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Moment 
hara
terization of higher-order risk preferen
esSebastian Ebert*
24 September, 2010.Abstra
t Pruden
e and temperan
e play key roles in aversion to negative skewness and kurtosis, re-spe
tively. This paper puts a new perspe
tive on these relationships and presents a 
hara
terization ofhigher-order risk preferen
es in terms of statisti
al moments. An impli
ation is, for example, that pru-den
e implies preferen
e for distributions with higher skewness as de�ned by all odd moments. Moreover,we show that this preferen
e is robust towards variation in kurtosis as de�ned by all even moments. Wethus speak of the kurtosis robustness feature of pruden
e. Further, we show that all higher-order riskpreferen
es of odd order imply skewness preferen
e, but for di�erent distributions than pruden
e. Similarresults are presented for temperan
e and higher-order risk preferen
es of even order that 
an be relatedto kurtosis aversion and have a skewness robustness feature.Keywords De
ision making under risk · Higher-order risk preferen
es · Kurtosis aversion · Moments ·Pruden
e · Skewness preferen
e · Temperan
eJEL D811 Introdu
tionIt is well known that risk aversion only partially des
ribes individuals' risk preferen
es. Numerous behav-ioral traits stem from higher-order risk preferen
es su
h as pruden
e or temperan
e. The most prominentone is that pruden
e is ne
essary and su�
ient for the pre
autionary savings motive1 as shown by Kimball(1990). Ee
khoudt and Gollier (2005) analyze the impa
t of pruden
e on prevention, i.e. the a
tion un-*Address: Bonn Graduate S
hool of E
onomi
s, BWL 3 - Banking and Finan
e, Adenauerallee 24 - 42, 53113 Bonn,Germany. Phone: +49-228-73 9225. E-mail: sebastianebert�uni-bonn.de. An earlier version (12 June 2010) of this paper
ir
ulated under the title �On higher-order risk preferen
es, skewness and diversi�
ation.� I thank Mi
hael Adler, LouisEe
khoudt, Patri
k Roger, Harris S
hlesinger, Gregor S
hwerho� and Daniel Wiesen for helpful 
omments and dis
ussionson the topi
. All remaining errors are my own. Finan
ial support from the Bonn Graduate S
hool of E
onomi
s is gratefullya
knowledged.1 That means the awareness of un
ertainty in future payo�s will raise an individual's optimal saving today. The rela-tionship between pre
autionary savings and the third derivative of the utility fun
tion was re
ognized already by Leland(1968) and Sandmo (1970) and has been of major e
onomi
 interest ever sin
e.



2 Sebastian Ebertdertaken to redu
e the probability of an adverse e�e
t o

uring. These rather general 
on
epts are easilyapplied to spe
i�
 problems in various areas of e
onomi
s and �nan
e. For example, pruden
e has beenshown to be an important fa
tor in preventive 
are de
isions within a medi
al de
ision making 
ontext(see Courbagé and Rey, 2006). Esö and White (2004) show that there 
an be pre
autionary bidding inau
tions when the value of the obje
t is un
ertain and when bidders are prudent. Likewise, White (2008)analyzes pruden
e in bargaining. Trei
h (2010) shows that pruden
e 
an de
rease rent-seeking e�orts ina symmetri
 
ontest model. Fagart and Sin
lair-Desagné (2007) investigate pruden
e in a prin
ipal-agentmodel with appli
ations to monitoring and optimal auditing. Temperan
e generally implies aversiontowards mutually aggravating risks (see Kimball, 1992 and 1993). Ee
khoudt and S
hlesinger (2008)show that temperan
e is ne
essary and su�
ient for an in
rease in downside risk of future labor in
omealways to in
rease the level of pre
autionary savings. Within a standard ma
roe
onomi
 
onsumptionand labor model, Ee
khoudt and S
hlesinger (2008) analyze the impa
t of pruden
e and temperan
e onpoli
y de
isions su
h as 
hanges in the interest rate. Other examples for the signi�
ant impa
t of riskpreferen
es of higher order than risk aversion are insuran
e demand, e.g. Fei and S
hlesinger (2008) orlife-
y
le investment behavior, e.g. Gomes and Mi
haelides (2005). By ne
essity this is not a 
ompletelist of appli
ations.These predi
tions are derived from models based on the expe
ted utility (EU) framework. Under EU,assuming di�erentiability of a utility fun
tion u, risk aversion, pruden
e and temperan
e are equivalentto u′′ < 0, u′′′ > 0 and u(4) < 0, respe
tively. More generally, Ekern (1980) de�nes a de
ision makeras being nth-degree risk-averse if and only if sgn(u(n)) = (−1)n+1. It is important to note that thesespe
i�
ations are exhibited by �all the 
ommonly used utility fun
tions� (see Bro
kett and Golden, 1987).They also serve as ne
essary 
onditions for numerous stronger preferen
e spe
i�
ations employed in thee
onomi
s literature. Pruden
e, for example, is also widely assumed be
ause it is ne
essary (but notsu�
ient) for de
reasing absolute risk aversion.In this paper, we fo
us on the other reason why higher-order risk preferen
es are important. This reasonis independent of the EU paradigm. Pruden
e and temperan
e are linked to preferen
e for high skewnessand small kurtosis of distributions, respe
tively. Menezes et al. (1980) show that an individual dislikesin
reases in downside risk if and only if she is prudent. A downside risk in
rease is a mean-varian
epreserving density transformation shifting variation from the right to the left of the distribution. Thisis in analogy to the mean-preserving spread of Roths
hild and Stiglitz (1970) disliked by a risk-averseindividual. The former motivates the de�nition of pruden
e as downside risk aversion. Menezes et al.also dire
tly show that pruden
e, unlike risk aversion, relates to measures of skewness, in parti
ularto the third 
entral moment and semi-target varian
e. For more on pruden
e and skewness, see Chiu(2005 and forth
oming). Likewise, Menezes and Wang (2005) show that an individual dislikes in
reasesin outer risks if and only if she is temperate. Edginess (5th-degree risk aversion) has been 
onsidered byLajeri-Chaherli (2004).



Moment 
hara
terization of higher-order risk preferen
es 3However, despite this progress, the relationship between higher-order risk preferen
es and the statisti
almoments of a distribution has not been investigated exhaustively. For example, the above mentionedauthors presented results on moments up to order n for nth-degree risk aversion only. Statisti
al mo-ments are interesting be
ause they are among the standard summary statisti
s whi
h are well understoodand applied by a wide audien
e in various �elds of e
onomi
s and �nan
e. In parti
ular, moments aremeasures of skewness and kurtosis. Further, numerous risk and performan
e measures are also based onmoments. On the other hand, preferen
e impli
ations based on a �nite number of moments are generally�awed; see e.g. Bro
kett and Kahane (1992) and Bro
kett and Garven (1996). Thus the goal of this paperis to investigate the relationships of higher-order risk preferen
es to all moments.The approa
h undertaken makes use of the proper risk apportionment model of Ee
khoudt and S
hlesinger(2006). They give another de�nition of nth-degree risk aversion as a preferen
e over (seemingly) simplelotteries and show equivalen
e to Ekern's de�nition. The lottery preferen
es 
an be interpreted as thedesire to �disaggregate the harms� of unavoidable risks and losses, i.e. to apportion them properly a

rossdi�erent states of nature. These lotteries allow for studying risk attitudes outside the EU framework.Furthermore, one 
an exploit the simpli
ity of de�ning risk preferen
es via proper risk apportionment forboth theoreti
al and empiri
al purposes.2 The remarkable equivalen
e between the lottery preferen
esand nth-degree risk aversion motivates the intensive study of their statisti
al properties.In this paper, we 
ompute all moments of the proper risk apportionment lotteries of all orders. Thuswe a
tually present a 
hara
terization of the lotteries and, impli
itly, of higher-order risk preferen
es.This is be
ause the sequen
e of moments uniquely determines the distribution of a bounded randomvariable. This is known as the solution to the Hausdor� moment problem in the probability literature;see Hausdor� (1921).3 This 
hara
terization provides a better understanding of the relationships betweenhigher-order risk preferen
es, skewness preferen
e and kurtosis aversion. In parti
ular, not only pruden
eand and temperan
e, but all higher-order risk preferen
es of odd and even order, are shown to relateto skewness seeking and kurtosis aversion, respe
tively. As the measures of skewness and kurtosis usedare moments, these results should be a

essible to a wide audien
e. Our results, whi
h are independentof EU, build up on the re
ent work of Roger (forth
oming), who made an important 
ontribution ina
hieving this 
hara
terization. He 
omputed all moments of the proper risk apportionment lotteriesfor the spe
ial 
ase where the risks that have to be apportioned are symmetri
. However, we will showthat the asymmetry of these risks is just the origin of the proper risk apportionment model's statisti
algenerality. We also generalize the early work of Ekern (1980), who 
onsidered di�eren
es in moments up2 For example, the lotteries are used by Gollier (2010) to investigate e
ologi
al dis
ounting, by Maier and Rüger (2009)to investigate referen
e-dependent risk preferen
es of higher orders and by Jindapon (2009) to de�ne probability premiaof higher order. De
k and S
hlesinger (forth
oming) and Ebert and Wiesen (2009) employ the lotteries in a laboratoryexperiment and �nd strong eviden
e for third- and fourth-order risk preferen
es (rather than indi�eren
e), whi
h furtherhighlights their importan
e. Furthermore, the 
on
ept of proper risk apportionment 
an be generalized to the bivariate
ase, as shown in Ee
khoudt et al. (2007) or Tsetlin and Winkler (2009), whi
h are largely applied in health e
onomi
s.3 The assumption of boundedness is unproblemati
 from an e
onomi
 point of view as there is not an in�nite amountof money. Thus the assumption is standard in the literature on de
ision making under risk. A stronger assumption oftenmade is that distributions are de�ned on a 
ompa
tum whi
h implies boundedness.



4 Sebastian Ebertto order n for nth-degree risk aversion.The paper pro
eeds as follows. In se
tion 2, we review the proper risk apportionment model of Ee
khoudtand S
hlesinger and dis
uss our notions of skewness and kurtosis and how they relate to all odd andeven moments, respe
tively. In parti
ular, we illustrate how skewness and kurtosis manifest in dis
rete(lottery) distributions. For binary risks we prove that all odd moments (ex
ept for the mean) must be ofthe same sign. This also provides intuition why they are generalized skewness 
omparable in the senseof Chiu (forth
oming).In se
tion 3, we expli
itly 
ompute all moments of the pruden
e and temperan
e lotteries. We show thatdistributions preferred by a prudent de
ision maker must have higher skewness as de�ned by high oddmoments of any order, but they may or may not have higher kurtosis as de�ned by higher even momentsof any order. We refer to this as the kurtosis robustness feature of pruden
e. That is, the preferen
e forskewness of a prudent de
ision maker must not be disturbed by di�eren
es in kurtosis. In parti
ular,pruden
e does not only determine preferen
e between distributions that purely di�er in skewness. Tobest of our knowledge, this has not been dis
ussed in any paper dis
ussing pruden
e as being related toskewness preferen
e. Whether the prudent lottery 
hoi
e has the smaller or larger kurtosis solely dependson the skewness of the risk that has to be apportioned. Therefore, what makes the preferen
e a strongpreferen
e is that asymmetri
 risks 
onsistently have to be apportioned in the same way. This also helpsto explain re
ent experimental eviden
e of Ebert and Wiesen (2009) who �nd a signi�
ant di�eren
e inthe number of prudent de
isions for adversely skewed zero-mean risks. Likewise, though not as 
lear-
ut,we show that temperan
e implies a preferen
e for distributions with small kurtosis as de�ned by smalleven moments and whi
h is robust towards variation in the odd moments. This is referred to as theskewness robustness feature of temperan
e.In se
tion 4, we generalize these results and investigate all moments of the proper risk apportionmentlotteries of all orders. We show how all higher-order risk preferen
es of odd and even order (not onlypruden
e and temperan
e), respe
tively, are related to skewness preferen
e and kurtosis aversion in a
omplementary way. This should raise more interest in these 
on
epts whi
h are generally viewed asrather abstra
t. In both se
tions 3 and 4, we will dis
uss how our results relate to those of Roger (forth-
oming) and whi
h of his results are parti
ular to the symmetry of the zero-mean risks.Se
tion 5 
on
ludes. All proofs are given in the appendix.2 Proper risk apportionment, skewness, kurtosis and momentsWe �rst de�ne the lotteries of Ee
khoudt and S
hlesinger (2006) and explain the importan
e of properrisk apportionment. Let X be Bernoulli distributed with parameter 0.5. Let k > 0 su
h that the amount
−k 
an be interpreted as a sure redu
tion in wealth. For all n ∈ N let ǫn be a zero-mean risk (i.e.
E[ǫn] = 0) with �nite moments. The lotteries for monotoni
ity and risk aversion, respe
tively, are givenby A1 = −k, B1 = 0 and A2 = ǫ1, B2 = 0. For the �rst two so-
alled higher-order preferen
es, pruden
e



Moment 
hara
terization of higher-order risk preferen
es 5and temperan
e, the lotteries are
A3 = X · 0 + (1 − X) (ǫ1 − k) = XB1 + (1 − X)(A1 + ǫ1)

B3 = X(−k) + (1 − X)ǫ1 = XA1 + (1 − X)(B1 + ǫ1)and
A4 = X · 0 + (1 − X)(ǫ1 + ǫ2) = XB2 + (1 − X)(A2 + ǫ2)

B4 = Xǫ1 + (1 − X)ǫ2 = XA2 + (1 − X)(B2 + ǫ2).Figure 1 illustrates examples of these lotteries where out
omes have been aggregated. For higher orders,Fig. 1 Examples of a pruden
e and a temperan
e lottery pair with symmetri
 (S) zero-mean risksPruden
e Lottery Pair
BS

3

3
1

4

13

4

AS
3

2
3

4

01

4Temperan
e lottery pair
BS

4

3
1

2

11

2

AS
4

41

8

2

6

8

0
1

8The pruden
e lotteries are 
onstru
ted with initial wealth x = 2, �xed loss
−k = −1 and the zero-mean risk ǫ yields 1 or −1 with equal probability. Forthe temperan
e lotteries, initial wealth is x = 2 and the zero-mean risks ǫ̃1 and
ǫ̃2 both yield 1 or −1 with equal probability.proper risk apportionment of order n is de�ned iteratively by 
ontinuing the previously illustrated nestingpro
ess, i.e.

An = XBn−2 + (1 − X)
(
An−2 + ǫ

xn/2y

)

Bn = XAn−2 + (1 − X)
(
Bn−2 + ǫ

xn/2y

)where xn/2y is the largest integer smaller than or equal to n/2. An agent exhibits proper risk apportion-ment of order n, if she prefers Bn over An for all wealth levels x, for all sure losses k and, in parti
ular,for all zero-mean risks ǫ. A prudent de
ision maker, for example, will prefer to disaggregate the sureloss −k and the zero-mean risk ǫ. That is, she prefers to have the two items in di�erent rather than inthe same of two equally likely states of nature. In other words, she disaggregates the two �harms� of a



6 Sebastian Ebertsure loss and a zero-mean risk.4 A �nan
ial e
onomist might speak of a preferen
e for diversi�
ation. Anequivalent interpretation is that the additional risk is preferred when wealth is higher. These numerousinterpretations already illustrate the impli
it generality of the preferen
e. Moreover, preferen
e betweenthe proper risk apportionment lotteries has strong impli
ations within the EU framework as shown byEe
khoudt and S
hlesinger (2006).Theorem 1 Within the EU paradigm with di�erentiable utility fun
tion u, proper risk apportionmentof order n is equivalent to the 
ondition sgn(u(n)) = (−1)n+1.Thus, the lottery preferen
e of B2 over A2, for example, is equivalent to a 
on
ave utility fun
tion withinthe di�erentiable EU framework, i.e. to risk aversion. While none of the results in this paper are basedon EU, the above theorem tells us how to interpret them under the assumption of EU.Next we review the qualitative de�nitions of skewness and kurtosis, respe
tively. For the purpose of thispaper, it will be parti
ularly insightful to dis
uss how skewness and kurtosis are re�e
ted in dis
rete(lottery) distributions. This will be done with referen
e to Figure 1.Generally, a distribution is right-skewed if it has a longer right tail. This is true for lottery BS
3 in Figure1 be
ause the low out
ome 1 has a small distan
e to the mean of 1.5, whereas the high out
ome 3 has alarge distan
e to the mean. In general, any binary lottery is right-skewed if and only if the high out
omeo

urs with the smaller probability. Formally, this is a 
onsequen
e of Theorem 1 in Ebert and Wiesen(2009) and Theorem 2 in this paper. Thus, lottery AS

3 in Figure 1 (whi
h also has mean 1.5) is left-skewed.The parti
ular lottery pair (AS
3 , BS

3 ) has been introdu
ed in Mao (1970) and motivated the de�nition ofdownside risk aversion in Menezes et al. (1980). A downside risk-averse de
ision maker will prefer BS
3over AS

3 . She rather goes for the smaller out
ome 1 most of the time su
h that she is safe with respe
tto the worst out
ome 0 that 
an o

ur when taking AS
3 instead. Choi
e BS

3 also implies a small 
han
eof winning the high prize (out
ome 3).Now we 
onsider the lotteries BS
4 and AS

4 in Figure 1 to dis
uss kurtosis. Generally, high kurtosis of adistribution implies peakedness and fat tails. Peakedness means that there is a high probability (a �peak�in the frequen
y distribution) of out
omes 
lose to the mean. Fat tails mean that there is a 
han
e ofextreme out
omes (
ompared to the mean) to o

ur, i.e. su
h out
omes have a high probability mass.This is true for lottery A4, whi
h has a probability peak of 6/8 at its mean, whi
h is 2. Lottery BS
4 , in
ontrast, has no probability mass at its mean (whi
h is also 2) and its out
omes are also less extreme
ompared to those of lottery BS

4 . Thus, lottery AS
4 has a higher kurtosis than lottery BS

4 .Now we dis
uss statisti
al moments and how they relate to skewness and kurtosis. We denote the pth(non-standardized) 
entral moment of a random variable Z by
Mp(Z) = E[(Z − E[Z])p].4 This interpretation from Ee
khoudt and S
hlesinger (2006) requires the de
ision maker to be risk-averse su
h that azero-mean risk indeed 
onstitutes a harm.



Moment 
hara
terization of higher-order risk preferen
es 7When speaking of moments we always mean (non-standardized) 
entral moments. It is important to notethat in this paper skewness and kurtosis do not refer to the third and fourth moment, respe
tively. Ifnot noted otherwise, they refer to the qualitative features dis
ussed above. One reason is that the thirdand fourth moment, respe
tively, might fail to indi
ate that a distribution is more skewed or leptokurti
than another one.5 On the other hand, all higher odd and even moments share reasonable propertiesof a skewness and kurtosis measure, respe
tively; see van Zwet (1964). In general, the link between any�nite number of moments and preferen
e is �awed. For example, for any utility fun
tion u with u′ > 0and u′′ < 0, there exist random variables X and Y su
h that X has the higher mean and the lowervarian
e, but u prefers Y to X ; see Bro
kett and Kahane (1992) and Bro
kett and Garven (1998) forexpli
it examples. Therefore, a more reliable requirement for a distribution to be more skewed is thatall odd moments are at least as high as the 
orresponding moments of the distribution in 
omparison.Likewise, for a distribution to be more leptokurti
, all its even moments are required to be higher. Theresults in our dis
ussion of higher-order risk preferen
es, skewness preferen
e and kurtosis aversion 
anbe based on these strong notions of skewness and kurtosis.6The following theorem shows that in the 
ase of binary risks any single odd moment is an appropriatemeasure of skewness, as the sign of all other odd moments is redundant. It also provides additionalintuition to the re
ent result of Chiu (forth
oming), who shows that all binary risks are generalizedskewness 
omparable implying that third-order moment preferen
es over su
h risks are 
onsistent withEU maximization. As binary risks are widely employed in experiments the result 
ould be useful to testfor skewness preferen
e.Theorem 2 Consider a binary lottery B = Xy1 + (1 − X)y0 with X being Bernoulli distributed withparameter p and without loss of generality let y1 > y0. Then
∃ n ≥ 3 odd: Mn(B) < 0 =⇒ Mn(B) < 0 ∀ n ≥ 3 oddwhere the relation < may be repla
ed by > or = .3 Pruden
e, Temperan
e and MomentsIn this se
tion, we present the statisti
al 
hara
terizations of pruden
e and temperan
e in terms ofmoments. The following Propositions 1-4 generalize Propositions 1-4 in Roger (forth
oming) to arbitraryzero-mean risks. Proposition 1 is a generalization of Proposition 3 in Ebert and Wiesen (2009) to momentsof order higher than 4. Propositions 1-4 are also generalizations of results in Ekern (1980) in that they
onsider all moments rather than only moments 1, 2, . . . , n where n is the 
onsidered degree of riskaversion.We start with Proposition 1 whi
h presents a statisti
al 
hara
terization of pruden
e in terms of moments.5 We give su
h an example for the third moment in Figure 3.6 For more on moments and other measures of skewness see, e.g., Ma
Gillivray (1986).



8 Sebastian EbertProposition 1 (All moments of the pruden
e lotteries.)For p ∈ N we have
(1) Mp (A3) =







(
k
2

)p
+ 1

2

∑p
j=2

(
p
j

)
E
[

ǫj
1

] (
−k

2

)p−j
, p even

1
2

∑p
j=2

(
p
j

)
E
[

ǫj
1

] (
−k

2

)p−j
, p odd

(2) Mp (B3) =







(
k
2

)p
+ 1

2

∑p
j=2

(
p
j

)
E
[

ǫj
1

] (
k
2

)p−j
, p even

1
2

∑p
j=2

(
p
j

)
E
[

ǫj
1

] (
k
2

)p−j
, p odd

(3) Mp (B3) − Mp (A3) =







1
2

∑p
j=2

j odd (pj)E [ǫj
1

] (
k
2

)p−j
, p even

1
2

∑p
j=2

j even (pj)E [ǫj
1

] (
k
2

)p−j
, p odd.Further, the di�eren
e Mp (B3) − Mp (A3) is stri
tly positive for all p odd. For all p even, it 
an bepositive, negative or zero.From Menezes et al. (1980) we already knew that the pruden
e lotteries have equal mean and varian
eand that B3 has a higher third moment. These results are re
overed from part (3) in Proposition 1 by
onsidering p = 1, 2, 3. Firstly, let us dis
uss the impli
ation from part (3) stating that all odd momentsfor the prudent lottery 
hoi
e B3 are stri
tly larger than those of the 
orresponding imprudent lottery

A3. This shows that the prudent lottery 
hoi
e B3 is indeed more skewed to the right (not only inan approximate third-order sense), for all possible zero-mean risks. Se
ondly, part (3) implies that theeven moments may not be identi
al as proven for symmetri
 zero-mean risks ǫ1 in Roger (forth
oming).Roger's result is obtained as a spe
ial 
ase from part (3), as symmetry of a random variable implies allits odd moments to be zero. Proposition 1 shows that in that 
ase, and only in that 
ase, lotteries A3and B3 have equal kurtosis. This 
an also be seen qualitatively from our sample lottery pair in Figure 1.Both lotteries AS
3 and BS

3 have a 3/4-probability peak at an out
ome 
lose to the mean (distan
e of 0.5)whi
h are 2 and 1, respe
itively. The �extreme� out
omes of lotteries AS
3 and BS

3 are 0 and 3, respe
tively.Both have a distan
e of 1.5 from the mean and o

ur with equal probability.In the general 
ase, the even moments of the prudent 
hoi
e 
an be larger or smaller than those ofthe imprudent 
hoi
e. They are larger (smaller) if and only if the zero-mean risks to be apportionedare right-skewed (left-skewed), in the sense that most of its odd moments are positive (negative). Anexample is given in Figure 2. Lottery BR
3 has a 7/8 probability peak at 1 whi
h is 
lose to the mean of

1.5. It also has a very extreme out
ome 5. Lottery AR
3 in 
ontrast has only a 4/8 probability peak at theout
ome 2 whi
h is 
lose to the mean and both remaining out
omes 0 and 4 are less extreme than 5 astheir distan
e to the mean of 1.5 is smaller. Analogous arguments apply to lottery pair (AL

3 , BL
3 ) wherethe zero-mean risk is left-skewed and thus AL

3 has the higher kurtosis.In general, pruden
e must be understood as a preferen
e for high skewness (i.e. high odd moments of allorders) that is robust towards variation in kurtosis (i.e. di�eren
es in high even moments of all orders).



Moment 
hara
terization of higher-order risk preferen
es 9We refer to this as the kurtosis robustness feature of pruden
e. That is, pruden
e not only determinespreferen
e between distributions that purely di�er in their skewness. Pruden
e implies preferen
e fordistributions with higher skewness independent of whether they have the higher or smaller kurtosis. Tobest of our knowledge, this has not yet been pointed out in any dis
ussion of pruden
e and skewnesspreferen
e.Thus, the restri
tion to symmetri
 zero-mean risks in the proper risk apportionment model of Ee
khoudtand S
hlesinger (2006) is rather severe from a statisti
al point of view. It redu
es pruden
e to �pure�skewness seeking (distributions with higher odd moments are preferred) and negle
ts the kurtosis robust-ness feature. Empiri
al support for the kurtosis robustness feature has been found in the experiment ofEbert and Wiesen (2009) who 
on
lude that there is more to pruden
e than skewness seeking. A prudentde
ision is made more frequently when the zero-mean risk is left-skewed, i.e. the even moments are higherfor the imprudent 
hoi
e. An interpretation is that when the risk is left-skewed, for a prudent de
isionmaker it 
onstitutes a greater harm su
h that there is a higher ne
essity to be prudent. Proposition 1 is ageneralization of their Proposition 3 whi
h puts their result on a sound theoreti
al basis that is not basedon an approximate fourth-order analysis. Next we present a 
hara
terization of temperan
e in terms ofmoments.Fig. 2 Pruden
e lottery pairs with skewed zero-mean risksPruden
e lottery pair with right-skewed (R) zero-mean risk
BR

3

5
1

8

17

8

AR
3

41

8

2

4

8

0
3

8Pruden
e lottery with left-skewed (L) zero-mean risk
BL

3

33

8

1

4

8

−1
1

8

AL
3

2
7

8

−21

8This Figure shows a pruden
e lottery pair (AL
3
, BL

3
) where the zero-mean risk ǫ1 is left-skewed and a pruden
e lotterypair (AR

3
, BR

3
) where the zero-mean risk ǫ1 is right-skewed. Both BL

3
and BR

3
are, respe
tively, more skewed to the rightthan AL

3
and AR

3
. However, whereas BR

3
has a higher kurtosis than AR

3
, BL

3
has a smaller kurtosis than AL

3
. This is ina

ordan
e with the result on moments proven in Proposition 1. The pruden
e lotteries with the right-skewed zero-meanrisk are 
onstru
ted with initial wealth x = 2, loss −k = −1 and the zero-mean risk ǫ1 yields 3 with probability 1/4 and

−1 with probability 3/4. For the pruden
e lotteries with the left-skewed zero-mean risk, initial wealth is x = 2, the loss is
−k = −1 and the zero-mean risk ǫ1 yields −3 with probability 1/4 and 1 with probability 3/4.



10 Sebastian EbertProposition 2 (All moments of the temperan
e lotteries.) For p ∈ N

(1) Mp (A4) =
1

2

p
∑

j=0

(
p

j

)

E
[

ǫj
1

]

E
[

ǫp−j
1

]

(2) Mp (B4) =
1

2
(E [ǫp

2] + E [ǫp
1])

(3) Mp (B4) − Mp (A4) = −
1

2





p−1
∑

j=2

(
p

j

)

E
[

ǫj
1

]

E
[

ǫp−j
2

]



 .Further, for p > 4 odd the di�eren
e Mp (B3) − Mp (A3) 
an be positive, negative or zero.
Roger (forth
oming) further shows that in the 
ase of symmetri
 zero-mean risks

Mp (An) = Mp (Bn) = 0 ∀ p odd.For illustrative purposes, 
onsider the 
ase of p = 5 and n = 4. Using equation (5), we have
M5 (B4) − M5 (A4) = −

1

2





5−1∑

j=2

(
5

j

)

E
[

ǫj
1

]

E
[

ǫ5−j
2

]





= −
1

2

((
5

2

)

E
[
ǫ21
]
E
[
ǫ32
]
+

(
5

3

)

E
[
ǫ31
]
E
[
ǫ22
]
+ 0

) (1)whi
h 
an be positive, negative or zero, depending on the third moments of the zero-mean risks. Theproof in the appendix essentially generalizes this example to all odd moments. We interpret the laststatement of Proposition 2 as the skewness robustness feature of temperan
e. Roger also shows that
Mp (B4) − Mp (A4) < 0 holds for all p > n even. This we 
annot prove in the general 
ase. To see thereason why, in equation (5) set p = 6 and n = 4, i.e.

M6 (B4) − M6 (A4) =
1

2





5∑

j=2

(
6

j

)

E
[

ǫj
1

]

E
[

ǫ6−j
2

]





= −
1

2

(

0 +

(
6

2

)

E
[
ǫ21
]
E
[
ǫ42
]
+

(
6

3

)

E
[
ǫ31
]
E
[
ǫ32
]
+

(
6

4

)

E
[
ǫ41
]
E
[
ǫ22
]
+ 0

)

. (2)This expression might be
ome positive if the middle term is negative whi
h 
ould happen if and only ifthe two zero-mean risks are adversely skewed. However, we 
ould 
onje
ture that for all random variables
ǫ1 and ǫ2 this is not possible. Using Proposition 2, part (3), the 
onje
ture 
an be validated or dismissedfor any risks spe
i�
ally 
onsidered. Evidently, it is true if both zero-mean risks are symmetri
 or skewedin the same dire
tion. For pruden
e, we obtained the 
lear statement that proper risk apportionmentimplies preferen
e for large odd moments of all orders that is robust towards variation in the evenmoments. Analogously, we �nd some eviden
e that temperan
e is a preferen
e for small even moments(kurtosis aversion) that is robust towards variation in the odd moments (skewness robustness).



Moment 
hara
terization of higher-order risk preferen
es 114 Higher-order generalizationsIn this se
tion, we generalize the results from the previous se
tion to risk apportionment of orders higherthan 4. Lemma 1 presents re
ursive formulae that 
an be used to 
ompute any moment of a proper riskapportionment lottery of any order and thus 
ompletes our moment 
hara
terization of higher-order riskpreferen
es.Lemma 1 For n ≥ 3 (even or odd) we have the following re
ursive formulae
Mp(An) =

1

2



Mp(Bn−2) + Mp(An−2) +

p
∑

j=2

(
p

j

)

E
[

ǫj
xn/2y

]

Mp−j(An−2)



 (3)
Mp(Bn) =

1

2



Mp(An−2) + Mp(Bn−2) +

p
∑

j=2

(
p

j

)

E
[

ǫj
xn/2y

]

Mp−j(Bn−2)



 (4)
Mp (Bn) − Mp (An) =

1

2





p
∑

j=2

(
p

j

)

E
[

ǫj
xn/2y

]

(Mp−j(Bn−2) − Mp−j(An−2))



 . (5)We now investigate how our Proposition 2 and Roger's Proposition 3 generalize to higher even orders.Proposition 3 Let n ≥ 4.

(1) Mp (An) − Mp (Bn) = 0, for 1 ≤ p < n

(2) Mn (An) > Mn (Bn) , for p = n.Further, for p > n odd the di�eren
e Mp (B3) − Mp (A3) 
an be positive, negative or zero.The last statement says that all higher-order risk preferen
es of even order have a skewness robustnessfeature, i.e. the preferred lottery may or may not have higher odd moments of any order. As Rogershowed for symmetri
 zero-mean risks, we also 
onje
ture (as we did in the 
ase of temperan
e) that inthe general 
ase Mp (An) > Mp (Bn) for p ≥ n even is true. For any lotteries spe
i�
ally 
onsidered, this
an be 
he
ked using equation (5) in Lemma 1. The next Proposition generalizes Roger's Proposition 4.Proposition 4 n ≥ 3 odd.
(1) Mp (An) = Mp (Bn) for p < n

(2) Mp (Bn) − Mp (An) > 0 for p = n.Further, for p > n even the di�eren
e Mp (B3) − Mp (A3) 
an be positive, negative or zero.



12 Sebastian EbertThe last statement says that all higher-order risk preferen
es of odd order have a kurtosis robustnessfeature. Under the symmetry assumption, for n ≥ 3 odd Roger (forth
oming) shows
(1a) Mp(An) = Mp(Bn) = 0 ∀ p < n odd,
(2′) Mp(An) = −Mp(Bn) < 0 ∀ p ≥ n odd,
(3) Mp(An) = Mp(Bn) ∀ p > n even.While (1a) trivially holds for pruden
e, in general only the �rst equality is true. The following is a
ounterexample for the se
ond inequality. For n = 5 and p = 3 the re
ursive formula derived in Lemma 1,equation (5) gives

M3(A5) =
1

2



M3(B3) + M3(A3) +

3∑

j=2

(
3

j

)

E[ǫj
2]M3−j(A3)



 .From Proposition 1, M3(B3) = 1
2

((
3
2

)
E[ǫ21]

k
2 + E[ǫ31]

)
, M3(A3) = 1

2

((
3
2

)
E[ǫ21]

(
−k

2

)
+ E[ǫ31]

) and M1(A3) =

0 su
h that
M3(A5) = 2E[ǫ31]whi
h 
an be negative, positive or zero, depending on the asymmetry of the zero-mean risks.A 
ounterexample for (3) is given by the fourth 
entral moment of the pruden
e lotteries, i.e. n = 3 and

p = 4, as dis
ussed subsequent to Proposition 1.The equality in (2') is not true and a 
ounterexample is given by the third moment of the pruden
elotteries; see parts (1) and (2) of Proposition 1. Also, in the general 
ase we 
annot prove the inequality
Mp(Bn) − Mp(An) > 0 for p odd, whi
h is redundant from (2'). To see the reason why, take n = 5 and
p = 7 in (5) and impute the expressions for the moments of the pruden
e lotteries stated in Proposition1. We get

M7(B5) − M7(A5) =
1

2







7∑

j=2, j even(7

j

)

E
[

ǫj
5

]





7−j
∑

l=2, l even(7 − j

l

)

E
[
ǫl
2

]
(

k

2

)7−j−l




+

7∑

j=2, j odd(7

j

)

E
[

ǫj
5

]





7−j
∑

l=2, l odd(7 − j

l

)

E
[
ǫl
3

]
(

k

2

)7−j−l









.The se
ond sum of the above expression 
an be 
omputed as

(
7

3

)

E
[
ǫ35
]

(

+

(
4

3

)

E
[
ǫ33
]
(

k

2

)1
)

+

(
7

5

)

E
[
ǫ55
]
·

((
2

1

)

· 0

)

= 4E
[
ǫ33
]
(

k

2

)

,whi
h might be negative su
h that the whole expression might be negative. However, we again 
onje
turethat this is not possible. For the pruden
e lotteries Mp(Bn) − Mp(An) > 0 for p ≥ 3 odd is true (see



Moment 
hara
terization of higher-order risk preferen
es 13Proposition 1). It is also true for the example of the edginess lottery pair depi
ted in Figure 3. Clearly,
BS

5 is skewed to the right as it has a long right tail due to out
ome 4 being far right of the mean of 1.5and o

uring with small probability. The right tail is shorter as out
ome 0 is 
loser to the mean and hasheavier probability mass. Analogous arguments imply that AS
5 is left-skewed. As all zero-mean risks usedin the 
onstru
tion of (AS

5 , BS
5 ) are symmetri
, all even moments of the two lotteries are equal, i.e. theyhave the same kurtosis. Likewise, BS

5 has higher odd moments of order 5 and higher whi
h indi
ates thatit is more skewed to the right, although the third moments of the lotteries are the same.The previous example shows two important points. Firstly, it illustrates why the third moment of adistribution 
an fail as a measure of skewness. Se
ondly, pruden
e does not exhaustively des
ribe skewnesspreferen
e. The right-skewed lottery BS
5 is preferred to the left-skewed lottery AS

5 if and only if the de
isionmaker exhibits edginess. This illustrates that higher-order risk preferen
es of any order are important inmodeling skewness preferen
e. Analogous arguments show that all higher-order risk preferen
es of evenorder imply kurtosis aversion in a 
omplementary way.Fig. 3 Edginess lottery pair with symmetri
 (S) zero-mean risks
BS

5

41

16

2

10

16

0
5

16

AS
5

35

16

1

10

16

−1
1

16This �gure shows an edginess lottery pair (AS
5
, BS

5
) where both zero-mean risks are symmetri
. BS

5
is more skewed tothe right than AS

5
, although the lotteries do not di�er in their third moment. BS

5
has higher odd moments of all ordershigher than three. Initial wealth is x = 2, loss −k = −1 and the zero-mean risks ǫ̃1 and ǫ̃2 both yield 1 or −1 withequal probability. Thus, the nested pruden
e lotteries used in the 
onstru
tion are AS

3
and BS

3
displayed in Figure 1.

5 Con
lusionIn this paper, we presented a 
hara
terization of higher-order risk preferen
es in terms of statisti
almoments. This 
hara
terization provides a better understanding of how higher-order risk preferen
es arerelated to skewness preferen
e and kurtosis aversion. Further, moments are well understood su
h thatour results should be easily a

essible to a wide audien
e in e
onomi
s and �nan
e.Pruden
e is shown to be a preferen
e for high odd moments (skewness seeking) that is robust towardsvariation in the even moments (kurtosis robustness). In parti
ular, pruden
e does not only determinepreferen
e between distributions that purely di�er in their skewness. However, restri
tion to symmetri
zero-mean risks in the proper risk apportionment model of Ee
khoudt and S
hlesinger redu
es pruden
eto �pure� skewness seeking. Thus, our theoreti
al results are in line with experimental eviden
e by Ebertand Wiesen (2009), who �nd that there is more to pruden
e than skewness seeking. Analogous results



14 Sebastian Ebertin the present paper relate temperan
e to preferen
e for small even moments (kurtosis aversion) that isrobust towards variation in the odd moments (skewness robustness).Moreover, we showed that not only pruden
e and temperan
e, but all higher-order risk preferen
es of oddand even order, respe
tively, are related to skewness preferen
e and kurtosis aversion in a 
omplementaryway. This highlights the importan
e of these 
on
epts whi
h are generally viewed as rather abstra
t andthus have not re
eived that mu
h attention in the literature yet.Appendix (Proofs)Proof of Theorem 2. We �rst show that M3(B) < 0 implies Mn(B) < 0 ∀ n > 3 odd. Using translationinvarian
e we 
an write the nth 
entral moment of B as
Mn(B) = Mn(B − y0) = Mn (X(y1 − y0)) = E [(X(y1 − y0) − p(y1 − y0))

n]whi
h for the Bernoulli distribution 
an be 
omputed expli
itly as
Mn(B) = p ((y1 − y0) − p(y1 − y0))

n
+ (1 − p) (−p(y1 − y0))

n
.Using that n is odd this is easily simpli�ed to

Mn(B) = (y1 − y0)
n · (p (1 − p)n − (1 − p)pn) .It is easily seen that (p(1 − p)n − (1 − p)pn) < 0 ⇐⇒ p > 0.5, and sin
e (y1 − y0)

n > 0 by de�nition wehave
Mn(B) < 0 ⇐⇒ p > 0.5. (6)From Theorem 1 in Ebert and Wiesen (2009) we have that p > 0.5 if and only if the third 
entral momentof B is stri
tly negative. Thus the 
laim is proved for n = 3 by the ne
essity of the equivalen
e in (6).Now suppose that for some (arbitrary) n we have Mn(B) < 0. Then by the su�
ien
y in (6) we have

p > 0.5 whi
h implies M3(B) < 0 from whi
h the 
laim follows as just demonstrated. The statementsfor the other relations are obtained analogously. �The following lemma is proven in Roger (forth
oming) and will be used several times in our proofs.Lemma 2 (Roger's Lemma) Let X be Bernoulli distributed with parameter 0.5 and be independent from
Y1 and Y2. Then:

E [(XY1 + (1 − X)Y2)
p] =

1

2
(E [Y p

1 ] + E [Y p
2 ]) .If E[Y1] = E[Y2], then

Mp [XY1 + (1 − X)Y2] =
1

2
(Mp [X ] + Mp [Y ]) .



Moment 
hara
terization of higher-order risk preferen
es 15Proof of Proposition 1. We �rst de�ne auxiliary lotteries
Â3 := A3 +

k

2
= X ·

k

2
+ (1 − X)

(

−
k

2
+ ǫ1

)

B̂3 := B3 +
k

2
= X

(

−
k

2

)

+ (1 − X)

(

ǫ1 +
k

2

)

.These lotteries 
an be understood as the pruden
e lotteries shifted su
h that they have mean zero.Be
ause the operator Mp(·) is translation invariant we have
Mp(A3) = Mp(Â3) = E[Âp

3] (7)whi
h analogously holds for B3. Thus it su�
es to fo
us on the 
omputation of the non-
entral moments
E[Âp

3] and E[B̂p
3 ]. In the se
ond equality below we apply Roger's Lemma and obtain

Mp (A3) = E

[{

X ·
k

2
+ (1 − X)

(

ǫ1 −
k

2

)}p]

=
1

2
E

[(

ǫ1 +

(

−
k

2

))p]

+
1

2

(
k

2

)p

=
1

2
E





p
∑

j=0

(
p

j

)

ǫj
1

(

−
k

2

)p−j


+
1

2

(
k

2

)p

=
1

2

p
∑

j=2

(
p

j

)(

−
k

2

)p−j

E
[

ǫj
1

]

+
1

2

((

−
k

2

)p

+

(
k

2

)p)

. (8)where we used that the summand for j = 1 is zero sin
e E[ǫ1] = 0. This argument will be used severaltimes in the proofs of this paper. Similarly, for B3 we get
Mp (B3) =

1

2

p
∑

j=2

(
p

j

)(
k

2

)p−j

E
[

ǫj
1

]

+
1

2

((

−
k

2

)p

+

(
k

2

)p)

. (9)To prove (1) and (2), if p is odd we have
Mp (A3) =

1

2

p
∑

j=2

(
p

j

)

E
[

ǫj
1

](

−
k

2

)p−j

+
1

2

(

−

(
k

2

)p

+

(
k

2

)p)

=
1

2

p
∑

j=2

(
p

j

)

E
[

ǫj
1

](

−
k

2

)p−jand analogously
Mp (B3) =

1

2

p
∑

j=2

(
p

j

)

E
[

ǫj
1

](k

2

)p−j

.



16 Sebastian EbertIf p is even
Mp (A3) =

1

2

p
∑

j=2

(
p

j

)

E
[

ǫj
1

](

−
k

2

)p−j

+
1

2

((
k

2

)p

+

(
k

2

)p)

=

(
k

2

)p

+
1

2

p
∑

j=2

(
p

j

)

E
[

ǫj
1

](

−
k

2

)p−jand analogously
Mp (B3) =

(
k

2

)p

+
1

2

p
∑

j=2

(
p

j

)

E
[

ǫj
1

](k

2

)p−j

.

Proof of part (3). For odd p, using the expressions proven in (1) and (2), this di�eren
e 
an be 
omputedas
Mp (B3) − Mp (A3) =

1

2

p
∑

j=2

(
p

j

)

E
[

ǫj
1

]
((

k

2

)p−j

−

(

−
k

2

)p−j
)

︸ ︷︷ ︸

=







2
(

k
2

)p−j
, p − j odd ⇔ j even

0 , o.w.
=

p
∑

j=2, j even(p

j

)

E
[

ǫj
1

](k

2

)p−j

.Similarly, for even p we obtain
Mp (B3) − Mp (A3) =

1

2

p
∑

j=2

(
p

j

)

E
[

ǫj
1

]
((

k

2

)p−j

−

(

−
k

2

)p−j
)

︸ ︷︷ ︸

=







2
(

k
2

)p−j
, p − j odd ⇔ j odd

0 , o.w.
=

p
∑

j=2, j odd(p

j

)

E
[

ǫj
1

](k

2

)p−j

.The 
laims on the sign of Mp (B3) − Mp (A3) are evident from the expressions proved. �Proof of Proposition 2. The proof essentially follows that of Roger for the symmetri
 
ase. By appli
ationof Roger's Lemma we have
Mp (A4) = E [(1 − X)

p
(ǫ1 + ǫ2)

p
] =

1

2
E [(ǫ1 + ǫ2)

p
]

=
1

2

p
∑

j=0

(
p

j

)

E
[

ǫj
1

]

E
[

ǫp−j
2

]
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es 17and
Mp (B4) =

1

2
(E [ǫp

2] + E [ǫp
1]) .Claim (3) follows immediately by substra
tion. For the last statement, 
onsider the produ
ts E

[

ǫj
1

]

·

E
[

ǫp−j
2

]

. Suppose both zero-mean risks are binary and re
all the result of Theorem 2. Obviously, if bothzero-mean risks are right-skewed, then all these produ
ts are positive su
h that Mp (B4)− Mp (A4) < 0.If both zero-mean risks are symmetri
, we have that the di�eren
e is zero (as shown by Roger). Finally,as p is odd, p − j is odd if and only if j is even. Thus, if both zero-mean risks are left-skewed, we havethat (B4) − Mp (A4) > 0. �

Proof of Lemma 1. First, let n be even. By Roger's Lemma we have
Mp (An) = E [Ap

n] = E
[(

XBn−2 + (1 − X)
(
An−2 + ǫ

xn/2y

))p]

=
1

2

(
E
[
Bp

n−2

]
+ E

[(
An−2 + ǫ

xn/2y

)p])

=
1

2



E
[
Bp

n−2

]
+ E

[
Ap

n−2

]
+

p
∑

j=2

(
p

j

)

E
[

ǫj
xn/2y

]

E
[

Ap−j
n−2

]





=
1

2



E
[
Bp

n−2

]
+ E

[
Ap

n−2

]
+

p
∑

j=2

(
p

j

)

E
[

ǫj
xn/2y

]

Mp−j(An−2)



 (10)and similarly
Mp (Bn) =

1

2

(
E
[
Ap

n−2

]
+ E

[(
Bn−2 + ǫ

xn/2y

)p])

=
1

2



E
[
Bp

n−2

]
+ E

[
Ap

n−2

]
+

p
∑

j=2

(
p

j

)

E
[

ǫj
xn/2y

]

Mp−j(Bn−2)



 . (11)Thus we get
Mp (Bn) − Mp (An) =

1

2





p
∑

j=2

(
p

j

)[

ǫj
xn/2y

]

(Mp−j(Bn−2) − Mp−j(An−2))



whi
h is equation (5). Now assume n is odd. Like in the proof of Proposition 1 de�ne Â3 = A3 + k
2 and

B̂3 = B3 + k
2 . For n ≥ 5 we naturally extend this de�nition, i.e. let

Ân = XB̂n−2 + (1 − X)
(

ǫ
xn/2y

+ Ân−2

)

B̂n = XÂn−2 + (1 − X)
(

ǫ
xn/2y

+ B̂n−2

)

.



18 Sebastian EbertThen, like in the proof of Proposition 1, we have
Mp (An) = Mp

(

Ân

)

= E
[

Âp
n

]

=
1

2

(

E
[

B̂p
n−2

]

+ E
[(

ǫ
xn/2y

+ Ân−2

)p])

=
1

2



E
[

B̂p
n−2

]

+

p
∑

j=0

(
p

j

)

E
[

ǫj
xn/2y

]

E
[

Âp−j
n−2

]





=
1

2



E
[

B̂p
n−2

]

+ E
[

Âp
n−2

]

+

p
∑

j=2

(
p

j

)

E
[

ǫj
xn/2y

]

E
[

Âp−j
n−2

]





=
1

2



Mp(Bn−2) + Mp(An−2) +

p
∑

j=2

(
p

j

)

E
[

ǫj
xn/2y

]

Mp−j(An−2)



 (12)and analogously
Mp (Bn) =

1

2



Mp(An−2) + Mp(Bn−2) +

p
∑

j=2

(
p

j

)

E
[

ǫj
xn/2y

]

Mp−j(Bn−2)



 . (13)Equations (12) and (13), respe
tively, are identi
al to equations (10) and (11). Thus the subtra
tion ofequation (12) from equation (13) is also given by equation (5). �Proof of Proposition 3. We prove (1) by indu
tion. For n = 4 we show that for p = 1, 2, 3 the summandsin the equation of Proposition 2, part (3), are zero. The only e�e
tive summand is for p = 3 whi
h iszero be
ause E[ǫ3−2
2 ] = 0. Now assume the 
laim is true for n − 2. Let p < n. For j = 2, 3, ..., n we have

p− j < n− j ≤ n−2, thus Mp−j(Bn−2)−Mp−j(An−2) = 0 by the indu
tion assumption. Then the 
laimdire
tly follows from equation (5) in Lemma 1. Also (2) is proven by indu
tion. For n = 4 the 
laim 
aneasily be inferred from Proposition 2, part (3). Now assume the 
laim is true for n− 2. Equation (5) for
p = n is

Mn(Bn) − Mn(An) =
1

2





n∑

j=2

(
n

j

)

E[ǫj
xn/2y

] (Mn−j(Bn−2) − Mn−j(An−2))



 . (14)For j = 2 we have Mn−2(Bn−2) − Mn−2(An−2) > 0 by the indu
tion assumption, further E[ǫ2
xn/2y

] > 0and thus this summand is stri
tly positive. For j > 2 all summands are zero by Proposition part (1)of this Proposition and the 
laim follows. To prove the last statement, suppose that ǫ1, ǫ2, . . . , ǫxn/2y−1are symmetri
. Then from Roger (forth
oming), Proposition 3, we have that Mk (Bn−2)− Mk (An−2) isstri
tly positive for k ≥ n even and zero otherwise. We want to show that for p > n odd Mp (Bn)−Mp (An)
an be positive, negative, or zero. In order to do this, we 
onsider the summands in Equation (5) inLemma 1 and start with those summands for whi
h j is even. As p is odd, p − j is odd and thus
Mp−j (Bn−2) − Mp−j (An−2) is zero always. If j is odd, then p − j is even and thus Mp−j (Bn−2) −

Mp−j (An−2) is zero if p − j < n − 2 and stri
tly positive otherwise. Now, if ǫ
xn/2y

is symmetri
, i.e.
E[ǫj

xn/2y
] = 0 for all j odd, all summands are zero and we have (as proven by Roger) that Mp (Bn) −

Mp (An) = 0. If ǫ
xn/2y

is right-skewed and binary (see Theorem 2), then all summands are positive and
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es 19as p > n at least one summand is stri
tly positive, su
h that Mp (Bn)−Mp (An) > 0. Similarly, if ǫ
xn/2yis left-skewed and binary, we obtain that Mp (Bn) − Mp (An) < 0. �Proof of Proposition 4. By indu
tion. For pruden
e, i.e. n = 3, both 
laims (1) and (2) 
ould be veri�edusing part (3) of Proposition 1. However, the results are also given in Craini
h and Ee
khoudt (2006)and Ebert and Wiesen (2009). Suppose the 
laim is true for n−2. For part (1), the indu
tion assumptionis that p < n − 2 implies that Mp (Bn−2) − Mp (An−2) = 0. If p < n, then for j = 2, 3, . . . , p we have

p − j < n − j ≤ n − 2. Thus Mp (Bn−2) − Mp (An−2) = 0 for j = 2, 3, . . . , p su
h that ea
h summandon the right hand side of equation (5) in Lemma 1 is zero. For part (2), the indu
tion assumption is
Mn−2 (Bn−2)−Mn−2 (An−2) > 0. Consider equation (14) whi
h likewise holds for n odd. The summandfor j = 2 is stri
tly positive by the indu
tion assumption and all other summands are zero by part (1)of this Proposition and the 
laim follows. To prove the last statement, suppose that ǫ1, ǫ2, . . . , ǫxn/2y−1are symmetri
. Then from Roger (forth
oming), Proposition 4, we have that Mk (Bn−2)− Mk (An−2) isstri
tly positive for k ≥ n odd and zero otherwise.We want to show that for p > n evenMp (Bn)−Mp (An)
an be positive, negative, or zero. In order to do this, we 
onsider the summands in Equation (5) inLemma 1 and start with those summands for whi
h j is even. As p is even, p − j is even and thus
Mp−j (Bn−2) − Mp−j (An−2) is zero always. If j is odd, then p − j is odd and thus Mp−j (Bn−2) −

Mp−j (An−2) is zero if p − j < n − 2 and stri
tly positive otherwise. Now, if ǫ
xn/2y

is symmetri
, allsummands are zero and we have (as proven by Roger) that Mp (Bn) − Mp (An) = 0. If ǫ
xn/2y

is right-skewed and binary (see Theorem 2), then all summands are positive and as p > n at least one summandis stri
tly positive, su
h that Mp (Bn) − Mp (An) > 0. Similarly, if ǫ
xn/2y

is left-skewed and binary, weobtain that Mp (Bn) − Mp (An) < 0. �Referen
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