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Abstract

In this paper we introduce four new learning models: impulse balance learning, impulse

matching learning, action-sampling learning, and payoff-sampling learning. With this mod-

els and together with the models of self-tuning EWA learning and reinforcement learning,

we conduct simulations over 12 different 2× 2 games and compare the results with exper-

imental data obtained by Selten & Chmura (2008). Our results are two-fold: While the

simulations, especially those with action-sampling learning and impulse matching learning

successfully replicate the experimental data on the aggregate, they fail in describing the in-

dividual behavior. A simple inertia rule beats the learning models in describing individuals

behavior. (97 words)

Keywords: Learning, Action-sampling, Payoff-sampling, Impulse balance, Impulse match-

ing, Reinforcement, self-tuning EWA, 2× 2 games, Experimental data

JEL Classification: C72, C91, C92

‡‡Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.



I Introduction

It is known that rational learning, in the sense of Bayesian updating, leads to the sta-

tionary points of the Nash equilibrium (e.g. Kalai and Lehrer, 1993). But it also known

that actual human behavior not necessarily converges to the Nash equilibrium. In fact,

a vast body of literature indicates situations in which standard theory performs not as

a good predictor for subjects’ behavior in experiments (e.g. Brown & Rosenthal, 1990,

Erev & Roth, 1998).

A recent publication by Selten & Chmura (2008) documents the predominance of be-

havioral stationary concepts regarding the descriptive power . In the paper the concepts

of impulse balance equilibrium (Selten & Chmura, 2008), payoff-sampling equilibrium

(Osborne & Rubinstein, 1998) and action-sampling equilibrium (Selten & Chmura, 2008)

outperform Nash equilibrium as well as quantal response equilibrium (McKelvey & Pal-

frey, 1995) in describing the decisions of a population in twelve completely mixed 2 × 2

games.

The three behavioral stationary concepts of action-sampling equilibrium, payoff-sampling

equilibrium and impulse balance equilibrium contain precise description of stationary be-

havior and thus they are predestined to be used as the basis of learning models. It is

obvious that if human behavior tends (in the short run) to other stationary points than

Nash equilibrium, learning mechanisms leading to theses points are a promising approach.

The main purpose of this paper is to introduce four new learning models which are

based on the behavioral reasoning of payoff-sampling equilibrium, action-sampling equi-

librium and impulse balance equilibrium and test them in the environment of twelve

repeated 2× 2 games. Hereby, the learning rules have to meet two challenges: First, do

they reproduce the aggregate behavior of a human population and second do they ade-

quately describe the observed behavior of a single individual? For comparison we include

the models of reinforcement learning (Erev & Roth, 1998) and self-tuning experience
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weighted attraction learning (EWA) (Ho, Cramerer & Chong , 2007) into our study.

We conduct simulations with the learning models and the twelve 2× 2 games exper-

imentally investigated in Selten & Chmura (2008). The simulations replicate the exact

situation of the 2 × 2 experiments. In each simulation run, eight agents, four deciding

as row players and four deciding as column players, are randomly matched each round

over 200 rounds. In each simulation run one game is played and one learning model is

applied. To judge the predictive power on the aggregate level we compare the distri-

bution of choices in the simulation runs with the data from Selten’s & Chmura’s 2 × 2

experiments.

In addition we evaluate the explanatory power of the learning models for each partic-

ipant of the 2× 2 experiments, separately. For each of the 864 subjects we compared the

actual decision in every round with the decision predicted by the learning model given the

subject’s history. To judge the power of the learning models we introduce a benchmark

which all learning models should beat. This benchmark is the inertia rule, which predicts

for each round the same choice as executed in the round before.

Our results are twofold, while our models are able to capture the distribution of

decisions on the aggregate level, they fail to explain the individual data. On the aggregate

level the learning models of impulse matching learning and action-sampling learning have

the smallest distance to the experimental data, while the concepts of self-tuning EWA

and reinforcement learning have biggest. On the individual level all learning models fail

to beat the inertia rule.

The rest of the paper is organized as follows: In section II we will introduce the

models impulse balance learning, impulse matching learning, action-sampling learning

and payoff-sampling learning. In addition we will briefly deal with reinforcement learning

and self-tuning EWA. Afterwards, in section III, we will recapitulate the experiment

conducted in Selten & Chmura and introduce our measurements of predictive success for

the aggregate data and for the individual data. Subsequently, section IV gives our results
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and section V summarizes and concludes the paper.

II The Learning Models

In this section we will introduce four new learning models, which are based on the be-

havioral stationary concepts discussed in Selten & Chmura (2008). The concepts to be

introduced are: impulse balance learning, impulse matching learning, action-sampling

learning and payoff-sampling learning. In addition to the new learning models, the more

established concepts of reinforcement learning (c.p. Erev & Roth, 1998) and self-tuning

EWA (Ho, Cramerer & Chong , 2007) are briefly explained.

Three of the discussed models, namely action-sampling learning, payoff-sampling

learning and self-tuning EWA are parametric concepts. In case of action sample learning

and payoff sample learning the parameter is the sample size. Self-tuning EWA is based on

the multi-parametric concept of experience weighted attraction learning (Cramerer & Ho,

1999). Self-tuning EWA replaces two of the parameters with numerical values and two

with experience functions. The remaining ”parameter λ measures sensitivity of players

to attractions” (p. 835 Cramerer & Ho, 1999). The version of reinforcement learning

theory examined here does not have any parameter and the initial propensities are not

estimated from the data.

For the sampling learning models we will not determine the optimal sample size, but

apply the sample sizes which determined the best fit for the related stationary concepts

to the data in Selten & Chmura (2008). In case of the action-sampling learning this is

the action-sampling equilibrium and in case of the payoff-sampling learning this is the

payoff-sampling equilibrium. The parameter of self-tuning EWA is determined in such a

way that it leads to the best fit over all data and over all games.

In the literature parametric concepts are usually fitted for each game separately. We

believe that this gives an unfair advantage to one-parameter theories over parameter

3



free ones, especially in the case of 2 × 2 games where only two relative frequencies are

predicted. Adjusting one parameter separately for each game so to speak does half the

job. Therefore we base our analysis on one estimate for all games in case of the self-tuning

EWA and in case of the sampling learning rules we take the parameter for the stationary

concepts estimated in Selten & Chmura (2008) over all games.

A Impulse balance learning

Impulse balance learning relates to the concepts of impulse balance equilibrium (Selten,

Abbink & Cox 2005 and Selten & Chmura 2008) and learning direction theory (Selten

& Buchta, 1999). After a decision and after the realization of the payoffs the behavior

is adjusted to experience. Selten and Buchta explain the concept by the example of a

marksman aiming at a trunk: ”If he misses the trunk to the right, he will shift the position

of the bow to the left and if he misses the trunk to the left he will shift the position of the

bow to the right. The marksman looks at his experience from the last trial and adjusts his

behavior [...].” (p. 86 Selten & Buchta, 1999).

Suppose that the first of two actions has been chosen in a period and this action was

not the best reply to the action played by the other player. Then the player receives an

impulse towards the second action. This impulse is the difference between the payoff the

player could have received for his best reply minus the payoff actually received given the

decision by the other player in this period. The player does not receive an impulse if his

action was a best reply against the other player’s decision.

To incorporate loss aversion, the impulses are not calculated with the original payoffs

but with transformed ones. In games with two pure strategies and a mixed Nash equi-

librium each pure strategy has a minimal payoff and the maximum of the two minimal

payoffs is called the pure strategy maximin. This pure strategy maximin is the maximal

payoff a player can obtain for sure in every round and it forms a natural aspiration level.

Amounts below this aspiration level are perceived as losses and amounts above this aspi-
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ration level are perceived as gains. In line with prospect theory (Kahneman & Tversky,

1979) losses are counted double in comparison to gains. Thus, gains (the part above the

aspiration level) are cut to half for the computation of impulses. Figure 1 is taken from

Selten & Chmura (2008) and illustrates the transformation of the payoffs by the example

of game 3.
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Figure 2: The curves for pU and qL arising in the example of game 1 for each of the five 

concepts. 

 

 

 

Figure 3: Impulse Balance Transformation for the example of experimental game 3. 

 

 

 

 

 

Figure 4: Impulse in the direction of the strategy not chosen. 

 

 

Figure 1: Example of matrix transformation as given in Selten & Chmura (2008)

Impulse balance learning can be described as a process in which a subject builds

up impulse sums. The impulse sum Ri(t) is the sum of all impulses from j towards i

experienced up to period t − 1. The probabilities for playing action 1 and 2 in period t

are proportional to the impulse sums R1(t) and R2(t) :

pi(t) =
Ri(t)

R1(t) +R2(t)
, for i = 1, 2 (A.1)

The impulses from action j towards action i in period t is as follows:

ri(t) =

max[0, πi − πj] , if the chosen action is j

0 else.
(A.2)

for i, j = 1, 2 and i 6= j. Here, πi is the payoff for action i given the matched agents

decision and πj the one for action j. Afterwards the impulse sums are updated with the

new impulses:
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Ri(t+ 1) = Ri(t) + ri(t) (A.3)

In the first round all impulse sums are zero R1(1) = R2(1) = 0 and until both impulse

sums are higher than zero the probabilities are fixed to p1(t) = p2(t) = 0.5.

B Impulse matching learning

This learning model is very similar to impulse balance learning. In fact, in our 2 × 2

setting the resulting stationary point of impulse matching learning is the same as of

impulse balance learning. But for other types of games both concepts do not necessarily

lead to the same stationary points. Therefore we treat the impulse matching learning as

a self contained model. As in the case for the impulse balance learning impulse matching

learning is applied to the transformed matrix, described in section A.

The idea of an impulse is different in impulse matching. Here it is assumed that after

a play a player always receives an impulse to his ex-post optimal strategy, the best reply

to the pure strategy chosen by the other player. Thus an impulse from j towards i is

defined as a payoff differences, regardless of the player’s own action. This means that

(A.2) has to be replaced by the equation (B.2).

ri(t) = max[0, πi − πj] (B.2)

The equation (B.1.) and (B.3.) are identically to (A.1) and (A.3) respectively. As

before πi is the payoff of action i and πj is the payoff of action j given the matched

player’s decision.

The name impulse matching is due to the fact that this kind of learning leads to

probability matching by player one if the probabilities p1 and (1− p1) on the other side

are fixed and the payoffs for the player is one if both players play the strategy with the

same number (one or two) and zero otherwise. Probability matching has been observed

in early learning experiments, e.g. Estes (1954).
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C Payoff-sampling learning

Payoff-sampling learning relates to the stationary concept of Osborne & Rubinstein (1998)

which was first applied to experimental data in Selten & Chmura (2008). The behavioral

explanation of the stationary concept is that a player chooses her action after sampling

each alternative an equal number of times, picking the action that yields the highest

payoff.

To implement this behavior payoff-sampling learning is based on samples from earlier

periods. Therefore the agent draws two samples (s1(t), s2(t)) of earlier payoffs, one sample

with payoffs from rounds in which she chose action 1 and one with payoffs from rounds

in which she chose action 2. The samples are randomly drawn with replacement and a

fixed sample sizes of n = 6.1 In the following S1(t) and S2(t) denote the payoff sums in

s1(t) and s2(t), respectively.

After the drawing of the samples, the cumulated payoffs S1(t) and S2(t) are calculated

and the action with the higher cumulated payoff is played, if there is one. If the samples

of both possible actions have the same cumulated payoff the agent randomizes with p1 =

p2 = 0.5.

pi(t) =


1 if Si(t) > Sj(t)

0.5 if Si(t) = Sj(t)

0 else

(C.1)

for i, j = 1, 2 and i 6= j.

As before pi(t) is the probability of playing action i in period t. At the beginning and

until positive payoffs for each action have been obtained at least once, the agent chooses

both actions with equal probabilities, i.e. p1 = p2 = 0.5.

1Recall that n = 6 leads to the optimal fit for the payoff-sampling equilibrium to the experimental

data in Selten & Chmura (2008).
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D Action-sampling learning

Action-sampling learning relates to the idea of the action-sampling equilibrium of Selten &

Chmura (2008). According to action-sampling equilibrium a player takes in the stationary

state a fixed size sample of the pure strategies played by the other players in the past

and optimizes against this sample.

In the process of action-sampling learning the agent randomly takes a sample A(t) of

n earlier actions a1, ..., an of the other player. In the following we are keeping n fixed to

7.2 Let πi(aj) be the payoff of action i if the opponent plays action aj. For i = 1, 2 let

Pi(t) =
∑7

j=1 πi(aj) be the sum of all payoffs of the player for using her action i against

the actions in this sample.

Therefore, in period t the player chooses her action 1 or 2 according to

pi(t) =


1 if Pi(t) > Pj(t)

0.5 if Pi(t) = Pj(t)

0 else

(D.1)

for i, j = 1, 2 and i 6= j.

At the beginning the probabilities are set to p1 = p2 = 0.5 until both possible actions

were played by the opponent agents.

E Reinforcement-Learning

The reinforcement learning is one of the oldest and well established learning models in

the literature, refer to Harley (1981) for an early application in the field of theoretical

biology.

In our reinforcement model a player builds up a payoff sum Bi(t) for each of his actions

1 and 2 according to the following formula:

2As mentioned above n = 7 leads to the highest fit of the action-sampling equilibrium to the data in

Selten & Chmura (2008).
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Bi(t+ 1) =

Bi(t) + π(t) if action i was chosen in t

Bi(t) else.
(E.1)

Here π(t) is the payoff obtained in period t. After an initial phase in which both

possible actions are used with equal probabilities the probability of choosing action i in

period t is given by:

pi(t) =
Bi(t)

B1(t) +B2(t)
(E.2)

This model presupposes that all payoffs in a player’s payoff matrix are positive with

the possible exception of one. All twelve games considered here have this property. In the

first round the initial payoff sums Bi(t) are zero. The initial phase ends as soon as each

of both possible actions has been used at least once. The player chooses both possible

actions with equal probabilities p1 = p2 = .5. Only from then on rule E.2 is applied.

For games with negative payoffs this approach is not adequate. For example in the

model used by Erev & Roth (1998) the payoff π(t) in E.1 was replaced by π(t) − πmin,

where πmin is the smallest possible payoff of the player. Moreover they estimated initial

values Bi(0) from the data. We did not do this since we are only interested in models

with at most one parameter.

F Self-tuning EWA

Self-tuning EWA was introduced by Ho, Camerer & Chong. It is based on the experi-

ence weighted attraction model, but estimates the parameter of this model with several

functions. Of all models discussed in the paper at hand, self-tuning EWA is the most

complex one.

The decisions are made according to attractions Ai(t) for each strategy. The at-

tractions depend on an experience weight, a change-detector function and an attention

function. For more details on the attraction updating function refer to the appendix.
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The probability of playing action i in period t depending on the attractions is calcu-

lated as a logit response function:

pi(t) =
eλAi(t−1)∑2
j=1 e

λAj(t−1)

Here, λ is the response sensitivity and this parameter must be specified to fit to

the empirical data. We searched for one λ to yield the best fit over all 12 games. Our

measurement of the predictive success is the quadratic distance Q, which will be explained

in more detail in the next chapter. Figure 2 gives the quadratic distance for the different

values of lambda.
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Figure 2: Quadratic distances of self-tuning EWA for different lambdas, each point

represents the mean quadratic distance over 500 simulations. Left figure for 0 ≤ λ ≤ 1

and right figure for .04 < λ < .1

The left part gives the quadratic distance for .04 < λ < .1 and the right one for

all tested lambdas between 0 and 10. Each point in both graphs represents the mean

quadratic distance over all twelve games with 500 simulations runs per game with one
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specific lambda value. The value leading to the smallest quadratic distance is λ = 0.0778.

To be consistent with the other models we have choosen not to estimate any additional

values. Therefore the initial attractions were set to A1 = A2 = 0.

III Design

A Games and Experiments

The experimental data, which are compared with the simulations, are those on which

the paper by Selten & Chmura (2008) is based. In their study twelve 2 × 2 games were

experimentally investigated. To cover a broad field of games, six constant and six non-

constant sum games were played. Figure 9 shows the twelve games used in the experiment.

The constant sum games are shown on the left side of the figure and the non-constant

sum games on the right side.

Note that the first six games have the same best response structure as the second six

games and that the concepts of action-sampling equilibrium and Nash equilibrium only

depend on this best response structure. Thus the predictions of Nash equilibrium are the

same for the first and the second six games. The same holds true for the action-sampling

equilibrium.

Each game was played by matching groups consisting out of eight subjects. The role

of the subjects were fixed for the whole experiment, thus four subjects decided as column

players and the other four as row players. At the beginning of each round row and column

players were randomly matched. After each of the 200 rounds subjects received feedback

about the other player’s decision, their own payoff, the period number and their own

cumulative payoff. The game played was known by all subjects.

For each constant sum game twelve independent matching groups were gathered, for

each non-constant sum game six independent matching groups were gathered. Overall

864 subjects participated.
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Constant sum games Non-constant sum games

L R L R

Game 1

U
10 0

Game 7

U
10 4

8 18 12 22

D
9 10

D
9 14

9 8 9 8

L R L R

Game 2

U
9 0

Game 8

U
9 3

4 13 7 16

D
6 8

D
6 11

7 5 7 5

L R L R

Game 3

U
8 0

Game 9

U
8 3

6 14 9 17

D
7 10

D
7 13

7 4 7 4

L R L R

Game 4

U
7 0

Game 10

U
7 2

4 11 6 13

D
5 9

D
5 11

6 2 6 2

L R L R

Game 5

U
7 0

Game 11

U
7 2

2 9 4 11

D
4 8

D
4 10

5 1 5 1

L R L R

Game 6

U
7 1

Game 12

U
7 3

1 7 3 9

D
3 8

D
3 10

5 0 5 0

The payoffs for the column-players are shown in the lower right corner,

the payoff for the row-palyers are shown in the upper left corner.

Abbreviations used: L Left, R Right, U Up, D Down

Figure 3: The twelve 2× 2-games taken from Selten & Chmura (2008).

The main goal of the present paper is to find learning algorithms which can replicate

the human behavior in this twelve games. To evaluate this problem we compare the
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simulations with the experiments on the aggregate level and on the individual basis.

B Measure of Predictive Success on the Aggregate Level

On the aggregate level everything is kept the same as in the experiment except that

instead of real participants now computer agents interact. Each agent interacts according

to her history and to one learning model over 200 rounds. In each round eight agents

with fixed roles, four deciding as row players and four as column players are randomly

matched.

After each round they receive feedback about the matched agent’s decision and their

payoff. Since none of the learning models makes use of the round number and since the

calculation of the cumulated payoff can be done by the agents themselves this information

is not provided to the agents. It is crucial that the agents do not receive more information

than the subjects in the experiment did.

All learning models include stochastic elements. To avoid the influence of statistical

outliers 500 simulation runs per game are conducted. In each simulation run all agents

act in accordance with one learning model, thus our data set obtained by the simulations

consists out of 500 simulations per game and learning model.

To measure the predictive success on the aggregate basis, we will compare the mean

frequencies of U and L in the simulations with the mean frequencies obtained in the

experiments by means of the quadratic distance.

The mean quadratic distance Q is the average quadratic distance over all 12 games

and over all 500 simulations for each of these

Q =
1

12

12∑
i=1

(
1

500

500∑
n=1

(sLin − fLi )2 + (sUin − fUi )2

)
,

whereas sin is the frequency for L or U in game i and simulation run n and fi the

mean frequency for L or U observed in the experiments with game number i.

The predictive success of a learning model increases with a decrease of the mean
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quadratic distance, i.e. the smaller the mean quadratic distance is the better does the

learning theory fit the experimental data on the aggregate level.

C Measure of Predictive Success on the Individual Level

To judge the performance on the individual level we compare the individual decisions in

every round with the predicted decisions or predicted probability by the learning rule,

given the history of the subject.

To measure the predictive success of the learning theories describing the behavior of

a single individual we apply the quadratic scoring rule. It was first introduced by Brier

(1950) in the context of weather forecasting. The rationale behind the quadratic scoring

rule is that for each round a score is determined which evaluates the nearness of the

predicted probability distribution to the observed outcome.

In Selten (1998) the quadratic scoring rule is axiomatically characterized. The char-

acterizing properties of the quadratic scoring rule as described in Selten (1998) are: sym-

metry, elongational invariance, incentive compatibility and neutrality. Symmetry means

that the score of a theory must not depend on the numbering on the names of the decision

alternatives. Elongational invariance assures that the score of a theory is not influenced

by adding or leaving an alternative which is predicted with a probability of zero. In-

centive compatibility requires that predicting the actual probabilities yields the highest

score. Finally, neutrality means that in the comparison of two theories among which one

is right in the sense that it predicts the actual probabilities and the other is wrong the

score for the right theory does not depend on which of the two theories is the right one.

This means that the score does not prejudge one of the theories depending on the location

of the theory in the space of probability distribution.

We apply the quadratic scoring rule to measure the predictive success of a theory for

every period and subject separately and then add up over subjects, rounds and games.

Accordingly a score depending on the predicted probabilities and the actually observed
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action is computed. In order to compute the score the observation is interpreted as a

frequency distribution where for the chosen action the relative frequency is one and for

the not chosen action zero. Thus the quadratic score q(t) of a learning theory for subject

choosing action i in period t is given as:

q(t) = 2pi(t)− pi(t)2 − (1− pi(t))2

Here pi(i) is the predicted probability of the learning theory. The predicted probability

of the learning theory is calculated by applying the theory’s learning algorithm on the

whole playing history of this player. If no history is available we assume that the player

randomizes with .5.

The concepts of action-sampling learning and payoff-sampling learning always return

the probability of one for one of the possible actions. Which action is chosen depends on

the randomly drawn sample. Therefore we calculate the probability of drawing a sample

that commands playing action 1 or action 2 as the predictions of theses two concepts.

If a player decides completely in line with the prediction of the theory he receives a

score of 1 if he decides in complete contrast to the prediction the theory he receives a

score of −1.

The mean score q̄ is given as the mean of q(t) over all 200 rounds, 12 games and 108

subjects groups of 8 subjects each. Of course q̄ must be in the closed interval between

−1 and +1.

IV Results

In this section we will first take a look at the simulations and the experiments on the

aggregate level. We will start with the relative frequencies for U and L observed in the

simulations with the different learning models and compare them with the experimental

data. Then we will take a closer look at the simulations and start by comparing the
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results obtained in the constants sum games with the results in the non-constant sum

games. Afterwards we will investigate how the learning models perform in the original

matrices and in the transformed matrices. Thereafter we will compare the overall mean

quadratic distances to the experimental data. We will conclude our examination on the

aggregate level by testing the robustness of the overall result over time and therefore

compare the performance of the learning rules in the first and second 100 rounds.

The second part of this section deals with the individual behavior. There we will

check for the subjects in the 2× 2 experiments how well they conform in the average to

each of the learning theories.

A Aggregate Behavior

Table 1 gives the observed mean frequencies for each game and simulation type and

as well as the observed ones in the experiments. For the experimental games 1 to 6

the mean frequency observed in a game is based on the observed frequencies in twelve

independent matching groups, for games 7 to 12 it is based on the observed frequencies in

six independent matching groups. Each matching group consists out of eight subjects. For

each learning type and game the mean is based on 500 simulation runs, which produced

500 independent matching groups per game. Each matching group consists of eight

agents.

As mentioned before games 1 to 6 and games 7 to 12 have the same best response

structure. The concept of action-sampling equilibrium depends only on this structure

and therefore leads in Selten & Chmura to the same predictions in the constant and an

non-constant sum games. Since action-sampling learning is based on best replies, it does

not surprise, that the frequencies in the simulations with games 1-6 are very similar to

those with games 7-12. For all other learning models different frequencies are observed

in the constant and non-constant sum games.

It is surprising that self-tuning EWA yields relative frequencies very near to .5 for
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Impulse Impulse Action- Reinforce- Payoff- self-tuning Experiment

Game balance matching sampling ment sampling EWA Selten & Chmura

learning learning learning learning learning learning (2008)

1 L .417 .574 .658 .342 .741 .501 .690

U .164 .063 .067 .126 .052 .501 .079

2 L .417 .495 .589 .332 .514 .492 .527

U .283 .168 .231 .159 .069 .508 .217

3 L .594 .770 .744 .498 .893 .519 .793

U .227 .157 .173 .135 .156 .483 .198

4 L .581 .712 .656 .589 .854 .513 .736

U .309 .258 .343 .188 .315 .484 .286

5 L .535 .631 .656 .554 .799 .507 .664

U .350 .297 .342 .233 .370 .492 .327

6 L .539 .600 .529 .660 .765 .505 .596

U .420 .401 .407 .271 .464 .491 .445

7 L .474 .638 .659 .392 .778 .539 .564

U .198 .099 .066 .164 .087 .468 .141

8 L .485 .563 .589 .389 .752 .515 .586

U .337 .257 .230 .212 .254 .483 .25

9 L .602 .770 .744 .530 .862 .538 .827

U .248 .185 .174 .164 .183 .449 .254

10 L .602 .727 .656 .636 .850 .530 .699

U .335 .301 .342 .207 .308 .463 .366

11 L .560 .647 .656 .606 .792 .521 .652

U .383 .354 .342 .287 .373 .474 .331

12 L .556 .604 .528 .590 .631 .520 .604

U .458 .465 .406 .344 .603 .473 .439

Table 1: Relative frequencies observed in simulations and experiments for U and L

each of the twelve games. This is probably connected to the fact, that we estimate the

free parameter of this model jointly for all games. However as we have already pointed

out estimating parameters for each game separately would not be adequate.

Of all learning models only impulse matching learning and and action-sampling learn-

ing are quite close to their stationary counterparts after 200 periods. The quadratic dis-

tance between impulse matching learning and impulse balance equilibrium is smaller than

0.001 and the quadratic distance between action-sampling learning and action-sampling

equilibrium is 0.004. The other distances between a learning rule and the related equilib-

rium are much greater, impulse balance learning (0.018), payoff-sampling learning (0.046),
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and reinforcement learning (0.159). Self-tuning EWA has a much higher distances towards

all stationary concepts.

A.1 Constant Sum and Non-Constant Sum Games

Table 1 shows that the behavior of the subjects in the experiments differ in the constant

(games 1 - 6) and non-constant sum games (games 7 - 12). Therefore, we will start

comparing the predictive success of the learning models in constant and non-constant

sum games. Figure 4 gives the mean quadratic distance in constant and non-constant

games for each learning theory.
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Figure 4: Mean quadratic distance in constant and non-constant sum games

The models of self-tuning EWA, reinforcement learning and impulse balance learning

perform much better in the non-constant sum games. The concept of impulse matching

learning performs slightly better in the non-constant sum games. In contrast, the two

learning rules relying on samples, namely action-sampling learning and payoff-sampling

learning, perform better in the constant sum games.
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A.2 Original Versus Transformed Games

The concepts of impulse balance learning and impulse matching learning are applied to

the transformed game rather than the original one. But the ideas behind these concepts

could also be applied directly to the original games as well as the other concepts could be

applied to the transformed games. Figure 5 shows the overall mean quadratic distances

for self-tuning EWA learning, reinforcement learning, payoff-sampling learning, impulse

balance learning, action-sampling learning and impulse matching learning applied to the

original games and to the transformed games.
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Figure 5: Mean quadratic distance in original and transformed games

For the original as well as for the transformed matrixes the results are based on 500

simulation runs per game and learning model.

It can be seen that impulse balance learning, impulse matching learning and reinforce-

ment learning perform better when applied to the transformed games whereas self-tuning

EWA learning, payoff-sampling learning and action-sampling learning do less well. While

the improvement of impulse balance learning and impulse matching learning in trans-

formed games is expected, the benefit of applying reinforcement learning to transformed
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games is unexpected. This improvement is substantial, in the original game the quadratic

distance is 22% higher than in the transformed ones.

The theory of Roth and Erev (1998) already applies a transformation of the original

game by replacing the payoff of a player by it’s difference to the minimal value in her

matrix. The transformation used here is different since it involves double weights for losses

with respect to the pure strategy maximin. Nash equilibrium is the stationary concept

corresponding to the reinforcement learning theory. However, in Selten & Chmura (2008)

we did not observe an improvement of the predictive power of the Nash equilibrium

applied to the transformed game rather the original one. It is interesting that the picture

looks different for the simulations over 200 rounds.

A.3 Overall Comparison

Figure 6 gives the mean of the quadratic distance between the experiment and simulations

over all games and rounds for self-tuning EWA learning, reinforcement learning, payoff-

sampling learning, impulse balance learning, action-sample learning and impulse matching

learning.
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Figure 6: Overall mean quadratic distance over all games
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The figure reveals an order of explanatory power. The order from worse to best (high-

est quadratic distance to lowest quadratic distance) is as follows: self-tuning EWA learn-

ing, reinforcement learning, payoff-sampling learning, impulse balance learning, action-

sampling learning and impulse matching learning.

The difference between self-tuning EWA and reinforcement is very small and irrele-

vant. However the small difference between the two quadratic deviations does not mean

that both theories make similar predictions. This can be seen in table 1. Recall figure

4, which demonstrates that self-tuning EWA performs better than reinforcement learn-

ing in the non-constant sum games, while reinforcement learning performs better in the

constant-sum games.

The figure demonstrates that the concepts of self-tuning EWA and reinforcement fail

to describe the aggregate behavior in the 2 × 2 experiments in contrast to the other

concepts. Out of these new concepts especially the processes of action-sampling learning

and impulse matching learning lead to results which are very close to subjects’ behavior.

Already the concept of payoff-sampling learning has a nearly 40% lower quadratic distance

than self-tuning EWA and the quadratic distance of impulse matching is over 18 times

smaller.

The order given by figure 6 is statistically robust. Because of the high number of

observations, 6000 per learning type, all differences (even the slight ones between self-

tuning EWA and reinforcement) are statistically significant on a high level (for all p <

0.001 two-sided Man-Whitney u-test).

A.4 Changes over Time

Learning processes are always dependent on time and history and therefore it is of interest

to check whether our above results remain stable over time. To check stability of the order

of explanatory power over time we compare the first hundred periods with the second

hundred periods. Figure 7 gives the mean quadratic distances for periods 1-100 (left)
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and 101-200 (right) for the six learning models. Basis of the comparison is always the

observed mean frequencies for the corresponding rounds (either round 1-100 or 101-200)

in the experiments.
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Figure 7: Mean quadratic distance over time

It is easy to recognize that in the second half of the simulation runs the explanatory

power of self-tuning EWA, reinforcement learning and impulse balance learning decreases.

For payoff-sampling learning and impulse matching learning the performance increases in

the second half. The concept of action-sampling learning is rather stable over time and

no relevant differences are observed over time.

For all theories the quadratic distance in the first and second half of the experiment dif-

fers significantly (two-sided Wilcoxon signed-rank test p < 0.0000). For action-sampling

this is mainly due to the high number of observations.

The comparison over time confirms that the order of explanatory power obtained in

the overall comparison. This order is stable as far as the better performing concepts of

payoff-sampling learning, impulse balance learning, action-sampling learning and impulse

matching learning are concerned. Only the direct comparison of reinforcement learning

and self-tuning EWA changes over time. While self-tuning EWA performs better in the
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first half (rounds 1-100) reinforcement learning performs better in the second half (101-

200).

B Individual Behavior

In this section we will take a closer look at subjects’ decisions and whether they are in

accordance with one of the learning theories. Therefore we will use the quadratic scoring

rule, as introduced in section III.C. Recall, that in contrast to the quadratic distance the

higher the value of the quadratic score the better the fit is.

In addition to the investigated learning rules we introduce one heuristic which we call

the inertia rule. This rule commands to ”do exactly the same as in the preceding round”.

Of course this does not apply to the first period in which both possible actions are chosen

with equal probabilities. The player is required to repeat the decision of the preceding

period even if he deviated from this rule in the past. Obviously, the inertia rule is not a

serious decision rule, but it serves as a benchmark that every learning rule should beat.

Figure 8 shows box plots of the mean quadratic scores in the 108 independent obser-

vations for each learning model and the inertia benchmark. The plot gives the median

(the horizontal line in the box), the interquartile range (the box around the median), with

the .75 percentile as the upper limit of the box and the .25 percentile as the lower limit.

The whiskers describe the observations in the sample which are outside the inter quantile

range and finally the dots describe the outliers, which are defined as values smaller or

greater the 1.5 times lower or upper inter quantile range.

The boxes in figure 8 are ordered from the highest median to the lowest and exactly the

same order occurs if the models were ranked by the means. The plot reveals a clear order

of predictive success, from best to worst: inertia rule, reinforcement learning, self-tuning

EWA, impulse matching learning, action-sampling learning, payoff-sampling learning and

impulse balance learning. The plot shows that the performance of the inertia benchmark

is not only driven by the mean, but also by the median, the inter quantile range and by
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Figure 8: Box plots over the mean quadratic scores in the 108 observations with different

learning models

the highest single mean score in one observation.

In 90 observations out of 108 independent observation groups the inertia benchmark

has the highest score and in 9 cases it has the highest score together with the reinforce-

ment learning. Self-tuning EWA, impulse matching learning and action-sampling learning

obtain the highest mean score in three observations each. The mean score of the inertia

benchmark is nearly 20% higher than the score of reinforcement learning and more than

45% higher than the score of impulse balance learning. Applying a two-sided Wilcoxon

signed-rank test for the pairwise comparison of the mean scores over the independent

observations reveals that the order given by the plot is statistically robust. All pairwise

comparisons between two models are at least significant on the 1% level.

It is very remarkable that the inertia rule performs significantly better than all learning

theories. Obviously all learning theories fail to meet the benchmark of the inertia rule.

At least at first glance this is a devastating result. We must conclude that the learning
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theories do not really describe individual behavior.

Checking our data we find two main reasons for the failure of the learning rules.

First, players tend to repeat a chosen action for quite a time before they switch to

the other action. All the theories fail to incorporate this inertia. Of all the learning

theories reinforcement learning performs the best probably because it has the the highest

probability of not changing the decision (on the individual basis reinforcement lead to

an overall probability of not changing of p = .6271). The second reason is that all

investigated theories, although they might correctly model the systematic reasons for a

change of choice, fail to forecast when exactly it will occur.

V Discussion

In this paper the models of impulse matching learning, impulse balance learning, action-

sampling learning and payoff-sampling learning have been introduced and together with

reinforcement learning and self-tuning EWA applied and tested in the environment of

repeated 2× 2 games.

The newly introduced learning models are based on the behavioral reasoning of

payoff-sampling equilibrium, action-sampling equilibrium and impulse balance equilib-

rium, which had been successfully tested in experimental 2×2 games by Selten & Chmura

(2008). Therefore the experimental dataset obtained by Selten & Chmura (2008) were

used as a testbed for the learning models. The experimental data comprises aggregate

and individual behavior in 12 completely mixed 2× 2 games, 6 constant sum games with

12 independent subject groups each, and 6 nonconstant sum games with 6 independent

subject groups each. Each subject group consists of eight participants being randomly

matched over 200 periods.

The learning models had to prove whether they can replicate the aggregate behavior

of the experimental population and whether they can explain the individual behavior of
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single subjects. For the comparison with the aggregate behavior 500 simulation runs per

game and learning model were conducted. As in the experiment, 200 rounds with random

matching and four agents deciding as row players and four agents as column players were

simulated. Our measure of predictive power for the aggregate is the quadratic distance

between observed relative frequencies in simulation runs and the mean frequencies ob-

served in the experiments. For the comparison with the individuals’ behavior the models

were applied to the history of each participant. Then the actual decisions of every round

were compared with the predictions of the learning models given the subject’s history. For

each subject and round a quadratic score, a measurement for the accuracy of a prediction,

was calculated and averaged over rounds, subjects and games.

For our comparisons with the aggregate and the individual behavior we can conclude

two main results:

Main Result 1: The models of learning are able to replicate the aggregate behavior in

our 2 × 2. In our study the models of impulse matching learning and action-sampling

learning prove to be especially successful.

The comparison of the six models yields the following order of predictive success from

best to worst: Impulse matching learning, Action-sampling learning, Impulse balance

learning, Payoff-sampling learning, Reinforcement learning, Self-tuning EWA learning.

Due to the high number of simulation runs, this order is statistically robust, all pairwise

comparisons with the two-sided Man-Whitney u-test are at least significant on the 0.1%

level.

The predominance of the new models, impulse matching learning, action-sampling

learning, impulse balance learning and payoff-sampling learning, over the established

models of reinforcement learning and self-tuning EWA is stable over time and across the

different game types (constant sum and non-constant sum games). One possible reason

for the predominance of the new models, especially over self-tuning EWA is that we

insisted on adjusting parameters as less as possible. A further interesting result is that
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for reinforcement learning the quadratic distance to the data is round about 22% lower

if applied to the transformed matrixes instead to the original ones.

Main Result 2: The models of learning are not able to adequately replicate the individual

behavior in our 2× 2 games. A simple inertia rule outperforms the sophisticated learning

models.

Overall we must conclude that all investigated learning models fail to describe the

individual behavior. Although all models performed better than simple randomization

with .5, they failed to beat our benchmark heuristic, which commands to ”do exactly the

same as in the preceding round”.

It may be the case that a learning theory is correct as far as the systematic reasons

for a change of strategy are concerned, but nevertheless the exact timing of changing a

strategy are very different from individual to individual. Moreover the timing may be

influenced by the attention of the subject for the task which probably varies over time.

This means that it depends on personality feature and uncontrollable influences from

recent experiences outside the laboratory. However, the failure of the learning theories

on the individual level does not mean that they are useless for the description of group

behavior.

Actual learning algorithms are obviously not capable to describe individual human

behavior, while they are able to describe cumulated human behavior in an appropriate

way. Observing individual behavior is similar to observing an ant trail: Though one can

describe the direction of the trail, it is hard to forcast the behavior of a single individual.

We are confident that our results are stable for a broad set of 2 × 2 games, yet our

concepts still have to prove their power in other settings with different games.
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Appendix - Not For Publication

Impulse matching and impulse balance

To show that the concepts of impulse balance equilibrium and impulse matching equi-

librium lead to the same stationary points in case of the 2× 2 games, we take a look at

the structure of the investigated experimental 2 × 2 games, as introduced by Selten &

Chmura (2008).

L R

U
aL + cL aR

bU bU + dU

D
aL aR + cR

dD + dD bD

Figure 9: The Structure of the Experimental 2x2-Games

The figure shows the transformed payoffs, the payoffs for the column-players are shown

in the lower right corner and the payoff for the row-palyers are shown in the upper left

corner. The following equations must be fulfilled: aL, aR, bU , bD ≥ 0 and cL, cR, dU , dD >

0. In the following pU and pD are the probabilities of the row player for U and D and qL

and qR are the probabilities for L and R by the column player. In the following we will

only look at the row player, the behavior in equilibrium of the column player is calculated

analogously.

In case of impulse balance equilibrium the expected impulses for each of the both

strategy must be the same. Hereby, the row player receives only an impulse towards U

for the proportion of plays in which he would choose down (given by pD) and the other

player at the same time would have chosen L (given by qL). Therefore the expected

impulse for U is given by pDqLcL. Applying the same reasoning leads to pUqRcR as the

expected impulse for D of the row player. Thus the impulse balance equation, which must
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be fulfilled in equilibrium is given as:

pDqLcL = pUqRcR

In case of impulse matching equilibrium, the row player receives always an impulse of

cL towards U if the column player plays L. The column player does so with a probability

of qL. In addition the row player always receives an impulse of cR towards D if the column

player choses R. The column player plays R with a probability of qR. Impulse matching

equilibrium is reached if the ratio of the two probabilities of U and D is the same as the

ratio of expected impulses for U and D.

pU
pD

=
qLcL
qRcR

By transforming we obtain the impulse balance equation of impulse balance equilib-

rium:

pDqLcL = pUqRcR

Therefore, impulse matching equilibrium and impulse balance equilibrium have the

same mixed stationary points in case of the described 2× 2 games.
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Self-tuning EWA

The decisions by the the players are done according to attractions A for each strategy. The

probability for the k-th strategy of player n is calculated with a logit response function:

pnk(t+ 1) =
eλAnk(t)∑2
j=1 e

λAnj(t)

where λ is the response sensitivity. λ is the parameter of this learning theory and must

be specified to fit to the empirical data. In our case λ = 0, 079 minimized the distance to

the experimental data. The attractions are updated as described by the EWA attraction

updating function:

Ank(t) =
φN(t− 1)Ank(t− 1) + [δ + (1− δ)I(snk, snt)]πn(snk, sm(t))

N(t)

I(x, y) is an indicator function, which is one if x = y and zero if x 6= y. N(t) is the

experience weight and updated according to N(t) = N(t − 1)φ(1−)κ + 1. φ is a decay

rate and detects changes in the learning environment. The change-detector function φn(t)

is:

φn(t) = 1− 0.5(
2∑

k=1

[

∑t
τ=t−W+1 I(smk, sm(τ))

W
−
∑t

τ=1 I(smk, sm(τ))

t
]2).

The W is the number of strategies played with positive probability in the Nash equilibria,

in our case W = 2. The first term in the brackets counts how often strategy k was played

by the others in periods t−W + 1 to t and divides by W . The second term is the relative

frequency of the k-th strategy played over all periods. The forgone payoffs are weighted

with δ which is calculated as δn(t) = φ(t)/W . The growth rate of the attractions is

controlled by the exploitation parameter κ. Ho, Camerer and Chong calculate κ as a Gini

coefficient of the probability inequity. In our 2×2 games this leads to the simple function

of κn(t) = 1− 2 min(pn1, pn2).

The initial values of the functions are: φ(0) = κ(0) = 0.5 and δ(0) = φ(0)/W Over time

these initial values are weighted with 1
t

and the current function value with t−1
t

thus the
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influence of the initial values decreases over time. Thus the actual functions are given as:

ˆφ(t) = φ(0)1
t

+ φ(t) t−1
t

; ˆκ(t) = κ(0)1
t

+ κ(t) t−1
t

; and ˆδ(t) = δ(0)1
t

+ δ(t) t−1
t

The initial attraction-level were set to A1 = 0 and A2 = 0.
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