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Abstract

We consider a standard two-player all-pay auction with private values, where the valuation

for the object is private information to each bidder. The crucial feature is that one bidder

is favored by the allocation rule in the sense that he need not bid as much as the other

bidder to win the auction. Analogously, the other bidder is handicapped by the rule as

overbidding the rival may not be enough to win the auction. Clearly, this has important

implications on equilibrium behavior. We fully characterize the equilibrium strategies

for this auction format and show that there exists a unique pure strategy Bayesian Nash

Equilibrium.

Keywords: All-pay auction, contest, asymmetric allocation rule, rent-seeking, asym-

metric information

JEL-Classification: D44, D88



1 Introduction

Motivation and results Auctions in which bidders compete for one unit of an

indivisible good have been widely studied in recent years. Although the models differ

along many dimensions, one common feature is that the object is awarded to the bidder

who submits the highest bid. Contrary to that, our paper analyzes a two-player all-pay

auction with incomplete information in which the highest bid does not necessarily win

the auction. Instead, the allocation rule is asymmetric in the sense that one bidder is

favored as he need not bid as much as the other bidder to win the auction. Analogously,

the other bidder is handicapped by the rule as overbidding the rival may not be enough

to win the auction.

The empirical significance of our setting comes from the well-known fact that all-pay

auction are strategically equivalent to discriminatory contests. In discriminatory contests,

each party exerts costly effort to compete with other parties for a prize, and the party

who outbids all of their competitors wins the contest and receives the prize. In reality,

the allocation rule in discriminatory contests is often asymmetric in the sense described

above. For example, in German procurement auctions, although local authorities are

obliged to choose the bidders with the lowest price, there is a clause according to which

it can award the contract to a local bidder when this bidder’s price is not more than 5

per cent higher than the lowest bidder’s price. As a second example, consider the ”in

dubio pro reo”-rule in criminal law. According to this rule, a defendant will only be

convicted if his lawyer presents considerably less quantity and quality of evidence than

the prosecutor. Finally, assume that an enterprise hires a consulting firm, and suppose

that firm A has a done some excellent in-house consulting before. Then, we often observe

in reality that a potential entrant B is awarded the contract only if the quality of its

proposal is considerably above the quality of A’s proposal. Note that this can indeed

be interpreted as an all-pay auction, because each firm (and not only the winner) has to

exert effort to prepare a proposal.

To the best of our knowledge, these kind of asymmetric discriminatory contests have

not yet been analyzed in a general framework.1 In this paper, we fully characterize

1See the literature review below.

1



the equilibrium strategies for this two-player all pay auction with handicaps when each

bidder’s valuation is private information. We show that there exists a unique pure strategy

Bayesian Nash Equilibrium. Two further results are also worth emphasizing: first, the

revenue equivalence theorem does not apply in our setting, since the bidder with the

higher valuation will not win the auction with certainty. Second, although it is generally

possible that the handicapped player bids more than the favored bidder if the valuations

are identical, we show that it is not possible that the handicapped player wins the auction

when his valuation is lower than the favored bidder’s valuation. Hence, an inefficient

allocation of the object can only result when the favored bidder wins the auction although

he has the lower valuation.

Literature There is a large recent literature analyzing the all-pay auction: Baye,

Kovenock, and de Vries (1996) provide a complete analysis of the all-pay auction under

complete information. With asymmetric information, Krishna and Morgan (1997) extend

the classic model by Milgrom and Weber (1982) where signals are generally affiliated to

also include the first and the second price all-pay auctions. Lizzeri and Persico (2000)

analyze under which conditions there exist unique pure strategy equilibria in general

auction games, including the all-pay auction.2 Amann and Leininger (1996) and Maskin

and Riley (2000) consider auctions in which bidders are asymmetric in the sense that the

valuations for each bidder are drawn from different distributions. This also implies that

the bidder with the highest valuation does no longer win the object with certainty. While

Maskin and Riley (2000) confine attention to winner-pay auctions, our paper is more

related to Amann and Leininger (1996) as they analyze the all-pay auction. Moreover,

we adopt and extend their approach for determining the equilibrium bidding strategies

from a system of differential equations. As stated above, in all these papers and contrary

to our model, the winner of the auction is the high bidder.

In contrast to the auction literature, there are a few papers considering contests with

handicaps. Konrad (2002) assumes that handicaps arise from the fact that incumbents

need to spend less resources in order to win the discriminatory contest. However, he

2The issue of existence of pure-strategy equilibria in a more general class of simultanous games with
asymmetric information is also extensively analyzed in Athey (2001).
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restricts attention to complete information, so that only mixed strategy equilibria exist.

In the context of bribery games, Clark and Riis (2000) consider an all-pay auction where

two players compete for a government contract awarded by a corrupt official. In such

a setting, the authors show that the auctioneer can increase his expected revenue by

introducing asymmetry in our sense. However, they confine attention to the case where

valuations for the contract are uniformly distributed. Bernardo, Talley, and Welch (2000)

analyze a litigation game where the litigants’ evidence is unequally weighed by the court.

Since evidence production is costly, this leads in fact to a contest with handicaps. How-

ever, the game is a modelled as a Tullock contest, where each player wins the price with

some probability depending on his effort (or bid).3 This is different from our approach

since the identity of the winner is stochastic even for given bids.

The remainder of the paper is organized as follows: In section 2 the basic model is

presented. Section 3 derives the equilibrium strategies and contains our main results. In

section 4 we discuss an example, while section 5 concludes.

2 The Model

Basic Setup We consider a private value all-pay auction where 2 risk-neutral bid-

ders indexed i = 1, 2 compete for a single object to be sold. Each bidder has valuation

vi ∈ [0, 1] drawn from a common distribution function F (v) ∈ C1 satisfying F (0) = 0

where the density function F 0(v) is positive valued on (0, 1). The realization of vi (bidder

i’s ”type”) is private information to bidder i. We analyze equilibria in which the bidding

strategy of bidder i is a function of his type, i.e. bi : [0, 1]→ <+0 .
The specific feature of this auction is the allocation rule: Denoting by W ∈ {1, 2} the

identity of the winner, we have

W = 1⇔ b1 > t · b2 and W = 2⇔ b2 >
1

t
· b1 (1)

where a coin is flipped in case that b1 = t · b2 holds so that each bidder wins with

3To illustrate, in the simplest symmetric two-person Tullock contest, player i exerts effort ei and
wins with probability πi = ei

ei+ej
. In the asymmetric version considered by Bernardo, Talley, and Welch

(2000), the probability is πi = tei

tei+ej
where t 6= 1.
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probability 1
2
. Thus, bidder 1 wins the auction only if he bids at least t-times as much as

bidder 2, while bidder 2 wins if he bids at least 1
t
-times as much as bidder 1. Without

loss of generality we confine attention to the case t ≥ 1. Therefore, bidders 1 and 2 will
be referred to as the ”handicapped” and the ”favored” bidder, respectively.4 Clearly, for

t = 1 this is simply the standard all-pay auction with private values. The value of t is

commonly known.

Payoffs Following the setup of the model, for given bids b1 and b2, payoffs are

π1(b1, b2, v1; t) =


v1 − b1 if b1 > tb2
1
2
v1 − b1 if b1 = tb2

−b1 if b1 < tb2

(2)

and

π2(b1, b2, v2; t) =


v2 − b2 if b2 > 1

t
b1

1
2
v2 − b2 if b2 = 1

t
b1

−b2 if b2 < 1
t
b1

. (3)

Finally, expected payoffs are denoted by Πi and given by

Π1(b1, b2, v1; t) = v1 Pr(b1 > tb2(v2))− b1 (4)

and

Π2(b1, b2, v2; t) = v2 Pr(b2 >
1

t
b1(v1))− b2. (5)

3 Equilibrium Analysis

Since this is a static game with incomplete information, the equilibrium concept used

is Bayesian Nash Equilibrium (BNE). A vector of bids (b∗1(v1), b
∗
2(v2)) is a BNE if the

4Note that the asymmetry here refers to the allocation rule. This is different to ”asymmetric auctions”
in the sense of Amann and Leininger (1996) and Maskin and Riley (2000), where the valuations v1 and
v2 are drawn from different distributions.
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following set of conditions is satisfied:

Πi(b
∗
i (vi), b

∗
j(vj); t) ≥ Πi(bi, b∗j(vj); t) for all bi ∈ <+0 and i, j 6= i = 1, 2. (6)

In equilibrium, no bidder must be able to increase his expected payoff by choosing a

bidding strategy other than b∗i (vi), given that the opponent adheres to his equilibrium

strategy. The following definition proves useful for further reference:

Definition 1 Consider some function x : A → <. Then define: Dx := {a ∈ A : x(a) ∈
<+}.

The restricted domain Dx(a) contains only those elements a in A whose image x(a)

is positive. We can then state the following result concerning the properties of the

equilibrium bidding strategies:

Lemma 1 (Equilibrium Bidding Strategies) b∗i : Dbi
→ (0, bi(1)] is a monotone in-

creasing bijection on a non-empty set Dbi
⊆ [0, 1] and differentiable almost everywhere.

Proof. See Appendix 1.

Uniqueness of Equilibrium We first show that in this framework an equilibrium

is unique whenever it exists. The issue of existence is addressed below. Note that Lemma

1 also ensures existence of the inverse mapping ρi : [0, b
∗
i (1)] → Dbi

, i.e. ρi(b) ≡ b−1i (b)

is the valuation bidder i must have in order to bid b. Equipped with this result we can

now characterize the equilibrium bidding strategies in more detail. The maximization

problem for bidder 1 when bidder 2 is playing some strategy b2(v2) is given by

max
b1

v1 · Pr(b1 > t · b2(v2))− b1 = v1 · F (ρ2(
b1
t
))− b1, (7)

while for bidder 2, when bidder 1 is playing strategy b1(v1) we have

max
b2

v2 · Pr(b2 > 1

t
· b1(v1))− b2 = v2 · F (ρ1(t · b2))− b2. (8)

The first order conditions to these maximization problems lead to the following system of

ordinary first order differential equations which must be satisfied by solution candidates
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b∗1(v1) and b
∗
2(v2):

v1 · F 0(ρ2(
b1(v1)

t
)) · ρ02(

b1(v1)

t
) · 1
t
= 1. (9)

v2 · F 0(ρ1(t · b2(v2))) · ρ01(t · b2(v2)) · t = 1. (10)

For a given set of initial conditions, this system determines a unique trajectory of bidding

strategies as it is Lipschitz continuous for vi > 0. That there is only a single pair of

initial conditions (such that a solution to Eqns. (9) and (10) is indeed unique) follows

from the following results concerning the properties of the equilibrium bid distributions

Gi=1,2 := F (ρi(b
∗
i (vi))) : DGi

→ [0, 1]:5

Lemma 2 (Equilibrium Bid Distributions) In any BNE, the bid distributions G1

and G2 have the following properties:

(i) DG1 = (0, b
∗
1(1)] and DG2 = (0, b

∗
2(1)] where b

∗
1(1) = t · b∗2(1).

(ii) Gi is continuous and strictly monotone increasing ∀i = 1, 2.
(iii) If Gi(0) > 0, then Gj 6=i(0) = 0.

(iv) There is a single set of admissible initial conditions.

Proof. See Appendix 2.

Part (i) of the Lemma characterizes one main difference of an all-pay auction with

handicaps compared to the standard model where t = 1 holds. Clearly, it can never be

optimal for bidder 2 (the favored bidder) to submit bids larger than 1
t
-times the maximum

bid of bidder 1 (the handicapped bidder) since he already wins with probability one when

bidding b2 = 1
t
· b1(1). Part ii) establishes that, in equilibrium, bid distributions must

ensure that no bidder can increase his expected profit by submitting a lower bid while

leaving the probability of winning the auction unchanged which is due to the all-pay rule.

Part iii) says that only one bidder’s bid function can have an atom at zero. Intuitively,

this follows from the fact that, given that one bidder’s bid function has an atom at zero,

the other bidder can always be better of by bidding some x > 0 whenever his valuation

is positive. As one consequence, the coexistence of different sets of admissible initial

conditions is ruled out as stated in part iv).

5Similar statements for the case t = 1 have for example been derived by Amann and Leininger (1996).
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Existence of Equilibrium Rather than modifying equation system (9) and (10)

directly, we extend the method adopted by Amann and Leininger (1996) who have an-

alyzed the case t = 1 for valuations v1 and v2 drawn from different distributions. The

advantage of this method is that it simplifies the problem of simultaneously solving a

system of differential equations into a sequential procedure. This enables us to prove our

main result:

Theorem 1 There exists a unique pure-strategy Bayesian Nash-Equilibrium in which

bidder 1 (the handicapped bidder) chooses

b∗1(v1) =

v1Z
max{0,k−1(0)}

t · k(V )F 0(V )dV (11)

and in which bidder 2 (the favored bidder) chooses

b∗2(v2) =
b∗1(k

−1(v2))
t

(12)

where the bijection k(v1; t) : Db1 → Db2 is implicitly given by the differential equation

dk(v1; t)

dv1
=
t · k(v1; t) · F 0(v1)
v1 · F 0(k(v1; t)) . (13)

Proof. Using a bijection k : Db1 → Db2 , the first order conditions (9) and (10)

can be transformed into a set of differential equations expressed in a single variable v1.

Substituting k(v1) for v2 in Eqn. (10) yields

v1 · F 0(ρ2(
b1(v1)

t
)) · ρ02(

b1(v1)

t
) · 1
t
= 1 (14)

k(v1) · F 0(ρ1(t · b2(k(v1)))) · ρ01(t · b2(k(v1))) · t = 1. (15)

We can also make use of the identity of the two equations to yield

v1 · F 0(ρ2(
b1
t
)) · ρ02(

b1
t
) · 1
t
= k(v1) · F 0(ρ1(t · b2(k(v1))) · ρ01(t · b2(k(v1)) · t. (16)
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Now consider the bijection

k(v1; t) = ρ2(
b1(v1)

t
) (17)

with derivative

dk(v1; t)

dv1
= ρ02(

b1(v1)

t
) · db1(v1)

dv1
· 1
t
. (18)

Thus, k(v) maps every type of bidder 1 onto that type of bidder 2 who bids 1/t- times as

much as bidder 1. Note that due to our previous results and together with the appropriate

boundary condition k(1) = 1, Eqn. (17) defines indeed a bijection between the domains

of the different strategies which is differentiable almost everywhere. Using Eqn. (17)

allows us to rewrite Eqn. (16) as

v1 · F 0(k(v1; t)) · dk(v1; t)
dv1

· 1
db1(v1)
dv1

=

k(v1) · F 0(ρ1(tb2(ρ2(
b1(v1)

t
))) · ρ01(tb2(ρ2(

b1(v1)

t
)) · t

⇔ v1 · F 0(k(v1; t)) · dk(v1; t)
dv1

· 1
db1(v1)
dv1

= k(v1) · F 0(ρ1(b1)) · ρ01(b1) · t

⇔ v1 · F 0(k(v1; t)) · dk(v1; t)
dv1

= k(v1) · F 0(v1) · ρ01(b1) ·
db1(v1)

dv1
· t. (19)

Finally, as ρ1(b1(v1)) = v1, it follows that ρ
0
1(b1) =

dv1

db1
which implies that ρ01(b1) · db1(v1)

dv1
=

1. Hence, we end up with the single ordinary differential equation

dk(v1; t)

dv1
=
t · k(v1; t) · F 0(v1)
v1 · F 0(k(v1; t)) . (20)

The boundary condition k(1; t) ≡ 1 and the assumptions on F (v) guarantee a unique

solution for k(v1; t). Moreover, the equilibrium bidding strategy of bidder 1 must satisfy

the differential equation

db1(v1)

dv1
=

1

ρ01(b1)
=

1

ρ01(t · b2(k(v1; t))
= t · k(v1; t) · F 0(v1) (21)

8



where the last step follows from Eqn. (15). Together with b1(k−1(0)) = 0 and the

definition of k(v1; t), closed form solutions for the equilibrium bidding strategies are given

by

b∗1(v1) =

v1Z
max{0,k−1(0)}

t · k(V ; t) · dF (V ) (22)

b∗2(v2) =
b∗1(k

−1(v2))
t

(23)

as stated in the Theorem.

Inefficient Allocation when t > 1 Clearly, the allocation of the object in our

auction does not only depend on the two bidders valuations but also on the allocation

rule expressed by t. Hence, we can not exclude that the object is awarded to a bidder

whose valuation is lower than his competitor’s valuation. Furthermore, without further

assumptions on the distribution function F (·) (see the example below), we can not say
if the favored or the handicapped player bids more for identical valuations. However, we

can show that the handicapped player will never win the auction if his valuation is lower.

This means that, even if he may bid more aggressively for particular distribution functions

and for particular valuations, this can never outweigh his handicap. It follows that an

inefficient allocation of the object can only result when bidder 2 (the favored bidder)

wins the auction although he has a lower valuation. This is expressed in the following

Proposition, where W ∗ ∈ {1, 2} denotes the identity of the winner in equilibrium:

Proposition 1 i) In any BNE, there can only exist the case where v1 > v2 but W ∗ = 2,

while the case where v2 > v1 but W ∗ = 1 does not occur with positive probability.

ii) The expected equilibrium welfare loss due to inefficient allocation of the object is given

by

L∗ ≡

R 1
0

R v1

k(v1;t)
(v2 − v1)F 0(v2)dv2F 0(v1)dv1 < 0 if k(v1; t) < v1

0 otherwise
. (24)

iii) This expected equilibrium welfare loss is the greater for large values of t, i.e. dL∗
dt
< 0.

9



Proof. See Appendix 3.

With respect to the welfare loss expressed in parts (ii) and (iii) of Proposition 1, we

have simply calculated the conditional expectation of the difference in the valuations of

player 2 and 1, given that v2 − v1 < 0, and that player 2 nevertheless wins the auction.
Although this seems to be a natural definition of the welfare loss, one has to keep in mind

that asymmetries are often introduced for welfare concerns not explicitly modelled here.6

4 An Example

To better understand the impact of the asymmetry generated by t > 1 on the bidders’

behavior, we consider the special case where the vi are uniformly distributed, i.e. F (v) =

v. Differential equation (20) then becomes

k0(v1; t) =
t · k(v1; t)

v1
. (25)

Using standard techniques, the solution has the form of some polynomial k(v1; t) = αv
β
1+γ

which leads to k(v1; t) = vt1 as the unique solution satisfying k(1; t) = 1. Substituting in

Eqn. (22) yields

b∗1(v1; t) =
Z v1

0

t · V tdV = t

t+ 1
vt+11 (26)

and, by definition of k(v1; t)

b∗2(v2; t) =
b1(k

−1(v2))
t

=
1

t+ 1
v
(t+1)/t
2 . (27)

This leads to the bid functionsG1 = ((1+tt )b
∗
1)

1
t+1andG2 = ((1+t)b∗2)

t
t+1 which both satisfy

Gi(0) = 0 (and hence are atomless) and Gi(b∗(1)) = 1. Clearly, b∗i (vi; t) is increasing in

vi satisfying b∗i (0) = 0. Moreover, the equilibrium bidding strategies satisfy the support

constraint b∗1(1) =
t
t+1

= t · b∗2(1) = 1
1+t

as required by Lemma 2. For the comparative

statics with respect to t, the results are not as clear-cut: The following figure shows

6For instance, in the consulting example described in the introduction, the enterprise introduces an
asymmetry because it has a positive ex ante bias for one firm.
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b∗2(v2; t) as a function of t (where t ≥ 1) for v2 = 1
3
:7

0.03

0.04

0.05

0.06

2 4 6 8 10t

Figure 1: b∗2(v2 =
1
3
) as a function of t.

The intuition for this non-monotonicity result is best explained by looking at marginal

costs and benefits from increasing bi: Since marginal cost is always equal to 1 due to the

all-pay rule, we can safely confine attention to the analysis of marginal benefit. Given

bidder 1’s equilibrium strategy b∗1(v1; t), bidder 2’s expected benefit (payoff net of cost)

is v2 · Pr(b2 > 1
t
b∗1(v1; t)). When t increases by ∆t, there are two effects: i) bidder 2 wins

the auction not only in case that b2 > 1
t
b∗1(·) but already when b2 > 1

t+∆t
b∗1(·). This effect

(the ”direct effect”) unambiguously increases the marginal benefit for bidder 2 and thus

his equilibrium bid. ii) as t changes, also b∗1(v1; t) changes by
d
dt
b∗1(v1; ·) ·∆t and this also

effects the probability of winning and thus the marginal benefit from increasing b2 (the

7For a formal description of the comparative statics analysis with respect to t, define tmax
i (vi) ∈

arg maxt b
∗
i (vi, t). One gets

tmax
1 (v1) =

1

2 ln v1

µ
− ln v1 −

q¡
ln2 v1 − 4 ln v1

¢¶
which is increasing in v1 as

d

dv1
(

1

2 ln v1

µ
− ln v1 −

q¡
ln2 v1 − 4 ln v1

¢¶
) = − 1

(ln v1) v1

p
((ln v1) (ln v1 − 4))

> 0.

Moreover, tmax
1 (v1) = 1 ⇔ v1 = e−

1
2 . Finally, limv1→1 t

max
1 (v1) = ∞, so that b∗1(v1; t) is monotone

decreasing in t for 0 ≤ v1 ≤ e−
1
2 , a concave function in t with an interior maximum at tmax

1 (v1) for
e−

1
2 < v1 < 1 and strictly increasing in t if v1 = 1.
Performing the same exercise for bidder 2 yields

tmax
2 (v2) = −1

2
ln v2 +

1

2

q¡
ln2 v2 − 4 ln v2

¢
which is strictly decreasing in v2. As tmax

2 (v2) = 1 ⇔ v2 = e−
1
2 and limv2→0 t

max
2 (v2) = ∞, it follows

that b∗2(v2; t) is monotone increasing in t if v2 = 0, a concave function in t with an interior maximum at
tmax
2 (v2) for 0 < v2 < e

− 1
2 , and strictly decreasing in t if v2 ≥ e− 1

2 .
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”indirect effect”). When d
dt
b∗1(v1; t) > 0, then competition gets tougher which increases

the marginal benefit so that both effects go in the same direction (as is shown in footnote

4, a region where d
dt
b∗1(v1; t) > 0 does not exist for all v1).8 As t becomes large, then

eventually d
dt
b∗1(v1; t) < 0, so that competition gets weaker and marginal benefit from

increasing b2 decreases. When this effect is so strong that it overcompensates the direct

effect, then b∗2(v2; t) also decreases.
9 An analogous argument holds for bidder 1, except

that the direct effect always leads to lower marginal benefit as he does no longer win

whenever b1 > t · b∗2(·) but only when b1 > (t+∆t) · b∗2(·).

5 Conclusion

In this paper, we have analyzed a two-player all-pay auction where one bidder is handi-

capped by the auction rule while the other is favored. The relevance of our analysis is due

to the fact that all-pay auctions are strategically equivalent to discriminatory contests

where these asymmetries are often observed in reality. We have shown that there exists a

unique Bayesian Nash Equilibrium. Furthermore, it is impossible that the handicapped

player wins the auction when he has a lower valuation. Whether the equilibrium bidding

strategy of each bidder is increasing or decreasing in t depends on t itself, on bidder i’s

valuation vi, and on F (·).
Coming back to the strategic equivalence of all-pay auctions and discriminatory con-

tests, one can also interpret the bids as (socially useless) efforts undertaken to secure a

rent. Then, it would be an interesting extension to compare the welfare loss from the

allocation inefficiencies caused by the possibility of the favored party winning the contest

even if it has the lower valuation to the welfare gain from the fact that total effort may

be lower in such a contest with handicaps. However, one would then have also to take

into account that handicaps are frequently introduced because the contest designer has a

specific utility function. For instance, he explicitly wants to support local suppliers, or he

8The point is that increasing the bid becomes less attractive if the probability of winning is already
high, since the probability is only increasing at a decreasing rate at least up from a certain point (this
follows simply from the fact that the winning probability is bounded above by one).

9Thus, in the terminology of Bulow, Geanakoplos, and Klemperer (1985), bids are ”strategic
complements”.
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may believe that penalizing an innocent defendant is worse than acquitting a defendant

who is guilty.

Appendix

1 Proof of Lemma 1

To prove the several characteristics of bidding strategies, we proceed in three steps.

First, we show that the structure of the payoff function induces non-decreasing strate-

gies. Together with continuity, this in turn implies strict monotonicity and therefore

differentiability and bijectivity on the restricted domain Dbi
.

As a first step consider monotonicity. For any v0i, vi ∈ [0, 1] and for v0i > vi incentive
compatibility requires

Πi(bi(vi), vi) ≥ Πi(bi(v
0
i), vi)

Πi(bi(v
0
i), v

0
i) ≥ Πi(bi(vi), v

0
i)

Taking the sum of both conditions and reordering yields:

Πi(bi(v
0
i), v

0
i)−Πi(bi(v0i), vi) ≥ Πi(bi(vi), v0i)− Πi(bi(vi), vi).

Using the explicit structure of the pay-off function, this leads to

(v01 − v1) Pr(b1(v01) > t · b2) ≥ (v01 − v1) Pr(b1(v1) > t · b2)
(v02 − v2) Pr(b2(v02) >

1

t
· b1) ≥ (v02 − v2) Pr(b2(v2) >

1

t
· b1)

But this only holds if bi(v0i) ≥ bi(vi) which proves monotonicity.
We will prove continuity by contradiction. Assume that b1 is not continuous at x ∈

(0, b1(1)). Stated differently b1(x) > lim²→0b1(x− ²) ≡ b1(x). This implies, that bidder 2
will not submit some bid b2 ∈ (b1(x)/t, b1(x)/t) as he can always reduce costs while the
probability to win the auction remains unchanged. Anticipating this, there is no reason

for bidder 1 to increase bids from b1(x) to b1(x). Hence, we end up with a contradiction.

13



Note, that the same result can be derived for the continuity of strategies of the favored

player by a permutation of indices and the appropriate modification of probabilities to

win the auction. Furthermore, as F 0(v) 6= 0 ∀v 6= 0, this result holds for the entire

interval of valuations.

Now assume that bi(vi) is not strictly increasing on the restricted domain Dbi
. That

means, there is an interval I ⊆ (0, 1] of finite length with bi(vi) ≡ b > 0∀vi ∈ I. Given
such a strategy profile of bidder i, bidder j maximizes his expected payoff as given by

Eqn. (5). To be specific, let i = 1 and j = 2. Now assume bidder 2 bids (b− ²)/t. Then
his pay-off is

v2 Pr(b− ² > b1)− (b− ²)/t

(with an appropriate valuation v2). Now assume bidder 2 bids (b + ²)/t instead. His

expected pay-off function is then

v2 Pr(b+ ² > b1)− (b+ ²)/t

Bidder 2 profits from such a deviation as can be seen when ²→ 0

lim
²→0

(v2 Pr(b1 > b+ ²)− (b+ ²)/t− (v2 Pr(b1 > b− ²)− (b− ²)/t))
= lim

²→0
(v2(Pr(b1 ∈ [b− ², b+ ²]))− 2²

t
)

= v2 Pr(b1 = b) > 0

Therefore bidder 2 will always bid slightly above b/t instead of slightly below, but that

contradicts continuity. Analogously, a gap in bidding strategies of bidder 1 can be deduced

from a plateau in bidder 2’s equilibrium strategies. This proves strict monotonicity on

the restricted domain. Therefore bidding strategies are differentiable almost everywhere

and a bijection from the restricted domain Dbi
onto (0, bi(1)]. Finally, Dbi

has to be

non-empty, as it can never be part of an equilibrium that both bidders or only one bidder

send zero bids for the entire valuation space.
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2 Proof of Lemma 2

Part i) Clearly, bi(0) = 0 determines the lower bound ofDGi
. Moreover, denoting by

bmaxi the maximum bid of bidder i, it follows from Lemma 1 that ρ(bmaxi ) = max{vi} = 1
must hold for bidder i. This implies that bidder 1 can never be better off by bidding

too high, i.e. b1 ≤ t · bmax2 has to hold. Analogously, neither will bidder 2 bid more

than necessary to win the auction with probability 1, i.e. b2 ≤ 1
t
· bmax1 has to hold. Of

course, this must also be true for bmax1 and bmax2 , respectively, i.e. bmax1 ≤ t · bmax2 and

bmax2 ≤ 1
t
· bmax1 must hold. Rearranging yields

bmax2 ≥ 1

t
· bmax1 ≤ bmax2

from which it follows that bmax2 = 1
t
· bmax1 or equivalently, bmax1 = t · bmax2 must hold. We

refer to this as the final condition.

Part ii) Follows immediately from our assumptions on F (v) and Lemma 1.

Part iii) Suppose, Gj(0) = g > 0. We show that, for all vi ∈ [0, 1], there is some
positive bid x > 0 for bidder i such that he is strictly better off than with bidding bi = 0:

With bi = 0, bidder i’s loses whenever bj > 0 (which happens with probability (1 − g))
wins with probability 1

2
whenever bj = 0 (which happens with probability g) so that his

expected payoff is simply vi · g2 . When submitting a positive bid x > 0, he wins with

certainty when bj = 0 and, depending on x (and t), may even win when bj > 0. Thus we

have:

Πi(x, ·) = vi ·Gj(x)− x ≥ vi · g − x > vi · g
2
= Πi(0, ·)

where the last inequality holds whenever x < g
2
· vi, so that for all vi > 0, there exist

x > 0 which satisfies this condition.

Part iv) As the first order conditions consist of two ordinary first order differential

equations which are Lipschitz continuous for vi > 0, any set of initial conditions (bi(vi) =

ci, i = 1, 2) determines unique trajectories bi(vi). In the following, we show that part
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(i) and part (iii) together with the so-called no-crossing property of equilibrium bids

(see Lizzeri and Persico (2000)) implies, that there is only one admissible set of initial

conditions.

First note, that the final condition in part (i) reduces the freedom to choose initial

conditions by one, as for a given bi(1), bj 6=i(1) is fixed. On the other hand part (iii) requires

that at least one bidder i sends finite bids for every positive valuation bi(vi) > 0∀vi > 0.
Consequently, for two sets of initial conditions to co-exist, in at least one set one of

the bidder’s bid-distributions has to have an atom at zero. Furthermore, one of the two

following properties of the corresponding equilibrium bid functions would have to hold.10

(a) The atom of one bidder’s bid distribution is smaller against a tougher strategy of his

opponent. (b) At least one bidder bids the same for a given valuation against two distinct

opponent’s strategies. In the following we show that none of the two requirements can

be fulfilled in equilibrium.

As to (a), consider the first order conditions for vi given by F (vi) ≡ Gi(0) and denoting
bidder i’s type who only just sends a zero bid and a second equilibrium denoted by f(·)

vi
d

db
Gj(0) = 1

evi ddb eGj(0) = 1

But (a) requires that d
db
Gj(0) >

d
db
eGj(0) and vi > evi are satisfied simultaneously which

is a contradiction to the structure of the first order conditions.

A similar argument contradicts (b). The first order conditions 11 for player 1 with

valuation v1 against two distinct strategies of player 2 (once more distinguished by f(·)
v1
d

db1
G2(b1/t) = 1

v1
d

db1
eG2(b1/t) = 1 (28)

can not be fulfilled simultaneously. Therefore co-existing sets of initial conditions are not

10To see this it suffices to plot ρi against bi for i = 1, 2 as detailed in Lizzeri and Persico (2000).
11Once again we restrict ourselves to the favored bidder without loss of generality as the argument is

independent of t.
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feasible.

3 Proof of Proposition 1

Part i) As for the first case, in any BNE, bidder 1 loses the auction whenever

Pr(b∗1(v1) < t · b∗2(v2)) = Pr(v2 > k(v1; t)) which simply follows from the definition of

k(v1; t): Since k(v1; t) gives that type of bidder 2 who bids 1t−times as much as bidder 1
(which would result in a tie), bidder 1 loses the auction whenever v2 > k(v1; t). In order

to violate Pareto efficiency, also v1 > v2 must hold. As we have seen for the symmetric

case with t = 1, differential equation (20) leads to k(v1; 1) = v1 so that we would have

Pr(v2 > v1) = 0 whenever v1 > v2. We now show that k(v1; t) as given by (20) will be

decreasing in t, so that for all t > 1 there may exist v1, v2 such that Pr(v2 > k(v1; t)) > 0

even when v1 > v2. It then follows from that the (unique) solution to Eqn. (20) satisfying

the initial condition k(1, t) = 1 is implicitly given by the following integral equation:

0 =

Z 1

k(v1;t)

∂F (u)
∂u

tu
du−

Z 1

v1

∂F (u)
∂u

u
du (29)

Clearly, this equation is continuous is k and t and its derivative with respect to k is

non-zero, so that we can apply the implicit function theorem to Eqn. (29) to get

dk(v1; t)

dt
= − k(v1; t)

tF 0(k(v1; t))

Z 1

k(v1;t)

k(v1; t)
∂F (u)
∂u

u
du ≤ 0. (30)

Contrary to that consider the second case: Bidder 2 loses whenever Pr(b∗2(v2) <
1
t
· b∗1(v1)) = Pr(k−1(v2; t) < v1). Again, for this outcome not to be efficient, we must

also have v2 > v1. Again, for t = 1 we get k−1(v2; 1) = v2 from which it follows that

Pr(v2 < v1) = 0 when v2 > v1. However, contrary to the first case, we can show that

k−1(v2; t) is increasing in t, so that this condition can never be satisfied for all t > 1

either. To be specific, we have

dk−1(v2; t)
dt

=
k−1(v2; t)

tF 0(k−1(v2; t))

Z 1

k−1(v2;t)

∂F (u)
∂u

u
du ≥ 0. (31)
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Part ii) For any v1 ∈ [0, 1], a welfare loss occurs whenever bidder 2 has the lower
valuation, but wins the object. Thus, by definition of k(v1; t), bidder 1 loses whenever

v2 > k(v1; t) holds. It follows that for all values of v2 satisfying k(v1; t) < v2 < v1, we get

a welfare loss (v2 − v1) < 0. Taking expectations over v1 then yields Eqn. (24).

Part iii) For the case k(v1; t)− v1 < 0, taking the derivative of L∗ with respect to
t yields

−
1Z
0

(k(v1; t)− v1)dv1 · dk(·)
dt

< 0 (32)

as it was shown in Eqn. (30) that k(v1; t) is decreasing in t.
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