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ABSTRACT. In this paper a new credit risk model for credit derivatives is presented. The model
is based upon the ‘Libor market’ modelling framework for default-free interest rates. We model
effective default-free forward rates and effective forward credit spreads as lognormal diffusion
processes, and recovery is modelled as a fraction of the par value of the defaulted claim. The
newly introduced survival-based pricing measures are a valuable tool in the pricing of defaultable
payoffs and allow a straightforward derivation of the no-arbitrage dynamics of forward rates and
forward credit spreads. The model can be calibrated to the prices of defaultable coupon bonds,
asset swap rates and default swap rates for which closed-form solutions are given. For options
on default swaps and caps on credit spreads, approximate solutions of high accuracy exist. This
pricing formula for options on default swaps is made exact in a modified modelling framework
using an analogy to the swap measure, the default swap measure.

1. INTRODUCTION

In this paper a new credit risk model is presented which useseffective(simply compounded) for-
ward rates as fundamental model quantities, and not continuously compounded forward rates.
This approach is motivated by the so called Libor Market Models for default-free interest rates
by Miltersen / Sandmann / Sondermann (1997), Brace / Gatarek / Musiela (1997) and Jamshid-
ian (1997).

The most important risks involved in an investment in a defaultable bond or loan are the interest-
rate risk (the price risk introduced by changes in the general level of the default-free interest
rates), the spread risk (ultimately caused by changes in the market’s assessment of the credit
quality of the obligor) and the default risk of the obligor which in turn involves recovery risk,
the uncertainty about the loss given default. The aim of this paper is to provide an integrated
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framework for all these risks which is flexible enough to allow easy calibration to the mar-
ket prices of traded assets and in which more exotic default contingent payoffs such as credit
derivatives can be priced in a consistent manner.

There is a large number of models which can be used to capture interest-rate risk1, among
which the interest-rate models of the market-model class (either Libor-based or Swap-based)
are amongst the most widely used in practice. Their popularity is due to several factors, one of
which is the ease with which these models can be implemented and calibrated to market data.
Instead of using a instantaneous short rate process as fundamental variable, directly observed,
discretely compounded money market rates are modelled, and because Caplets and Swaptions
can be priced in closed-form with the Black (1976) formula, the volatility parameters of the
model can be directly calibrated to market prices of traded instruments.

In this paper we chose discretely compounded (effective) forward rates and effective forward
credit spreads (or effective default intensities) as fundamental model quantities following the
market models for default-free interest rates. We equip them with the continuous-time dynamics
of lognormal diffusion processes. Because we assume that the credit spreads are only driven by
changes in the credit quality, we thus have already implicitly modelled the default risk in the
model.

An important tool to analyse this implicit default risk is a new probability measure, theTk-
survival measureP k, which is the defaultable equivalent of theTk-forward measurePk. The
associated numeraire asset to the survival measure is thedefaultablezero coupon bonds with
maturityTk. Using theTk-survival measureP k we can price all survival- and default-contingent
payoffs at timeTk. Furthermore, we can easily derive necessary conditions on the dynamics of
the forward rates and forward spreads that ensure absence of arbitrage in the model. In a later
section of the paper a similar survival-based measure (the default swap measure) enables us to
price options on default swaps in closed-form.

The only remaining risk factor is recovery risk. In this model, recovery is not modelled on
the basis of defaultable zero-coupon bonds (as in most competing models) but on the basis of
defaultable coupon bonds and loans. Here, recovery is a default-contingent payoff of a (possibly
random) fraction of the par value of the defaulted bond. This approach for the modelling of the
recovery rate was chosen because it reflects the real-world recovery mechanisms more closely
than many competing models. After deriving the prices of elementary Arrow-Debreu securities
for payoffs at default, we can then give the prices ofdefaultable fixed and floating coupon bonds,
default swapsandasset swapsin the model. In a practical implementation, these securities can
be used to calibrate the model.

In the last part of the paper this model setup is used to derive closed-form solutions for the prices
of options on default swaps (default swaptions) and caps on credit spreads. Here, a defaultable
version of the Swap Market Model by Jamshidian (1997) is introduced and applied. Options
of the above mentioned type frequently occur as embedded options in other securities, e.g.
prepayment or extension options in loan contracts or callability provisions in callable default
swaps.

Related Literature. The literature on market models has grown substantially in recent years,
and it is impossible to give a full list. Apart from the standard references (Miltersen / Sandmann
/ Sondermann (1997), Brace / Gatarek / Musiela (1997) and Jamshidian (1997)), the mathemat-
ical methods in E. Schlögl’s (1999) multicurrency extension of the Libor market model are
related to the methods in this paper. Schlögl also analyses the problems that arise when several
numeraires and martingale measures have to be used in parallel. While his work concentrates

1For a survey and introduction see e.g. Rebonato (1998).
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on the foreign exchange sector, this paper has the additional complication of default risk. The
paper by Lotz and Schlögl (2000) treats the valuation of money market instruments under coun-
terparty default risk, but they do not use the market-model framework to describe defaultable
term structures of interest rates. References to techniques for the numerical implementation of
market models are given in the section on implementation.

If the literature on market models is large, the literature on credit risk modelling is even larger.
This paper is in the tradition of the intensity-based default risk models which all exhibit a close
relationship to default-free interest rate models. Representatives of this approach are Jarrow
and Turnbull (1995), Madan and Unal (1998), Duffie and Singleton (1997; 1999), Lando (1998)
and Scḧonbucher (1998; 1999). In these papers the reader can also find references on the dif-
ferent approaches for recovery modelling: fractional recovery (Duffie/Singleton (1997; 1999)),
multiple defaults with reorganisation (Schönbucher (1998)), recovery of equivalent default free
bonds (Jarrow/Turnbull (1995), Madan/Unal (1998), Lando (1998)) and recovery of par (Duffie
(1998)). For a survey of the different modelling approaches for default risk the reader is referred
to Scḧonbucher (1997).

Structure of the Paper. The rest of the paper is structured as follows: After the introduction
of some notation in the next section, we give a description of the no-arbitrage conditions in the
continuous-time setup. This follows Heath / Jarrow / Morton (1992) for the default-free term
structure of interest rates and Schönbucher (1998) for the defaultable case.

The analysis of market models of interest rates makes extensive use of the change-of-measure
technique. For each pricing problem the numeraire asset and corresponding probability measure
is identified. Therefore we introduce several new probability measures in the following section,
where each default-free probability measure has a survival-based defaultable counterpart:T -
forward measure andT -survival measure, swap-measure and default-swap measure and discrete
Libor measure and discrete defaultable Libor measure. We give the changes of drift that are
associated with the respective changes of measure, and identify the dynamics of defaultable and
default-free forward rates, interest-rate swap rates and default swap rates under these measures.

In the next step, positive recovery is introduced. The recovery model used here is based upon the
fractional recovery of par model by Duffie (1998) which has the advantage of closely adhering
to real-world recovery proceedings and of recognizing the importance of the distinction between
principal and coupon claims. The value of the elementary Arrow-Debreu securities under this
model is derived.

In the following section some important payoffs are valued: defaultable fixed and floating
coupon bonds, default swaps and asset swap packages. For independence between defaults
and interest rates these are in closed-form, for non-zero correlation high-quality approximate
solutions are given. The next section considers the pricing of options on default swaps. Here,
we need to introduce thedefault swap measureunder which the default swap rates become mar-
tingales. Using this probability measure we are able to derive option price formulae similar to
the well-known Black-formula. These pricing formulae can either be used in a direct default-
swap based model, or after some approximating assumptions in the Libor-based approach of
the previous sections.

The paper is concluded with a discussion of the strategy to numerically implement this model
for the pricing of more exotic credit derivatives.
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2. NOTATION AND MODEL SETUP

The model is set in a filtered probability space(Ω, (Ft)(t≥0), Q) where the filtration satisfies the
usual conditions, andQ is the spot martingale measure. For convenience we assume a large but
finite time-horizonT . Usually, quantities that refer to defaultable bond prices or interest rates
carry anoverbar. All stochastic processes in this paper are adapted to(Ft)(t≥0) and we omit the
dependence on the state of natureω, e.g. we writeW (t) for W (t, ω) etc.

2.1. The Default Model.
Assumption 1(Defaults). (i) The default time is given by the stopping timeτ .
(ii) Default is triggered by the first jump of a Cox processN(t) which has an intensity process

λ(t).
(iii) The survival indicator function is denoted by

I(t) := 1{τ>t}.

The survival indicator functionI(t) is one before default and jumps to zero at the time of
default.

In most parts, the model does not depend on having a Cox process triggering the default, all
necessary information about the default process will be recovered from the term structure of
defaultable bond prices. The Cox process properties will only be at some points when the
recovery payoffs are valued.

It is well-known2 that the survival probability fromt to T in this framework is given by

E
[

e−
∫ T

t λ(s)ds
]
,

andN(t)−
∫ t

0
λ(s)ds is a martingale.

2.2. Bond Prices and Basic Rates.
The tenor structure:
We consider payoffs that occur on a discrete set of points in time

0 = T0, T1, . . . , TK

These dates could be coupon and repayment dates for bonds or loans, fixing dates for rates
and settlement dates for derivatives. The distance between two tenor dates is denoted byδk :=
Tk+1 − Tk.

The functionκ(t) = min{k |Tk > t} gives the next date in the tenor structure aftert. Thus
Tκ(t)−1 ≤ t < Tκ(t).

Bond prices:

(i) Default-free zero coupon bond prices at timet with maturityTk are denoted by

Bk(t) = B(t, Tk).

(ii) Defaultable zero coupon bond prices at timet with maturityTk are

I(t)Bk(t) = I(t)B(t, Tk).

These defaultable zero coupon bonds have zero recovery in default3.

2For more details on point- and Cox-processes in default-risk modelling see Duffie and Singleton (1997; 1999) or
Lando (1998).
3Note that the influence of the defaults (I (t)) and the pre-default priceBk(t) are separated.Bk(t) need not jump
to zero at default becauseI(t) already does.



A LIBOR MARKET MODEL WITH DEFAULT RISK 5

(iii) The default-risk factor at timet for maturityTk is

Dk(t) = D(t, Tk) =
Bk(t)

Bk(t)
.

The default-risk factorsD allow to separate the influence of default risk from the standard
discounting with default-free interest rates. It will be shown later thatDk(t) is the survival
probability untilTk under theTk-forward measure.

Forward Rates:

(i) The default-free effective forward rate over[Tk, Tk+1] as seen from timet is

Fk(t) =
1

δk

(
Bk(t)

Bk+1(t)
− 1

)
.(1)

(ii) The defaultable effective forward rate over[Tk, Tk+1] as seen from timet is

F k(t) =
1

δk

(
Bk(t)

Bk+1(t)
− 1

)
.(2)

(iii) The forward credit spread over[Tk, Tk+1] as seen from timet is

Sk(t) = F k(t)− Fk(t).(3)

(iv) The discrete-tenor forward default intensity over[Tk, Tk+1] as seen from timet

Hk(t) =
1

δk

(
Dk(t)

Dk+1(t)
− 1

)
.(4)

The defaultable forward rateF k(t) is the rate at which a lender would agree at timet to lend
to the obligor over the future time-interval[Tk, Tk+1], conditional on the obligor’s survival until
Tk.

From these definitions follow the following relationships between bond prices and forward rates

Bk

Bk+1

= 1 + δkFk Bk = B1

k−1∏
j=1

(1 + δjFj)
−1(5)

Sk = Hk(1 + δkFk),(6)

and calculation rules similar to (5) apply to (B andF ) and (D andH).

2.3. Dynamics. In this subsection the volatility structure of the forward rate processes is spec-
ified. The Brownian motionW is ad-dimensional standardQ-Brownian motion, and all volatil-
ity processes ared-dimensional vector processes.

Assumption 2 (Default-Free Interest Rate Dynamics). The default-free forward ratesFk have
a lognormal volatility structure

dFk

Fk

= µF
k dt + σF

k dW,(7)

whereσF
k are constant vectors. The driftsµF

k are more complicated and their full form under
the respective martingale measures will be derived later on.

There are two alternatives in the specification of the dynamics of the defaultable interest-rates.
Either we model the spreadsS or the discrete intensitiesH as lognormal processes.
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Assumption 3(Defaultable Interest Rate Dynamics).
Modelling Alternative (a)
The discrete default intensitiesHk have a lognormal volatility structure

(8)
dHk

Hk

= µH
k dt + σH

k dW,

whereσH
k are constant vectors.

Modelling Alternative (b)
The forward credit spreadsSk have a lognormal volatility structure

(9)
dSk

Sk

= µS
k dt + σS

k dW,

whereσS
k are constant vectors.

Of the two modelling alternatives, alternative (a) withH as model primitive with lognormal
volatility structure is usually more convenient, and we will use this alternative unless alternative
(b) is explicitly specified.

We also define the parameters of the dynamics of the defaultable forward rates

dF k

F k

= µF
k dt + σF

k dW(10)

but here the volatilities are not assumed to be constant. The relationships between the volatilities
are

σH
k = σS

k −
δkFk

1 + δkFk

σF
k(11)

F kσ
F
k = σF

k Fk + σS
k Sk = (1 + δkFk)Hkσ

H
k + (1 + δkHk)Fkσ

F
k .(12)

The choice of lognormal forward rate volatilities for default-free interest rates is market stan-
dard, in this case the Black Caplet volatilities can be used directly to calibrate the model (for a
thorough dicussion of the issues in the calibration of market models see Rebonato (1998) and in
particular (1999b)). Directly prescribing lognormal dynamics for thedefaultableforward rates
F on the other hand is problematic because then it cannot be ensured any more that defaultable
bonds are always worth less than the equivalent default-free bonds. Therefore we choose either
H or S to have a lognormal volatility structure, and this potential arbitrage opportunity is ruled
out.

3. DRIFT RESTRICTIONS FOR THECONTINUOUS TENOR CASE

To motivate the rest of the paper we use the Heath / Jarrow / Morton (1992) framework as
starting point, where continuously compounded default-free and defaultable forward rates are
used to describe the term structures of interest rates

f(t, T ) = − ∂

∂T
ln B(t, T ) f(t, T ) = − ∂

∂T
ln B(t, T ).

In this framework the conditions for absence of arbitrage are well-known (see Heath / Jarrow /
Morton (1992) and Scḧonbucher (1998) for the proofs):

To ensure absence of arbitrage, the dynamics of the defaultable and the default-free continu-
ously compounded forward rates and the short credit spread must satisfy the following equations
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under the spot martingale measureQ

df(t, T ) = σf (t, T )

(∫ T

t

σf (t, s)ds

)
dt + σf (t, T )dWQ,(13)

df(t, T ) = σf (t, T )

(∫ T

t

σf (t, s)ds

)
dt + σf (t, T )dWQ,(14)

f(t, t) = λ(t) + f(t, t).(15)

These conditions are sufficient to ensure absence of arbitrage in the market. The solutions to
the stochastic differential equations for the bond prices are then

B(t, T )

B(0, T )
= exp

{∫ t

0

r(s)− 1

2
α2(s, T ) ds−

∫ t

0

α(s, T )dWQ(s)

}
(16)

B(t, T )

B(0, T )
= exp

{∫ t

0

λ(s) + r(s)− 1

2
α2(s, T ) ds−

∫ t

0

α(s, T )dWQ(s)

}
.(17)

where α(t, T ) =

∫ T

t

σf (t, s)ds and α(t, T ) =

∫ T

t

σf (t, s)ds.(18)

4. FORWARD- AND SURVIVAL MEASURES

There are two types of probability measures which are particularly well suited for the analysis
of this model: theTk-forward measureand theTk-survival measure. The associated numeraire
assets to these probability measures are the default-free and defaultable zero coupon bonds with
maturity Tk. The probabilities under the respective measure may be regarded asstate prices
expressed in units of the numeraire.

The default-free probability measures of this section are well-known. The spot-martingale mea-
sure is described in most textbooks on quantitative finance, and theTk forward measure is a
standard tool in models of the term structure of interest rates, particularly in Gaussian term
structure models and in the market models. The introduction of theTk-forward measure goes
back to Jamshidian (1987), thesurvival measureon the other hand has not appeared in the
literature in this form.

4.1. Girsanov’s Theorem: Girsanov’s theorem4 describes how the Radon-Nikodym densityL
of a change of probability measure determines which processes are Brownian motions under
the new measure, and which form the compensator of the jump process takes under the new
measure. We give a general form of this theorem which is valid for probability spaces that
support marked point processes and diffusions. The markerq of the point process can be used
to model uncertainty in the recovery rate.

Theorem 1 (Girsanov Theorem: Marked Point Processes). Let (Ω, (Ft)(t≥0), Q) be a filtered
probability space which supports an-dimensionalQ-Brownian motionWQ(t) and a marked
point processµ(dq; dt).
The markerq of the marked point process is drawn from the mark space(E, E). The compen-
sator ofµ(dq, dt) is assumed to take the formνQ(dq, dt) = KQ(dq)λQ(t)dt underQ. Here
λQ(t) is the intensity of the arrivals of the point process, andKQ(dq) is the conditional distri-
bution of the marker on(E, E).
Let θ be an-dimensional predictable process andΦ(t, q) a nonnegative predictable function5

4See Jacod and Shiryaev (1988) and Björk, Kabanov and Runggaldier (1996).
5In functions of the markerq (like Φ here)predictability means measurable with respect to theσ-algebraP̃ :=
P ⊗ E . HereP is theσ-algebra of the predictable processes. See Jacod and Shiryaev (1988) for details.
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with ∫ t

0

‖θ(s)‖2ds < ∞,

∫ t

0

∫
E

|Φ(s, q)|KQ(dq) λQ(s)ds < ∞

for finite t. Define the processL(t) byL(0) = 1 and

dL(t)

L(t−)
= θ(t)dWQ(t) +

∫
E

(Φ(t, q)− 1)(µ(dq, dt)− νQ(dq, dt)).

Assume thatEQ [ L(t) ] = 1 for finite t.
Then for the probability measureP with

(19) dP (t) = L(t)dQ(t)

it holds that

(20) dWQ(t)− θ(t)dt = dWP (t)

definesWP asP -Brownian motion and

(21) νP (dq, dt) = Φ(t, q)νQ(dq, dt)

is the predictable compensator ofµ underP .
Defineφ(t) :=

∫
E

Φ(t, q)KQ(dq), andLE(q) := Φ(t, q)/φ(t) for φ(t) > 0, LE(q) = 1 other-
wise. Then

(22) λP (t) = φ(t)λQ(t)

ist the intensity of the arrival rate of the marked point process underP , and

(23) KP (dq) = LE(q)KQ(dq)

ist the transformed conditional distribution of the marker underP .

4.2. The Subjective MeasureP . The subjective (or historical) probability measureP gives
the ‘real’ probabilities of the events. Because it does not take risk premia into account it cannot
be used for pricing. A detailed account of the change of measure from the historical probabil-
ity measure to the spot martingale measure in the case of credit risk models can be found in
Scḧonbucher (1998), it is not repeated here. Apart from the usual change of drift in the Brow-
nian motions, this change of measure typically results in a significantly higher default intensity
λQ underQ which reflects the high risk premia on default risk in the market.

4.3. The Spot Martingale MeasureQ. The spot martingale measureQ is the probability mea-
sure, under which the discounted security price processes become martingales. The numeraire
to the spot-martingale measure is the continuously compounded savings accountb(t). Its in-
verse is the continuously compounded discount factorβ(t)

(24) β(t) = e−
∫ t
0 r(s)ds b(t) = e

∫ t
0 r(s)ds.

Under the spot-martingale measureQ, the time-t price of a random payoffX at timeTk is

(25) p(t) = EQ

[
β(Tk)

β(t)
X

∣∣∣∣ Ft

]
= EQ

[
b(t)

b(Tk)
X

∣∣∣∣ Ft

]
.

Thusβ(t)p(t), i.e. the pricep(t) normalized with theQ-numeraireb(t), is aQ-martingale, as
claimed.
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4.4. The Change of Measure / Change of Numeraire Technique.Any given pricep(t) under
the spot numeraireb(t) can be transformed to a pricep′(t) under a different numeraireA(t) via
p′(t) := p(t)b(t)/A(t) (or p′(0) = p(0)/A(0)). Using equation (25) the price under the new
numeraire is

p′(t) =
b(t)

A(t)
p(t) =

b(t)

A(t)
EQ

[
A(Tk)

b(Tk)
X ′
∣∣∣∣ Ft

]
= EQ

[
LA(Tk)

LA(t)
X ′
∣∣∣∣ Ft

]
= EPA [ X ′ | Ft ](26)

whereX ′ = X/A(Tk) is the payoff (final value)X of the contingent claim in terms of the new
numeraire assetA. In equation (26) a new pricing measurePA is defined by the Radon-Nikodym
density processLA(t).

(27)
dPA

dQ

∣∣∣∣
Ft

= LA(t) :=
1

A(0)

A(t)

b(t)
.

BecauseA(t) is theb-price of a traded asset, the processLA(t) is a nonnegativeQ-martingale
with initial valueLA(0) = 1. LA(t) is therefore a valid Radon-Nikodym density process and
PA is a well-defined probability measure.

By equation (26), pricesp′ in the numeraireA arePA-martingales. Thus the calculation of the
initial pricep′ can be reduced to the calculation of the expected final valueX ′ under a changed
probability measurePA.

This change of measure technique would not be useful if there was no way to calculate the
new expectationEPA [ X ] in (26) other than going back and evaluateEQ [ LA(Tk)X ]. Here,
Girsanov’s theorem allows us to derive the dynamics of the stochastic processes under theTk-
forward measure and thus to directly evaluate expectations underPA.

We can also see whyPA can be considered to be a set of state prices: Consider a state security
pE for stateE ∈ FTk

. Then by equation (26),PA[E] is theA-pricep′E of a payoff of1 units of
A(0) in eventE.

4.5. TheTk-Forward MeasurePk. TheTk-forward measure is used to price payoffs that occur
at timeTk. The associated numeraire toPk is the default-free bondBk(t) that matures atTk.
Equation (25) for the price of payoffX atTk is in this case

p′ =
p

Bk(0)
= EQ

[
β(Tk)Bk(Tk)

Bk(0)
X

]
=: EPk [ X ] .(28)

becauseBk(Tk) = 1 we do not have to transform the final payoffs to the new numeraire. The
Radon-Nikodym density process is

Lk(t) :=
β(t)Bk(t)

Bk(0)
=

dPk

dQ

∣∣∣∣
Ft

.(29)

As required, this process is a nonnegative martingale with initial value one. By the change of
measure the discount factorβ(Tk) was removed from the expectation in equation (29). This is
often a crucial step in the derivation of prices for derivative securities.

Analyzing the Radon-Nikodym density (29) yields the change of drift to reach thePk-Brownian
motiondWk(t) from theQ-Brownian MotiondWQ(t):

(30) dWk(t) := dWQ(t) + αk(t)dt.

The processαk(t) is defined in equation (18) as minus the volatility of the default-free zero-
coupon bondBk(t). Note that the default intensity isnot affected by the change of measure,
λQ = λPk

.
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In the Libor market-model setup, the primitive quantities are the simply compounded forward
ratesFk(t). In terms of these rates, theαk(t) are recursively related to each other through

(31) αk+1(t) = αk(t) +
δkFk(t)

1 + δkFk(t)
σF

k (t)

(see e.g. Jamshidian (1997) or Brace, Gatarek, Musiela (1997)). Thus, once the dynamics are
given in one forward measure, the change to a different forward measure can be done if only the
forward rates and their volatilities are known. The change fromPk to Pk+1 is straightforward

(32) EPk [ X ] =
1

1 + δkFk(0)
EPk+1 [ (1 + δkFk(Tk))X ] .

4.6. Default Probabilities under Pk: Under thePk-forward measure,Dk is the probability of
survival untilTk:

Dk(0) =
Bk(0)

Bk(0)
=

1

Bk(0)
EQ [ β(Tk)I(Tk) ] = EPk [ I(Tk) ] = Pk[τ > Tk].

In general

(33) I(t)Dk(t) = Pk[τ > Tk | Ft],

which also proves thatI(t)Dk(t) is aPk-martingale.

At one tenor dateTk, thePk+1 default probability until the next tenor dateTk+1 is

(34) EPk
[
1{τ≤Tk+1}

∣∣ FTk

]
= (1− I(Tk)Dk+1(Tk)) =

δkI(Tk)Hk(Tk)

1 + δkHk(Tk)
=

δkI(Tk)Sk(Tk)

1 + δkF k(Tk)
.

Thus, the default probability per time is the credit spread discounted with the defaultable for-
ward rate. For small time steps (δk → 0) the default probability divided by the time intervalδk

converges toHk(Tk):

1

δk

(1−Dk+1(Tk)) = Dk+1(Tk)Hk(Tk) → Hk(Tk) asδk → 0.

The default probability for the next infinitesimal small time step is known as thedefault inten-
sity. Therefore,Hk was called thediscrete-tenor default intensityin section 2.

4.7. The Tk-Survival MeasureP k:

4.7.1. Definition: In the same way that theTk-forward measurePk is used to price default-free
payoffs atTk, theTk-survival measureP k is used to pricedefaultablepayoffs atTk. Assume,
the payoff in equation (25) is defaultable, i.e. it is only paid if the obligor is still alive atTk.
Then it can be written asXI(Tk) and equation (25) becomes

p′ =
p

Bk(0)
= EQ

[
β(Tk)I(Tk)Bk(Tk)

Bk(0)
X

]
=: EP k [ X ] ,(35)

where we used thatBk(Tk) = 1. The Radon-Nikodym density process for the change fromQ
to P is

Lk(t) :=
β(t)I(t)Bk(t)

Bk(0)
=:

dP k

dQ

∣∣∣∣
Ft

.(36)

This process is a nonnegativeQ-martingale with initial value one, but it is not strictly positive:
Lk(t) jumps to zero at default (I(τ) = 0). This means, that the measureP k attaches a weight
of zero to all events that involve default beforeTk:

(37) P k(τ ≤ Tk) = EQ
[

Lk(Tk)1{τ≤Tk}
]

= 0.
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Because it only attaches probability to survival events, this measure is termed theTk-survival
measure. The survival measureP k is not equivalent toQ any more, but it is absolutely contin-
uous w.r.t.Q, so Girsanov’s theorem can still be applied.

There is another intuitive interpretation of theTk survival measure: It is the measure that is
reached when theTk-forward measure isconditioned on survivaluntil Tk. Consider an event
A ∈ FTk

and calculate its expectation conditional onτ > Tk:

(38) EPk
[
1{A}

∣∣ τ > Tk

]
=

EPk
[
1{A}I(Tk)

]
EPk [ I(Tk) ]

=
EPk

[
1{A}I(Tk)

]
Dk(0)

= EQ

[
1{A}I(Tk)

1

Dk(0)

β(Tk)

Bk(0)

]
= EQ

[
1{A}

β(Tk)I(Tk)

Bk(0)

]
= EP k

[
1{A}

]
.

The Pk-probability of A conditional on survival equals the probability ofA under theP k-
survival measure. This relationship will provide the basis of the simulation-implementation
later on.

4.7.2. Change of Drift: AnalysingLk yields the components of the change of measure in the-
orem 1. The intensity factor is zero:φ(t) = 0 (which again shows that underP defaults have
zero probability). The change of drift for the Brownian motions is

(39) dW k(t) := dWQ(t) + αk(t)dt,

where by (18) the drift correctionαk(t) is minus the volatility ofBk(t). Again, theαk(t) are
recursively related through

(40) αk+1(t) = αk(t) +
δkF k(t)σ

F
k (t)

1 + δkF k(t)

As the defaultable forward ratesF are not the primitives of our model, we would like to find a
representation ofαk(t) in F andH. DefineαD

k (t) as minus the volatility of theDk

(41)
dDk(t)

Dk(t−)
= . . . dt− αD

k (t)dW.

(This definition is independent from the measure under whichdW is a Brownian motion.)
Because ofBk(t) = Bk(t)Dk(t), theBk volatility in (39) can now be written as follows:

(42) αk(t) = αk(t) + αD
k (t).

There is again a recursion formula for theαD
k (t)

αD
k+1(t) = αD

k (t) +
δkHk(t)σ

H
k (t)

1 + δkHk(t)
.(43)

The following formula is similar to equation (32), it describes the change fromP k to P k+1:

(44) EP k [ X ] =
1

1 + δkF k(0)
EP k+1

[
(1 + δkF k(Tk))X

]
.

4.7.3. Change of Measure from Forward- to Survival Measure.By (30) and (39) the Brownian
motions under theTk forward measurePk and theTk survival measureP k differ by

(45) dW k(t) = dWk(t) + αD
k (t)dt.

Thus we can change betweenPk andP k directly, without having to go through the spot martin-
gale measureQ. The density for this change of measure is

(46) EP k [ X ] =
1

Dk(0)
EPk [ I(t)Dk(t)X ] =

Bk(0)

Bk(0)
EPk

[
I(t)

Bk(t)

Bk(t)
X

]
.
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The drift change (45) to the dynamics of the Brownian motions can also be achieved using a
different probability measureP

′
k with the following densityLD

k (t)

(47)
dP

′
k

dPk

(t) = LD
k (t) = e−

∫ t
0 λ(s)ds Dk(t)

Dk(0)

Using equations (16) and (17) it is easily shown thatLD
k (t) is aPk-martingale with initial value

one and thatLD
k (t) satisfies the stochastic differential equation

dLD
k (t) = −αD

k (t)dWk(t).

This new measureP
′
k has the same effect on the Brownian motions asP k. For random variables

X that are measurable with respect to the filtration generated by the Brownian motions6, the
expected values under both of these measures will coincide, andP

′
k may be used instead ofP k.

4.8. Further Probability Measures. Following the introduction of the survival measure, the
definition and analysis of further, survival-based probability measures is straightforward. To
save space we refrain from introducing a defaultable analog to thespot Libor measureQ′, which
is useful in many numerical implementation algorithms. Later on we will need a defaultable
swap measureto price options on default swaps. The default-free versions of these probability
measures were introduced by Jamshidian (1997).

5. DRIFT RESTRICTIONS FOR THEDISCRETETENOR CASE

Using the results of the previous section we can now derive the dynamics of the defaultable and
default-free forward rates under the new probability measures. We only give the dynamics of
each process under one of the measures, the dynamics under the other measures follow from
the respective change of drift formulae.

5.1. Default-Free Forward Rates: Bk/Bk+1 is a Martingale under theTk+1-forward measure.
Hence

(48) Fk =
1

δk

(
Bk

Bk+1

− 1)

is also a martingale under theTk+1-forward measureand its dynamics are (according to the
lognormal assumption)

(49) dFk(t) = Fk(t)σ
F
k dWk+1(t).

Under theTk+1 survival measure, the dynamics ofFk are

(50) dFk(t) = Fk(t)σ
F
k (dW k+1(t)− αD

k+1(t)dt).

5.2. Defaultable Forward Rates: For the defaultable forward rates we use thatBk/Bk+1 is a
martingale7 under theTk+1-survival measure, therefore

(51) F k =
1

δk

(
Bk

Bk+1

− 1)

is a martingale under theTk+1-survival measure. Again, its dynamics are

(52) dF k(t) = F k(t)σ
F
k dW k+1(t).

6Intuitively speaking, ifX does not contain any direct reference to default and survival eventsI(t) it satisfies this
condition. I.e.τ,N(t) or I(t) do not occur inX, butS or B may occur inX.
7Strictly speakingBk/Bk+1 is only defined up to default. After default we consider the process stopped.
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Calculating the dynamics ofF k under default-free forward measures does not make much sense,
as the defaultable forward rates are only meaningful in survival events.

5.3. Forward Spreads: The dynamics of the forward spreads under theTk+1 survival measure
are

(53) dSk = Fkσ
F
k αD

k+1dt + Skσ
S
k dW k+1.

5.4. Forward Intensities: The forward discrete default intensitiesHk have the following dy-
namics underP k+1:

(54) dHk =
Fkσ

F
k

1 + δkFk

(
(1 + δkHk)α

D
k+1 − δkHkσ

H
k

)
dt + Hkσ

H
k dW k+1.

5.5. Independence: If the default-free bond pricesB(t) and the time of defaultτ are indepen-
dent underQ, then it is easily seen that also the default-free forward ratesF and the discrete
default intensitiesH are independent underQ and under all other pricing measures. In this case,
many of the relationships above simplify significantly. Independence in this sense means zero
covariation between forward rates and default intensities:

(55) σF
k σH

l = 0 ∀ k, l ≤ K

In particular independence is given when the default-free forward ratesFk and the discrete-time
default intensitiesHk are driven by different components of the vector Brownian motionWQ

8.
Note that by equation (11) credit spreadsSk and default-free forward ratesFk have a nonzero
covariation even ifHk andFk are independent.

Under independenceαDσF = 0 holds, hence by equations (49), (53) and (54), the default-free
forward rateFk, the credit spreadsSk and the discrete default intensitiesHk are martingales
under theTk+1 survival measure

dFk

Fk

= σF
k dW k+1

dHk

Hk

= σH
k dW k+1(56)

dF k

F k

= σF
k dW k+1

dSk

Sk

= σS
k dW k+1.(57)

Even if independence does not hold, the drift of of the default intensitiesHk and of the credit
spreadsSk is of a small order of magnitude: risk-free interest rates times the covariation between
credit spreads and thek-th risk-free forward rate. A good strategy for model calibration under
correlation is to first calibrate the model to the closed-form solutions that are reached under
the assumption of independence, and then to iteratively adjust the parameters to the case of
correlation, which should be not too far away. For pricing purposes, closed-form solutions
under independence can be used as control variates to increase the accuracy of simulations.

6. POSITIVE RECOVERY OFPAR

6.1. The Recovery Model: Most recovery mechanisms in intensity-based models of default
risk prescribe the recovery on defaultable zero coupon bonds. Then all defaultable claims (in
particular all defaultable coupon bonds) are decomposed into defaultable zero coupon bonds,
and their recovery payoff is determined by summing up the recovery values of the individual
zero coupon bonds.

8By an orthogonal transformation ofW this structure can always be achieved if (55) holds.
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Representative of this approach is theequivalent recovery9 (or recovery of treasury) model,
where one defaultable bondB(t, T ) has a recovery ofc equivalentdefault-freebondsB(t, T )
at the time of default. Another popular zero-bond recovery model is thefractional recovery
model (orrecovery of market valuemodel) used in Duffie / Singleton (1997; 1999) and the
multiple-defaults model by Schönbucher (1998). Here a defaulted bond pays off a fractionq of
its pre-default value.

Unfortunately, by decomposing coupons and principal of defaultable coupon bonds into the
same asset class, these modelling approaches ignore the fundamental difference between prin-
cipal and coupon claims in real-world default proceedings. The claim of a creditor on the
defaulted debtor’s assets is only determined by the outstanding principal and accrued interest
payments of the defaulted loan or bond, any future coupon payments donot enter the consider-
ation. The recovery rate gives the fraction of this claim that is paid off after a default, and this
payoff is measured in cash and not in terms of default-free bonds or pre-default market value.

This distinction becomes important when it comes to the calibration of the model to the prices
of traded coupon bonds or default swaps. Here, using a structurally incorrect recovery model
can yield misleading results. This can happen for defaultable bonds with high coupons, for
defaultable bonds that trade far from their par value10, or when defaultable bonds of similar
maturity but different coupon size are used.

Instead of the zero-bond approach we propose to view the recovery value of a defaultable se-
curity as adefault-contingent payoff, a (possibly random) payoff at default. In particular, de-
faultable coupon bonds and loans should be decomposed in two distinct classes of elementary
claims: zero-recovery claimsB(t, T ), and positive recovery claimsB

p
(t, T ) which have a re-

covery ofπ times their face value in cash at default.

Formally, the recovery of par model in the discrete-tenor setup is as follows:

Assumption 4 (Recovery of Par). If a defaultable coupon bond defaults in the time interval
]Tk, Tk+1] then its recovery is composed of the recovery rateπ times the sum of the notional of
the bond (here normalised to1) and the accrued interest over]Tk, Tk+1]. The accrued interest
can be

(a) c, a constant in the case of a fixed-coupon bond with couponc,
recovery isπ(1 + c)

(b) Fk in the case of a floating rate bond11,
recovery isπ(1 + δkFk(Tk))

The recovery payoffs occur in cash atTκ(τ) i.e. at the next tenor dateTk+1 if a default was in
]Tk, Tk+1].
We denote withek(t) the time-t value of receiving1 at Tk+1 if and only if a default has occurred
in the preceding time interval]Tk, Tk+1].

Modelling the recovery of a defaultable bond as a fraction of its par value was first suggested by
Duffie (1998), who used this model in an affine term-structure setup but did not model recovery
of accrued interest. For a comparison of traditional recovery models see e.g. Schönbucher
(1999).

9This model is used in Jarrow / Turnbull (1995), Jarrow / Lando / Turnbull (1997), Lando (1998) and many others.
10In particular bonds of issuers that are close to default tend to trade around their expected recovery value irrespec-
tive of their maturity or coupon amount.
11Defaultable floating rate notes usually pay LiborF plus a constant spreadx. In this case recovery isπ(1 + x +
δkFk(Tk))
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We assume that all claims of the same seniority have the same recovery rateπ at the time of
default. The recovery rateπ can be stochastic in[0, 1] but its distribution is assumed to be
independent of the default-free interest rates, and time-invariant. For pricing purposes it is then
sufficient to work with the expected recovery rate which we will do from now on.

Using the notation of assumption 4 the price of a claim with maturityTN , no coupons, notional
1 and positive recovery can be represented as follows:

B
p
(0) = BN(0) + π

N∑
i=1

ei−1(0).(58)

The price of a defaultable fixed coupon bond withN fixed coupons ofc atTi, i = 1, . . . N and
a notional of 1 is

BN(0) +
N∑

i=1

(
cBi(0) + (1 + c)πei−1(0)

)
.(59)

At a default there is positive recoveryπ on the notional of1 and on the next outstanding coupon
c. Positive recovery has the effect of enhancing the coupon. Forfloating coupondebt the
decomposition is slightly different but the fundamental idea remains the same: The coupons
have zero recovery, and the recovery depends only on the notional and the coupon that was
outstanding at the time of default. By adjusting the numbers of the recovery claimsei other,
non-standard exposure profiles like amortising debt or can be represented in this framework.

6.2. Discrete-Tenor Defaults. We restricted recovery payments to the next tenor dateTκ(τ)

following default. This is not a strong restriction for a number of reasons: First, most defaults
do indeed occur on payment dates — at least, they become publiclyapparentwhen a payment
has to be made and cannot be made. Even if strictly speaking the default had happened between
two payment dates, many debtors tend to hang on and hope for resurrection until the next
payment is due. Some credit derivatives even define a default event as the event of a missed
payment on one or several defaultable bonds. A missed payment can obviously only occur on a
payment date. Second, if the tenor dates are spaced reasonably closely (i.e. quarterly or closer)
the error will be very small. Third, given the large uncertainty that prevails about recovery rates,
the error committed by restricting defaults to the tenor dates is of second order importance.

Finally, the effect of this assumption is apostponementof the default from somewhere in
]Tk, Tk+1] to Tk+1. There is an approximate correction to this error by adjusting the recov-
ery rate upwards as follows: We assume that continuously compounded short rater and de-
fault intensityλ are constant over[Tk, Tk+1]. Then, givenH = HK(Tk), F := Fk(Tk) and
δ := Tk+1 − Tk, the default-intensity isλ := 1

δ
ln(1 + δH) and the continuously compounded

short rate isr := 1
δ
ln(1 + δF ). Given a default happens in]Tk, Tk+1], the Tk+1-value ofπ

received at default and invested atr until Tk+1 is

(60) π′ :=
λ

λ + r

F (1 + δH)

H(1 + δF )
π ≥ π.

Thus, as a correction we can useπ′ instead ofπ and work with recovery payoffs at the next tenor
dateTk+1. Typically, this adjustment amounts to a factorπ′/π of 1.005 to 1.02, it increases with
high interest rates and long time stepsδk, and is rather insensitive to changes in the default
intensityλ. A similar adjustment can be constructed for the alternative case when only accrued
interest untilτ is taken into consideration for the recovery, i.e. for a default atτ ∈]Tk, Tk+1] the
recovery isπ(1 + (τ − Tk)c) wherec is the coupon. In this case the adjustment will be even
smaller.
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6.3. Valuation of the Recovery Payoffs under Independence.The disadvantage of this ’re-
covery of par’ modelling approach is that we now have to do some work to reach even the
price of a simple defaultable coupon bond. Compared to this, the derivation of the prices of
fixed-coupon bonds is much easier in the equivalent recovery model or the fractional recovery
model. Nevertheless, this is not lost labour for two reasons: This analysis is also a necessary
ingredient to price credit default swaps, and for defaultablefloating coupon debt there are no
simple formulae in the alternative recovery models either.

The following two propositions give the prices of the recovery payoffs for the two most impor-
tant cases: fixed payoff and fixed plus floating payoff. The time argumentT0 was suppressed to
simplify the notation. The proofs can be found in the appendix.
Proposition 2 (Recovery Payoffs under Independence).
Under independence ofHk andFl, ∀ k, l we have:

(i) Fixed Payment at Default:
The value of a payment of1 at Tk+1 if a default occurs in]Tk, Tk+1] is

(61) ek := Bk+1δkHk

(ii) Floating Payment at Default:
The value of a payment of1 + δkFk(Tk) at Tk+1 if a default occurs in]Tk, Tk+1] is

(62) Bk+1δkSk

(iii) Floating Coupon in Survival:
The value of a payment ofFk(Tk) at Tk+1 if no default occurs untilTk+1 is

(63) Bk+1Fk.

If independence between defaults and default-free interest rates does not hold we need to resort
to approximative solutions for the pricing equations. The error of these approximations should
be very low for reasonable parameter values. It will certainly be an order of magnitude lower
than the approximative correlation correction itself which in turn is of the order of a few basis
points. The following proposition gives these approximations.
Proposition 3 (Recovery Payoffs under Correlation).
If Hk andFl are not independent then:

(i) The approximate volatility ofLD
k over [T0, Tm] is

(64) AD
k,m :=

k−1∑
l=0

δlHlσ
H
l

1 + δlHl

Tl∧m.

(ii) Fixed Payment at Default:
The value of a payment of1 at Tk+1 if a default happens in]Tk, Tk+1] is

ek = Bk+1δk EP k+1 [ Hk ]

= δkHkBk+1 + Bk covPk

(
LD

k (Tk) ,
1

1 + δkFk(Tk)

)
≈ δkHkBk+1 −Bk

δkFk

1 + δkFk

(
exp

{
σF

k AD
k,k

1− δkFk

}
− 1

)
,(65)

(iii) Floating Payment at Default:
The value of1 + δkFk(Tk) at Tk+1 if a default occurs in]Tk, Tk+1] is

Bk+1δk EP k+1 [ Sk ] = Bk+1δkSk − δkBk+1 covPk+1

(
LD

k+1(Tk) , Fk(Tk)
)

≈ Bk+1δkSk −Bk+1δkFk

(
exp

{
AD

k+1,kσ
F
k

}
− 1
)
.
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(iv) Floating Coupon in Survival:
The value ofFk(Tk) at Tk+1 if no default occurs untilTk+1 is

(66) Bk+1 EP k+1 [ Fk ] ≈ Bk+1Fke
AD

k+1,kσF
k

7. BASIC CREDIT DERIVATIVES

In naming the counterparties for credit derivatives we will use the convention that counterparty
A will be the insured counterparty (i.e. the counterparty that receives a payoff if a default
happens or the party that is long the credit derivative), and counterpartyB will be the insurer
(who has to pay in default). PartyC will be the reference credit.

7.1. Default Swap.

7.1.1. Description: In a default swap(also known ascredit swap) B agrees to pay the default
payment toA if a default has happened. If there is no default of the reference security until the
maturity of the default swap, counterpartyB pays nothing.

A pays a fee for the default protection. The fee can be either a lump-sum fee up front (default
put) or – more commonly – a regular fee at intervals until default or maturity (default swap).

Different types of default swaps usually only differ in the specification of the default payment.
Here we only consider the standard default swap without going into the problems of the fine
print of the specification of the default payment.

• (fee stream)A payss atTi until TN or default.
• (default payment)B pays the difference between the post-default price of the reference

asset (usually a bond issued byC) and its par value at default.

7.1.2. The Fee.The value of the fee stream can be directly determined as

(67) s
N∑

k=1

Bk(0)

This valuation is valid for all fee streams of credit derivatives that pay fees until default.

7.1.3. The Default Payment.The typical reference asset is a defaultable coupon bond with
fixed couponc. In this case the value of the reference asset in default isπ(1 + c), so the default
payment is1− π(1 + c) at default. The value of this contingent payoff is

(68) DDef Put = (1− π(1 + c))
N−1∑
k=0

ek.
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7.1.4. The Default Swap Rate.The default swap rate is the levels of the fee payment that
makes the default swap fairly priced.

s = (1− π(1 + c))

∑N−1
k=0 ek∑N−1

k=0 Bk+1

(69)

s = (1− π(1 + c))
N−1∑
k=0

wkδkHk (for independence), and(70)

s ≈ (1− π(1 + c))
N−1∑
k=0

wk

(
δkHk + (1 + δkHk)(e

(1−Fk(0))AD
k,kσF

k − 1)
)

(71)

under correlation, wherewk := Bk+1/
∑N−1

j=0 Bj+1. Thus, under independence the default swap
rates is a weighted average of theHk with weightswk. There is an equivalent representation
of a plain vanilla fixed-for-floating interest rate swap rate as a weighted average of default-free
forward rates

s =
N−1∑
k=0

wkδkFk

with weightswk := Bk+1/
∑N−1

j=0 Bj+1. This property will be useful later on in the pricing of
options on default swaps.

7.2. Asset Swap Packages.

7.2.1. Description: An asset swap packageis a combination of a defaultable fixed coupon
bond (the asset) with a fixed-for-floating interest rate swap whose fixed leg is chosen such that
the value of the whole package is the par value of the defaultable bond.

The payoffs of the asset swap package are:
B sells toA for 1 (the nominal value of theC-bond):

• a fixed coupon bond issued byC with couponc payable at coupon datesti, i =
1, . . . , N ,

• a fixed for floating swap (as below).

The payments of the swap: At each coupon dateti, i ≤ N of the bond

• A pays toB: c, the amount of the fixed coupon of the bond,
• B pays toA: Libor + a.

a is called theasset swap spreadand is adjusted to ensure that the asset swap package has
initially the value of 1.

The asset swap is not a credit derivative in the strict sense, because the swap is unaffected by any
credit events. Its main purpose is to transform the payoff streams of different defaultable bonds
into the same form:Libor + asset swap spread(given that no default occurs).A still bears the
full default risk and if a default should happen, the swap would still have to be serviced.

7.2.2. Pricing: To ensure that the value of the asset swap package (asset swap plus bond) toA
is at par at timet = 0 we require:

(72) C + (s + a− c)A = 1

whereC is the initial price of the bond,s is the fixed-for-floating swap rate for the same maturity
and payment datesTi, andA is the value of an annuity paying 1 at all timesTi, i = 1, . . . , N .
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All these quantities can be readily observed in the market at timet = 0. To ensure that the value
of the asset-swap package is one, the asset swap rate must be chosen as

a =
1

A
(1− C) + c− s.

Note that the asset swap rate would explode at a default ofC, because then(1 − C(t)) would
change from being very small to a large number. Using the definition of the fixed-for-floating
swap rate:sA = 1−BN this can be rearranged to yield:

(73) Aa = BN + cA︸ ︷︷ ︸
def. free bond

− C︸︷︷︸
defaultable bond

,

the asset swap ratea is the price difference between the defaultable bondC and an equivalent
default free coupon bond (with the same couponc, it has the priceBN + cA) in the numeraire
assetA.

Asset swap packages are very popular and liquid instruments in the defaultable bonds market,
sometimes their market is even more liquid than the market for the underlying defaultable bond
alone. They also serve frequently as underlying assets for options on asset swaps, so called
asset swaptions. An asset swaption givesA the right to enter an asset-swap package at some
future dateT at a pre-determined asset swap spreada.

8. OPTIONS ONDEFAULT SWAPS

Options are frequently embedded in defaultable securities and credit derivatives. Many loans
and bonds feature options for the obligor: prepayment options (which amount to a call option
on the bond at face value) or extension options (which are equivalent to a put of the bond to
the creditors). Credit default swaps also often have extension- or callability options which are
basically call or put options on default swaps. Many of these options can be reduced to options
on credit default swaps, for which closed-form and semi-closed form solutions are given in this
section.

The semi-closed form approximation is based upon the weighted-average representation of the
default-swap rate in equation (70) and (71). Similar approximations for prices of options on
interest-rate swaps in default-free Libor market models were given by Brace / Gatarek / Musiela
(1997), Andersen and Andreasen (1998) and Zühlsdorff (1999). Here, we only consider the case
of independence betweenH andF , and to remain in the Libor-modelling framework we need
to make some approximations regarding the dynamics of the forward default swap rates. These
simplifications arenot central to the derivation of the pricing formulae (85) and (87).

We will also show how these formulae can be derived without needing approximations if the
volatility of the default-swap rate is known.

8.1. Description and Payoffs: A call on a default swap (default swaption) gives the buyerA
the right to enter a default swap at at pre-determined spreads∗ at timeTK .

There are two alternatives for the treatment of an early default before the exercise timeTK of the
option. Either the option is knocked out and its value drops to zero, or the option remains valid.
The former case will be treated below, the pricing problem in the latter case can be reduced to
the valuation of an option that is knocked out at default as follows:

If the default swaption is still alife atTK even though a default has happened before that,A will
certainly exercise the default swaption atTK , enter the default swap and immediately receive
the payoff(1− π). The value of this default-protection component of the default swaption is

(74) (1− π)(BK −BK).
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The full value of the default swaption consists thus of the sum of value of the value of the
default payment given above, and the value of the right to enter the default swap if no default
has happened beforeTK , i.e. the value of the default payment and a default swaption which is
knocked out at default. Therefore we will concentrate on the pricing of this option.

As mentioned before, options on default swaps frequently appear as components of more com-
plicated credit derivatives. A typical case is a standard default swap to which anoption to extend
is added. If the underlying default swap runs fromT0 to TK andA can choose atTK to extended
its maturity untilTN , A effectively holds a plain default swap fromT0 to TK and a call option
with exercise timeTK on a default swap fromTK to TN . If a default has already triggered the
default swap beforeTK then it obviously cannot be extended any more, so the option is knocked
out at a default of the reference credit. In many cases the default swap rate at which the default
swap can be extended is higher than the rate for the first protection periodT0 to TK , in this case
the structure is known as acallable stepup default swap.Similarly, earlycancellation rights
constitute put options on default swaps.

To price the default swaption we first have to derive the value of its payoff at maturity of the
option. At timet ≤ TK < TN , a default swap with maturityTN that is entered at timeTK at a
default swap rate ofs∗ and that is knocked out at defaults beforeTK has the value

(75) (s(t, TK , TN)− s∗)
N−1∑
j=K

Bj(t).

Heres(t, TK , TN) is the forward default swap rate. The forward default swap rate is the market
rate at timet of a default swap for the future protection period[TK , TN ]. According to equation
(70) the forward default swap rate is given by

s(t, TK , TN) =
N−1∑
k=K

wkδkHk,

where nowwk = Bk+1/
∑N−1

j=K Bj+1.12

If no default has occurred beforeTK the default swaption will only be exercised if it is in-the-
money atTK , i.e. if s∗ < s(TK , TK , TN). Then the payoff function of the default swaption
is

(76) (s(TK)− s∗)+

N−1∑
k=K

Bk.

8.2. Dynamics of the Forward Default Swap Rate.To price an option on the default swap
we need to know the dynamics of the default swap rate, and most importantly its volatility (the
drift will follow from a no-arbitrage argument). LetHT := (HK , HK+1, . . . , HN−1) denote the
vector of forward spreads, andwT := (wK , wK+1, . . . , wN−1) the vector of the weights of these
rates in the forward default swap rate. Without loss of generality we set the tenor distances
δk = 1 equal to one (for general distances the following orthogonality argument would become
only slightly more complicated), and we ignore the constant introduced by the positive recovery
and the coupon. We also writes for theforward default swap rate. Note, that

(77) s = HT w and
N−1∑
k=K

wk = 1 = 1T w,

12This holds under independence, in general the forward default swap rate will be defined similar to (69) and (71).
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where1T = (1, 1, . . . , 1) is a vector composed of ones. Then (given survival) the dynamics of
s are given by

(78) ds = wT dH + HT dw + d < w, H >,

and the dynamics ofH are

(79) dHi = . . . dt + Hiσ
H
i dW,

whereσH
i ared-dimensional row vectors. For now we are only concerned with the volatility of

s, so we do not yet specify the measure under whichdW is a Brownian motion.

In the next step we make two approximations13:

Assumption 5. (i) “The effect of the changes in the weights are negligible.”

HT dw ≈ 0

(ii) “The Hi are only driven by parallel shifts.”

Hiσ
H
i dW = Hi

d∑
j=1

σH
ij dWj ≈ Hiσ

H
0 dW0

WhereW0 is a Brownian motion that is reached by a suitable rotation of the otherW1, . . . ,Wd,
such that the first column of the volatility matrixσH

ij equalsσH
0 1.

Note that by equation (77), we have1T w = 0, so the first approximation is exact when the term
structure of intensitiesH is flat. The quality of this approximation therefore depends on

(a) the deviation ofH from a flat structure (should be small)
(b) the volatility ofw (should be small).

Both conditions are usually satisfied in practice.

In the second approximation, the other components of the rotated variance-covariance matrix
are ignored. The error of this approximation depends on the weight that higher order compo-
nents have in the dynamics of the term structure of default intensitiesH. Principal component
decompositions of the variance/covariance matrix of interest-rates typically exhibit a strongly
dominating first component which is almost flat. The larger such a component is for credit
default swaps, the better the approximation will work.

These approximations have been tested for interest-rate swap rates and have proven to be highly
precise. This gives us reason to expect similarly good performance in the default-risk setting.
After these approximations the resulting volatility of the forward default swap rate isconstant.
From (78) follows

ds = . . . dt +
N−1∑
i=K

Hiwiσ
H
0 dW0 = . . . dt + sσH

0 dW0,(80)

where the drift of the default swap rate is left unspecified.

Instead of going through the approximations above, one could alsodirectly specify the dynam-
ics (80), i.e. aconstantvolatility σH

0 for the forward default swap rate. This amounts to chang-
ing from a Libor-based market-model framework to a swap-based market model framework, a
common technique introduced by Jamshidian (1997).

13The approximation argument in this subsection is based upon Zühlsdorff (1999) and also Andersen and An-
dreasen (1998).
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8.3. Pricing the Option, the Default Swap Measure.The key point to note for pricing is that
s(t)

∑N−1
k=K I(t)Bk(t) is a traded asset in the market: It is the value of the default-protection

component of the forward default swap over[TK , TN ]. Thus, in analogy to the swap-market
measure introduced by Jamshidian (1997) and to the introduction of the survival measure be-
fore, we can take

(81) X(t) := I(t)
N−1∑
k=K

Bk(t)

as numeraire asset for a new probability measureP
s
. We call this measure thedefault swap

measure.

We do not go through the derivation of the Radon-Nikodym density of this measure with respect
to the other martingale measures which is exactly analogous to the derivations in the previous
sections. The measureP

s
is associated with the Brownian motionW

s
, and under this measure

prices of (defaultable) traded assets divided by the new numeraireX(t) are martingales. The
measure is again asurvival-basedmeasure, i.e. the probability of a default untilTK is zero
under the default swap measure.

Starting from the dynamics in equation (80) we now know thats is a martingale underP
s

becauses is a price in terms of the associated numeraire assetX. Therefore its dynamics under
P

s
exhibit no drift:

(82) ds = sσH
0 dW

s
.

As mentioned before, we could take the direct specification of the dynamics ofs underP
s

in
equation (82) as starting point without having to go through the approximations in the previous
subsection, and also without having to use independence ofH andF .

Using the measureP
s
, we can now directly price the option. Starting from

C(0) = EQ

[
β(TK)I(TK)

N−1∑
k=K

Bk(TK)(s(TK)− s∗)+

]
(83)

the change of measure toP
s

yields

=

(
N−1∑
k=K

Bk(0)

)
EP

s [
(s(TK)− s∗)+

]
.(84)

Evaluating the expectation yields the following proposition:

Proposition 4. The value of a European Call option to enter at timeTK a default swap with
maturityTN and strike default swap rates∗, which is knocked out at defaults befores is

C =

(
N−1∑
k=K

Bk(0)

)
{s(0)N(d1)− s∗N(d2)} ,(85)

whered1 andd2 are given by

d1;2 =
ln(s/s∗)± 1

2
(σH)2TK

σH
√

TK

.(86)

An European Put option to enter as protectionsellerthe same default swap at timeTK has the
price

P =

(
N−1∑
k=K

Bk(0)

)
{s∗N(−d2)− s(0)N(−d1)} .(87)
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The recovery rate does not enter this pricing formula explicitly. The reason is, that the value
of the payoff of the default swap does not directly involve the recovery rate: It is the value
of the swap at the strikes∗ minus the value of an offsetting default swap at the market rates.
Thus, only the difference between the fee streams is paid out, until a default happens. Before
maturity, the default swap can be knocked out at default, but the recovery rate does not enter
directly either. Of course, the recovery rate is still present, but in indirect form: Depending on
the assumed recovery rate, the calibrated values of the zero-recovery bondsBk can vary much.

9. NUMERICAL IMPLEMENTATION

Because of their great importance in practice there is a quickly growing literature on the im-
plementation and calibration of Libor and Swap market models, and we cannot mention all
contributions in this area. The question of calibration is addressed by Rebonato (1998; 1999a;
1999b), advanced techniques for Monte-Carlo simulation can be found e.g. in Glasserman and
Zhao (2000) and the survey article by Broadie and Glasserman (1998). On the background of
this large literature we restrict ourselves to the details of the implementation that are specific to
the case of credit risk modelling.

9.1. Setup. First, a choice has to be made whether to model the discrete-time default intensities
Hk or the credit spreadsSk as lognormal. Given the scarcity of available data it is unlikely that
a statistical test would be able to decide between the two specifications because their effects on
the defaultable forward rates are very similar.

Spreads are more intuitive to work with and their drift modification under the survival measure
is simpler, but theHk and their volatilities appear more frequently in the pricing formulae and
they are more closely associated with the numeraire of the survival measure and the change
between survival and forward measure. It seems that the advantages of having a lognormalHk

outweigh the advantages of lognormalSk particularly for the simplification in calibration, but
this judgement depends on the security to price.

Next, the tenor structure has to be chosen such that all payoff relevant dates are covered and
the distances between the dates are not too large. Then the dimension of the driving Brownian
motion for the combined model has to be determined. Usually, given the scarcity of data, only
one Brownian motion is needed in addition to the Brownian motions that drive the default-free
term structure of interest-rates.

9.2. Calibration: For details to the calibration of the default-free part of the model the reader
is referred to Rebonato (1998; 1999a; 1999b). Second, the volatility vectorsσH

k for the Hk

have to be specified. Typically, these will involve correlation with the first principal component
(’level’) of the default-free interest rates and the idiosyncratic movements of the credit spreads
/ intensities.

Given this information, the defaultable bond pricesBk in the model can be calibrated to ob-
served defaultable bond prices, default swap rates and asset swap rates using the closed-form or
approximate solutions given in the paper. If independence betweenH andF is assumed, this
fitting can be achieved without the need to refer to volatility input. In all cases the expected
recovery rateπ is needed as an input, too.

10. CONCLUSION

In this paper we showed how default risk can be incorporated in the modelling framework
of the so called market models for interest rates. The change of measure technique which
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already was important for default-free market models, now becomes the most important tool
for analyzing the relationships between forward rates, default intensities and credit spreads and
for the derivation of prices and implementation of the model. In particular, a new class of
probability measures, thesurvival measures, provides the appropriate tools for the pricing of
default-dependent payoffs. These survival measures can be viewed as the probability measures
that are reached, when the default-free forward measure is conditioned on survival.

In the modelling of the recovery of defaultable bonds we chose to use the ‘recovery of par’ mod-
elling approach. This recovery model has the advantage of being able to accurately represent
real-world recovery rules. We showed how to price a number of basic defaultable securities
in this setup, including defaultable fixed- and floating coupon bonds, asset swaps and credit
default swaps. For a fully general specification of the volatilities of credit spreads and interest
rates these prices were given by using approximate solutions, under independence of defaults
and interest-rate dynamics closed-form solutions are given.

The modification of this model to other specifications of the recovery at default is straightfor-
ward: For recovery in equivalent default-free bonds all pricing problems can be reduced to the
pricing of zero-recovery bonds (which is already solved here), and the extension to fractional
recovery (Duffie / Singleton (1999) and Schönbucher (1998)) should not present any problems
either.

We then addressed the pricing of some popular credit derivatives. Most of the work for the
pricing of default swaps had already been done in the analysis of the par recovery model, and
the pricing formula for asset swap packages is entirely model-independent. To be able to price
options on default swaps we again had to transfer and extend notions from the default-free
market model world: The introduction of thedefault swap measure— the defaultable analogy
of Jamshidian’s (1997) swap market measure — enabled us to derive closed-form solutions for
these second-generation instruments. As default swaps are becoming more and more liquid and
standardised, a modelling approach based on the default swap measure making default swap
rates to martingales has much potential for the future.
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APPENDIX

PROOF OFPROPOSITION2 AND 3

To lighten notation, the time index is dropped fort = 0, i.e. Bk stands forBk(0) etc.

Valuation of the Recovery Payoffs under Independence.We assume independence of de-
faults and default-free interest rates. The indicator function of default in]Tk, Tk+1] is I(Tk) −
I(Tk+1). We calle′k(X) the value of receivingX atTk+1 if a default happens in this interval:

e′k(X) :=EQ [ β(Tk+1)(I(Tk)− I(Tk+1))X ]

=EQ [ β(Tk+1)X ] (Dk −Dk+1) = δkHkBk+1 EPk+1 [ X ] .(88)

We consider two cases:
X can either be (a) a fixed payment or (b) principal plus floating rate.

In case (a)X = 1. Equation (61) follows directly.

In case (b)we can use thatFk is a martingale underPk+1. Therefore using (6) yields

(89) e′k(1 + δkFk(Tk)) = δkSkBk+1.

Equation (63) follows fromEQ [ β(Tk+1)I(Tk+1)Fk ] = EPk+1 [ Fk ] Dk+1 = FkBk+1.

Valuation under Correlation of Defaults and Interest Rates. We start again from the repre-
sentation fore′k(X)

e′k(X) :=EQ [ β(Tk+1)(I(Tk)− I(Tk+1))X ]

=EQ [ β(Tk+1)I(Tk)X ]− EQ [ β(Tk+1)I(Tk+1)X ](90)

The first term in (90):

(91) EQ [ β(Tk+1)I(Tk)X ] = Bk+1 EPk+1 [ I(Tk)X ]

= Bk EPk

[
1

1 + δkFk(Tk)
XI(Tk)

]
= Bk EP k

[
X

1 + δkFk(Tk)

]
.

Case (a):X = 1. Changing toP k+1 yields

EQ [ β(Tk+1)I(Tk) ] = Bk+1

(
1 + δk EP k+1 [ Hk(Tk) ]

)
.(92)

Case (b):X = 1 + δkFk(Tk). The solution is found directly

EQ [ β(Tk+1)I(Tk)X ] = Bk.

The Second Term of(90):

(93) EQ [ β(Tk+1)I(Tk+1)X ] = Bk+1 EP k+1 [ X ] .

Case (a)yields the resultBk+1.

In case (b)the value is

(94) Bk+1(1 + δk EP k+1 [ Fk(Tk) ]).

Combining these results, the values of the payoffs are:
in case (a):(fixed payment)

e′k(1) = Bk+1δk EP k+1 [ Hk(Tk) ](95)
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in case (b):(floating coupon plus principal payment)

ek(1 + δkFk(Tk)) = Bk+1δk EP k+1 [ Sk(Tk) ] .(96)

The value of a floating coupon payment ofδkFk paid atTk+1 in survival is

(97) EQ [ β(Tk+1)I(Tk+1)δkFk ] = Bk+1δk EP k+1 [ Fk(Tk) ] .

Thus, because of correlation the values of forward default intensity or credit spread have been
replaced with their expectation under theTk+1-survival measure.

Approximative Solutions under Correlation. In equations (95) and (96) we have to evaluate
the expectation of certain forward rates under the respective survival measures. This is done
in two steps: As all random variables are measurable w.r.t. the realisations of the Brownian
motions, we can consider the expectations under the survival measureP

′
k+1 as expectations

underP
′
k+1. In a first step we transform the pricing problem to the problem of the calculation

of the covariance of a rate with the Radon-Nikodym densityLD of the change from the forward
measure to the measureP

′
. In a second step we give approximations to the values of these

covariances.

For equation (92) we change to theTk-forward measure using equation (47) to reach

EP k

[
1

1 + δkFk(Tk)

]
= EP

′
k

[
1

1 + δkFk(Tk)

]
= EPk

[
LD

k (Tk)
1

1 + δkFk(Tk)

]
.

Both 1
1+δkFk

andLD
k are martingales under theTk-forward measure, thus

EP k

[
1

1 + δkFk(Tk)

]
=

1

1 + δkFk

+ covPk

(
LD

k (Tk) ,
1

1 + δkFk(Tk)

)
.(98)

Similarly, for (94) we change to theTk+1-forward measure:

EP k+1 [ Fk(Tk) ] = EP
′
k+1 [ Fk(Tk) ] = EPk+1

[
LD

k+1(Tk)Fk(Tk)
]
.

Again, both expressionsFk andLD
k+1 are martingales under theTk+1-forward measure

EP k+1 [ Fk(Tk) ] = Fk + covPk+1

(
LD

k+1(Tk) , Fk(Tk)
)
.(99)

There are no closed-form expressions for the covariances in the previous expressions. We are
going to use the following common approximation: We approximate both processes with log-
normal processes by setting the stochastic components in the diffusion parameters equal to their
values at timet = 0 and evaluate the covariance of these processes14.

The volatility ofLD
k is

αD
k (t) =

∫ Tk

t

σf (t, s)− σf (t, s) ds

=
k−1∑

l=κ(t)

δlHl(t)σ
H
l (t)

1 + δlHl(t)
+

∫ κ(t)

t

σf (t, s)− σf (t, s) ds

and approximated

≈
k−1∑

l=κ(t)

δlHl(0)σ
H
l (0)

1 + δlHl(0)
.

14For the default-free market models, Brace / Gatarek / Musiela (1997) interpret this approximation as a first-order
chaos expansion. Rebonato (1998) reports very good results for similar approximations.
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Integrating the approximated volatility yields the aggregate volatility ofLD
k over [0, Tm]∫ Tm

0

αD
k (t)dt ≈

k−1∑
l=0

δlHl(0)σH
l (0)

1 + δlHl(0)
Tl∧m =: AD

k,m.

In the approximation we setHl(t) andσH
l (t) to their values att = 0. If H and notS is taken

as fundamental process, thenσH is constant anyway. Furthermore we set the volatilities at the
short end (before the next tenor time) to zero.15.

The dynamics ofX(t) := 1
1+δkFk(t)

are easily found by It̂o’s lemma asdX = −X(1 −
X)σF

k dWk. We choose to useY (t) := 1−X(t) instead, which follows

(100) dY (t) = Y (t)(1− Y (t))σF
k dWk ≈ Y (t)(1− Y (0))σF

k dWk

The values ofY (t) are typically close to zero, thus the lognormal approximation should be very
accurate and better than approximatingX(t) as lognormal.

This yields the following approximative value for the covariance in equation (98)

covPk

(
LD

k (Tk) ,
1

1 + δkFk(Tk)

)
= −covPk

(
LD

k (Tk) , Y (Tk)
)

≈ − δkFk(0)

1 + δkFk(0)

(
exp

{
1

1− δkFk(0)
AD

k,kσ
F
k

}
− 1

)
(101)

and for the covariance in equation (99)

covPk+1

(
LD

k+1(Tk) , Fk(Tk)
)
≈ Fk(0)

(
eAD

k+1,kσF
k − 1

)
.(102)

The error of these approximation should be very low for reasonable parameter values. It will
certainly be an order of magnitude lower than the approximative correlation correction itself
which in turn is of the order of a few basis points. The sign of the correction depends on the
sign of the correlation between the default intensitiesH and the default-free interest ratesF .
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Philipp J. Scḧonbucher. A tree implementation of a credit spread model for credit derivatives.
Working paper, Department of Statistics, Bonn University, 1999.

Christian Z̈uhlsdorff. Extended market models with affine and quadratic volatility. Working
paper, University of Bonn, Department of Statistics, 1999.

Author’s address:
Philipp J. Scḧonbucher
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