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Abstract

So far, the existing literature on the hold-up problem with rene-
gotiation has imposed assumptions such that the post-renegotiation
payoffs are absolutely continuous functions. Since payoffs may fail to
be differentiable at the investment profile to be sustained, first or-
der conditions for incentives to invest must be handled with care. To
avoid these difficulties, the present paper propagates a more elemen-
tary approach. A general condition is provided which necessarily must
hold for an investment profile to be sustainable by a message contin-
gent contract. If only one of the parties invests or, more generally,
if investments can be aggregated into one dimension then the paper
introduces assumptions leading to conditions which are necessary and
sufficient for an investment profile to be sustainable.
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1 Introduction

This paper deals with the mechanism design approach to the hold-up prob-
lem. There are two parties undertaking relationship-specific investments.
After uncertainty has unraveled, some decision must be taken. Ex ante, the
parties can sign any contract out of the general class of all message contingent
contracts. Yet, if the chosen messages would lead to an inefficient decision,
renegotiations are assumed to take place. By assumption, investments and
the state of the world can be observed by both parties such that renegoti-
ation takes place under complete information but they fail to be verifiable.
The paper provides a simple but general condition which necessarily must
hold for an investment profile to be sustainable by message contingent con-
tracts with renegotiation. The condition works for one-dimensional as well
as multi-dimensional investments. For the case of investments which can be
aggregated into one dimension, the paper introduces conditions which are
necessary and sufficient for an investment profile to be sustainable.

Maskin and Moore [1999] were the first to formulate the problem of
mechanim design with renegotiation in general. They give a characteriza-
tion in terms of incentive compatibility constraints which, however, remain
difficult to check. The present paper comes closer in spirit to Edlin and
Reichelstein [1996] and, in particular, to Che and Hausch [1999] who have
studied buyer-seller relationships with a one-dimensional quantity decision.
Notice, however, that our results allow for much broader interpretations. The
paper also touches some of those results of Segal and Whinston [1999] which
concern the hold-up problem but without making use of the Mirrlees [1971]
approach to mechanism design.

So far, the existing literature has relied on asumptions such that, for any
message contingent contract, the post-renegotiation payoffs are absolutely
continuous functions and, hence, must be differentiable but only almost ev-
erywhere. Moreover, incentives to invest are investigated by means of their
first order conditions. Since payoffs may fail to be differentiable at, of all,
the investment profile to be sustained, rigorous arguments require some ex-
tra effort. The present paper propagates a more elementary approach. No
use of the theory of absolutely continuous functions and, except for the last

proposition of the paper, not even of calculus is made. Moreover, for most



of the results, the set neither of decisions nor of investment choices need be
connected, i.e. the situation of discrete choices is also included. As a conse-
quence, the results can be applied to hold-up problems as they arise in the
property rights approach to the firm (see, e.g., Grossman and Hart [1986]
and Hart[1995]). In this approach, parties may choose from a finite set of
governance or ownership structures. The situation, if expressed in our frame-
work, leads to a set of feasible decisions which fails to be connected. The
reader is also referred to Roider [2000] who combines the choice of ownership
structures with a continuous quantity choice. In this context, to justify the
property rights approach, it is important to know conditions under which it
is sufficient to consider non-contingent contracts. The present paper provides
such conditions.

The paper is organized as follows. The next section introduces the model.
Section 3 contains the main results for the case of one-dimensional invest-
ments. A condition is introduced which necessarily must hold for an invest-
ment profile to be sustainable by a message contingent contract. The con-
dition is shown to generalize the measures of cooperativeness as introduced
by Che and Hausch [1999]. Section 4 deals with the case of one-dimensional
investments which are one-sided. Under some additional assumption, a con-
dition is established which is both necessary and sufficient for an investment
profile to be sustainable. To sustain such profiles, option contracts may be
needed where the option must be exercised after investments can be observed
but before the state of the world becomes known. Section 5 extends some of
the findings of section 3 to multi-dimensional investments. For a given party,
a direction of investment is called non-harmful if the other party would ben-
efit from increased investments in that direction to a positive but possibly
small extent. Our necessary condition if applied to the efficient investment
profile establishes that this profile fails to be sustainable if, for one party at
least, there exists at least one direction of investment which is non-harmful
to the other party. Section 6 considers the case where investments can be
aggregated into one dimension. The results generalize some of the findings on
one-sided investments of Section 4. Again, a condition is introduced which is
both necessary and sufficient for an investment profile to be sustainable. This
section also revisits some of the findings of Segal and Whinston [1999] with-

out, however, making use of the theory of absolutely continuous functions.



Section 7 concludes.

2 The model

Two parties i« = 1,2 choose investments e; € F;. The sets F; of feasible
choices are assumed to be closed subsets of finitely dimensional Euclidean
spaces . Investment profiles are denoted by e = (e1,e2) € E = E; X FEs.
Investment costs of party i are denoted by c;(e;). After investment decisions
have been taken, uncertainty w € €2 unravels. For simplicity, the set 2 of
states of the world is assumed to be finite (# = m). The probabilities
with which the different states occur are exogenously given. The expectation
operator with respect to the uncertain state of the world is denoted by E,|
] '. Any vector 8 = (e,w) € B = E x Q is called a history of the hold-up
problem. Histories can be observed by the two parties but fail to be verifiable
in front of courts.

After the parties have learned the history, a decision x € X must be taken.
The set of feasible decisions is assumed to be a subset of some Euclidean
space, i.e. X C R". In some of the existing literature, this decision is
assumed to concern a quantity choice, i.e. X = [0,00) or X = [0, 1]. Yet,
to also capture versions of the hold-up problem as studied in the property-
rights approach to the theory of the firm (see introduction), our setting does
require the set X neither to be one-dimensional nor to be connected.

Profits (excluding investment costs and transfer payments) of party i

amount to p;(f, z). The maximum social surplus after history S

s(B) = maxp1(8,7) + (5, 7)

is assumed to exist and to be finite for all histories. The efficient investment

profile which also is assumed to exist is denoted by

e e argmax E, [s(B)] — c1(e1) — cale2).

Ex ante, i.e. before investment decisions are due, the parties sign a mes-
sage contingent contract v = [My, My, x(m),t;(m),to(m)] where z(m) € X

and t;(m) + t2(m) = 0 denote the decision and the transfer payments at

IThe approach can easily be extended to infinite state spaces. All we require is that

the expected value F, exists whenever use is made of the expectation operator.
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message profile m € M = M; x M,. M; is the set of messages which party
¢ can send after having observed the history of the hold-up problem. Let I’
denote the set of all message contingent contracts. This class is very general.
It includes, in particular, all non-contingent contracts (#M; = #M, = 1)
which play an important role in the property rights approach to the firm as
well as all party 7 option contracts where only party 7 has a true choice as
far as messages are concerned, i.e. #M; =1 for party j # i %

If, at history 8 and messages m, the contractual decision z(m) fails to be
efficient, renegotiations are assumed to take place and to lead to an efficient

post-renegotiation solution. Post-renegotiation payoffs are denoted by

ri(8,x(m)) + ti(m) (1)

where
ri(B,z) = pi(B; ) + ai(w) [s(8) — p1(B, ) — pa(B, 7)]

is the post-renegotiation profit function of player . The term in square brack-
ets denotes the maximum social gain from renegotiation, out of which party ¢
is assumed to get the share o;(w) (a;(w) > 0, o (w) + a2 (w) = 1). While the
bargaining power may depend on the state of the world, the parties’ shares

are exogenously fixed. Rearranging terms leads to

ri(B, ) = (1 — ai(w))pi(B, %) + ai(w) [s(B) — p; (B, )] - (2)

Notice that, for all histories # and all decisions z, it holds that

(8, x) + ro(B,x) = s(B). (3)

Hence the message game with payoff functions (1) is a fixed-sum game such
that, according to the Min-Max-Theorem, all its Nash equilibria are payoff
equivalent. Let m?(3) € M denote one of these Nash equilibria (if there are
several) after history § has been observed.

The payoff frontier [R;5), Re(5)] is called implementable if there exists a
message contingent contract v € I leading to a Nash equilibrium m?(3) such
that

Ri(B) = ri(B, x(m?(8))) + t:(m?(B))

2See Segal and Whinston [1999] for this general notion of option contracts.




holds for both parties i = 1,2. An incentive compatible mechanism asks
parties separately to reveal the history, i.e. has message sets M| = My, =
B and it has telling the truth as a Nash equilibrium. It follows from the
revelation principle (see Maskin and Moore [1999]) that the payoff frontier
[R1), R2(88)] is implementable if, and only if, there is an incentive compatible
mechanism [z(), t1(), t2()] such that

Ri(B) = ri(B, =(8, B)) + t:(8, B)

holds for all histories 8 € B.
Finally, an investment profile eV € FE is called sustainable if there exists
an implementable payoff frontier [R; (), R2(8)] such that

el € argmax E, [Ri(ei, e;-v,w)] —ci(e;) (4)

e, €F;

holds for {i,5} = {1,2}. Let EV denote the set of sustainable investment

profiles. Our main focus will be on this set of sustainable profiles.

3 One-dimensional investments

In this section, it is assumed that parties have one-dimensional investment
choices only, i.e. Ej,E; C R. Let ® = {¢: Q@ — X} C R™ denote the set

of all state contingent decisions ¢ and let

vi(e,d) = E, [ri(e, w, ¢(w))] — ci(e:)

denote the net profit which party 7 would make if the investment profile were
e € F and if the state contingent decision ¢ € ® were implemented. For all
e; € E; and ¢ € @, let

£

7

Y — inf e
6'7) e}gEl &
such that v;(e, ¢) is strictly monotonically decreasing for all €] > e; and
Eff(ej) = sup e;
e, €R;
such that v;(e, ¢) is strictly monotonically increasing for all €} < e;. More-

over, for all e; € Ej, let

7 (ej) = sup 8?_'_(6]') and ; (e;) = inf 5;‘37(67-).

ped ¢ped



It follows that, for e; > &/ (e;), vi(e, ¢) is strictly monotonically decreasing
for all ¢ € ®. Similarly, for e; < ¢; (e;), vi(e, @) is strictly monotonically
increasing for all ¢ € ®. The following proposition can be established which
makes use of this notation and which provides a necessary condition for an

investment profile to be sustainable.

Proposition 1 If the investment profile eV is sustainable, i.e. if €N € EV,
then

e; (ef) <& <ef(e])

must hold for both parties.

Proof. A choice function f : B — X is said to induce incentives e” if
Ci(ezN) —ci(e)) < B, I:Ti(eNawa f(ei, 6;-\],60)) - Ti(ei,ej'vawaf(eia ej.v,w))] (5)

holds for all investments e; € E;. We claim that, if e¥ € EV, then there exists
a choice function which induces eV. In fact, it is well-known (see, e.g., Maskin
and Moore [1999] or Segal and Whinston [1999]) that the payoff frontier
[R1(8), Ra(B)] is implementable iff there exists a function z : B x B — X
such that

ri(8,2(8; 8))—ri(B,2(8; 8') < Ri(B')—Ri(B) < ri(B', 2(B'; B))—7:(8, 2(B'; B))

holds for all histories 3, 8" € B. To prove the claim, assume that [R;(8), Re(3)]
is implementable and provides incentives to invest eV, i.e. (4) must hold for
both parties. Then the claim is easily seen to hold for the choice function
fle,w) = z(el, w;e,w).

(i, e’). It then follows from the definition of & (e}’) that v;(e®™®,¢) >
vi(eV, ) must hold for all ¢ € ®, in particular for ¢ = f(e*?,w). But this

contradicts (5). Therefore ;" (e}) > ¢ must hold for both parties.

i

To prove the proposition, assume first that e;"* = & (e)) < €Y. Let ¢®? =

Assume second that ¢; (ej-V ) > eN. Then this leads to a contradiction in
the same way as above. Therefore, ¢; (ej-v ) < e¥ must hold for both parties
as well. The proposition is established. W

At first glance, the necessary condition of the proposition for an invest-
ment profile to be sustainable looks quite abstract. However, as we now

want to show, the condition is related to the measures of cooperativeness as



introduced by Che and Hausch [1999]. In order to establish this claim, for
any state contingent decision ¢ € ® and any investment profile e € E, let us
define

mi(e,9) = E,[pi(e,w,o(w))],

me) = Bulpy(e,w o).

pile,9) = E,[ri(e,w,¢(w))] and
ole) = E,ls(e,w)].

The Greek letter simply expresses the expected value of the function with
the corresponding Latin letter. To simplify, it is assumed that the bargaining
power does not depend on the state of the world and that the expected
net social surplus is a single-peaked function of both its arguments. More

precisely, we assume the following:
Assumption SP
1. ai(w) =y, 0 < oy, and a1 +ay =1

2. Vu €10,1], po(e;, e;) —cile;) is strictly single-peaked ® as a function of
e;, its peak being denoted by

Bf(e;) = arg max po(ei, e5) — ci(e)

3. Bf(e;) < B}(e;) for all p <1

Suppose party ¢ would receive the fixed share p < 1 of the social surplus.
Then 2. requires that its best response would come from maximizing a
strictly single-peaked function whereas 3. requires that it would underinvest
relative to the efficient response B} (e;).

Since we have imposed very little structure, the following remark may
be in order. Assumption SP implies that o(e;, e;) as a function of e; must
be strictly increasing in the range [B!(e;), B} (e;)] at least. Moreover, As-
sumption SP would follow from the following more familiar but also more

restrictive assumption:

3The function is assumed to be strictly monotonically increasing to the left and strictly

monotonically decreasing to the right of its peak.



The sets FE; of feasible investments are intervals of the real line, s(e,w)
and c;(e;) are differentiable functions of e;, s(e,w) is a strictly concave and
strictly increasing function of e; and c;(e;) a quasi convex function of e;, for
all states w, and the appropriate Inada conditions hold.

We now consider the following measures of cooperativeness. Party i’s
investments are called cooperative (at the other party’s investment level e;)
if

pi(€, 8) — pi(e; 8) < cifo(e') — o(e)] (6)
or, equivalently (as follows from the fixed-sum property (3)), if

p;i(€',0) — pje,;9) = ajo(e') — o(e)]

holds for all e’ = (e}, e;) and e = (e;, e;) € E where €] > ¢; and all ¢ € ®. In
other words, a party’s investments are called cooperative if the other party
would benefit from increased investments by the first party to a degree not
below its own bargaining power. Notice that, under suitable differentiability,
condition (6) would follow from the slightly stronger assumption that
a'apj(e,w, ) Opi(e,w, )
! oe; oe;
must hold for all histories (e,w) and all decisions z (c.f. (2)). In this form,
the condition corresponds to conditions (6) and (8) in Che and Hausch [1999].

Party 4’s investment are called non-harmful (at the other party’s invest-

> (1 - ;)

ment level e;) if

pi(€',6) = pi(e,9) < (1 —€)[o(e) — o(e)] (7)

or, equivalently (as follows from the fixed-sum property (3)), if

pi(¢',8) = p(e,9) > £ [o(¢)) = o(e)]

holds for all ' = (e}, e;) and e = (e;,e;) € E where €] > e; and all ¢ € .
The € in the above conditions is an arbitrarily small but positive real number.
Under non-harmful investments, if one party would increase its investments
then the other party would benefit from that increase by a small but positive
share. Notice that, under suitable differentiability, condition (7) would follow
from the slightly stronger assumption (c.f. again (2)) that

apj(eawax) 68(6,(.0) 8]),'(6,&),33)
LI 0 ) o — )N S (] ) 2N
o 9e, +(1—a; —¢) e, 2 (1— ) Je,



must hold for all histories (e,w) and all decisions z. This condition corre-
sponds, up to &, to conditions (7) and (9) in Che and Hausch [1999] *.

Proposition 2 Under Assumption SP, if, for one party i at least, invest-
ments are non-harmful at the other party’s efficient level of investments

e; then the efficient investment profile cannot be sustained, i.e. € ¢ ENS

This proposition easily follows from our Proposition 1. In order to estab-

lish this claim, use of the following lemma will be made.
Lemma 1 Suppose

1. g(e;) — f(e;) is a monotonically increasing function of e;,
2. g(e;) — ci(e;) is strictly single-peaked as a function of e;,
3. e} = argmaxg(e;) — c;(e;) and

4. ) <e <eé.
Then f(e;) — ci(e;) > f(el) — ci(e]).

Notice that f(e;) —c;(e;) need not be single-peaked for the lemma to hold.
First, we prove the lemma.
Proof. Due to strict single-peakedness, it holds that g(e;) — c;(e;) > g(e}) —
ci(€}). Moreover, due to monotonicity, it holds that g(e;) — f(e;) < g(e}) —
f(€}) from which the lemma follows immediately. B

Second, we prove the proposition.
Proof. Let us apply the lemma to the functions g(e;) = (1 —¢)o(e;,ef) and
f(e:) = pi(es, e}, ¢). Tt follows from the above Lemma, (7) and Assumption
SP that p;(e;, e}, ¢) — ci(e;) is strictly monotonically decreasing to the right
of Bil’g(e;‘-). Since this holds for all state contingent decisions ¢, it follows
that ;" (ef) < B;™°(e]) < B}(e}) = e;. Therefore, according to Proposition

1, e* cannot be sustained as was to be shown. W

4The ¢ is needed because we have imposed so little structure and because, in contrast
to Che and Hausch, we consider the bargaining power of parties to be fixed.

5This proposition generalizes Proposition 3(i) of Che and Hausch.
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Under Assumption SP and if investments of party ¢ are non-harmful then,
as follows from the above proof, no state contingent decision provides in-
centives sufficient enough to reach the efficient response. This is the main
message of the proposition.

In order to generalize Proposition 3(ii) of Che and Hausch, let us intro-
duce the following assumption which requires a decision to exist at which
pre-renegotiation profits are vanishing. In Che and Hausch, this decision
would correspond to the zero quantity which, at the same time, they identify
with the Williamson contract, i.e. no ex-ante contract at all. We allow for

interpretations beyond zero quantities.

Assumption 0

There exists a decision z° € X such that pre-renegotiation profits are nil,
i.e. pi(B8,2°) = 0 for all histories. Hence, for post-renegotiation profits, it
must hold that r;(3,2°%) = a;s(8).

Finally, let us define the following set of investment profiles
E*={e € E:e; < Bj(ej) holds for i =1,2}
and let e** be an investment profile such that
e;" = Bj"(¢]") (8)

holds for both parties. Notice that, under Assumptions SP and 0, the ex-
pected payoff v;(e, 2°) is a strictly single-peaked function of e;. If its peak
is denoted by €;(e;,z°) then condition (8) can equivalently be expressed as

et = é&(ef*, a0).

Proposition 3 Under Assumptions SP and 0, if, for both parties, invest-
ments are cooperative at all investment levels of the other party then EN C
E®. Moreover, if reaction curves (8) are increasing and have a unique point
of intersection e** then the investment profile e** can be sustained by a non-
contingent contract and must be the solution to the hold-up problem in the
sense that it maximizes the expected net social surplus over all sustainable
profiles.

Proof. Apply Lemma 1 to the functions g(e;) = a;0(e;,e)) and f(e;) =
pi(esef, ). It follows from the lemma, (6) and Assumptions SP and 0

11



that p;(e;, e, ¢) — ci(e;) is strictly monotonically decreasing to the right
of Bj*(e;). Since this holds for all state contingent decisions ¢ and since
pi(e,x?) = a;o(e), it follows that B;(e;) = & (e;). Therefore, it follows
from Proposition 1 that EY C E® and the first part of the proposition is
established.

As for the second part, let us assume that

e’ € arg max o(e) — ci(er) — cz(e2). (9)

If, for one party i, it were the case that e < Bj"*(e)) < Bj (e}) then, as follows
0
J
exceed the one at €. Since ¢ € E? as follows from the assumption that

from Assumption SP, the social surplus at ' = (B;*(e}), €}) would strictly

reaction functions are increasing, this leads to a contradiction. Therefore,
e’ must be on both reaction curves. Since a unique point of intersection is
assumed to exist, it must coincide with e**. Finally, since p;(e, 2°) = a;o(e),
it follows that

e? = arg glgg‘(' pi(e, .770) - Cz’(ei)
1 ?

such that any non-contingent contract prescribing decision z° sustains the
investment profile e**. W

Under Assumptions 0 and SP and if, for both parties, investments are
cooperative then the non-contingent decision z° provides the highest incen-
tives to invest. Yet these incentives are not high enough to reach the efficient

response. This is the main message of the above proposition.

4 One-sided and one-dimensional investments

Let us consider the case where only one of the parties, say party i = 1,
invests, its choice being one-dimensional, i.e. £y = E C R. We investigate
again which investment levels can be sustained. Proposition 1 implies that

the following condition necessarily must hold
e <el <ef (10)

for el to be sustainable. Remember that ] (¢7) is defined as infe; (supe;)
such that, for all state contingent decisions ¢ € ®, v;(eq, ¢) is strictly mono-
tonically decreasing (increasing) for all investments e; > e (e; < &7, re-

spectively). In this section, we look for conditions which are sufficient for an

12



investment level to be sustainable. The sufficiency part of the problem turns
out to be more complicated. In any case, further assumptions have to be

imposed.

Assumption SPX:
For any decision x € X, the net expected payoff v1(e1, ) is strictly single-
peaked as a function of ey, its peak being denoted by €i(x).

If r1(e1,w,x) — ci(ey) is a strictly concave function of e;, as is usually
assumed, then Assumption SPX would obviously be met.

State contingent decisions enter condition (10). Such decisions may be
difficult to implement. Therefore let us assume that non-contingent decisions

rr,xg € X exist such that

éi(zr) < e <éi(zp) (11)

holds for some given investment level e € E;. This condition, while in

general more restrictive than (10), is now shown to be sufficient for the
investment level e to be sustainable provided that Assumption SPX is met.
In fact, consider the following contract which specifies the decision xpy ex
ante but which gives party 2 the option to decision z at strike price S =
p1(eY,zn) — pi(el,x1). The option must be exercised before w unravels
but after investments can be observed. The option if exercised affects the

bargaining positions of both parties.

Proposition 4 Under Assumption SPX 6, if there exist decisions x; and
xg, such that condition (11) is met then the above party 2 option contract

sustains the investment level el .

Proof. Party 2 exercises the option iff py(e1,z1) — S > py(e1, zy) which, as

follows from the fixed-sum property (3), is equivalent to

pr(er,zg) — py(er, zL) > S. (12)

Notice that, by assumption, the option is exercised if party 2 is indifferent
between exercising and abandoning it. If (12) holds and party 2 exercises the

option then party 1 receives p,(e1, z) —c1(e1) + S whereas if (12) is violated

6Tt would be sufficient to require that v,(e;,z) is strictly single-peaked for the two

decisions zr, and zg.
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then party 1 receives p,(e1,zg) — c¢1(e1). Therefore, party 1’s net payoff can

equivalently be summarized by either

pi(e1,wr) — ci(er) +min [S, py (€1, i) — py(e1, T1)] (13)

or

pi(er,zx) — ci(er) + min [S + py(er, zr) — py(er, zm), 0] (14)

If e; > el > &;(zr) then, as follows from Assumptions SPX, (11) and (13),
party 1’s net payoff does not exceed p,(e1, 1) — c1(e1) + S such that, in this
range, the optimum choice must be el leading to net payoff p,(eN,z) —
ci(e)+ S = p(e),zn) —ci(el). If e; < el < & (zy) then, as follows
from (11) and (14), party 1’s net payoff does not exceed p;(e1, zx) — c1(e1)
such that, in this range, the optimum payoff cannot be higher than under

the optimum in the other range. This establishes the proposition. R

Edlin and Reichelstein [1996] provide conditions under which the efficient
investment level e} can be sustained by a non-contingent contract. They
consider a setting where the decision 2° € X (c.f. Assumption 0) provides
the lowest incentives to invest. They further assume another decision zP* to

exist for which
p1(€eh, z"") — py(er, a?") > o(€)) — o(er) (15)

holds for all €] > e; € E;. Due to the fixed-sum property (3), the condition
(15) is equivalent to p,(€},zP") — py(ey, zP") < 0, i.e. party 2 would never
benefit if party 1 were to increase its investments and if the decision 2?"* were
taken. In the spirit of our earlier terminology, such an investment is called
potentially harmful for the other party. This decision, as can be shown in the
usual way, provides incentives to invest at least as much as under the efficient
response. Therefore, if v{(e, z) is strictly single-peaked as a function of e;

for both z = 2° and z = xP" then

éi(a’) <ef <E(@™) (16)

must hold. By making use of the intermediate value theorem, Edlin and

Reichelstein conclude that a decision T € X has to exist such that

arg max vy(e;,T) = e].
e1€k;

14



It then follows that any non-contingent contract prescribing decision T pro-
vides the efficient incentives to invest. Their approach requires further as-
sumptions which we have not imposed 7. In any case, if (16) is met then the
efficient investment level can be sustained by an option contract as follows
from the above proposition.

To conclude this section an additional assumption is introduced which
guarantees that the condition (11) is not only sufficient but also necessary

for the investment level e to be sustainable.

Assumption LH:

1. The set E; of feasible investment levels is a connected interval of the

real line R.

2. For all el € Ey, there exists some decision z7, = x7(el¥) € X such that

E, [rl(el,w,xL) — rl(efl,w,xL)] <E, [Tl(el,w,qﬁ(w)) — rl(ef],w,qﬁ(w))]

holds for all state contingent decisions ¢ € ® and all investment levels

e; > el¥ € E; sufficiently close to el .

3. For all el¥ € E;, there exists some decision zy = zx(el¥) € X such
that

Ew [Tl(eiva W, ¢(w)) - 7”1(61, w, ¢(w))] < Ew [Tl(eiva w, xH) - 7“1(61, W, xH)]

holds for all state contingent decisions ¢ € ® and all investment levels

e; < el € FE; sufficiently close to el .

Notice that, under suitable differentiability, Assumption LH would imply
that

8Ew [Tl (617 w, xL)] < 8Ew [Tl (61, w, ¢(w))] < 8Ew [’/’1(61, w, xH)]
Oe; - Oeq - deq

(17)

must hold for all state contingent decisions ¢ € ® and all investment levels
e; € F;. In other words, marginal returns form investments are highest

under the non-contingent decision xy = xpy(e;) whereas they are lowest

"In particular, they assume that X is a one-dimensional and connected quantity choice,
investments enter the pre-renegotiation profit function of the investing party only and that

argmax., v1(er, ) is a continuous function of z.

15



under zy, = xr(e1). While Assumption LH is slightly more restrictive than
(17), it allows to simplify the proof of the following proposition.
Assumption LH extends the measures of cooperativeness in the following
sense. If party 1’s investments were cooperative and if Assumption 0 is met
then the non-contingent decision z° provides the highest incentives to invest.
In this case, irrespective of e}, we can choose zy(e)) = 2° in condition 3. of
the assumption. The assumption, however, allows that the non-contingent
decision may depend on the level of investments it has to sustain. In the set-
ting of Edlin and Reichelstein [1996], the non-contingent decision z° provides

N 0

the lowest incentives to invest. In this case, we could choose z(e}') = 2° in

condition 2. of Assumption LH.

Proposition 5 Suppose that only party 1 invests and Assumptions SPX and
LH are met. If the investment level €Y can be sustained, i.e. if e¥ € EN

then there exist non-contingent decisions z,xy € X such that (11) holds.

Proof. Since el is sustainable, as in the proof of Proposition 1, a choice

function f: B = E; x Q — X must exist which induces incentives el i.e.

for which

ci(el) —eiler) < By [riel,w, fer,w)) = ri(er,w, f(en,w))]

holds for all investments e; € Ej.

To establish the proposition, take the decisions z;, = z;(el) and 2y =
zy(e)) such that Assumptions LH 2. and 3. are met. We then claim that,
for these decisions, (11) holds. Assume the contrary, e.g. & (zz) > eN. It
then follows from Assumption SPX that vy (el,z.) < vi(ei, ;) must hold

for all el < e; < €1(z). In particular,
E, [Tl(efr,w,xL) — Tl(el,w,mL)] <ci(el) —eiler)

must hold for all e; > e} sufficiently close to e;. It then follows from As-

sumption LH 2. that

Ew [Tl(elawamL) - rl(e{V,w,xL)] S Ew [7‘1(61,(,«), f(elaw)) - Tl(eivawa f(elaw))]

must hold which, however, leads to a contradiction. Therefore, €;(z;) < e
is established. The other inequality of (11) can be shown to hold by a similar

argument. W
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The above proposition shows that condition (11) is necessary for an in-
vestment level to be sustainable. If, on the other side, condition (11) is met
then the investment level can be sustained by an option contract as follows
from the previous proposition. In this sense, condition (11) is necessary and
sufficient for the investment level e to be sustainable, provided of course

that the assumptions needed for the corresponding propositions are met.

5 Multi-dimensional investments

Some of the results on one-dimensional investments can easily be extended
to the case of multi-dimensional investments as we now want to show. It is
assumed that both parties have multi-dimensional investment choices e; €
E; C Rli. Let ® = {¢ : Q@ — X} C R™ again denote the set of all state
contingent decisions ¢ and let v;(e, ¢) = E, [r;(e,w, dp(w))] — c;(e;) denote,
as before, the net profit which party ¢ would make if the investment profile
were ¢ € E and if the state contingent decision ¢ € ® were implemented.

In order to extend the analysis to multi-dimensional investments, the con-
cepts of section 3, Assumption SP in particular, must be adapted. Single-
peakedness is a one-dimensional concept. To make use of it in the multi-
dimensional setting, we introduce the following notion of investment direc-
tions. Let A; = {(d1,d2) € R x R2 : d; = 0} denote the set of such
investment directions for player i and let A;(ej,d;) = {A € R: e+ \d;, € E'}
denote the set of feasible investment intensities at investment, profile e € F in
direction of d; € A;. Since E is assumed to be closed it follows that A;(e;, d;)
must be closed as well. Moreover, since e € E, it follows that A;(e;, d;) con-
tains 0 and, hence, must be non-empty. For all e; € Ej}, d; € A; and ¢ € @,
let

e (es did) = | _jinf A
(A A

such that v;(e + N'd;, ¢) is strictly monotonically decreasing for all \' > ).
Moreover, let
ei(ej,d;) = sup sf(ej, d;, P).
PeD
Using this notation, the following result, which extends Proposition 1 to

multi-dimensional investments, can be established.
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Proposition 6 If the investment profile eV is sustainable, i.e. if e¥ € EN
then

Jof ei(ej, di) 20

must hold for both parties.

Proof. Since eV

is sustainable a choice function f : B — X must exist
which induces incentives eV such that (5) holds for all investment choices
e; € B;.

To establish the proposition, assume the contrary which means that an
investment direction d; € A; must exist such that ;" = g;(eff, d;) < 0. Let
P = eV + &2'Pd;. It follows from the definition of €SP that v;(eS"P, ¢) >
vi(eV, ¢) must hold for all ¢ € ®, in particular for ¢ = f(e*"?,w). But this
contradicts (5). Therefore £;'© > 0 must hold as was to be shown. W

The proposition provides a necessary condition for the efficient invest-
ment profile e* to be sustainable. In fact, if there exists a single direction of
investment d; for only one of the parties such that A;(e}, d;, ¢) < 0 holds for
all state contingent decisions ¢ € ® then e* cannot be sustained by a mes-
sage contingent contract, no matter how sophisticated this contract might
be. To elaborate on this idea, one of the measures of cooperativeness as
introduced in the previous section is extended to multi-dimensional invest-
ments in the following way. For simplicity, we restrict the analysis to the
efficient investment profile e*.

For some party i, fix a direction d; € Ay, d; # 0. For all A € A; = Ay(ej, di)
consider histories of the form g = (e* + \;d;, w). Define

mi(A @) = Eu[pi(B, 9(w))],

i\ @) = E,[pi(B,6w))],

pi(A @) = Eu[ri(8,¢é(w))],
7 (A) = ci(e+ Nid;) and
o) = Euls(8).

The Greek letter expresses the expected value of the function with the corre-
sponding Latin letter in the direction of some given d;. Using this notation,

Assumption SP can be extended in the following way:
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Assumption SPM

1. ai(w) =y, 0< oy, and a1 +ay =1

2. For all pp € [0,1], po(X) — v;(A) is strictly single-peaked as a function
of A, its peak being denoted by

B! = A) = 7%\
¢ =arg, max  puo(A) =73

3. B < B} forall p< 1.

Suppose party ¢ would receive the fixed share p < 1 of the social surplus.
Then 2. requires that its best response in the given direction would come
from maximizing a strictly single-peaked function whereas 3. requires that
it would underinvest relative to the efficient investment intensity B} (e;) (in
the given direction). Similar to the one-dimensional case, Assumption SPM
implies that o(\) must be strictly increasing in the range [BY, B}] at least.
Moreover, Assumption SPM would follow from the following more familiar
but also more restrictive assumption:

The sets E; of feasible investments are conver subsets, s(e,w) and c;(e;)
are differentiable functions, s(e,w) is a strictly concave and c;(e;) a conver
function of e;, for all states w, and the appropriate Inada conditions hold.

Moreover, the given direction must be positive in the sense that

do “ 9s(e* + Bl'd;,w)

a - Ew kgl aeik

di,| >0

holds for p € [0,1].

Assumption SPM extends Assumption SP in an obvious way. We now

call the investment direction d; non-harmful if

pi(X,8) = pi(A, 8) < (L =) [o(X) = a(N)],

holds for all X' > X € A;(e;,d;) (cf. (7)). As before, £ is some arbitrarily
small but positive real number. Proposition 2 can now be extended to the

multi-dimensional case as follows:

Proposition 7 If, for one of the parties, an investment direction exists such
that Assumption SPM holds and such that this direction is not harmful to the
other party then the efficient profile cannot be sustained, i.e. e* ¢ EN.
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The proof makes use of Proposition 6 in exactly the same way as Propo-
sition 2 does of Proposition 1. Therefore, the argument need not be repeated
here. In principle, Proposition 3 could also be extended to the present case.
Due to the great variety of investment directions, however, the analysis be-

comes more intricate and will not be pursued.

6 Investments which can be aggregated

So far, conditions which are necessary and sufficient for an investment pro-
file to be sustainable have only been derived for the case of one-sided and
one-dimensional investments (see section 4). In the present section, it is
shown that similar results can be obtained if investments are two-sided and
multi-dimensional but can be aggregated into one dimension. The following

assumption is due to Segal and Whinston [1999].

Assumption A
There exists an aggregation function @ : E = Ey X Fy — A C R such that

the post-renegotiation profit functions can be written as

ri(e,w,x) = gi(e,w) + hi(ale), w, ).

Notice, if Assumption A holds for one of the parties then it also does so
for the other party as follows from the fixed-sum property (3). Moreover,
without further loss of generality, the following zero-sum property can be
imposed:

hi(a,w,x) + hay(a,w, z) = 0. (18)

For later reference, we introduce the set of aggregated investments which
party ¢ can generate. For given investments ej-v € Ej; of the other party, this

set is defined as
Ai(e;.v) = {a € A: Je; € E; such that E(ei,e;v) = a}.

The next assumption is closely related to Assumption H+ of Segal and
Whinston. However, to simplify the analysis, we express the assumption
in terms of differences instead of derivatives. The assumption extends our
earlier Assumption LH to the case of two-sided investments which can be

aggregated into one dimension.

20



Assumption LHA

1. The sets A,-(ej-v) are connected subsets of the real line R.

2. For all oV € A, there exists some decision x;; = a:z-L(aN) € X such
that

E, [hi(a,w,xm) - hi(aN,w,:ciL)] <E, [hi(a,w, d(w)) — hi(a™, w, ¢(w))]

holds for all state contingent decisions ¢ € ® and all a > a¥ € Ai(eéy)

sufficiently close to a'.

3. For all a € A, there erists some decision ;g = z;ig(a”) € X such
that

E, [hi(aN,w, d(w)) — hi(a,w, gb(w))] < Eguw [hi(aN,w,xiH) - hi(a,w,xiH)]

holds for all state contingent decisions ¢ € ® and all a < aV € Ai(eév)

sufficiently close to a.

Notice, if Assumption LHA holds for one of the parties then it also does
so for the other party as follows from the zero-sum property (18). Moreover,

under differentiability, it would follow from Assumption LHA that

oE, [hi(aN,w,xiL(aN))] - oE, [hi(aN,w,x)] - o0F, [h,-(aN,w,xiH(aN))]
oa - da - da
must hold for all x € X and w € . In other words, the marginal revenues
from aggregated investments are lowest (highest) at decision x;;, (x;5). While
Assumption LHA is slightly more restrictive than the condition on marginal
revenues, Assumption LHA allows again to simplify proofs 8.

Segal and Whinston, in their Assumption C, assume strict concavity with
respect to investments in order to ensure that first order conditions of incen-
tives to invest are sufficient. Our next assumption achieves the same by
imposing single-peakedness with respect to aggregated investments. Con-
cerning disaggregated investments, no further assumption will be needed. In

order to formulate the assumption, the following definition is introduced. For

AaN . N (oY (N i N
8Segal and Whinston impose Shi(a ’gf’L(“ ) < 6’“(%“’“’“”) < Shila ’%’:’H(“ ) from

which our condition on marginal revenues would follow by integration (see their assumption
Ht).
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any aggregated investment which party ¢ can generate, i.e. for alla € Ai(ej-v ),
consider the function

Gi(a; eév) = max E, [gi(ei,eév,w)] —ci(e;)

subject to E(ei,ejv ) = a. This function captures that part of the post-
renegotiation profit function, including investment costs, which does not
depend on the decision x € X. The following assumption corresponds to
Assumption SPX which was introduced in the section on one-sided invest-

ments.

Assumption SPXA
For all decisions x € X, party ©’s expected net profit

Gi(a;e)) + E, [hi(a,w, z)]

is a strictly single-peaked function of a € A;, its peak being denoted by
ai(z; ef).

The next proposition introduces two conditions which are sufficient for
an investment profile to be sustainable. The first condition (19) is in the
spirit of Propositions 1 and 6. Notice that, due to Assumption LHA and
as in Proposition 5, only fixed instead of state contingent decisions must be
taken into account to restrict the set of sustainable investment profiles. The

second condition (20) simply follows from the zero-sum property (18).

Proposition 8 Suppose we are given a sustainable investment profile eV €
E such that Assumptions A, LHA and SPXA ° are met. Then there exist
non-contingent decisions x;;, and x;z € X such that, at these decisions, party

1 would under- and overinvest, respectively, i.e.

@(xiL,eév) <a =a(eM) < di(xiH,e;-v). (19)
Moreover,
N N N
a’ € ar max Gi(a;ey ) + Ga(ase 20
£, Grlaie) + Gafaie]) (20)

must also hold.

9Tt would be sufficient to require that Assumption SPXA holds for the two decisions

ziz (@) and z;1, (@e")).
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Proof. Since eV is sustainable, there exists a message contingent contract
v = [My, My, z(m),t;(m),t2(m)] and a Nash equilibrium m = m?(e,w) of
the message game such that

el € argmax B, [Ri(ei, ¢, w)] = cile:) (21)

must hold for both parties where
R;(e,w) = gi(e,w) + hi(a(e),w, z(m?(e,w))) + t;(m” (e, w))

denotes the payoff excluding investment costs under the given contract. It
follows from the Min-Max-Theorem, that this payoff can be written in the
form

Ri(e,w) = gi(e,w) + H;(a(e),w)

where H; : A x 2 — R is a function properly chosen. Moreover, since
[R1(), R2()] is implementable it follows that, for all histories 5 = (a,w) and
B = (d,w') € A x(, there exist decisions z(3, ') and z(5',8) € X such
that

hi(B', (85 ') =hi(B, 2(8; 8)) < Hi(B')—Hi(B) < hi(B',2(8; B))—ha(B, (8’5 B))

(22)
must hold.
Condition (21) implies that
e € arg max G; (@(e;, e)),e)) + E, [Hi(a(ei, ey), w)]
and, hence, that
o € argmax Gi(a, e}) + B, [Hiy(a,)]. (23)

By making use of the zero-sum property (18), condition (23) leads to (20).

To establish condition (19), it is now shown that

Y),ef) <o =a(e") < di(zim(a”), €f)

ai(zir(a™), Z ) €

must hold. Assume the contrary, e.g. a@;(x;r.(a")) > a”. It then follows from
Assumption SPXA that

Gi(a ;e;-v) + E, [hi(aN,w, :riL(aN)] < Gi(a; e;-v) + E, [hi(a,w,miL(aN)]
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hods for all @ > a” sufficiently close to a”. Moreover, as follows from
Assumption LHA and (22),

E, [hi(a,w,xiL(aN)) - hi(aN,w,a:iL(aN))] < E, [Hi(a, w) — H,-(aN,w)]
which contradicts (23). Therefore @;(z:(a”),e)) < a™ must be true. That
o™ < @i(zig(a”),e}) also holds can be shown analogously. The proposition
is established. W

The final proposition establishes that, in essence, the two conditions (19)
and (20) are sufficient as well for an investment profile to be sustainable.
The proposition is the only one in this paper which requires continuity and

differentiability of certain functions. Assumption D spells out the details °.
Assumption D
1. For the given decision eé-v of the other party, the functions G;(a; eé-v) and

E, [hi(a,w, )] are differentiable with respect to aggregated investments

a € A (for all decisions x € X).
2. The set of decisions X s pathwise connected.

3. For the given decision ej-v of the other party, the peak c?,-(:v,ej-v ) is a

continuous function of x.

Proposition 9 Suppose we are given an investment profile eN € E such
that Assumptions A, SPXA and D are met and suppose there exist for one

of the players, say player i = 1, decisions xy, and xyg € X such that
a1 (zp,ed) < a® =a(e") < ai(zy,ed) (24)

holds "'.  Moreover, condition (20) is also assumed to be met. Then the
investment profile eV is sustainable and there even exists a non-contingent

contract which sustains the profile.

10Notice that Segal and Whinston, in essence, impose similar assumptions.

' The strict inequalities ensure that a®¥ is in the interior of A;NAs. If the inequalities fail
to be strict but if a’V is nevertheless in the interior of A; N Ay then the proof still works.
Notice that Segal and Whinston have to assume that investments, not just aggregated

investments are in the interior.
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Proof. The proof can easily be adapted from Segal and Whinston. In fact,
it follows from (24) that o is in the interior of A; and, hence, from (20) that

dG,(a",el) N dGs(a®, el

= 0. 2
da da 0 (25)

Moreover, by Assumption D, there exists a decision Z € X such that, for
i=1,

a;i(z,el) = a" =a(e",el). (26)
Hence, for i =1,

dGi(aNa e;\]) d N ~
T + %Ew [h,(a , W, .’13)] = 0. (27)

Since, according to the zero-sum property (18),

e (e 2]+ P e 09 =0,

it follows from (25) and (27) that (27) must hold for : = 2 as well. Assump-
tion SPXA implies that the first-order conditions are sufficient and, hence,
that (26) must hold for i = 2 as well. Therefore, any non-contingent con-
tract prescribing the fixed decision Z provides incentives to invest e”. The
proposition is established. W

Under the assumptions made in the present section, neither option con-
tracts nor more general message contingent contracts allow to provide incen-
tives to invest beyond what already can be achieved by simple non-contingent

12 In other words, it is enough for parties ex ante to agree on a

contracts
suitable but fixed decision and to rely on renegotiations after they both have
observed investment decisions and the state of the world. This result is due
to the fact that investment decisions are simultaneous. If they were sequen-
tial, option contracts could be of use as Noldeke and Schmidt [1998] have

shown.

7 Concluding remarks

If an investment profile can be sustained by a message contingent contract

then a choice function must exist which induces the post-renegotiation payoff

2Gee also Proposition 6 in Segal and Whinston [1999].
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frontier in the sense of equation (5). The existence of such a choice function
has led to a simple condition which nessecarily must hold for an investment
profile to be sustainable. While the condition can be formulated in very
general terms, it will typically fail to be sufficient (except for the cases as
spelled out in sections 4 and 6 of the paper). It would be desirable to find
sufficient conditions, in particular for those situations in which truly message
contingent contracts cannot be dispensed with.

One might try to proceed as follows. If the set X of decisions is pathwise
connected then any sustainable payoff frontier [R;(53), R2(8)] can be gener-
ated by a choice function f : B — X in the sense that, for a given base 3,
Ri(B) = Ri(B°) + r:(B, f(B)) — r:(B°, £(B)) must hold for all histories 3 3.
Moreover, it is quite easy to characterize the choice functions which induce
a given profile of investments. The only remaining problem concerns condi-
tions which are sufficient for a payoff frontier, generated by a choice function
in the above sense, to be sustainable by some message contingent contract.
While the incentive constraints would easily lead to such a condition, namely,

for any two histories 3 and ', two decisions z and 2’ must exist such that

n(8,x) —r(B,x) < [r(B,f(8) — (8% F(8))] -
[r1(8, /(8) =i (8 F(B)] < m(B,a") = ri(8, )

holds, this condition is cumbersome and difficult to handle. How to make this

condition more easily accessible has to remain the subject of future research.
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