aa)) G (—hy + Aa)
+ (BEUGy + (EUS; — EUgy) G (b + Aa)) [1 — G (=hy + Aa)]

=Y + EUYy — EUGy — > (EUf, — EURy) G (b + Aa)lG (=hy + Aa)
kE{M,C}

+EUSy + (BEUG; — BUGY) G (b + Aa) .

If this player deviates to ey 4 = e; his payoff switches to

EUna(er) =Y + EUY; — EUG; — > (EUf, — EULy) G (ha + Aa))G (Aa)
ke{M,C}

+EUGy + (BEUS; — BEUGY) G (b + Aa) — ¢

Hence, he will not deviate if

C1 2 QHA . [G (Aa) -G (-hl -+ Aa)] (4)
with Qua =Y + EUNf — EUGy — > (EUf, — EULy) G (ha + Aa)).
ke{M,C}

Under (ega,era, enn,ers) = (€o, €1, €1, €0) the ar-player in contest A obtains

EUpa(er) =Y + EULEG (b + Aa)
+ BUM* (1 = G (hy + Aa))] (1 — G (=hy + Aa))
+ (BUS; (1= G (h + Aa)) + EULEG (hi + Aa)) G (—h1 + Aa) — ¢
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= Y + EU — (EUY — EUYY) G (b + Aa) — ¢

HBUS; — BUM —Y + Y (BEUf; — EUS;p) G (hy + Aa)G (—hy + Aa).
ke{M,C}

Deviation to e;4 = eg leads to

EUpa (o) =Y + EU} — (EULY — EULY) G (ha + Aa)

+[EUS), — EUM* —Y + Z (EUE: — BUR) G (hy + Aa)|G (Aa) .
ke{M,C}

The ap-player will not deviate if

1 < Qpa-[G(Aa) — G(—hy + Aa)] (5)
with Q== [Y + EU}" — EUf; — > (EUf; — EUfy) G (hy + Aa)).
ke{M,C}

Conditions (4) and (5) show that for an equilibrium (eq, 1, €1, €9) we must have
Qpa-[G(Aa) — G(—hi+Aa)] <1 <Qpa-[G(Aa) — G (—hy + Aa)].  (6)
A non-empty interval for feasible values of ¢, is guaranteed, if

Qpa <Qpa &
EUNy — EUGy — Y (BUf, — BUSy) G (b + Aa) <
ke{M,C}

EUY — EUSY — ) (EUS; — EUSH) G (b + Aa). (7)
ke{M,C}

Inserting for the second-period expected utilities from the proof of Proposition 1

yields [ ]
1 [G(Aa)-L](a—-pB)Y
2T T AACL+ ACY) (®)

Next, we have to ensure that the players in contest B do not want to deviate

from (ega,era, enp,erp) = (eo, €1, €1,€0) either. The payoff of the ag-player in
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contest B under (eq, e1, €1, ) is given by

+ (BUG (1-G (—h1 + Aa)) + EUG;G (—=hi + Aa)) (1 — G (hy + Aa)) — 1

=Y + EUr — EUfy — > (BEUf, — EUy) G (—ha + Aa)]G (hy + Aa)
ke{M,C}

+ [EUGH (1 — G (=R + Aa)) + EUG; G (—hy + Aa)] — ¢

If the player deviates he will realize

EUyg (e0) = [Y + EUY; — EU5 — Y (BUR, — EURy) G (=hy + Aa))G (Aa)
re{M,C}

+ [EUSH (1 — G (—hi + Aa)) + EUS; G (—hy + Aa)] .

He will not deviate if

C1 S QHB . [G (]’Ll -+ A(I) -G (Aa)] (9)
with Qpp = [Y + EUY; — EUf; — ) (EU, — EURy) G (=hy + Aa)).
ke{M,C}

The expected utility of the ay-player in contest B under (eya,era, enp, erp) =

(€0, €1, €1, €p) is described by

EULp (eg) =Y + EU%;G (—hy + Aa) + BUM* (1 — G (—hy + Aa))
+[EUS, — Y+ > | EU,) G (—hy + Aa)]G (hy + Aa).

ke{M,C}

If the player deviates to e;,p = e; he obtains

EULp (61) Y + BEUMYG (—hy + Aa) + BUM (1 — G (—hy + Aa)) — ¢
+HEUSG - BUI =Y + ) (EUS; — EUSY) G (=hy + Aa)lG (Aa) .

ke{M,C}
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Deviation is not profitable if

C1 Z QLB . [G (hl + Aa) -G (Aa)] (10)
with Qpp o= [Y + EUM — EUS; — Y (EUS; — EUy) G (—hy + Aa)).
ke{M,C}

According to conditions (9) and (10), an equilibrium (e}, 4, €} 4, €55, €55) = (€0, €1, €1, €)

requires
QLB . [G (hl + Aa) — G(Aa)] S C1 S QHB . [G (hl + ACL) — G (ACL)] . (11)
Thus, we must have that

QLB < QHB <~

EUM— EUg, — Y (BUS, — EUS) G (—hy + Aa) <

ke{M,C}
EUNr —EUGy — Y (BUf, — EUfy) G (—hi + Aa) . (12)
ke{M,C}

Comparison with (7) immediately shows that (12) is equivalent to

Aa) — L] (a —
SENOWPEON T [T T
Combining (8) with (13) gives
G (—hy + Aa) < % LG <2A(Z)C_M§—}|—(ZC_C?) Y G+ ag, (14

which is satisfied as long as [G (Aa) — 1] (o — B)Y < ACy + AC¢ and hy is
sufficiently large.

Recall that (14) only guarantees that Qpa < Q4 and Qpp < Qpp. However,
we must still ensure that conditions (6) and (11) hold for the same values of ¢;.
Thus, the intervals (Qga[G (Aa) — G (—h1 + Aa)], Qpa[G (Aa) — G (—hy + Aa)))
and (Qz5[G (b1 + Aa) — G (Aa)], Qup[G (b1 + Aa) — G (Aa)]) must overlap. Since
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Qpa < Qppand Qra < Qrp — 1mply1ng Qra < Qra < Qe < Qgp — the proba—
bility mass G (Aa) — G (—hy + Aa) must be sufficiently large and G (h; + Aa) —

G (Aa) sufficiently small to make the intervals overlap, i.e.,

QpalG (Aa) — G(=hy + Aa)] > Qpp[G (b1 + Aa) — G (Aa)] &
(Y + EUM* — EUSS) (G (Ad) — G (—hy + Aa)] — [G (hy + Ad) — G (Aa)))
> > (EUp — EUy) % (15)

ke{M,C}

{G (h1 + Aa) [G (Aa) — G (—hy + Aa)] — G (—hy + Aa) [G (hy + Aa) — G (Aa)]} .

There are several ways to construct parameter constellations so that this condition
holds without violating (14). Suppose, for example, that G has a bounded support
and Aa is near the upper bound so that G (Aa) ~ 1 and g (Aa) =~ 0 (recall that

g has a unique mode at zero).!® Then, condition (15) boils down to

(Y + BUL — EUG) (1= G (=hy + Aa)])

> Y (BEUS - EUSDA{[L = G (—hi + Aa)]} .
ke{M,C}

Inserting for
M Cx o
(V + BUM: — EUS;) = (1 +5—B[1- G(Aa)]) Y

= [c(¥(aYg(0)) — (¥ (Y g (Aa)))]
(1+5) Y —e(¥(@¥g(0)

Q

and

> (BU5 - EUf) = (G0 - )@+ 0)Y - (A + ACC)

ke{M,C}

(a+p)Y
2

Q

— [c(¥(aYyg(0))) +c (¥ (5Yg(0)))]

0Note also that condition (14) becomes G (—h; + Aa) < % + % < 1, which can
still be satisfied.
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yields
2-pY
2

which is clearly satisfied for § < 2. To sum up, there exist feasible parameter

> —c(¥(8Yg(0))),

constellations for which multiple equilibria (€54, €5 4, €55, €55) = (o, €1, €1,€0)

* * * * _ :
and (e}, 4, €5 4, €55, €55) = (€1, €0, €0, €1) exist.

(b) Both high-ability players sandbag:
The expected utility of either agy-player in the two first-period contests under

(ema,era.emp,eLs) = (eo, €1, €0, €1) is given by

EUy (o) = [Y + EUN; — EUffy — > (EUg, — EUy) G (=hy + Aa)|G (=hy + Aa)
ke{M,C}

+EUGy + (BEUG — BUSY) G (—hi + Aa).
If an ag-player deviates to ey, he will obtain

EUy (e)) = [Y + BUNY — EUS;, — Z (EU — BUY) G (—hy + Aa)|G (Aa)
ke{M,C}

+EUSy + (BUSG — EUGy) G (—hi + Aa) — c1.
Thus, deviation does not pay if

o > [Y+EUN—EUgy - Y (EUR, — EURY) G (—hi + Aa)]
ke{M,C}
[G (Aa) — G (—hy + Aa)]. (16)

The expected utility of either ay-player in the two first-period contests under

(GHA, €LA, CHB, 6’LB) = (60, €1, €0, 6’1) is described by

EU (e1) =Y + EU}* — (BUY — EULYY) G (—=ha + Aa) — ¢

+HEUG — EULY =Y + Y (EUf; — EUSy) G (—hy + Da)|G (—hy + Aa).
ke{M,C}
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Deviation to eq, yielding

EUL (o) =Y + EUT — (EU — EUYY) G (—h1 + Aa)

HBUS; — BUM —Y + Y (EUf; — EUS;y) G (—hy + Aa)]G (Aa)
ke{M,C}

is not profitable if
o < [Y+EUN —EUf;— > (EUS — EUSy) G (—hy + Aa)]
we{M,C}
[G(Aa) — G (=hy + Ad)] . (17)

Both conditions (16) and (17) together require that!!

EUYy — EUGy — > (EUR, — EUy) G (=hy + Aa) <

ke{M,C}
EUM — EUSh — > (EUp; — EUSY) G (—hy + Da) <
ke{M,C}
1 [G(Aa)—i](a-DB)Y
—hy + Aa) > = 2
Gt Ba) 2 5+ A0 + ACH)

"Note that the final inequality analogously follows from (7) and (8).
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