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This paper extends the standard principal-agent model with moral hazard to allow

for agents having reference-dependent preferences according to Kőszegi and Rabin

(2006, 2007). The main finding is that loss aversion leads to fairly simple contracts.

In particular, when shifting the focus from standard risk aversion to loss aversion,

the optimal contract is a simple bonus contract, i.e. when the agent’s performance

exceeds a certain threshold he receives a fixed bonus payment. Moreover, if the agent

is sufficiently loss averse, it is shown that the first-order approach is not necessarily

valid. If this is the case the principal may be unable to fine-tune incentives. Strate-

gic ignorance of information by the principal, however, allows to overcome these

problems and may even reduce the cost of implementation.
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1 Introduction

“The recent literature provides very strong evidence that contractual forms have large effects on

behavior. As the notion that “incentive matters” is one of the central tenets of economists of

every persuasion, this should be comforting to the community. On the other hand, it raises an

old puzzle: if contractual form matters so much, why do we observe such a prevalence of fairly

simple contracts?”

- Bernard Salanié
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The question asked by Salanié (2003), why observed contracts often display far less

complexity than predicted by economic theory, neither is new nor is the answer fully

understood. While Prendergast (1999) already referred to the discrepancy between theo-

retically predicted and actually observed contractual form about a decade ago, over time

this question was raised again and again, for example recently by Lazear and Oyer (2007).

The most simple incentive contract one can think of is a bonus contract, with a bonus

being a payment made for achieving some level of performance. And indeed, according

to Joseph and Kalwani (1998), bonuses are a form of incentive pay widely used by a

large variety of organizations, in particular within sales organizations. As Oyer (1998),

however, points out, facing an annual sales quota provides incentives for salespeople to

manipulate prices and timing of business to maximize their own income rather than their

firms’ profits. This observation raises “the interesting question of why these nonlinear

contracts are so prevalent. [...] It appears that there must be some benefit of these

contracts that outweighs these apparent costs” (Lazear and Oyer (2007)). Simple con-

tracts are not only common in labor contexts but also in insurance markets. A prevalent

form of insurance contracts is a straight-deductible contract widely used, for example,

in automobile insurance.1 As Dionne and Gagné (2001) point out, however, “deductible

contracts can introduce perverse effects when falsification behavior is potentially present”.

With fraudulent claims being a major problem in the car insurance market,2 which is –

at least partially – due to straight deductible contracts, the prevalence of this particular

contractual form seems puzzeling.3

To give one possible explanation for the widespread use of the contractual arrangements

just described, we consider a principal-agent model with moral hazard, framed as an

employer-employee relationship, which is completely standard but for one twist: the agent

is assumed to have reference-dependent preferences according to Kőszegi and Rabin (2006,

2007), and in consequence is loss averse. In expectations the agent suffers from deviations

from his reference point. By offering a simple contract which specifies only few different

wage payments, the principal can reduce the scope for the agent to experience a loss,

thereby lowering the payment necessary to compensate the agent for ex ante expected

losses. In the extreme case of a purely loss averse agent, this logic leads to a literal bonus

contract being optimal. Put differently, no matter how rich the performance measure, the

principal offers only two different wages, a high wage for “good” performance, and a low

wage for “bad” performance.

1For evidence on deductibles in the automobile insurance see Puelz and Snow (1994) or Chiappori et al.
(2006).

2Caron and Dionne (1997) estimated the cost of fraud in the Québec automobile insurance market in
1994 at $100 million, just under 10% of total claims. For an estimation of the costs of fraudulent
claims in the United States, see Foppert (1994).

3As was shown by Rothschild and Stiglitz (1976), the use of deductibles can theoretically be explained
if the insurance market is subject to adverse selection. Besides adverse selection, however, moral
hazard plays an important role in automobile insurance. Deductibles were found to be optimal under
moral hazard by Holmström (1979) if the insured person’s action influences only the probability of an
accident but not its severity. As pointed out by Winter (2000), however, “[d]riving a car more slowly
and carefully reduces both the probability of an accident and the likely costs of an accident should it
occur.” Thus, existing theories cannot explain the prevalence of deductibles in these markets.
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We present our model of a principal-agency which is subject to moral hazard in Section

2. The principal, who is both risk and loss neutral, does not observe the agent’s effort

directly. Instead, he observes a measure of performance which is correlated – though im-

perfectly – with the agent’s effort decision. Our model departs from the classical principal-

agent relationship by assuming that the agent has reference-dependent preferences in the

sense of Kőszegi and Rabin (2006, 2007). This recent concept of reference-dependent

preferences posits that a decision maker – next to intrinsic consumption utility from an

outcome – also derives gain-loss utility from comparing the actual outcome with his ra-

tional expectations about outcomes. More precisely, the sensation of gains and losses

is derived by comparing a given outcome to all possible outcomes. To illustrate this

point consider an employee who receives a wage of $5000 for good performance, a wage

of $4400 for mediocre performance, and a wage of $4000 for bad performance. If the

employee’s performance is bad he experiences the sensation of a loss of $400 and of a loss

of $1000, with the weights on the two losses equal to the probability with which he ex-

pected to perform fairly or well, respectively. If the employee’s performance is mediocre,

this generates mixed feelings, a loss of $600 and a gain of $400.4 The key feature of

the Kőszegi-Rabin model is that expectations matter in determining the reference point.5

This assumption is based mainly on findings in the psychological literature. For instance,

Mellers et al. (1999) and Breiter et al. (2001) document that both the actual outcome

and unattained possible outcomes affect subjects’ satisfaction with their payoff. Just very

recently two remarkable contributions to the economic literature also provided evidence

that expectations play an important role in the determination of the reference point. In

a real-effort experiment, Abeler et al. (2008) find strong evidence for individuals taking

their expectations as a reference point, rather than the status quo, as was most often

assumed in the wake of Kahneman and Tversky’s original formulation of prospect theory

(1979). Post et al. (2008), on the other hand, analyze decision making in a large-stake

game show and come to the conclusion, that observed behavior “is consistent with the

idea that the reference point is based on expectations.” The Kőszegi-Rabin concept is

successfully applied by Heidhues and Kőszegi (2008) to provide a theoretical explanation

for an old puzzle from the industrial organization literature known as focal pricing: by

introducing consumer loss aversion into a standard model of price competition with dif-

ferentiated products, they give an answer to the question why non-identical competitors

charge identical (focal) prices for differentiated products.

As a benchmark, in Section 3 we first consider the case of a purely risk averse agent.

This visit to Holmström (1979)’s world yields a familiar result: Under the optimal con-

tract signals that are more indicative of higher effort are rewarded strictly higher, thereby

giving rise to a strictly increasing wage profile. We then turn to the analysis of a purely

loss averse agent, who does not exhibit risk aversion in the usual sense. After providing

4For at least suggestive evidence on mixed feelings, see Larsen et al. (2004).
5The feature that the reference point is determined by the decision maker’s forward-looking expectations

is shared with the disappointment-aversion models of Bell (1985), Loomes and Sugden (1986), and
Gul (1991).
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sufficient conditions for the first-order approach to be valid, we establish our main result:

when the agent is loss averse, the principal considers it optimal to offer a bonus contract

which comprises of only two different wage payments. No matter how rich the set of

possible realizations of the performance measure, the optimal contract entails a minimum

of wage differentiation in the sense that the set of all possible signals is partitioned into

only two subsets: signals contained in the one subset are rewarded with a strictly higher

wage than signals in the complementary subset. We already briefly touched the intuition

underlying this finding. With the agent’s action being unobservable, the necessity to cre-

ate incentives makes it impossible for the principal to bear the complete risk. With losses

looming larger than equally sized gains, this ex ante imposes an expected net loss on

the agent. This overall expected net loss equals the sum over the ex ante expected wage

differences weighted with the product of the corresponding probabilities. To illustrate,

let us return to the example introduced above. Suppose the agent expects to perform

well, moderately, or poorly with probability pG, pM and pB, respectively. Then, ex ante,

the agent expects a wage difference – or net loss – of $600 with probability pMpG, a net

loss of $400 with probability pBpM , and a net loss of $1000 with probability pBpG. The

agent demands to be compensated for his overall expected net loss, which the principal

therefore seeks to minimize. Consider, for a sake of argumentation, a principal who has

to improve incentives. There are two ways to do so. First, the principal can introduce

a new wage spread, i.e., pay slightly different wages for two signals that were rewarded

equally in the original wage scheme, while keeping the differences between all other neigh-

boring wages constant. Secondly, the principal can increase an existing wage spread,

holding constant all other spreads between neighboring wages. Both procedures increase

the overall expected net loss by increasing the size of some of the expected losses with-

out reducing others. Introducing a new wage spread, however, additionally increases the

overall expected net loss by increasing the ex-ante expected probability of experiencing

a loss. Therefore, in order to improve incentives it is advantageous to increase a partic-

ular existing wage spread without adding to the contractual complexity in the sense of

increasing the number of different wages. In this sense, reference-dependent preferences

according to Kőszegi and Rabin introduce a notion of endogenous complexity cost based

on psychological foundations.

Thereafter, we establish several properties displayed by the optimal contract. Let a

signal that is more likely to be observed the higher the agent’s effort be referred to as

a good signal. We find that the subset of signals that are rewarded with the high wage

contains either only good signals, though possibly not all good signals, or all good signals

and possibly a few bad signals as well.6 Moreover, it is shown that, at least under a certain

condition, it is optimal for the principal to order the signals according to their relative

6The theoretical prediction that inferior performance may also well be rewarded with a bonus is in line
with both Joseph and Kalwani (1998)’s suggestion that organizations tend to view the payment of
a bonus as a reward for good or even acceptable performance rather than an award for exceptional
performance, and Churchill et al. (1993)’s prescription that bonuses should be based on objectives
that can be achieved with reasonable rather than Herculean efforts.
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informativeness (likelihood ratio), i.e., the agent receives the high wage for all signals that

are more indicative for high effort than a cutoff signal. Though wage payments are only

weakly increasing in the likelihood ratio, this finding resembles Holmström (1979)’s result

for a risk averse agent, where the incentive scheme is strictly increasing in likelihood ratios.

Last, we establish an interesting comparative static property: we show that an increase in

the agent’s degree of loss aversion may allow the principal to use a lower-powered incentive

scheme in order to implement a desired level of effort. The reason is that a higher degree

of loss aversion may be associated with a stronger incentive for the agent to choose a

high effort in order to reduce the probability of incurring a loss. This finding immediately

relates to a train of thought found in Kőszegi and Rabin (2006), who reason that under

loss aversion the agent’s motivation goes beyond pure monetary incentives. Section 3

concludes with a discussion of the general case where the agent is both risk averse and

loss averse. It is shown that our results are robust towards a small degree of risk aversion.

Moreover, we give a heuristic reasoning why a reduction in the complexity of the contract

is also to be expected to be optimal for a non-negligible degree of risk aversion, and we

back this argument up with a numerical example, which confirms our conjecture.7

Returning to the case of a purely loss averse agent, in Section 4 we relax the assump-

tions that guaranteed validity of the first-order approach. Moreover, to keep the analysis

without first-order approach tractable, we only consider binary measures of performances.

If the agent’s degree of loss aversion is sufficiently high and if the performance measure

is – in an intuitive sense – sufficiently informative, then only extreme actions – work as

hard as possible or do not work at all – are incentive compatible. Put differently, the

principal may face severe problems in fine-tuning the agent’s incentives. These implemen-

tation problems, however, can be remedied if the principal can commit herself to turning

a blind eye from time to time, that is, by stochastically ignoring the low realization of the

performance measure. Besides alleviating implementation problems, turning a blind eye

may also lower the cost of implementing a certain action. An interesting implication of

these findings is that the sufficiency part of Blackwell’s celebrated theorem does not hold

in our model when the agent has reference-dependent preferences.

After briefly summarizing our main findings, in Section 5 we conclude by discussing

robustness of our results with respect to imposed functional assumptions and the equilib-

rium concept applied to solve for the behavior of the loss averse agent.

Related Literature Before presenting our model, we would like to relate our paper to

the small but steadily growing literature that analyzes the implications of loss aversion on

incentive design.8 With reference-dependent preferences being at the heart of loss aversion

7This finding also relates to the observation that, within a firm, pay for individuals often seems to be less
variable than productivity, as recently surveyed by Lazear and Shaw (2007). Our model suggests an
alternative explanation for this pay compression outside the realms of inequity aversion, tournament
theory, and influence activities.

8Beside loss aversion there are other behavioral biases that are incorporated into models of incentive
design. For instance, O’Donoghue and Rabin (1999) analyze optimal incentive schemes for time
inconsistent agents, and Englmaier and Wambach (2006) characterize the optimal contract for the
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on the one hand, but with no unifying approach provided how to determine a decision

maker’s reference point on the other hand, it is little surprising that all contributions

differ in this particular aspect. While Dittmann et al. (2007) posit that the reference

income is exogenously given by the previous year’s fixed wage, Iantchev (2005), who

considers a market environment with multiple principals competing for the services of

multiple agents, applies the concept of Rayo and Becker (2007). Here, an agent’s reference

point is endogenously determined by the equilibrium conditions in the market. When

focusing on a particular principal-agent pair, however, both the principal and the agent

take the reference point as exogenously given. An exogenous reference point does not

always seem plausible. Starting out from the premise that the reference point is forward

looking and depends on the distributions of outcomes, as suggested by ample evidence,

De Meza and Webb (2007) consider both exogenous as well as endogenous formulations

of the reference point. Concluding that the disappointment concept of Gul (1991), which

equates the reference point with the certainty equivalent of the income distribution, does

yield some questionable implications,9 De Meza and Webb propose that the reference

income is the median income. Giving a brief heuristic reasoning why this may be a

reasonable first pass, they argue that making the reference point equal to the median

income captures the idea that the agent incurs a loss at all incomes for which it is odds-

on that a higher income would be drawn. Taking median income as reference income,

however, suffers from the obvious drawback that it is discontinuous in the underlying

probability distribution.10 By weighting each gain or loss with the probability that it

actually occurs, the concept of reference-dependent preferences introduced by Kőszegi and

Rabin (2006) avoids this kind of discontinuity. With the reference point being determined

by the decision maker’s expectations about outcomes, this most recent approach pursues

the road most consistently that expectations matter in the determination of the reference

point.

All of the aforementioned contributions explore questions of both empirical importance

as well as theoretical interest: Dittmann et al. (2007) find that a loss-aversion model

dominates an equivalent risk-aversion model in explaining observed CEO compensation

contracts if the reference point is equal to the previous year’s fixed wage. Iantchev (2005)

finds evidence for his theoretically predicted results in panel data from Safelite Glass Cor-

poration. Last, by explaining why bonuses are paid for good performance rather than

penalties for poor performance, De Meza and Webb (2007) provide a theoretical under-

pinning for the frequent usage of option-like incentive schemes in CEO compensation.

The contractual form predicted by these papers, however, is rather complex: while the

case of an inequity averse agent in the sense of Fehr and Schmidt (1999). For a review of behavioral
economics of organizations see Camerer and Malmendier (2007).

9De Meza and Webb consider two otherwise identical agents who differ only in their degree of loss
aversion. They point out that with the certainty equivalent as reference point, there are situations
where the less loss-averse agent experiences a loss, but the more loss-averse agent does not.

10For example, suppose that with a probability of .51 a manager earns $1m and with a probability of .49
he earns $2m. With median income as reference point the manager will never suffer a loss because
his reference income is $1m. A small shift in probabilities, however, makes the median income equal
to $2m. Now, the agent suffers a loss in almost 50% of all cases.
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optimal contract typically displays a range where pay is independent of performance, for

performance above this range payment varies with performance in a fairly complex way,

depending crucially on the underlying distribution of signals. Theoretical predictions dif-

fer in whether or not the optimal contract includes punishment for very poor performance

or where in the wage schedule the optimal contract features discontinuities. Thus, none

of these papers provides a rationale for the prevalence of fairly simple contracts, bonus

contracts in particular.11

To the best of our knowledge, Daido and Itoh (2007) is the only paper that also applies

the concept of reference dependence à la Kőszegi and Rabin to a principal-agent setting.

The focus of Daido and Itoh, however, greatly differs from ours. Assuming that the

performance measure comprises of only two signals, two types of self-fulfilling prophecy

are explained, the Galatea and the Pygmalion effects.12 While sufficient to capture these

two effects, the assumption of a binary measure of performance does not allow one to

inquire into the form that contracts take under moral hazard.

2 The Model

There are two parties, a principal and an agent.13 The principal offers a one-period

employment contract to the agent. If the agent accepts the contract, then he chooses an

effort level a ∈ A ≡ [0, 1]. The agent’s action a equals the probability that the principal

receives a benefit B > 0. The principal’s expected net benefit is

π = aB − E[W ] ,

where W is the compensation payment the principal pays to the agent.14 The principal

is assumed to be risk and loss neutral, thus she maximizes π. We wish to inquire into the

form that contracts take under moral hazard and loss aversion. Therefore, we focus on

the cost minimization problem to implement a certain action â ∈ (0, 1).15

The action choice a ∈ A is private information of the agent and not observable for the

principal. Furthermore, it is assumed that the realization of B is not directly observable.

A possible interpretation is that B corresponds to a complex good whose quality cannot be

determined by a court, thus a contract cannot depend on the realization of B. Instead of

observing the agent’s action a or whether the benefit B was realized or not, the principal

11De Meza and Webb (2007) find conditions under which a simple bonus contract is optimal. For this
to be the case, however, they assume that the reference point is exogenously given and that all wage
payments are in the loss region, where the agent is assumed to be risk-loving.

12Roughly speaking, the former effect refers to empirical findings that an agent’s self-expectation about
his performance is an important determinant of his actual performance, whereas the latter effect refers
to the phenomenon that a principal’s expectation about the agent’s performance has an impact on
the agent’s actual performance.

13The model is similar to the one used by MacLeod (2003) to analyze subjective performance measures.
He does not discuss loss averse agents.

14The particular functional form of the principal’s profit function is not crucial for our analysis. We
assume this specific structure merely for illustrative purposes.

15The second-best action maximizes the principal’s expected benefit, aB, minus the minimum cost of
implementing action a. The overall optimal contract exhibits the same characteristics as the contract
that minimizes the cost of implementing an arbitrary action â.
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observes a contractible measure of performance, with s ∈ S ≡ {1, . . . , S} being the

realization of the performance measure or the signal. Let S ≥ 2. The probability of

observing signal s conditional on B being realized is denoted by γH
s . Accordingly, γL

s

is the probability of observing signal s conditional on B not being realized. With this

notation, the unconditional probability of observing signal s for a given action a is γs(a) ≡

aγH
s + (1 − a)γL

s . For technical convenience, we make the following assumption.

Assumption (A1): For all s, τ ∈ S with s 6= τ ,

(i) γH
s /γL

s 6= 1 (informative signals),

(ii) 0 < γH
s /γL

s < ∞ (full support),

(iii) γH
s /γL

s 6= γH
τ /γL

τ (different signals).

The assumption γH
s /γL

s 6= 1 for any s is a technical assumption that holds generically.

It guarantees that any signal s is either a good or a bad signal, in the sense that the

overall probability of observing that signal unambiguously increases or decreases in a.

By assuming that 0 < γH
s /γL

s < ∞ for all s, the standard full support assumption is

satisfied, since for a ∈ A, all signals occur with positive probability. Last, the assumption

γH
s /γL

s 6= γH
τ /γL

τ for all s 6= τ ensures that the signals can unambiguously be ranked

according to the relative impact of an increase in effort on the probability of observing a

particular signal.16

The contract which the principal offers to the agent consists of a payment for each

realization of the performance measure, {ws}
S

s=1 ∈ R
S.17

The agent is assumed to have reference-dependent preferences in the sense of Kőszegi

and Rabin (2006): Overall utility from consuming x = (x1, . . . , xK) ∈ R
K – when having

reference level r = (r1, . . . , rK) ∈ R
K for each dimension of consumption – is given by

v(x|r) ≡
K∑

k=1

mk(xk) +
K∑

k=1

µ(mk(xk) − mk(rk)).

Put verbally, overall utility is assumed to have two components: consumption utility

and gain-loss utility. Consumption utility, also called intrinsic utility, from consuming

in dimension k is denoted by mk(xk). How a person feels about gaining or losing in a

dimension is assumed to depend in a universal way on the changes in consumption utility

associated with such gains and losses. The universal gain-loss function µ(·) satisfies the

assumptions imposed by Tversky and Kahneman (1991) on their “value function”.18 In

our model, the agent’s consumption space comprises of two dimensions, money income

(x1 = W ) and effort (x2 = a). The agent’s intrinsic utility for money is assumed to be a

16Formally, for all a ∈ [0, 1], (γH
s − γL

s )/γs(a) > (γH
τ − γL

τ )/γτ (a) ⇐⇒ γH
s /γL

s > γH
τ /γL

τ .
17The restriction ws ∈ R for all s ∈ S is standard in the principal-agent literature and also in accordance

with observed practice. In a later section, however, we comment on this assumption.
18Roughly speaking, µ(z) is strictly increasing, continuous for all z, twice differentiable for all z 6= 0 with

µ(0) = 0, convex over the range of losses, and concave over the range of gains. For a more formal
statement of these properties, see Bowman et al. (1999).
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strictly increasing, (weakly) concave, and unbounded function. Formally, m1(W ) = u(W )

with u′(·) > ε > 0, u′′(·) ≤ 0. The intrinsic disutility from exerting effort a ∈ [0, 1] is

a strictly increasing, strictly convex function of effort, m2(a) = −c(a) with c′(·) > 0,

c′′(·) > 0, c′(0) = 0, and lima→1 c(a) = ∞. We assume that the gain-loss function is

piece-wise linear,

µ(x) =

{

x , for x ≥ 0

λx, for x < 0
.

The parameter λ characterizes the weight put on losses relative to gains.19 The weight

on gains is normalized to one. When λ > 1, the agent is loss averse in the sense that

losses loom larger than equally-sized gains.20 Last, the agent has an outside employment

opportunity (or reservation utility) yielding expected utility ū.

Following Kőszegi and Rabin (2006, 2007), the agent’s reference point is determined by

his rational expectations about outcomes. A given outcome is then evaluated by compar-

ing it to all possible outcomes, where each comparison is weighted with the probability

with which the alternative outcome occurs ex-ante. With the actual outcome being it-

self uncertain, the agent’s ex-ante expected utility is obtained by averaging over all these

comparisons.21 We apply the concept of choice-acclimating personal equilibrium (CPE)

as defined in Kőszegi and Rabin (2007), which assumes that a person correctly predicts

her choice set, the environment she faces, in particular the set of possible outcomes and

how the distribution of these outcomes depends on her decisions, and her own reaction to

this environment. The eponymous feature of CPE is that the agent’s reference point is

affected by his choice of action. As pointed out by Kőszegi and Rabin, CPE refers to the

analysis of risk preferences regarding outcomes that are resolved long after all decisions

are made. This environment seems well-suited for many principal-agent relationships. For

often the outcome or the return of a project becomes observable, and thus performance-

based wage compensation of the agent feasible, long after the agent finished working on

that project. Under CPE, the expectations relative to which a decision’s outcome is eval-

uated are formed at the moment when the decision is made, and therefore incorporate

19Alternatively, one could assume that µ(x) = ηx for gains and µ(x) = ηλx for losses, where η ≥ 0
can be interpreted as the weight attached to gain-loss utility relative to intrinsic utility. Our implicit
normalization η = 1 is without loss of generality due to the applied concept of choice-acclimating
personal equilibrium (CPE). Carrying η through the whole analysis would only replace (λ − 1) by
η(λ − 1) in all formulas.

20The assumption of a piece-wise linear gain-loss function is not uncommon in the literature on incentive
design with loss averse agents, see De Meza and Webb (2007), Daido and Itoh (2007). In their
work on asset pricing, Barberis et al. (2001) also apply this particular functional form, reasoning
that “curvature is most relevant when choosing between prospects that involve only gains or between
prospects that involve only losses. For gambles that can lead to both gains and losses, [...] loss aversion
at the kink is far more important than the degree of curvature away from the kink.”

21Suppose the actual outcome x and the vector of reference levels r are distributed according to distribu-
tion functions F and G, respectively. As introduced above, overall utility from two arbitrary vectors x
and r is given by v(x|r). With the reference point being distributed according to probability measure
G, the utility from a certain outcome is the average of how this outcome feels compared to all other
possible outcomes, U(x|G) =

∫
v(x|r) dG(r). Last, with x being drawn according to probability

measure F , utility is given by E[U(F |G)] =
s

v(x|r) dG(r) dF (x). Due to the applied equilibrium
concept, choice acclimating personal equilibrium, we will have F = G.
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the implications of the decision. More precisely, suppose the agent chooses action a and

that signal s is observed. The agent receives wage ws and incurs effort cost c(a). While

the agent expected signal s to come up with probability γs(a), with probability γτ (a)

he expected signal τ 6= s to be observed. If wτ > ws, the agent experiences a loss of

λ(u(ws) − u(wτ )), whereas if wτ < ws, the agent experiences a gain of u(ws) − u(wτ ). If

ws = wτ , there is no sensation of gaining or losing involved. The agent’s utility from this

particular outcome is given by

u(ws) +
∑

{τ |wτ <ws}

γτ (a)(u(ws) − u(wτ )) +
∑

{τ |wτ≥ws}

γτ (a)λ(u(ws) − u(wτ )) − c(a).

Averaging over all possible outcomes yields the agent’s expected utility from choosing

action a:

E[U(a)] =
S∑

s=1

γs(a)

{

u(ws) +
∑

{τ |wτ <ws}

γτ (a)(u(ws) − u(wτ ))

+
∑

{τ |wτ≥ws}

γτ (a)λ(u(ws) − u(wτ ))

}

− c(a).

Note that since the agent’s expected and actual effort choice coincide, there is neither a

gain nor a loss in the effort dimension.

We conclude this section by briefly summarizing the underlying timing of the described

principal-agent relationship.

1) The principal makes a take-it-or-leave-it offer {ws}
S
s=1 to the agent.

2) The agent either accepts or rejects the contract. If the agent rejects the contract the

game ends and each party receives her/his reservation payoff. If the agent accepts

the contract the game moves to the next stage.

3) The agent chooses his action and forms rational expectations about the monetary

outcomes. The agent’s rational expectations about the realization of the perfor-

mance measure determine his reference point.

4) Both parties observe the realization of the performance measure and payments are

made according to the contract.

3 The Analysis

Let the inverse function of the agent’s intrinsic utility of money be h(·), i.e., h(·) := u−1.

Put differently, the monetary cost for the principal to offer the agent utility us is h(us) =

ws. Due to the assumptions imposed on u(·), h(·) is a strictly increasing and weakly

convex function. Following Grossman and Hart (1983) we regard u = {u1, . . . , uS} as

the principal’s control variables in her cost minimization problem to implement action

â ∈ (0, 1). The principal offers the agent a contract that specifies for each signal a
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monetary payment or, equivalently, an intrinsic utility level. With this notation the

agent’s expected utility from exerting effort a is given by

E[U(a)] =
∑

s∈S

γs(a)us − (λ − 1)
∑

s∈S

∑

{τ |uτ >us}

γτ (a)γs(a)(uτ − us) − c(a). (1)

From the above formulation of the agent’s utility it becomes clear that λ captures not

only the weight put on losses relative to gains, but (λ − 1) also characterizes the weight

put on gain-loss utility relative to intrinsic utility. Thus, for λ ≤ 2, the weight attached

to gain-loss utility is below the weight attached to intrinsic utility. Note that for λ = 1

the agent’s expected utility equals expected net intrinsic utility. Thus, for λ = 1 we are

in the standard case without loss aversion. For a given contract u, the agent’s marginal

utility of effort amounts to

E[U ′(a)] =
∑

s∈S

(γH
s − γL

s )us

− (λ − 1)
∑

s∈S

∑

{τ |uτ >us}

[γτ (a)(γH
s − γL

s ) + γs(a)(γH
τ − γL

τ )](uτ − us) − c′(a). (2)

Suppose the principal wants to implement action â ∈ (0, 1). The optimal contract mini-

mizes the expected wage payment to the agent subject to the usual incentive compatibility

and individual rationality constraints:

min
u1,...,uS

∑

s∈S

γs(â)h(us)

subject to E[U(â)] ≥ ū , (IR)

â ∈ arg max
a∈A

E[U(a)] . (IC)

As a first benchmark consider the case where the agent’s action choice is observable and

contractible, i.e., the incentive constraint (IC) is absent. In order to implement action â

in this first-best situation, the principal pays the agent uFB = ū + c(â) irrespective of the

realization of the performance measure if the agent chooses the desired action, thereby

compensating him for his outside option and his effort cost.

At this point we simplify the analysis by imposing two assumptions. These assumptions

are sufficient to guarantee that the principal’s cost minimization problem exhibits the

following two important properties. First, there are incentive-compatible wage contracts,

i.e., contracts under which it is optimal for the agent to choose the desired action â.

Existence of such contracts is not generally satisfied with the agent being loss averse.

Second, the first-order approach is valid, i.e., the incentive constraint to implement action

â can equivalently be represented as follows: E[U ′(â)] = 0. The first assumption that we

introduce requires that the weight attached to gain-loss utility does not exceed the weight

put on intrinsic utility.

Assumption (A2): No dominance of gain-loss utility, λ ≤ 2.



Bonn Econ Discussion Paper 12

As carefully laid out in Kőszegi and Rabin (2007), CPE implies a strong notion of risk

aversion, in the sense that a decision maker may choose stochastically dominated options

when λ > 2, i.e. when his weight attached to the impact of loss aversion exceeds the weight

attached to consumption utility.22 The reason is that, with losses looming larger than

gains of equal size, the person ex-ante expects to experience a net loss. In consequence,

if reducing the scope of possibly incuring a loss is the decision maker’s primary concern,

that person would rather give up the slim hope of experiencing a gain at all in order

to avoid the disappointment in case of not experiencing this gain. In our model, if the

agent is sufficiently loss averse, the principal may be unable to implement any action

â ∈ (0, 1). The reason is that the agent minimizes the ex-ante expected net loss by

choosing one of the two extreme actions. The values of λ for which this behavior is

optimal for the agent crucially depend on the precise structure of the performance measure.

Assumption (A2) is sufficient, but by far not necessary, to ensure that there is a contract

such that â ∈ (0, 1) is incentive compatible. In Section 4, we relax Assumption (A2)

and discuss in detail the implications of λ > 2 on the contractual arrangement. Though

calibrationally not inconsistent, the tendency to choose stochastically dominated options

seems counterintuitive.23 Next to ensuring existence of an incentive compatible contract,

(A2) rules out that our findings are driven by such counterintuitive behavior of the agent.

To keep the analysis tractable we impose the following assumption which ensures –

given (A2) holds – that the first-order approach is valid.24

Assumption (A3): Convex marginal cost function, ∀ a ∈ [0, 1] : c′′′(a) ≥ 0.

We want to emphazise that – given (A2) – Assumption (A3) is a sufficient but not neces-

sary condition for the first-order approach to be applicable. For the first-order approach

to be valid it would also suffice to have λ sufficiently small, or the slope of the marginal

cost function sufficiently steep. Our results require the validity of the first-order approach,

not that Assumption (A3) holds. In Section 4 we shed some more light on what happens

when the first-order approach is not valid.

Lemma 1: Given (A1)-(A3), the constraint set of the principal’s minimization problem

is non-empty for all â ∈ (0, 1).

Proof: See Appendix.

22Suppose a loss-averse person has to choose between two lotteries: lottery 1 pays x for sure; lottery 2
pays x+y with probability p, where y > 0, and x otherwise. Then, for each λ > 2, the decision maker
prefers the dominated lottery 1 if p < (λ − 2)/(λ − 1). For further details on this point, see Kőszegi
and Rabin (2007).

23The “uncertainty effect” identified by Gneezy et al. (2006) refers to people valuing a risky prospect less
than its worst possible outcome. While this may be interpreted as experimental evidence for people
having preferences for stochastically dominated options, this finding crucially relies on the lottery
currency not being stated in purely monetary terms. Therefore, we believe that in the context of
wage contracts most people do not choose dominated options.

24The validity of the first-order approach under assumptions (A1)-(A3) is rigorously proven in the ap-
pendix. The reader should be aware, however, that the proof requires some notation introduced later
on. We therefore recommend to defer reading the proof until having read the preliminary considera-
tions up to Section 3.1.
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The above lemma states that there are wage contracts such that the agent is willing to

accept the contract and then chooses the desired action. Moreover, we will show that

a second-best optimal contract exists. This, however, is shown separately for the three

cases that are analyzed in this section.

Sometimes it will be convenient to state the constraints in terms of increases in intrinsic

utilities instead of absolute utilities. Note that whatever contract {ûs}s∈S the principal

offers, we can always relabel the signals such that this contract is equivalent to a contract

{us}
S
s=1 with us−1 ≤ us for all s ∈ {2, . . . , S}. This, in turn, allows us to write the contract

as us = u1 +
∑s

τ=2 bτ , where bτ = uτ − uτ−1 ≥ 0 is the increase in intrinsic utility for

money when signal τ instead of signal τ − 1 is observed. Let b = (b2, . . . , bS). Using this

notation allows us to rewrite the individual rationality constraint as follows:

u1 +
S∑

s=2

bs

[
S∑

τ=s

γτ (â) − ρs(γ̂, λ, â)

]

≥ ū + c(â) , (IR′)

where

ρs(γ̂, λ, â) := (λ − 1)

[ S∑

τ=s

γτ (â)

][ s−1∑

t=1

γt(â)

]

. (3)

Let ρ(γ̂, λ, â) = (ρ2(γ̂, λ, â), . . . , ρS(γ̂, λ, â)). The first part of the agent’s utility, u1 +
∑S

s=2 bs(
∑S

τ=s γτ (â)), is the expected intrinsic utility for money. Due to loss aversion,

however, the agent’s utility has a second negative component, the term b′ρ(γ̂, λ, â). Where

does this term come from? With bonus bs being paid to the agent whenever a signal higher

or equal to s is observed, the agent expects to receive bs with probability
∑S

τ=s γτ (â).

With probability
∑s−1

t=1 γt(â), however, a signal below s will be observed, and the agent

will not be paid bonus bs. Thus, with “probability” [
∑S

τ=s γτ (â)][
∑s−1

t=1 γt(â)] the agent

experiences a loss of λbs. Analogous reasoning implies that the agent will experience a

gain of bs with the same probability. With losses looming larger than gains of equal size,

in expectation the agent suffers from deviations from his reference point. This ex-ante

expected net loss is captured by the term, b′ρ(γ̂, λ, â), which we will refer to as the agent’s

“loss premium”.25 A crucial point is that the loss premium increases in the complexity

of the contract. When there is no wage differentiation at all, i.e., b = 0, then the loss

premium vanishes. If, in contrast, the contract specifies many different wage payments,

then the agent ex-ante considers a deviation from his reference point very likely. Put

differently, for each additional wage payment an extra negative term enters the agent’s

loss premium and therefore reduces his expected utility.26

25Our notion of the agent’s loss premium is highly related to the average self-distance of a lottery defined
by Kőszegi and Rabin (2007). Let D(u) be the average self-distance of incentive scheme u, then
[(λ − 1)/2]D(u) = b′ρ(γ̂, λ, â).

26 While the exact change of the loss premium from adding more and more wage payments is hard to
grasp, this point can heuristically be illustrated by considering the upper bound of the loss premium.
Suppose the principal sets n ≤ S different wages. It is readily verified that the loss premium is
bounded from above by (λ − 1)[(uS − u1)/2] × [(n − 1)/n], and that this upper bound increases as n
increases. Note, however, that even for n → ∞ the upper bound of the loss premmium is finite.
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Given the first-order approach is valid, the incentive constraint can be rewritten as

S∑

s=2

bsβs(γ̂, λ, â) = c′(â), (IC′)

where we defined

βs(γ̂, λ, â) :=

(
S∑

τ=s

(γH
τ − γL

τ )

)[

1 − (λ − 1)

(
s−1∑

t=1

γt(â)

)]

− (λ − 1)

[
S∑

τ=s

γτ (â)

](
s−1∑

t=1

(γH
t − γL

t )

)

.

Here, βs(·) is the marginal effect on incentives of an increase in the wage payments for

signals above s−1. Without loss aversion, i.e., λ = 1, this expression equals the marginal

probability of observing at least signal s. If the agent is loss averse, however, then the

absolute probability of observing at least signal s also plays a role in determining this

marginal effect. The reason is that the loss premium is a quadratic function of the

probability of observing at least signal s. Let β(γ̂, λ, â) = (β2(γ̂, λ, â), . . . , βS(γ̂, λ, â)).

As in the standard case, incentives are created solely by increases in intrinsic utilities, b.

In consequence, (IR′) is binding in the optimum. If this was not the case, i.e., if b satisfies

(IC′) but (IR′) holds with strict inequality, then the principal can lower payment u1 up

to the point where the (IR′) is satisfied with equality. Thus, reducing u1 while holding b

constant lowers the principal’s expected wage payment while preserving incentives.

It is obvious that (IC′) can only be satisfied if there exists at least one βs > 0. If, for

example, signals are ordered according to their likelihood ratios, then βs(·) > 0 for all

s = 2, . . . , S. More precisely, for a given ordering of signals, under (A2) the following

equivalence follows immediately from the fact that
∑s−1

t=1(γH
t − γL

t ) = −
∑S

τ=s(γ
H
τ − γL

τ ):

βs(γ̂, λ, â) > 0 ⇐⇒
S∑

τ=s

(γH
τ − γL

τ ) > 0 . (4)

3.1 Two Polar Cases: Pure Risk Aversion vs. Pure Loss Aversion

In this part of the paper we analyze the two polar cases: The standard case where the

agent is only risk averse but not loss averse, on the one hand, and the case of a loss averse

agent with a risk-neutral intrinsic utility function, on the other hand.

Pure Risk Aversion

First consider an agent who is risk-averse in the usual sense, i.e., h′′(·) > 0, but does not

exhibit loss aversion. Though not immediately obvious, the latter requirement corresponds

to the case where λ = 1. To see this, remember that the agent compares each outcome

with each possible other outcome. Thus the comparison of any two wages enters the

agent’s expected utility exactly twice, once as a loss and once as an equally-sized gain.
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For λ = 1, the agent puts equal weights on gains and losses, so all these comparisons just

cancel out, and we are left with

E[U(a)] =
S∑

s=1

γs(a)us − c(a).

With the agent not being loss averse, the first-order approach obviously is valid even

without Assumption (A3).

Proposition 1: Given (A1), h′′(·) > 0, and λ = 1. Then there exists a second-best

optimal contract to implement â ∈ (0, 1). The second-best contract has the property that

us 6= uτ ∀s, τ ∈ S and s 6= τ . Moreover, us > uτ if and only if γH
s /γL

s > γH
τ /γL

τ .

Proof: See Appendix.

The result in Proposition 1 is not new, since it basically restates the well-known finding

by Holmström (1979): With the relative impact of a marginal increase in effort on observ-

ing a signal being increasing in the likelihood ratio γH
s /γL

s , when the agent is risk averse,

signals that are more indicative of higher effort are rewarded strictly higher. Things,

however, look completely different when the agent is not risk averse but loss averse.

Pure Loss Aversion

Having considered the polar case of pure risk aversion, we now turn to the other extreme,

a purely loss averse agent. Formally, intrinsic utility of money income is a linear function,

h′′(·) = 0, and the agent is loss averse, λ > 1. As we have already reasoned, whatever con-

tract the principal offers, relabeling the signals always allows us to represent this contract

as an (at least weakly) increasing intrinsic utility profile. Therefore we can decompose the

principal’s problem into two steps: first, for a given ordering of signals, choose a nonde-

creasing profile of intrinsic utility levels that implements the desired action â at minimum

cost; second, choose the signal ordering with the lowest cost of implementation. As we

know from the discussion at the end of the previous section, a necessary condition for an

upward-sloping incentive scheme to achieve incentive compatibility is that for the under-

lying signal ordering at least one βs(·) > 0. In what follows we restrict attention to the set

of signal orderings that are incentive feasible in the afore-mentioned sense. Nonemptiness

of this set follows immediately from Lemma 1.

Consider the first step of the principal’s problem, i.e., taking the ordering of signals as

given, find the nondecreasing payment scheme with the lowest cost of implementation.

In what follows, we write the agent’s intrinsic utility in terms of additional payments,

us = u1 +
∑S

τ=2 bτ . With h(·) being linear, the principal’s objective function is C(u1, b) =

u1 +
∑S

s=2 bs(
∑S

τ=2 γτ (â)). Remember that in the optimum, (IR′) holds with equality.

Inserting (IR′) into the principal’s objective allows us to write the cost minimization

problem for a given order of signals in the following simple way:
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Program ML:

min
b∈R

S−1

+

b′ρ(γ̂, λ, â)

subject to b′β(γ̂, λ, â) = c′(â) (IC′)

The minimization problem (ML) has a simple intuition. The principal seeks to minimize

the agent’s expected net loss subject to the incentive compatibility constraint. Similar

to the case of pure risk aversion, where the principal would like to cut back the agent’s

risk premium, here she is interested in minimizing the agent’s loss premium. Due to the

incentive constraint, however, this loss premium has to be strictly positive.

It is important to realize that the principal’s cost minimization problem for a given

order of signals is a rather simple linear programming problem: minimize a linear objec-

tive function subject to one linear equality constraint. Since we restricted attention to

orderings of signals with βs(·) > 0 for at least one signal s, a solution to (ML) exists. Due

to the linear nature of problem (ML), (generically) this solution sets exactly one bs > 0

and all other bs = 0. Put differently, the problem is to find that bs which creates incentives

at the lowest cost.

So far we have seen that, for a given ordering of signals, the principal considers it optimal

to offer the agent a bonus contract: pay a low wage for signals below some threshold, and

a high wage for signals above this threshold. What remains to do for the principal, in a

second step, is to find the signal ordering that leads to the lowest cost of implementation.

With the number of different orders of signals being finite, this problem clearly has a

solution.

Proposition 2: Given (A1)-(A3), h′′(·) = 0 and λ > 1. Then there exists a second-

best optimal contract to implement action â ∈ (0, 1). The second-best optimal incentive

scheme {u∗
s}

S
s=1 entails a minimum of (wage) differentiation in the sense that u∗

s = u∗
H

for s ∈ B∗ ⊂ S and u∗
s = u∗

L for s ∈ S \ B∗, where u∗
H > u∗

L.

Proof: See Appendix.

According to Proposition 2, the principal considers it optimal to offer the agent a

bonus contract: the contract specifies a high wage us = u∗
H for s ∈ B∗ and a low wage

us = u∗
L for s /∈ B∗, where u∗

L < u∗
H .27 This endeavor to reduce the complexity of the

contract is plausible, since a high degree of wage differentiation increases the agent’s loss

premium: with the employment contract she offers to the agent, the principal determines

the dimensionality of the agent’s reference point. The higher the dimensionality of the

reference point is, the more likely it is that the agent incurs a loss in a particular dimension.

27As is well-known, without loss aversion, a broad range of contracts – including simple bonus schemes –
is optimal when both the agent and the principal are risk neutral. If, in addition, the agent is protected
by limited liability, Park (1995) and Demougin and Fluet (1998) show that the optimal contract is a
bonus scheme. These findings, however, immediately collapse when the agent is somewhat risk averse.
Our findings, on the other hand, are robust towards introducing a slightly concave intrinsic utility
function, as we will illustrate in Section 3.2.
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Therefore, with the concept of reference-dependent preferences developed by Kőszegi and

Rabin (2006), it truly pains a person to be exposed to numerous potential outcomes. This

disutility of the agent from facing several possible (monetary) outcomes which he demands

for to be compensated, makes it costly for the principal to offer complex contracts. In

consequence, the optimal contract entails only a minimum of wage differentiation. To

provide a more intuitive explanation for this finding, consider a principal who – starting

out from a given wage scheme – has to improve incentives. There are basically two ways

to do so. On the one hand, the principal can introduce a new wage spread, i.e., pay

slightly different wages for two signals that were rewarded equally in the original wage

scheme, while keeping the differences between all other neighboring wages constant. On

the other hand, the principal can increase an existing wage spread, holding constant all

other spreads between neighboring wages. Both procedures increase the loss premium by

increasing the size of some of the the expected losses without reducing others. Introducing

a new wage spread, however, additionally increases the loss premium by increasing the ex

ante expected probability of experiencing a loss. Therefore, in order to improve incentives

for a loss averse agent, it is advantageous to increase a particular existing wage spread

without adding to the contractual complexity in the sense of increasing the number of

different wages. Under the standard notion of a risk averse agent, however, one should

not expect to encounter this tendency to reduce the complexitiy of contracts. The reason

is that increasing incentives by introducing a small new wage spread is basically costless

for the principal because locally the agent is risk neutral. Therefore, under risk aversion

different outcomes are rewarded differently.

Up to now, however, we have not specified which signals are generally included in the

set B∗. In light of the above observation, the principal’s problem boils down to choosing

a binary partition of the set of signals, B ⊂ S, which characterizes for which signals the

agent receives the high wage and for which signals he receives the low wage. The wages

uL and uH are then uniquely determined by the corresponding individual rationality and

incentive compatibility constraints. The problem of choosing the optimal partition of

signals, B∗, which minimizes the principal’s expected cost of implementing action â is an

integer programming problem. As is typical for this class of problems, and as is nicely

illustrated by the well-known “0-1 Knapsack Problem”, it is not possible to provide a

general characterization of the solution. The “0-1 Knapsack Problem” refers to a hiker

who has to select from a group of items, all of which may be suitable for his trip, a

subset that has greatest value while not exceeding the capacity of his knapsack.28 In

order to highlight that it is not possible to provide a general answer which items should

be taken along, suppose that the hiker is close to exhausting his knapsack’s capacity.

Without further specifications, one cannot tell whether the hiker should take one last

relatively large item of high value, which possibly forces him to leave space unused, or

rather several small items that neatly fill the knapsack, but each of which is of only little

28 Suppose there are n items, each item j has a value vj > 0 and a weight wj > 0. Let the capacity of
the knapsack be c > 0. The 0-1 Knapsack Problem may be formulated as the following maximization
problem: max

∑n

j=1
vjxj subject to

∑n

j=1
wjxj ≤ c and xj ∈ {0, 1} for j = 1, . . . , n.
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value.

Next to these standard intricacies of integer programming, there is an additional diffi-

culty in our model: the principal’s objective behaves non-monotonic when including an

additional signal into the “bonus set” B. This is due to different – possibly conflicting –

targets that the principal pursues when deciding how to partition the set S. From Pro-

gram ML it follows that, for a given “bonus set” B, the minimum cost of implementing

action â is given by

CB = ū + c(â) +
c′(â)(λ − 1)PB(1 − PB)

[
∑

s∈B γH
s − γL

s ][1 − (λ − 1)(1 − 2PB)]
, (5)

where PB :=
∑

s∈B γs(â). The above costs can be rewritten such that the principal’s

problem amounts to

max
B⊂S

[
∑

s∈B

(γH
s − γL

s )

]{
1

(λ − 1)PB(1 − PB)
−

1

PB

+
1

1 − PB

}

. (6)

This objective function illustrates the tradeoff that the principal faces when deciding how

to partition the signal space. The first term,
∑

s∈B(γH
s − γL

s ), is the aggregate marginal

impact of effort on the probability of the bonus b := uH − uL being paid out. In order

to create incentives for the agent, the principal would like to make this term as large as

possible. This can be achieved by including only good signals in B. The second term,

on the other hand, is maximized by making the probability of paying the agent the high

wage either as large as possible or as small as possible, depending on the exact signal

structure and the action which is to be implemented. Intuitively, by making the event

of paying the high wage very likely or unlikely, the principal minimizes the scope for the

agent to experience a loss that he demands to be compensated for. Depending on the

signal structure, these two goals may conflict with each other, which makes a complete

characterization of the optimal contract very intricate. Nevertheless, it can be shown that

the optimal contract displays the following very plausible property.

Proposition 3: Let S+ ≡ {s ∈ S|γH
s − γL

s > 0}. The optimal partition of the signals for

which the high wage is paid, B∗, has the following property: Either B∗ ⊆ S+ or S+ ⊆ B∗.

Proof: See Appendix.

Put verbally, the optimal partition of the signal set takes one of the two possible forms:

the high wage is paid out to the agent (i) either only for good signals though possibly

not for all good signals, or (ii) for all good signals and possibly a few bad signals as well.

Loosely speaking, if the principal considers it optimal to pay the high wage very rarely,

she will reward only good signals with the extra payment b. If, on the other hand, she

wants the agent to receive the high wage with high probability, then she will reward at

least all good signals.

Without further assumptions, due to the discrete nature of the problem it is hard to

characterize the signals that are included in B∗. Back to the “0-1 Knapsack Problem”,
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here it is well-established for the continuous version of the problem that the solution can

easily be found by ordering the items according to their value-to-weight ratio.29 Even

though our problem is clearly more complex, we can obtain a similar result. Define

κ := max{s,t}⊆S |γs(â)−γt(â)|. Assuming that κ is sufficiently small makes the principal’s

problem of choosing B∗ similar to a continuous problem. With this assumption, we can

show that it is optimal to order the signals according to their likelihood ratios.

Proposition 4: Suppose κ is sufficiently small, then there exists a constant K such that

B∗ = {s ∈ S | γH
s /γL

s ≥ K}.

Proof: See Appendix.

Before moving on to the discussion of the more general case where the agent is both

risk averse and loss averse, we would like to pause to point out an interesting comparative

static result.

Proposition 5: An increase in the agent’s degree of loss aversion (i) decreases the neces-

sary wage spread to implement action â if and only if PB∗ > 1/2, given that the change in

λ does not lead to a change of B∗; (ii) strictly increases the minimum cost of implementing

action â.

Proof: See Appendix.

Part (i) of Proposition 5 relates to the reasoning by Kőszegi and Rabin (2006) that

if the agent is loss averse and expectations are the driving force in the determination

of the reference point, then “in principal-agent models, performance-contingent pay may

not only directly motivate the agent to work harder in pursuit of higher income, but

also indirectly motivate [him] by changing [his] expected income and effort.” As can be

seen from (1), the agent’s expected utility under the second-best contract comprises of

two components, the first of which is expected net intrinsic utility from choosing effort

level â, uL + b∗
∑

s∈B∗ γs(â) − c(â). Due to loss aversion, however, there is a second

component: With expected losses looming larger than equally sized gains, in expectation

the agent suffers from deviations from his reference point. While the strength of this effect

is determined by the degree of the agent’s loss aversion, λ, his action choice – together

with the signal parameters – determines the probability that such a deviation from the

reference point actually occurs. We refer to this probability, which is given by PB∗(1−PB∗),

as loss probability. Therefore, when choosing his action, the agent has to balance off two

possibly conflicting targets, maximizing expected net intrinsic utility and minimizing the

loss probability. The loss probability, which is a strictly concave function of the agent’s

effort, is locally decreasing at â if and only if PB∗ > 1/2. In this case, an increase in λ,

which makes reducing the loss probability more important, may lead to the agent choosing

a higher effort level, which in turn allows the principal to use lower-powered incentives.

29 In the continuous “0-1 Knapsack Problem” the constraints on the variables xj ∈ {0, 1} are relaxed to
xj ∈ [0, 1]. The continuous problem was elegantly solved by Dantzig (1957).
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This probably is the effect Kőszegi and Rabin had in mind when reasoning that under

loss aversion the agent’s motivation goes beyond pure monetary incentives. The principal,

however, is not able to benefit from the fact that an increase in the agent’s degree of loss

aversion may facilitate the creation of incentives. Even though an increase in λ may allow

for implementation of â by means of a lower-powered incentive scheme, according to part

(ii) of Proposition 5, the overall cost of implementation strictly increases in the agent’s

degree of loss aversion.

3.2 The General Case: Loss Aversion and Risk Aversion

We now turn to the intermediate case where the agent is both risk averse and loss averse.

The agent’s intrinsic utility for money is a strictly increasing and strictly concave function,

i.e., u′(·) > 0 and u′′(·) < 0, which implies that h(·) is strictly increasing and strictly

convex. Moreover, the agent is loss averse, i.e., λ > 1. From Lemma 1 we know that

the constraint set of the principal’s problem even in this general case is nonempty. By

relabeling signals, each contract can be interpreted as a contract that offers the agent a

(weakly) increasing intrinsic utility profile. This allows us to assess whether the agent

perceives receiving us instead of ut as a gain or a loss. As in the case of pure loss aversion,

we analyze the optimal contract for a given feasible ordering of signals.

The principal’s problem for a given arrangement of the signals is given by:

Program MG:

min
u1,...,uS

S∑

s=1

γs(â)h(us)

subject to

S∑

s=1

γs(â)us − (λ − 1)
S−1∑

s=1

S∑

t=s+1

γs(â)γt(â)[ut − us] − c(â) = ū (IRG)

S∑

s=1

(γH
s − γL

s )us−

(λ − 1)
S−1∑

s=1

S∑

t=s+1

[
γs(â)(γH

t − γL
t ) + γt(â)(γH

s − γL
s )
]
[ut − us] = c′(â) (ICG)

uS ≥ uS−1 ≥ . . . ≥ u1 (OCG)

Note that the objective function is strictly convex and the constraints are all linear in

u = {u1, . . . , uS}. Therefore, the Kuhn-Tucker theorem yields necessary and sufficient

conditions for optimality. Put differently, if there exists a solution to the problem (MG)

the solution is characterized by the partial derivatives of the Lagrangian associated with

(MG) set equal to zero.

Lemma 2: Given (A1)-(A3) and h′′(·) > 0, there exists a second-best optimal incentive

scheme for implementing action â ∈ (0, 1), denoted u∗ = {u∗
1, . . . , u

∗
S}.
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Proof: See Appendix

In order to interpret the first-order conditions of the Lagrangian to problem (MG) it is

necessary to know whether the Lagrangian multipliers are positive or negative.

Lemma 3: The Lagrangian multipliers of program (MG) associated with the incentive

compatibility constraint and the individual rationality constraint are both strictly positive,

i.e., µIC > 0 and µIR > 0, respectively.

Proof: See Appendix

Having established the sign of these Lagrangian multipliers, we now give a heuristic

reasoning why pooling of information may well be optimal in this more general case where

the agent is both risk averse and loss averse. For the sake of argumentation, suppose there

is no pooling of information in the sense that it is optimal to set distinct wages for distinct

signals, then all the order constraints are slack. Formally, if us 6= us′ for all s, s′ ∈ S and

s 6= s′, then µO,s = 0. In this case, i.e., when none of the ordering constraints is binding,

then the first-order condition of optimality with respect to us, ∂L(u)/∂us = 0, can be

written as follows:

h′(us) =

(

µIR + µIC

γH
s − γL

s

γs(â)

)

︸ ︷︷ ︸

=:Hs

[

1 − (λ − 1)

(

2
s−1∑

t=1

γt(â) + γs(â) − 1

)]

︸ ︷︷ ︸

=:Γs

− µIC(λ − 1)

[

2
s−1∑

t=1

(γH
t − γL

t ) + (γH
s − γL

s )

]

︸ ︷︷ ︸

=:Λs

. (7)

For λ = 1 we have h′(us) = Hs, the standard “Holmström-formula”.30 Note that Γs > 0

for λ ≤ 2. More importantly, irrespective of the signal ordering, we have Γs > Γs+1. The

third term, Λs, can be either positive or negative. If the compound signal of all signals

below s is a bad signal, then Λs < 0.

Since the incentive scheme is nondecreasing, when the order constraints are not binding

it has to hold that h′(us) ≥ h′(us−1). Thus, if µOC,s−1 = µOC,s = µOC,s+1 = 0 the following

inequality is satisfied:

Hs × Γs − Λs ≥ Hs−1 × Γs−1 − Λs−1. (8)

Even when Hs > Hs−1, as it is the case when signals are ordered according to their

likelihood ratio, it is not clear that inequality (8) is satisfied. In particular, when s and

s − 1 are good signals it seems to be likely that inequality (8) is violated, because then

Λs > Λs−1 and Γs < Γs−1. In summary, it may well be that for a given incentive-feasible

ordering of signals, and thus overall as well, the order constraints are binding, i.e., from

the principal’s point of view it may be optimal to offer a contract which is less complex

than the signal space allows for. We illustrate this conjecture in the following with an

example.

30 See Holmström (1979).
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Example: Suppose h(u) = ur, with r ≥ 0 being a measure for the agent’s risk aversion.

More precisely, the Arrow-Pratt measure for relative risk aversion of the agent’s intrinsic

utility function is R = 1 − 1
r

and therefore constant. First, we show for the case of this

intrinsic utility function of the CRRA type that the optimal contract is still a bonus

contract when the agent is not only loss averse, but also slightly risk averse.

Proposition 6: Given (A1)-(A3), h(u) = ur with r > 1, and λ > 1. Generically, for r

sufficiently small the optimal incentive scheme {u∗
s}

S
s=1 is a bonus scheme, i.e., u∗

s = u∗
H

for s ∈ B∗ ⊂ S and u∗
s = u∗

L for s ∈ S\B∗ where u∗
L < u∗

H .

Proof: See Appendix

Next, we demonstrate that pooling of signals may well be optimal even for a non-

negligible degree of risk aversion. Suppose the agent’s effort cost are c(a) = (1/2)a2 and

the effort level to be implemented is â = 1
2
. Moreover, we assume that the reservation

utility ū = 10, which guarantees that all utility levels are positive.31 To keep the example

as simple as possible, it is assumed that the agent’s performance can take only three

values, i.e., the agent’s performance is either excellent (E), satisfactory (S) or inadequate

(I). We consider two specifications of the performance measure. In the first specification

the satisfactory signal is a good signal, whereas in the second specification it is a bad

signal. Formally, in the first specification the conditional probabilities take the following

values:

γH
E = 5/10 γL

E = 1/10

γH
S = 4/10 γL

S = 3/10

γH
I = 1/10 γL

I = 6/10 .

The structure of the optimal contract for this specification and various values of r and λ

is presented in Table 1.

H
H

H
H

H
H

H
r

λ
1.0 1.1 1.3 1.5

1.5 u1 < u2 < u3 u1 < u2 = u3 u1 < u2 = u3 u1 < u2 = u3

2 u1 < u2 < u3 u1 < u2 < u3 u1 < u2 = u3 u1 < u2 = u3

3 u1 < u2 < u3 u1 < u2 < u3 u1 < u2 = u3 u1 < u2 = u3

Table 1: Structure of the optimal contract with two “good” signals.

Table 1 suggests that the optimal contract typically involves pooling of the two good

signals, in particular when the agent’s intrinsic utility is not too concave, i.e., if the agent

is not too risk averse. Table 1 nicely illustrates the trade-off the principal faces when the

agent is both, risk and loss averse: If the agent becomes more risk averse pooling is less

31Increasing ū makes the agent less risk averse and thus is similar to a reduction in r.
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likely to be optimal. If, on the other hand, he becomes more loss averse, pooling is more

likely to be optimal.32

In the second specification we assume that there are two bad signals. The conditional

probabilities are as follows:

γH
E = 6/10 γL

E = 1/10

γH
S = 2/10 γL

S = 4/10

γH
I = 2/10 γL

I = 5/10 .

The results for this case are presented in Table 2.

H
H

H
H

H
H

H
r

λ
1.0 1.1 1.3 1.5

1.5 u1 < u2 < u3 u1 = u2 < u3 u1 = u2 < u3 u1 = u2 < u3

2 u1 < u2 < u3 u1 = u2 < u3 u1 = u2 < u3 u1 = u2 < u3

3 u1 < u2 < u3 u1 = u2 < u3 u1 = u2 < u3 u1 = u2 < u3

Table 2: Structure of the optimal contract with two “bad” signals.

In this specification, a binary statistic that pools the two bad signals seems to be optimal

almost always. The reason behind this observation is that the two bad signals are very

similar. In consequence, paying the same wage for satisfactory as well as inadequate

performance increases the risk premium only slightly. On the other hand, by pooling

satisfactory and inadequate performance it becomes less likely for the agent ex-ante to

experience a loss, i.e., the loss premium is reduced. Therefore, it is optimal for the

principal to use a bonus scheme even when the agent’s degree of loss aversion is small.

4 Implementation Problems, Turning a Blind Eye, and Stochastic Contracts

In this section we do not impose assumptions that guarantee the validity of the first-

order approach. In particular, in order to explore the implications of a higher degree of

loss aversion, we relax (A2). We restrict attention to two simplifications of the former

model. First, we return to the assumption of a purely loss averse agent. Second, only

binary measures of performance are considered. This latter assumption seems natural

in the light of the previous section: there it was shown that, when intrinsic utility is a

linear function and the agent’s degree of loss aversion is not too high, it is optimal for the

principal to construct a binary measure of performance by offering a bonus contract.

32For a given r, the degree of pooling does not monotonically increase in λ. As discussed at the end of
Section 3.1, a higher degree of loss aversion of the agent may help the principal to create incentives.
If this is the case, a contract that contains less pooling is preferred from an incentive point of view.
If this positive effect of less pooling on incentives outweighs the negative effect on the agent’s loss
premium, then the optimal contract consists of more distinct wage payments when λ increases. This
can, however happen only locally, that is, at some point the degree of pooling increases in λ.
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4.1 The Case of a Binary Measure of Performance

As before, the principal cannot observe the agent’s action a or whether the benefit B

was realized or not. Instead she observes a contractible binary measure of performance,

i.e., S = {1, 2}. For notational convenience , let (1 − γH) and γH denote the probabil-

ities of observing signal s = 1 and s = 2, respectively, conditional on B being realized.

Accordingly, (1 − γL) and γL are the probabilities of observing signal s = 1 and s = 2,

respectively, conditional on B not being realized.33 Thus, the unconditional probability

of observing signal s = 2 for a given action a is γ(a) ≡ aγH +(1−a)γL. Let γ̂ = (γH , γL).

We reformulate (A1) for the binary case as follows.

Assumption (A4): 1 > γH > γL > 0 .

With only two possible signals to be observed, the contract takes the form of a bonus

contract: the agent is paid a base wage which yields intrinsic utility u if the bad signal

is observed, and he is paid the base wage plus a bonus b resulting in intrinsic utility

u + b if the good signal is observed. For now assume that b ≥ 0.34 For expositional

purposes we assume that the agent’s intrinsic disutility of effort is a quadratic function,

c(a) = (k/2)a2.35 The agent’s expected utility from choosing effort level a then is

E [U(a)] = u + γ(a)b −
k

2
a2 − (λ − 1)γ(a)(1 − γ(a))b. (9)

As before, the first component is expected net intrinsic utility from choosing effort level

a, that is, expected wage payment minus effort cost. The second component is the loss

premium, with γ(a)(1 − γ(a)) denoting the loss probability.

4.2 Invalidity of the First-Order Approach

The first derivative of expected utility with respect to effort is given by

E [U ′(a)] = (γH − γL)b [2 − λ + 2γ(a)(λ − 1)]
︸ ︷︷ ︸

MB(a)

− ka
︸︷︷︸

MC(a)

. (10)

While the marginal cost, MC(a), obviously is a straight line through the origin with slope

k, the marginal benefit, MB(a), also is a positively sloped, linear function of effort a. An

increase in b unambiguously makes MB(a) steeper. Letting a0 denote the intercept of

MB(a) with the horizontal axis, we have

a0 =
λ − 2 − 2γL(λ − 1)

2(γH − γL)(λ − 1)
.

The cases for a0 < 0 and a0 > 0 are depicted in Figures 1 and 2, respectively. Implemen-

tation problems in our sense refer to a situation where there are actions a ∈ (0, 1) that

are not incentive compatible for any bonus payment.

33In the notation introduced above, we have γH
1

= 1 − γH , γH
2

= γH , γL
1

= 1 − γL and γL
2

= γL.
34The assumption b ≥ 0 is made only for expositional purposes, the results hold true for b ∈ R.
35This functional form does not fit exactly the assumptions on c(·) that we imposed above, but is made

for expositional convenience. Allowing for more general effort cost functions does not qualitatively
change the insights that are to be obtained.
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aâa0

MC(a)
MB(a)

Figure 1: MB(a) and MC(a) for a0 < 0.

aâa0

MB(a) MC(a)

Figure 2: MB(a) and MC(a) for a0 > 0.

Proposition 7: Given (A4), effort level â ∈ (0, 1) is implementable if and only if a0 ≤ 0.

Proof: See Appendix.

Implementation problems arise when a0 > 0, or equivalently, when γL < 1/2 and

λ > 2(1− γL)/(1− 2γL) > 2. Somewhat surprisingly, this includes performance measures

with γL < 1/2 < γH , which (possibly) are highly informative. Informative in this context

means that it is more likely to observe the bad signal if benefit B was not realized ,

whereas it is more likely to observe the good signal if B was realized. So, why do these

implementation problems arise in the first place? Remember that the agent has two

targets: First, as in classic models, he seeks to maximize net intrinsic utility, u + bγ(a)−

(k/2)a2. When the agent cares only about this net intrinsic utility (e.g., he is loss neutral)

then each action can be implemented by choosing a sufficiently high bonus. Due to loss

aversion, however, the agent has a second target which is minimizing the expected loss.

How can the agent pursue this goal? He can do so by choosing an action such that the loss

probability, γ(a)(1−γ(a)), becomes small. The crucial point is that these two targets may

conflict with each other in the sense that an increase in effort may increase net intrinsic

utility but at the same time also increases the loss probability. First of all, note that

implementation problems never arise when γL ≥ 1/2 or λ ≤ 2. For γL ≥ 1/2, the loss

probability is strictly decreasing in the agent’s action. Consequently, with both targets

of the agent being aligned, an increase in the bonus unambiguously leads to an increase

in the agent’s action. For λ ≤ 2, the weight put on gain-loss utility, λ − 1, is lower

than the weight put on intrinsic utility, so the agent is more interested in maximizing

net intrinsic utility than in minimizing the loss probability. With loss aversion being not

that important, an increase in the bonus therefore always leads to an increase in effort,

irrespective of whether the loss probability locally increases or decreases in the agent’s

action. For γL < 1/2, on the other hand, implementation problems do arise when λ is

sufficiently large. Roughly speaking, being sufficiently loss averse, the agent primarily

cares about reducing the loss probability. With the loss probability being inverted U-

shaped, the agent achieves this by choosing one of the two extreme actions a ∈ {0, 1}.

Therefore, the principal cannot motivate the agent to choose an action â ∈ (0, 1) when

γL < 1/2 and the agent’s loss aversion is sufficiently severe.
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4.3 Turning a Blind Eye

As we have seen in the preceding analysis, the principal faces implementation problems

whenever a0 > 0. One might wonder if there is a remedy for these implementation

problems. The answer is “yes”, there is a remedy, and in fact a surprisingly simple one.

The principal can manipulate the signal in her favor by not paying attention to the signal

from time to time but nevertheless paying the bonus in these cases. Formally, suppose the

principal commits herself to stochastically ignoring the signal with probability p ∈ [0, 1).36

Thus, the overall probability of receiving the bonus is given by γ(a; p) ≡ p + (1 − p)γ(a).

This strategic ignorance of information gives rise to a transformed performance measure

γ̂(p) = (γH(p), γL(p)). As before, γH(p) denotes the probability that the bonus is paid to

the agent conditional on benefit B being realized. Given that B is realized, this happens

either when the performance measure is ignored, or - if the principal pays attention to the

performance measure - when the good signal is realized. Hence, γH(p) = p + (1 − p)γH .

Analogously, the probability of the bonus being paid out conditional on B not being

realized is given by γL(p) = p+(1−p)γL. As it turns out, ignoring the whole performance

measure with probability p is formally equivalent to ignoring only the bad signal with

probability p.37 For this reason, we refer to the principal not paying attention to the

performance measure as turning a blind eye on bad performance of the agent. It is readily

verified that under the transformed performance measure γ̂(p) the intercept of the MB(a)

function with the horizontal axis,

a0(p) ≡
λ − 2 − 2

[
p + (1 − p)γL

]
(λ − 1)

2(1 − p)(γH − γL)(λ − 1)
,

not only is decreasing in p but also can be made arbitrarily small, in particular, arbitrarily

negative. Formally, da0(p)/dp < 0 and limp→1 a0(p) = −∞. In the light of Proposition

7 this immediately implies that the principal can eliminate any implementation problems

by choosing p sufficiently high, that is, by turning a blind eye sufficiently often.

Besides alleviating possible implementation problems, turning a blind eye on the bad

signal can also benefit the principal from a cost perspective. Using the definition of

γ(a; p) it can be shown that the minimum cost of implementation of action â under the

transformed performance measure, C(â; p), takes the following form:

C(â; p) = u +
k

2
â2 +

kâ(λ − 1)(1 − γ(â))

(γH − γL)

γ(â) + p(1 − γ(â))

1 − (λ − 1) [1 − 2γ(â) − 2p(1 − γ(â))]
(11)

Differentiating the principal’s cost with respect to p reveals that sign{dC(â; p)/dp} =

sign{2−λ}. Hence, an increase in the probability of ignoring the bad signal decreases the

cost of implementing a certain action if and only if λ > 2. Hence, whenever the principal

36Always ignoring the signal, i.e., setting p = 1, would be detrimental for incentives because then the
agent’s monetary payoff is independent of his action. Hence, he would choose the least cost action
a = 0. Therefore, we a priori restrict the principal to choose p from the interval [0, 1).

37In this latter case, the agent receives the bonus either when the good signal is observed, which happens
with probability γ(a), or when the bad signal is observed but is ignored, which happens with probabil-
ity (1−γ(a))p. Hence, the overall probability of the bonus being paid out is given by γ(a)+(1−γ(a))p.
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turns a blind eye in order to remedy implementation problems, he will do so to the largest

possible extent.38,39 We summarize the preceding analysis in the following proposition.

Proposition 8: Suppose the principal can commit herself to stochastic ignorance of the

signal. Then each action â ∈ [0, 1] can be implemented. Moreover, the implementation

costs are strictly decreasing in p if and only if λ > 2.

Proof: See Appendix.

We restricted the principal to offer non-stochastic payments conditional on which signal

is observed. If the principal was able to do just that, then he could remedy implementation

problems by paying the base wage plus a lottery in the case of the bad signal. For instance,

when the lottery yields b with probability p and zero otherwise, this is just the same as

turning a blind eye.40 This observation suggests that the principal may benefit from

offering a contract that includes randomization, which is in contrast to the finding under

conventional risk aversion in Holmström (1979).41

4.4 Blackwell Revisited

We conclude this section by briefly pointing out an interesting implication of the above

analysis. Suppose the principal has no access to a randomization device, i.e., turning a

blind eye is not possible. Then the above considerations allow a straight-forward compar-

ison of performance measures ζ̂ = (ζH , ζL) and γ̂ = (γH , γL) if ζ̂ is a convex combination

of γ̂ and 1 ≡ (1, 1).

Corollary 1: Let ζ̂ = p1 + (1 − p)γ̂ with p ∈ (0, 1). Then the principal at least weakly

prefers performance measure ζ̂ to γ̂ if and only if λ ≥ 2.

Proof: See Appendix.

The finding that the principal prefers the “garbled” performance measure ζ̂ over per-

formance measure γ̂ is at odds with Blackwell’s theorem. To see this, let performance

measures γ̂ and ζ̂ be characterized, respectively, by the stochastic matrices

P γ =

(

1 − γH γH

1 − γL γL

)

and P ζ =

(

1 − ζH ζH

1 − ζL ζL

)

.

38Formally, for λ > 2, the solution to the principal’s problem of choosing the optimal probability to turn
a blind eye, p∗, is not well defined because p∗ → 1. If the agent is subject to limited liability or there
is a cost of ignorance, however, the optimal probability of turning a blind eye is well defined.

39This is in the spirit of Becker and Stigler (1974), who show that despite a small detection probability
of malfeasance, incentives can be maintained if the punishment is sufficiently severe.

40In this case, the agent receives the bonus when the good signal is observed, which happens with
probability γ(a), or when the bad signal is observed and the realization of the lottery is b, which
happens with probability (1 − γ(a))p. Hence, the overall probability of the bonus being paid out is
given by γ(a) + (1 − γ(a))p, which is nothing but γ(a; p) from turning a blind eye on the bad signal.

41The finding that stochastic contracts may be optimal is not novel to the principal-agent literature.
Haller (1985) shows that in the case of a satisficing agent, who wants to achieve certain aspiration
levels of income with certain probabilities, randomization may pay for the principal. Moreover, Strausz
(2006) finds that deterministic contracts may be suboptimal in a screening context.
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According to Blackwell’s theorem, any decision maker prefers information system γ̂ to ζ̂

if and only if there exists a non-negative stochastic matrix M with
∑

j mij = 1 such that

P ζ = P γM .42 It is readily verified that this matrix M exists and takes the form

M =

(

1 − p p

0 1

)

.

Thus, even though comparison of the two performance measures according to Blackwell’s

theorem implies that the principal should prefer γ̂ over ζ̂, the principal actually prefers the

“garbled” information system ζ̂ over information system γ̂. While Kim (1995) has already

shown that the necessary part of Blackwell’s theorem does not hold in the agency model,

the sufficiency part was proven to be applicable to the agency framework by Gjesdal

(1982).43Our findings, however, show that this is not the case anymore when the agent is

loss averse.

5 Robustness, Extensions and Concluding Remarks

In this paper we explore the implications of reference-dependent preferences on contract

design in an otherwise standard model of principal-agency. We find that introducing

loss aversion on the agent’s side leads to a reduction in the complexity of the optimal

contractual arrangement. In the extreme case of a purely loss averse agent, the optimal

contract takes the form of a simple bonus contract: some realizations of the performance

measure are rewarded with a bonus payment, while others are not. Thus, loss aversion

provides a theoretical rationale for bonus contracts, the wide application of which is hard

to reconcile with obvious drawbacks – as seasonality effects or insurance fraud – that come

along with this particular contractual form.

In the rest of the section we consider the robustness of our results. After a brief and

semi-formal analysis of an alternative equilibrium concept, we explore the consequences

of nonquadratic effort costs for implementation problems. Finally, we conclude by dis-

cussing diminishing sensitivity of the gain-loss function. Throughout the whole analysis

we adopted the concept of choice-acclimating personal equilibrium (CPE). As already

pointed out in Section 2, for higher degrees of loss aversion this concept has the question-

able property that a decision maker may prefer stochastically dominated options. Kőszegi

and Rabin (2006, 2007) provide another concept, called unacclimating personal equilib-

rium (UPE), under which such behavior cannot occur. The major difference between UPE

and CPE is the timing of expectation formation and actual decision making. Under UPE

a decision maker first forms his expectations, which determine his reference point, and

thereafter, given these expectations, chooses the optimal action. To rule out that people

can systematically cheat themselves, for action â to be an UPE, it must be optimal for

42See Blackwell (1951, 1953).
43In order to avoid confusion: The necessary part of Blackwell’s theorem states that the principal being

better off implies that she uses a more informative performance measure. The sufficiency part con-
versely states that making use of more informative performance measure implies that the principal is
better off.
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the decision maker to choose â given that he expected to do so. In the following we will

argue that applying UPE instead of CPE does not change our main findings. For the sake

of argumentation, consider the case of a purely loss averse agent, i.e., intrinsic utility is

linear. The agent’s ex-ante expected utility from choosing action a when expecting action

â is

E[U(a|â)] =
S∑

s=1

γs(a)

[

us +
s−1∑

j=1

γj(â)(us − uj) − λ

S∑

t=s+1

γt(â)(ut − us)

]

− c(a) + µ(c(â) − c(a)) .

On the equilibrium path expectation and actual action coincide. Therefore, the agent’s ex-

ante expected utility, and in consequence the individual rationality constraint, takes the

same form under both equilibrium concepts, CPE and UPE. The incentive compatibility

constraint, on the other hand, depends on the applied equilibrium concept. Given the

agent expected to choose â, his marginal utility from choosing a is

E[U ′(a|â)] =
S∑

s=1

(γH
s − γL

s )us +
S∑

s=1

s−1∑

j=1

γj(â)(γH
s − γL

s )(us − uj)

− λ
S∑

s=1

S∑

j=s+1

γj(â)(γH
s − γL

s )(uj − us) − c′(a) + µ′(c(â) − c(a)) .

Note that either µ′(·) = 1 or µ′(·) = λ, depending on whether â is greater or lower

than a. Even though E[U(a|â)] is a strictly concave function in the agent’s actual action

choice a for all values of λ ≥ 1, under UPE there arises the problem of multiplicity of

equilibria. More precisely, for a given incentive scheme u, there exists a range of actions

a ∈ [a(u), ā(u)] all of which constitute a UPE. This problem can easily be circumvented by

assuming that the agent chooses the highest action which constitutes a UPE. In this case,

there is no need to impose additional assumptions on the cost function or to assume that λ

is sufficiently small.44 By imposing this alternative assumption the incentive compatibility

constraint can be rewritten as

S∑

s=2

bs

{(
S∑

t=s

(γH
t − γL

t )

)(

1 +
s−1∑

j=1

γj(â)

)

− λ

(
S∑

t=s

γt(â)

)(
s−1∑

j=1

(γH
j − γL

j )

)}

= 2c′(â) .

Clearly, the incentive compatibility constraint is a linear constraint in the bonus payments

b = (b2, . . . , bS). Thus, our bonus contract result is robust with respect to this change of

Assumptions (A2) and (A3).

There is another way to resolve the multiplicity problem under UPE. Kőszegi and

Rabin (2006, 2007) define a preferred personal equilibrium (PPE) as a decision maker’s

44For given expectations â, let EUg and EUl denote the agent’s expected utility given that µ(x) = x
and µ(x) = λx, respectively. Both EUg and EUl are strictly concave functions, with EUg achieving
its maximum at a strictly higher action than EUl. EUg and EUl intersect at â. Action â is an UPE
if it lies between the maximizing actions of EUg and EUl. Therefore, expecting to choose the action
which maximizes EUg not only constitutes an UPE, but also is the highest possible UPE.
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ex-ante favorite plan among those plans he actually will follow through. Put differently,

given incentive scheme u, the agent chooses the action aPPE ∈ [a(u), ā(u)] that maximizes

expected utility among those actions that constitute a UPE. If for all incentive-compatible

incentive schemes we have aPPE ∈ (a(u), ā(u)) then PPE and CPE coincide, i.e., aPPE is

determined by the first-order condition that characterizes the agent’s action under CPE.

Thus, by imposing the PPE-analogue of (A2) and (A3) we can derive results identical to

those under CPE. If aPPE ∈ {a(u), ā(u)} for all incentive-compatible incentive schemes,

the optimal contract also is a bonus contract since both boundary actions are determined

by functions linear in b = (b2, . . . , bS).45 In the intermediate case, however, where aPPE ∈

(a(u), ā(u)) for some incentive-compatible incentive schemes but aPPE ∈ {a(u), ā(u)} for

others, the optimal contract is not necessarily a bonus scheme.

If the agent’s action is characterized by PPE, for all actions â ∈ (0, 1) to be imple-

mentable we still need the assumption that λ is not too high. Put differently, imple-

mentation problems as discussed in Section 4 also arise under PPE. Compared to CPE,

however, these implementation problems are less severe. For instance, actions close to

zero are always implementable under PPE.

For the discussion of implementation problems in Section 4, we restricted attention to

quadratic effort costs. The finding that implementation problems are an important issue,

however, holds true for a wide variety of cost functions. Depending on the particular

functional form of the corresponding marginal costs, these implementation problems may

be more or less severe. For instance, the result that there are implementation problems

if a0 > 0 holds true for all strictly increasing and strictly convex cost functions with

c′(0) = 0. As for strictly concave marginal costs with c′(0) = 0, no action â ∈ (0, 1) is

implementable if a0 ≥ 0; and even for a0 < 0 there may be actions, in particular actions

close to 1, that are not implementable.

Moreover, we kept the whole analysis simple by ignoring diminishing sensitivity, that

is, by considering a piece-wise linear gain-loss function. A more general gain-loss function

makes the analysis by far more complicated: Both the incentive compatibility constraint

and the individual rationality constraint are no longer linear functions in the intrinsic

utility levels, and thus the Kuhn-Tucker conditions are not necessarily sufficient. Nev-

ertheless, we expect that a reduction in the complexity of the contract may benefit the

principal in this case as well. Diminishing sensitivity of the agent’s utility implies that

the sum of two net losses of two monetary outcomes exceeds the net loss of the sum of

these two monetary outcomes. Therefore, in addition to the effects discussed in the paper,

under diminishing sensitivity there is another channel through which melting two bonus

payments into one “big” bonus affects, and in tendency reduces, the agent’s expected net

loss. There is, however, an argument running counter to this intuition. As we have shown,

loss aversion may help the principal to create incentives. Therefore, setting many different

wage payments, and thereby – in a sense – creating many kinks, proximity to which the

45The case of aPPE = ā(u) corresponds to the alternative assumption to (A2) discussed above. If
aPPE = a(u), on the other hand, then aPPE maximizes EUl, as defined in the previous footnote.
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agent strongly dislikes under diminishing sensitivity, may have favorable incentive effects.

Exploring the effects of diminishing sensitivity in a principal-agent relationship with moral

hazard is therefore an open question for future research.

A Appendix: Proofs of Propositions and Lemmas

Proof of Lemma 1

Suppose that signals are ordered according to their likelihood ratio, that is, s > s′ if and

only if γH
s /γL

s > γH
s′ /γ

L
s′ . Consider a contract of the form

us =

{

u if s < ŝ

u + b if s ≥ ŝ
,

where b > 0 and 1 < ŝ ≤ S. Under this contractual form and given that the first-order

approach is valid, (IC) can be rewritten as

b

{[
S∑

s=ŝ

(γH
s − γL

s )

](

1 − (λ − 1)
ŝ−1∑

s=1

γs(â)

)

− (λ − 1)

(
ŝ−1∑

s=1

(γH
s − γL)

)(
S∑

s=ŝ

γs(â)

)}

= c′(â).

Since signals are ordered according to their likelihood ratio, we have
∑S

s=ŝ(γ
H
s − γL

s ) > 0

and
∑ŝ−1

s=1(γ
H
s − γL) < 0 for all 1 < ŝ ≤ S. This implies that the term in curly brackets

is strictly positive for λ ≤ 2. Hence, with c′(â) > 0, b can alway be chosen such that (IC)

is met. Rearranging the participation constraint,

u ≥ ū + c(â) − b

(
S∑

s=ŝ

γs(â)

)[

1 − (λ − 1)

(
ŝ−1∑

s=1

γs(â)

)]

,

reveals that (IR) can be satisfied for any b by choosing u appropriately. This concludes

the proof.

Proof of Proposition 1

It is readily verified that Assumptions 1-3 from Grossman and Hart (1983) are satisfied.

Thus, the cost-minimization problem is well defined, in the sense that for each action

a ∈ (0, 1) there exists a second-best incentive scheme. Suppose the principal wants to

implement action â ∈ (0, 1) at minimum cost. Since the agent’s action is not observable,

the principal’s problem is given by

min
{us}S

s=1

S∑

s=1

γs(â)h(us) (MR)
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subject to

S∑

s=1

γs(â)us − c(â) ≥ ū , (IRR)

S∑

s=1

(γH
s − γL

s )us − c′(â) = 0 . (ICR)

where the first constraint is the individual rationality constraint and the second is the

incentive compatibility constraint. Note that the first-order approach is valid, since the

agent’s expected utility is a strictly concave function of his effort. The Lagrangian to the

resulting problem is

L =
S∑

s=1

γs(a)h(us) − µ0

{
S∑

s=1

γs(a)us − c(a) − ū

}

− µ1

{
S∑

s=1

(γH
s − γL

s )us − c′(a)

}

,

where µ0 and µ1 denote the Lagrange multipliers of the individual rationality constraint

and the incentive compatibility constraint, respectively. Setting the partial derivative of

L with respect to ws equal to zero yields

∂L

∂us

= 0 ⇐⇒ h′(us) = µ0 + µ1
γH

s − γL
s

γs(â)
, ∀s ∈ S. (A.1)

Irrespective of the value of µ0, if µ1 > 0, convexity of h(·) implies that us > us′ if and only

if (γH
s − γL

s )/γs(â) > (γH
s′ − γL

s′)/γs′(â), which in turn is equivalent to γH
s /γL

s > γH
s′ /γ

L
s′ .

Thus it remains to show that µ1 is strictly positive. Suppose, in contradiction, that µ1 ≤ 0.

Consider the case µ1 = 0 first. From (A.1) it follows that us = uf for all s ∈ S, where

uf satisfies h′(uf ) = µ0. This, however, violates (ICR), a contradiction. Next, consider

µ1 < 0. From (A.1) it follows that us < us′ if and only if (γH
s −γL

s )/γs(â) > (γH
s′ −γL

s′)/γt(â).

Let S+ ≡
{
s|γH

s − γL
s > 0

}
, S− ≡

{
s|γH

s − γL
s < 0

}
, and û ≡ min{us|s ∈ S−}. Since

û > us for all s ∈ S+, we have

S∑

s=1

(γH
s − γL

s )us =
∑

S−

(γH
s − γL

s )us +
∑

S+

(γH
s − γL

s )us

<
∑

S−

(γH
s − γL

s )û +
∑

S+

(γH
s − γL

s )û

= û

S∑

s=1

(γH
s − γL

s )

= 0,

again a contradiction to (ICR). Hence, µ1 > 0 and the desired result follows.

Proof of Proposition 2

The problem of finding the optimal contract u∗ to implement action â ∈ (0, 1) is de-

composed into two subproblems. First, for a given incentive feasible ordering of signals,
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we derive the optimal nondecreasing incentive scheme that implements action â ∈ (0, 1).

Then, in a second step, we choose the ordering of signals for which the ordering specific

cost of implementation is lowest.

Step 1: Remember that the ordering of signals is incentive feasible if βs(·) > 0 for

at least one signal s. For a given incentive feasible ordering of signals, in this first step

we solve Program ML. First, note that it is optimal to set bs = 0 if βs(·) < 0. To see

this, suppose, in contradiction, that in the optimum (IC′) holds and bs > 0 for some

signal s with βs(·) ≤ 0. If βs(·) = 0, then setting bs = 0 leaves (IC′) unchanged, but

leads to a lower value of the objective function of Program ML, contradicting that the

original contract is optimal. If βs(·) < 0, then setting bs = 0 not only reduces the value of

the objective function, but also relaxes (IC′), which in turn allows to lower other bonus

payments, thereby lowering the value of the objective function even further. Again, a

contradiction to the original contract being optimal. Let Sβ ≡ {s ∈ S|βs(·) > 0} denote

the set of signals for which βs(·) is strictly positive under the considered ordering of

signals, and let Sβ denote the number of elements in this set. Thus, Program (ML) can

be rewritten as

Program ML+:

min
{bs}s∈Sβ

∑

s∈Sβ

bsρs(γ̂, λ, â)

subject to (i)
∑

s∈Sβ

bsβs(γ̂, λ, â) = c′(â) (IC+)

(ii) bs ≥ 0, ∀s ∈ Sβ .

Program ML+ is a linear programming problem. It is well-known that if a linear program-

ming problem has a solution, it must have a solution at an extreme point of the constraint

set. Generically, there is a unique solution and this solution is an extreme point. Since the

constraint set of Program ML+, M ≡ {{bs}s∈Sβ
∈ R

Sβ

+ |
∑

s∈Sβ
bsβs(γ̂, λ, â) = c′(â)}, is

closed and bounded, Program ML+ has a solution. Hence
∑

s∈Sβ
bsρs(γ̂, λ, â) achieves its

greatest lower bound at one of the extreme points of M. With M describing a hyperplane

in R
Sβ

+ , all extreme points of M are characterized by the following property: bs > 0 for

exactly one signal s ∈ Sβ and bt = 0 for all t ∈ Sβ, t 6= s. It remains to determine for

which signal the bonus is set strictly positive. The size of the bonus payment, which is

set strictly positive, is uniquely determined by (IC+):

bsβs(γ̂, λ, â) = c′(â) ⇐⇒ bs =
c′(â)

βs(γ̂, λ, â)
. (A.2)

Therefore, from the objective function of Program ML+ it follows that, for the signal

ordering under consideration, the optimal signal for which the bonus is set strictly positive,

ŝ, is characterized by

ŝ = arg min
s∈Sβ

c′(â)

βs(γ̂, λ, â)
ρs(γ̂, λ, â).
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Step 2: From all incentive feasible signal orders, the principal chooses the one which

minimizes her cost of implementation. With the number of incentive feasible signal orders

being finite, this problem clearly has a solution. Let s∗ denote the resulting cutoff, i.e.,

u∗
s =

{

u∗ if s < s∗

u∗ + b∗ if s ≥ s∗
,

where b∗ = c′(â)/βs∗(γ̂, λ, â) and u∗ = ū + c(â) − b∗
[
∑S

τ=s∗ γτ (â) − ρs∗(γ̂, λ, â)
]

. Letting

u∗
L = u∗, u∗

H = u∗ + b∗, and B∗ = {s ∈ S|s ≥ s∗} establishes the desired result.

Proof of Proposition 3

B∗ maximizes X(B) :=
[∑

s∈B(γH
s − γL

s )
]
× Y (PB), where

Y (PB) :=
1

(λ − 1)PB(1 − PB)
−

1

PB

+
1

1 − PB

.

Suppose for the moment that PB is a continuous decision variable. Accordingly,

dY (PB)

dPB

=
1

P 2
B(1 − PB)2

[

2P 2
B +

2 − λ

λ − 1
(2PB − 1)

]

. (A.3)

It is readily verified that dY (PB)/dPB < 0 for 0 < PB < P̄ (λ) and dY (PB)/dPB > 0 for

P̄ (λ) < PB < 1, where

P̄ (λ) ≡
λ − 2 +

√

λ(2 − λ)

2(λ − 1)
.

Note that for λ ≤ 2 the critical value P̄ (λ) ∈ [0, 1/2). Hence, excluding a signal of

B increases Y (PB) if PB < P̄ (λ), whereas including a signal to B increases Y (PB) if

PB ≥ P̄ (λ). With these insights the next two implications follow immediately.

(i) PB∗ < P̄ (λ) =⇒ B∗ ⊆ S+

(ii) PB∗ ≥ P̄ (λ) =⇒ S+ ⊆ B∗

We prove both statements in turn by contradiction. (i) Suppose PB∗ < P̄ (λ) and that there

exists a signal ŝ ∈ S− which is also contained in B∗, i.e., ŝ ∈ B∗. Clearly,
∑

s∈B∗(γH
s −γL

s ) <
∑

s∈B∗\{ŝ}(γ
H
s −γL

s ) because ŝ is a bad signal. Moreover, Y (B∗) < Y (B∗\{ŝ}) because Y (·)

increases when signals are excluded of B∗. Thus X(B∗) < X(B∗\{ŝ}), a contradiction to

the assumption that B∗ is the optimal partition. (ii) Suppose PB∗ ≥ P̄ (λ) and that there

exists a signal s̃ ∈ S+ that is not contained in B∗, i.e., B∗∩{s̃} = ∅. Since ŝ is a good signal
∑

s∈B∗(γH
s − γL

s ) <
∑

s∈B∗∪{ŝ}(γ
H
s − γL

s ). PB∗ ≥ P̄ (λ) implies that Y (B∗ ∪ {s̃}) > Y (B∗).

Thus, X(B∗) < X(B∗∪{s̃}) a contradiction to the assumption that B∗ maximizes X(B∗).

Finally, since for any B∗ we are either in case (i) or in case (ii), the desired result follows.

Proof of Proposition 4

Suppose, in contradiction, that in the optimum there are signals s, t ∈ S such that s ∈ B∗,

t /∈ B∗ and γH
s −γL

s

γs(â)
<

γH
t −γL

t

γt(â)
. We derive a contradiction by showing that exchanging signal
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s for signal t reduces the principal’s cost, which implies that the original contract cannot

be optimal. Let B̄ ≡ (B∗ \ {s})∪{t}.It suffices to show that X(B̄) > X(B∗), where X(B)

is defined as in the proof of Proposition 3. X(B̄) > X(B∗) is equivalent to

(
∑

j∈B∗

(γH
j − γL

j ) + (γH
t − γL

t ) − (γH
s − γL

s )

)[
1 − (λ − 1)(1 − 2PB̄)

(λ − 1)PB̄(1 − PB̄)

]

>

(
∑

j∈B∗

(γH
j − γL

j )

)[
1 − (λ − 1)(1 − 2PB∗)

(λ − 1)PB∗(1 − PB∗)

]

.

Rearranging yields

[
(γH

t − γL
t ) − (γH

s − γL
s )
]
[
1 − (λ − 1)(1 − 2PB̄)

(λ − 1)PB̄(1 − PB̄)

]

>

(
∑

j∈B∗

(γH
j − γL

j )

)[
1 − (λ − 1)(1 − 2PB∗)

(λ − 1)PB∗(1 − PB∗)
−

1 − (λ − 1)(1 − 2PB̄)

(λ − 1)PB̄(1 − PB̄)

]

. (A.4)

With Y (PB) being defined as in the proof of Proposition 3, we have to consider two cases,

(i) dY (PB∗)/PB ≥ 0, and (ii) dY (PB∗)/PB < 0.

Case (i): Since γs(â)− γt(â) ≤ κ, we have PB∗ ≤ PB̄ + κ. With Y (PB) being (weakly)

increasing at PB∗ , inequality (A.4) is least likely to hold for PB∗ = PB̄ + κ. Inserting

PB∗ = PB̄ + κ into (A.4) yields

[
(γH

t − γL
t ) − (γH

s − γL
s )
]
[
1 − (λ − 1)(1 − 2PB̄)

(λ − 1)PB̄(1 − PB̄)

]

>

(
∑

j∈B∗

(γH
j − γL

j )

)[
1 − (λ − 1)(1 − 2PB̄ − 2κ)

(λ − 1)[PB̄(1 − PB̄) + κ(1 − 2PB̄)] − κ2
−

1 − (λ − 1)(1 − 2PB̄)

(λ − 1)PB̄(1 − PB̄)

]

.

(A.5)

The right-hand side of (A.5) becomes arbitrarily close to zero for κ → 0, thus it remains

to show that

[
(γH

t − γL
t ) − (γH

s − γL
s )
]
[
1 − (λ − 1)(1 − 2PB̄)

(λ − 1)PB̄(1 − PB̄)

]

> 0 . (A.6)

For (A.6) to hold, we must have (γH
t −γL

t )−(γH
s −γL

s ) > 0. From the proof of Proposition

3 we know that S+ ⊆ B∗ if Y (PB) is increasing at B∗. Since the principal will end up

including all good signals in the set B∗ anyway, the question of interest is whether she

can benefit from swapping two bad signals. Therefore, we consider case s, t ∈ S−, where

S− ≡ {s ∈ S|γH
s − γL

s < 0}. With s, t ∈ S−, we have

[
(γH

t − γL
t ) − (γH

s − γL
s )
]
≥ γt(â)γs(â)

[
1

γs(â)

γH
t − γL

t

γt(â)
−

1

γs(â) + κ

γH
s − γL

s

γs(â)

]

, (A.7)

where the inequality holds because γt(â)− γs(â) ≤ κ. Note that for κ → 0 the right-hand

side of (A.7) becomes strictly positive, thus (γH
t − γL

t )− (γH
s − γL

s ) > 0 for κ → 0. Hence,

for κ sufficiently small, X(B∗) < X(B̄), a contradiction to B∗ being optimal.
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Case (ii): Since γt(â)−γs(â) ≤ κ, we have PB∗ ≥ PB̄−κ. With Y (PB) being decreasing

at PB∗ , inequality (A.4) is least likely to hold for PB∗ = PB̄−κ. Inserting PB∗ = PB̄−κ into

(A.4), and running along the lines of case (i) allows us to establish that, for κ sufficiently

small, X(B∗) < X(B̄), a contradiction to B∗ being optimal.

To sum up, for κ sufficiently small we have

max
s∈S\B∗

{(γH
s − γL

s )/γs(â)} < min
s∈B∗

{(γH
s − γL

s )/γs(â)} ,

or equivalently,

max
s∈S\B∗

{γH
s /γL

s } < min
s∈B∗

{γH
s /γL

s } .

Letting K ≡ mins∈B∗{γH
s /γL

s } establishes the desired result.

Proof of Proposition 5

(i) Suppose that a small change in λ leaves the optimal partition B∗ of the set of all signals

unchanged. Rearranging (IC′) yields

b∗ =
c′(â)

∑

s∈B∗(γH
s − γL

s ) − (λ − 1)
[∑

s∈B∗(γH
s − γL

s )
]
[1 − 2PB∗ ]

. (A.8)

Straight-forward differentiation reveals that

db∗

dλ
=

c′(â)
[∑

s∈B∗(γH
s − γL

s )
]
[1 − 2PB∗ ]

{∑

s∈B∗(γH
s − γL

s ) − (λ − 1)
[∑

s∈B∗(γH
s − γL

s )
]
[1 − 2PB∗ ]

}2 .

Since under the second-best contract
∑

s∈B∗(γH
s − γL

s ) > 0, the desired result follows.

(ii) Let B+ ≡
{
B ⊂ S|

∑

s∈B(γH
s − γL

s ) > 0
}
. For any B̃ ∈ B+, let

bB̃ =
c′(â)

∑

s∈B̃(γH
s − γL

s ) − (λ − 1)
[∑

s∈B̃(γH
s − γL

s )
]
[1 − 2PB̃]

and

uB̃ = ū + c(â) − bB̃PB̃ + (λ − 1)PB̃(1 − PB̃)bB̃.

The cost of implementing action â when paying uB̃ for signals in S \ B̃ and uB̃ + bB̃ for

signals in B̃ is given by

CB̃ = uB̃ + bB̃PB̃ = ū + c(â) +
c′(â)(λ − 1)PB̃(1 − PB̃)

[∑

s∈B̃(γH
s − γL

s )
]
[1 − (λ − 1)(1 − 2PB̃)]

. (A.9)

Differentiation of CB̃ with respect to λ yields

dCB̃

dλ
=

c′(â)(λ − 1)PB̃(1 − PB̃)
[∑

s∈B̃(γH
s − γL

s )
]
[1 − (λ − 1)(1 − 2PB̃)]2

.

Obviously, dCB̃/dλ > 0 for all B ∈ B+. Since the optimal partition of S may change as λ

changes, the minimum cost of implementing action â is given by

C(â) = min
B∈B+

CB.
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Put differently, C(â) is the lower envelope of all CB for B ∈ B+. With CB being continuous

and strictly increasing in λ for all B ∈ B+, it follows that also C(â) is continuous and

strictly increasing in λ. This completes the proof.

Proof of Lemma 2

We show that program (MG) has a solution, i.e.,
∑S

s=1 γs(â)h(us) achieves its greatest

lower bound. First, from Lemma 1 we know that the constraint set of program (MG) is

not empty for action â ∈ (0, 1). Next, note that from (IRG) it follows that
∑S

s=1 γs(â)us

is bounded below. Following the reasoning in the proof of Proposition 1 of Grossman

and Hart (1983), we can artificially bound the constraint set – roughly spoken because

unbounded sequences in the constraint set make
∑S

s=1 γs(â)h(us) tend to infinity by a

result from Bertsekas (1974). Since the constraint set is closed, the existence of a minimum

follows from Weierstrass’ theorem.

Proof of Lemma 3

Since (IRG) will always be satisfied with equality due to an appropriate adjustment of

the lowest intrinsic utility level offered, relaxing (IRG) will always lead to strictly lower

costs for the principal. Therefore, the shadow value of relaxing (IRG) is strictly positive,

so µIR > 0.

Next, we show that relaxing (ICG) has a positive shadow value, µIC > 0. We do this by

showing that a decrease in c′(â) leads to a reduction in the principal’s minimum cost of

implementation. Let {u∗
s}s∈S be the optimal contract under (the original) Program MG,

and suppose that c′(â) decreases. Now the principal can offer a new contract {uN
s }s∈S of

the form

uN
s = αu∗

s + (1 − α)
S∑

t=1

γt(â)u∗
t , (A.10)

where α ∈ (0, 1), which also satisfies (IRG), the relaxed (ICG), and (OCG), but yields

strictly lower costs of implementation than the original contract {u∗
s}s∈S .

Clearly, for α̂ ∈ (0, 1), uN
s < uN

s′ if and only if u∗
s < u∗

s′ , so (OCG) is also satisfied under

contract {uN
s }s∈S .

Next, we check that the relaxed (ICG) holds under {uN
s }s∈S . To see this, note that for

α = 1 we have {uN
s }s∈S ≡ {u∗

s}s∈S . Thus, for α = 1, the relaxed (ICG) is oversatisfied

under {uN
s }s∈S . For α = 0, on the other hand, the left-hand side of (ICG) is equal to zero,

and the relaxed (ICG) in consequence is not satisfied. Since the left-hand side of (ICG) is

continuous in α under contract {uN
s }s∈S , by the intermediate-value theorem there exists

α̂ ∈ (0, 1) such that the relaxed (ICG) is satisfied with equality.

Last, consider (IRG). The left-hand side of (IRG) under contract {uN
s }s∈S with α = α̂
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amounts to

S∑

s=1

γs(â)uN
s − (λ − 1)

S−1∑

s=1

S∑

t=s+1

γs(â)γt(â)
[
uN

t − uN
s

]

=
S∑

s=1

γs(â)u∗
s − α̃(λ − 1)

S−1∑

s=1

S∑

t=s+1

γs(â)γt(â) [u∗
t − u∗

s]

>
S∑

s=1

γs(â)u∗
s − (λ − 1)

S−1∑

s=1

S∑

t=s+1

γs(â)γt(â) [u∗
t − u∗

s]

= ū + c(â) , (A.11)

where the last equality follows from the fact that {u∗
s}s∈S fulfills the (IRg) with equality.

Thus, contract {uN
s }s∈S is feasible in the sense that all constraints of program (MG)

are met. It remains to show that the principal’s costs are reduced. Since h(·) is strictly

convex, the principal’s objective function is strictly convex in α, with a minimum at α = 0.

Hence, the principal’s objective function is strictly increasing in α for α ∈ (0, 1]. Since

{uN
s }s∈S ≡ {u∗

s}s∈S for α = 1, for α = α̂ we have

S∑

s=1

γs(â)h(u∗
s) >

S∑

s=1

γs(â)h(uN
s ),

which establishes the desired result.

Proof of Proposition 6

For the agent’s intrinsic utility function being sufficiently linear, the principal’s costs are

approximately given by a second-order Taylor polynomial about r = 1, thus

C(u|r) ≈
∑

s∈S

γs(â)us + Ω(u|r) , (A.12)

where

Ω(u|r) ≡
∑

s∈S

γs(â)

[

(us ln us)(r − 1) + (1/2)us(ln us)
2(r − 1)2

]

. (A.13)

Relabeling signals such that the wage profile is increasing allows us to express the incen-

tive scheme in terms of increases in intrinsic utility. The agent’s binding participation

constraint implies that

u1 = ū + c(â) −
S∑

s=2

bs

{
S∑

τ=s

γτ (â) − (λ − 1)

[ S∑

τ=s

γτ (â)

][ s−1∑

t=1

γt(â)

]}

≡ u1(b) (A.14)

and us = u1(b) +
∑s

t=2 bt ≡ us(b) for all s = 2, . . . , S. Inserting the binding participation

constraint into the above cost function and replacing Ω(u|r) equivalently by Ω̃(b|r) ≡

Ω(u1(b), . . . , uS(b)|r) yields

C(b|r) ≈ ū + c(â) + (λ − 1)
S∑

s=2

bs

[
S∑

τ=s

γτ (â)

][
s−1∑

t=1

γt(â)

]

+ Ω̃(b|r) . (A.15)
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Hence, for a given increasing wage profile the principal’s cost minimization problem is:

Program ME:

min
b∈R

S−1

+

b′ρ(γ̂, λ, â) + Ω̃(b|r)

subject to b′β(γ̂, λ, â) = c′(â) (IC′)

If r is sufficiently close to 1, then the incentive scheme that solves program ML also solves

program ME. Note that generically program ME is solved only by bonus schemes. Put

differently, even if there are multiple optimal contracts for program ML, all these contracts

are generically simple bonus contracts. Thus, from Proposition 2 it follows that generically

for r close to 1 the optimal incentive scheme entails a minimum of wage differentiation.

Note that for λ = 1 the principal’s problem is to minimize Ω̃(b|r) even for r sufficiently

close to 1.

Proof of Proposition 7

First consider b ≥ 0. We divide the analysis for b ≥ 0 into three subcases.

Case 1 (a0 < 0): For the effort level â to be chosen by the agent, this effort level has

to satisfy the following incentive compatibility constraint:

â ∈ arg max
a∈[0,1]

u + γ(a)b − γ(a)(1 − γ(a))b(λ − 1) −
k

2
a2 (IC)

For â to be a zero of dE [U(a)] /da, the bonus has to be chosen according to

b∗(â) =
kâ

(γH − γL) [2 − λ + 2γ(â)(λ − 1)]
.

For a > a0, b∗(a) is a strictly increasing and strictly concave function with b∗(0) = 0.

Hence, each â ∈ [0, 1] can be made a zero of dE [U(a)] /da with a non-negative bonus.

By choosing the bonus according to b∗(â), â satisfies, by construction, the first-order

condition. Inserting b∗(â) into the d2E [U(a)] /da2 shows that expected utility is strictly

concave function if a0 < 0. Hence, with the bonus set equal to b∗(â), effort level â satisfies

the second-order condition for optimality and therefore is incentive compatible.

Case 2 (a0 = 0): Just like in the case where a0 < 0, each effort level a ∈ [0, 1] turns out

to be implementable with a no-nnegative bonus. To see this, consider bonus

b0 =
k

2(γH − γL)2(λ − 1)
.

For b ≤ b0, dE [U(a)] /da < 0 for each a > 0, that is, lowering effort increases expected

utility. Hence, the agent wants to choose an effort level as low as possible and therefore

exerts no effort at all. If, on the other hand, b > b0, then dE [U(a)] /da > 0. Now,

increasing effort increases expected utility, and the agent wants to choose effort as high as

possible. For b = b0, expected utility is constant over all a ∈ [0, 1], that is, as long as his



Bonn Econ Discussion Paper 40

participation constraint is satisfied, the agent is indifferent which effort level to choose.

As a tie-breaking rule we assume that, if indifferent between several effort levels, the agent

chooses the effort level that the principal prefers.

Case 3 (a0 > 0): If a0 > 0, the agent either chooses a = 0 or a = 1. To see this, again

consider bonus b0. For b ≤ b0, dE [U(a)] /da < 0 for each a > 0. Hence, the agent wants

to exert as little effort as possible and chooses a = 0. If, on the other hand, b > b0, then

d2E [U(a)] /da2 > 0, that is, expected utility is a strictly convex function of effort. In

order to maximize expected utility, the agent will choose either a = 0 or a = 1 depending

on whether E [U(0)] exceeds E [U(1)] or not.

Negative Bonus: b < 0

Let b− < 0 denote the monetary punishment that the agent receives if the good signal is

observed. With a negative bonus, the agent’s expected utility is

E [U(a)] = u + γ(a)b− + γ(a)(1 − γ(a))λb− + (1 − γ(a))γ(a)(−b−) −
k

2
a2. (A.16)

The first derivative with respect to effort,

dE [U(a)]

da
= (γH − γL)b− [λ − 2γ(a)(λ − 1)]
︸ ︷︷ ︸

MB−(a)

− ka
︸︷︷︸

MC(a)

,

reveals that MB−(a) is a positively sloped function, which is steeper the harsher the

punishment is, that is, the more negative b− is. It is worthwhile to point out that if bonus

and punishment are equal in absolute value, |b−| = b, then also the slopes of MB−(a)

and MB(a) are identical. The intercept of MB−(a) with the horizontal axis, a−
0 again is

completely determined by the model parameters:

a−
0 =

λ − 2γL(λ − 1)

2(γH − γL)(λ − 1)

Note that a−
0 > 0 for γL ≤ 1/2. For γL > 1/2 we have a−

0 < 0 if and only if λ >

2γL/(2γL−1). Proceeding in exactly the same way as in the case of a non-negative bonus

yields a familiar results: effort level â ∈ [0, 1] is implementable with a strictly negative

bonus if and only if a−
0 ≤ 0. Finally, note that a0 < a−

0 . Hence a negative bonus does not

improve the scope for implementation.

Proof of Proposition 8

Throughout the analysis we restricted attention to non-negative bonus payment. It re-

mains to be shown that the principal cannot benefit from offering a negative bonus pay-

ment: implementing action â with a negative bonus is at least as costly as implementing

action â with a positive bonus. In what follows, we make use of notation introduced in

the paper as well as in the proof of Proposition 7. Let a0(p), a−
0 (p), b∗(â; p), and u∗(â; p)

denote the expressions obtained from a0, a−
0 , b∗(â), and u∗(â), respectively, by replacing

γ(â), γL, and γH with γ(â; p), γL(p), and γH(p). From the proof of Proposition 6 we
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know that (i) action â is implementable with a non-negative bonus (negative bonus) if

and only if a0(p) ≤ 0 (a−
0 (p) ≤ 0), (ii) a−

0 (p) ≤ 0 implies a0(p) < 0. We will show that,

for a given value of p, if â is implementable with a negative bonus then it is less costly to

implement â with a non-negative bonus.

Consider first the case where a−
0 (p) < 0. The negative bonus payment satisfying incen-

tive compatibility is given by

b−(â; p) =
kâ

(γH(p) − γL(p)) [λ − 2γ(â; p)(λ − 1)]
.

It is easy to verify that the required punishment to implement â is larger in absolute

value than than the respective non-negative bonus which is needed to implement â, that

is, b∗(â; p) < |b−(â; p)| for all â ∈ (0, 1) and all p ∈ [0, 1). When punishing the agent with a

negative bonus b−(â; p), u−(â; p) will be chosen to satisfy the corresponding participation

constraint with equality, that is,

u−(â; p) = ū +
k

2
â2 − γ(â; p)b−(â; p) [λ − γ(â, p)(λ − 1)] .

Remember that, if â is implemented with a non-negative bonus, we have

u∗(â; p) = ū +
k

2
â2 − γ(â; p)b∗(â; p) [2 − λ + γ(â; p)(λ − 1)] .

It follows immediately that the minimum cost of implementing â with a non-negative

bonus is lower than the minimum implementation cost with a strictly negative bonus:

C−(â; p) = u−(â; p) + γ(â; p)b−(â; p)

= ū +
k

2
â2 − γ(â; p)b−(â; p) [λ − γ(â; p)(λ − 1) − 1]

> ū +
k

2
â2 + γ(â; p)b∗(â; p) [λ − γ(â; p)(λ − 1) − 1]

= ū +
k

2
â2 − γ(â; p)b∗(â; p) [1 − λ + γ(â; p)(λ − 1)]

= ū +
k

2
â2 − γ(â; p)b∗(â; p) [2 − λ + γ(â; p)(λ − 1)] + γ(â; p)b∗(â; p)

= u∗(â; p) + γ(â; p)b∗(â; p)

= C(â; p).

The same line of argument holds when a−
0 = 0: the bonus which satisfies the (IC) is

b−0 (â; p) = −
k

2(γH(p) − γL(p))2(λ − 1)
,

and so b∗(â; p) < |b−0 (â; p)| for all â ∈ (0, 1) and all p ∈ [0, 1).

Proof of Corollary 1

Let p ∈ (0, 1). With ζ̂ being a convex combination of γ̂ and 1 we have (ζH , ζL) =

p(1, 1) + (1 − p)(γH , γL) = (γH + p(1 − γH), γL + p(1 − γL)). The desired result follows
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immediately from Proposition 3: Consider λ > 2. Implementation problems are less likely

to be encountered under ζ̂ than under γ̂. Moreover, if implementation problems are not

an issue under both performance measures, then implementation of a certain action is

less costly under ζ̂ than under γ̂. For λ = 2 implementation problems do not arise and

implementation costs are identical under both performance measures. Last, if λ < 2,

implementation problems are not an issue under either performance measure, but the

cost of implementation is strictly lower under γ̂ than under ζ̂.

B Validity of the First-Order Approach

Lemma 4: Given (A1)-(A3), the incentive constraint in the principal’s cost minimization

problem can be represented as E[U ′(â)] = 0.

Proof: The proof proceeds in two steps. Consider a contract (u1, {bs}
S
s=2) with bs ≥ 0 for

s = 2, . . . , S, that implements action â ∈ (0, 1). First, we show that it is never optimal for

the principal to set bs > 0 if βs ≤ 0, where we write βs instead of βs(γ̂, λ, â) to cut back

on notation. Thereafter, it is shown that for a given contract with bs > 0 if and only if

βs > 0, all actions that satisfy the first-order condition of the agent’s utility maximization

problem characterize a local maximum of his utility function. Since the utility function

is continuous and all extreme points are local maxima, there exists a unique action that

fulfills the first-order condition. This action corresponds to the unique maximum.

Step 1: Irrespective of the first-order approach being valid or not, a necessary condition

for â ∈ (0, 1) to be incentive compatible is that (IC′) is satisfied. Note that if (IC′) holds

for â ∈ (0, 1), then there exist at least one signal t with βt > 0. If there exists bs > 0

with βs ≤ 0, then the principal can reduce both bs and also another bonus bt with βt > 0,

without violating (IC′). Next, we show that increasing any spread, say bs, always increases

the principal’s cost of implementation.

C(b) =
S∑

s=1

γs(â)h

(

u1(b) +
s∑

t=2

bs

)

, (B.1)

where u1(b) = ū + c(â) −
S∑

t=2

bs

[
S∑

τ=s

γτ (â) − (λ − 1)

(
S∑

τ=s

γτ (â)

)(
s−1∑

t=1

γt(â)

)]

.

The partial derivative of the cost function with respect to an arbitrary bk is

∂C(b)

∂bk

=
k−1∑

s=1

γs(â)h′

(

u1(b) +
s∑

t=2

bs

)[
∂u1

∂bk

]

+
S∑

s=k

γs(â)h′

(

u1(b) +
s∑

t=2

bs

)[
∂u1

∂bk

+ 1

]

.
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Rearranging yields

∂C(b)

∂bk

=
k−1∑

s=1

γs(â)h′(us)

[

(λ − 1)

(
S∑

τ=k

γτ (â)

)(
k−1∑

t=1

γt(â)

)

−
S∑

τ=k

γτ (â)

]

︸ ︷︷ ︸

<0

+
S∑

s=k

γs(â)h′(us)

[

(λ − 1)

(
S∑

τ=k

γτ (â)

)(
k−1∑

t=1

γt(â)

)

−
S∑

τ=k

γτ (â) + 1

]

︸ ︷︷ ︸

>0

. (B.2)

Note us ≤ us+1 which implies that h′(us) ≤ h′(us+1). Thus, the following inequality holds

∂C(b)

∂bk

≥
k−1∑

s=1

γs(â)h′(uk)

[

(λ − 1)

(
S∑

τ=k

γτ (â)

)(
k−1∑

t=1

γt(â)

)

−
S∑

τ=k

γτ (â)

]

+
S∑

s=k

γs(â)h′(uk)

[

(λ − 1)

(
S∑

τ=k

γτ (â)

)(
k−1∑

t=1

γt(â)

)

−
S∑

τ=k

γτ (â) + 1

]

. (B.3)

The above inequality can be rewritten as follows

∂C(b)

∂bk

≥ h′(uk)

[

(λ − 1)

(
S∑

τ=k

γτ (â)

)(
k−1∑

t=1

γt(â)

)]

> 0 .

Since reducing any bonus lowers the principal’s cost of implementation, it cannot be

optimal to set bs > 0 for βs ≤ 0. This completes the first step of the proof.

Step 2: The second derivative of the agent’s utility with respect to a is

E[U ′′(a)] = −2(λ − 1)
S∑

s=2

bsσs − c′′(a) , (B.4)

where σs := (
∑s−1

i=1 γH
i −γL

i )(
∑S

i=s γH
i −γL

i ) < 0. Suppose action â satisfies the first-order

condition. Formally

S∑

s=2

bsβs = c′(â) ⇐⇒
S∑

s=2

bs

βs

â
=

c′(â)

â
. (B.5)

Action â locally maximizes the agent’s utility if

−2(λ − 1)
S∑

s=2

bsσs < c′′(â) . (B.6)

Under Assumption (A3), we have c′′(â) > c(â)/â. Therefore, if

S∑

s=2

bs

[
−2(λ − 1)σs − βs/â

]
< 0 , (B.7)

then (B.5) implies (B.6), and each action â satisfying the first-order condition of the

agent’s maximization problem is a local maximum of his expected utility. Inequality
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(B.7) obviously is satisfied if each element of the sum is negative. Summand s is negative

if and only if

− 2(λ − 1)

(
s−1∑

i=1

(γH
i − γL

i )

)(
S∑

i=s

(γH
i − γL

i )

)

â

−

(
S∑

τ=s

(γH
τ − γL

τ )

)[

1 − (λ − 1)

(
s−1∑

t=1

γt(â)

)]

−(λ−1)

[
S∑

τ=s

γτ (â)

](
s−1∑

t=1

(γH
t − γL

t )

)

< 0 .

Rearranging of the above inequality yields

(
S∑

i=s

(γH
i − γL

i )

){

λ + 2(λ − 1)

[

â
s−1∑

i=1

(γH
i − γL

i ) −
s−1∑

i=1

γi(â)

]}

> 0

⇐⇒

(
S∑

i=s

(γH
i − γL

i )

){

λ

(

1 −
s−1∑

i=1

γL
i

)

+ (2 − λ)
s−1∑

i=1

γL
i

}

> 0 (B.8)

The term in curly brackets is positive, since λ ≤ 2 and
∑s−1

i=1 γL
i < 1. Note that βs ≤ 0 if

and only if
∑S

i=s(γ
H
i −γL

i ) ≤ 0. As we have established in step 1 of this proof, in this case

it is always optimal for the principal to set bs = 0. Thus, if bs > 0 then
∑S

i=s(γ
H
i −γL

i ) > 0,

which completes the proof.
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[34] Kőszegi, B. and M. Rabin (2007): Reference-Dependent Risk Preferences, American Economic
Review, Vol. 97, 1047-1073.

[35] Larsen, J.T., A.P. Mc Graw, B.A. Mellers, and J.T. Cacioppo (2004): The Agony of
Victory and Thrill of Defeat: Mixed Emotional Reactions to Disappointing Wins and Relieving
Losses, Psychological Science, Vol. 15, 325-330.

[36] Lazear, E.P. and K.L. Shaw (2007): Personnel Economics: The Economist’s View of Human
Resources, Journal of Economic Perspectives, Vol. 21, 91-114.

[37] Lazear, E.P. and P. Oyer (2007): Personnel Economics, NBER working paper 13480, http://
www.nber.org/papers/w13480.

[38] Loomes, G. and R. Sugden (1986): Disappointment and Dynamic Consistency in Choice under
Uncertainty, Review of Economic Studies, Vol. 53, 271-282.

[39] MacLeod, B. (2003): Optimal Contracting with Subjective Evaluation, American Economic
Review, Vol. 93, 216-240.

[40] Mellers, B., A. Schwartz and H. Ritov (1999): Emotion-Based Choice, Journal of Experi-
mental Psychology: General, Vol. 128, 332-345.



Bonn Econ Discussion Paper 46

[41] O’Donoghue, T. and M. Rabin (1999): Incentives for Procrastinators, Quarterly Journal of
Economics, Vol. 114, 769-816.

[42] Oyer, P. (1998): Fiscal Year Ends and Non-Linear Incentive Contracts: The Effect on Business
Seasonality, Quarterly Journal of Economics, Vol. 113, 149-188.

[43] Park, E.-S. (1995): Incentive Contracting under Limited Liability, Journal of Economics &
Management Strategy, Vol. 4, 477-490.

[44] Prendergast, C. (1999): The Provision of Incentives in Firms, Journal of Economic Literature,
Vol. 37, 7-63.

[45] Post, T., M.J. Van den Assem, G. Baltussen and R.H. Thaler (2008): Deal Or No Deal?
Decision Making Under Risk in a Large-Payoff Game Show, American Economic Review, Vol. 98,
38-71.

[46] Puelz, R. and A. Snow (1994): Evidence on Adverse Selection: Equilibrium Signalling and
Cross-Subsidization in the Insurance Market, Journal of Political Economy, Vol. 102, 236-257.

[47] Rayo, L. and G.S. Becker (2007): Evolutionary Efficiency and Happiness, Journal of Political
Economy, Vol. 115, 302-337.

[48] Rothschild, M. and J.E. Stiglitz (1976): Equilibrium in Competitive Insurance Markets: An
Essay on the Economics of Imperfect Information, Quarterly Journal of Economics, Vol. 90, 639-
649.
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