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by Rodney J. Garratt,† Thomas Tröger,‡ and Charles Z. Zheng§

October 19, 2008

Abstract

The English auction is susceptible to tacit collusion when post-auction inter-bidder

resale is allowed. We show this by constructing equilibria where, with positive proba-

bility, one bidder wins the auction without any competition and divides the spoils by

optimally reselling the good to the other bidders. These equilibria interim Pareto dom-

inate (among bidders) the standard value-bidding equilibrium, without requiring the

bidders to make any commitment on bidding behavior or post-bidding spoil-division.

1 Introduction

In private-value English auctions that ban resale, it is a dominant strategy for each partici-

pant to bid up to her use value. With resale allowed, value-bidding remains an equilibrium

outcome, but there is no dominant strategy. Resale opens the possibility that some bidders

will optimally drop out at a price below their use values. They prefer to let a competitor

win and buy from her in the resale market. The existence of non-value-bidding equilibria is

important because the celebrated advantages of the English auction, in particular efficiency,

are based on value-bidding, and because resale is possible in most applications.

∗We thank Subir Bose, Paul Heidhues, George Mailath, Leslie Marx, Tymofiy Mylovanov and Greg

Pavlov for helpful comments. We are particularly grateful to Dan Levin for suggesting that we investigate

the collusive properties of our equilibrium construction.
†Department of Economics, University of California at Santa Barbara, garratt@econ.ucsb.edu.
‡Department of Economics, University of Bonn, Germany, ttroeger@uni-bonn.de.
§Department of Economics, Iowa State University, czheng@iastate.edu.
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In this paper we construct a family of non-value-bidding equilibria for an English auc-

tion that allows inter-bidder resale. Such equilibria exist in any independent private value

environment (symmetric or asymmetric) for any number of bidders (Proposition 1). Each

equilibrium in this family is identified by the choice of a designated bidder and a threshold

type, below which all bidders, except the designated bidder, bid zero. All bidders with types

above the threshold bid up to their values. In cases where the designated bidder wins the

initial auction and has a sufficiently low type, she will offer the item for resale instead of

consuming it. Because the determination of the designated bidder does not depend upon

her type and the resale market retains information asymmetry, the final outcome may be

inefficient.

Since a designated bidder may win the initial auction at a low price, such equilibria

provide an opportunity for a form of tacit collusion among the bidders. By using a publicly

observed randomizing device (or sunspot) to choose the designated bidder, the surplus can

be distributed in a way that makes every bidder of every type better-off than under the value-

bidding equilibrium; i.e., the value-bidding equilibrium is interim (bidder-)Pareto dominated

(Proposition 2).1 The recommendation made by the sunspot device is not binding. Once

the sunspot picks a designated bidder, it is in the interest of each bidder to bid accordingly

in the initial auction based on the expectation that others will follow their assigned roles.

Previous models of collusion in second-price and English auctions (e.g., Graham and

Marshall, 1987, Mailath and Zemsky, 1991, Marshall and Marx, 2007) rely on pre-auction

communication, in which every colluding bidder reports her type to the bidding ring. By

communicating, the colluding bidders determine side payments and designate a single bidder

to participate in the auction and win at a low price. These papers specify mechanisms

that achieve efficient collusion as an equilibrium. However, the proposed use of pre-auction

communication is problematic because it is usually illegal and participating bidders risk being

detected. Moreover, the proposed collusive schemes require the non-designated bidders in

1Readers who are familiar with U.S. litigation history might draw some parallels between our proposed

use of a sunspots variable and the famous phases-of-the-moon bidding ring that was operated by electrical

equipment suppliers in the 1950s. However, despite some reports, the phases-of-the-moon scheme earned its

designation because it involved an explicit two-week rotation to determine the low bidder. While it perhaps

could have been, bidding was not actually determined by the phase of the moon. See Smith (1961).
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the bidding ring to bid below their values in the actual auction. Without resale, such bidding

strategies are weakly dominated, and bidders may not be willing to play them. To make

the expectation of a dominated strategies credible, the colluding bidders might require a

commitment device.2

By introducing the possibility of resale after an English or second-price auction, our paper

rationalizes collusion without pre-auction communication or dominated strategies. Instead

of pre-auction communication of private information, a publicly observable sunspot selects a

designated bidder in a manner commonly known to the colluding bidders, and the final owner

of the good is decided through a resale mechanism. Before the auction, no one commits to

what she will do in the auction or at resale. During the auction colluding bidders do not bid

up to their values, however we prove that such strategies are not weakly dominated given

the option for resale (Appendix B). The winner of the auction chooses a resale mechanism

that is optimal for her given the posterior beliefs after the auction, and only after the initial

auction has ended can she commit to the rules of her resale mechanism.

McAfee and McMillan (1992, p. 587) noted that in practice a bidding ring’s own “knock-

out auction” often happens after rather than before the legitimate auction. This practice is

well represented in our equilibria.

Our Pareto-improving equilibria are, in contrast to the previously proposed collusive

schemes, not ex-post efficient.3 This is consistent with an impossibility result in Lopomo,

Marshall, and Marx (2005), which shows that inefficiency is a quite general feature of Pareto-

improving equilibria in English auctions without pre-auction communication. From the view-

point of antitrust authorities, inefficient collusive equilibria are important precisely because

of the distortion; efficient collusion involves merely a pure transfer from the seller to the

bidders.

Blume and Heidhues (2004) completely characterize the Bayesian Nash equilibria for

the second-price auction with three or more bidders with a common type space. These

equilibria are valid for English auctions and have the same bidding structure as our equilibria.

2Sustaining collusion in first-price auctions is more difficult than in second-price auctions because non-

designated bidders have a strict incentive to overbid the designated bidder whose bid in the main auction is

below their value; see McAfee and McMillan (1992) and Marshall and Marx (2007).
3The payoff gains in our equilibria relative to value-bidding can still be substantial (Table 1, Section 5).
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However, because there is no resale market, the Blume-Heidhues equilibria are in dominated

strategies. Moreover, in some environments none of these equilibria Pareto dominates the

value-bidding equilibrium, even if we give everyone a chance to be the designated bidder

through sunspot coordination. This is because high-value bidders strictly prefer the value-

bidding equilibrium; we show that for all symmetric environments with strictly concave value

distributions (Proposition 3). But with resale, there always exists an equilibrium that makes

every type of every bidder strictly better off than the value-bidding equilibrium.

In contrast to much of the earlier literature on auctions with resale, our model allows for

any number of asymmetric bidders. With multiple bidders at the resale stage, the optimal

resale mechanism typically is no longer a take-it-or-leave offer, as often assumed, but is an

optimal auction as derived by Myerson (1981). A technical novelty of our paper is that

we avoid complicated explicit computations of bidders’ resale payoffs. We identify several

structural properties of the resale continuation game that facilitate our perfect Bayesian

equilibria for the entire auction-with-resale game. These structural properties do not appear

to be specific to the Myerson optimal auction, suggesting that our qualitative results extend

to other forms of the resale market.4

Our result that the value-bidding equilibrium is interim (bidder-)Pareto dominated is

based on two regularity properties of resale that are satisfied in our equilibria. The properties

ensure that, even when the threshold is arbitrarily close to zero, a non-vanishing fraction of

the bidder-types below the threshold still engage in actual resale trade. The proof begins with

the observation that our equilibria interim Pareto dominate the value-bidding equilibrium

if the prior type distributions are uniform. Then we extend this dominance relation to

arbitrary type distributions provided that the thresholds in our equilibria are sufficiently

small. Sufficiently small thresholds allow us to approximate the expected payoffs by the

ones in the uniform-distribution case. The aforementioned regularity properties imply that

a bidder’s gain from trade at resale outweighs the error of the approximation.

The threshold-bidding strategies in our equilibria are built upon Garratt and Tröger (2006)

4For instance, the period-2 seller may be restricted to use a second-price or English auction with an

optimal reserve price, or the period-2 seller may use an English auction with the right to reject all bids

(Haile, 2003), or, in two-bidder environments, a random draw may specify which bidder has the right to

propose a resale price (Calzolari and Pavan, 2006).
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for English and second-price auctions. However, there are nontrivial differences. In Garratt

and Tröger, the bidder who will become the reseller has no private information, and the

other bidders have identical prior value distributions. In contrast, in this paper every bidder

has private information and bidders’ value-distributions can differ. Our extension of the

equilibrium construction to the case of asymmetric bidders is made possible by conditioning

the designated bidder’s bid on the identities of the bidders who stay in the auction. This

information is not available in a sealed-bid format. Hence, in environments with three or

more bidders our equilibrium construction applies to second-price auctions only under an

additional symmetry assumption (Remark 3).

Recent works by Lebrun (2007) and Hafalir and Krishna (2007) compare revenue in

first- and second-price auctions with resale in 2-bidder models. Hafalir and Krishna show

that in a 2-bidder asymmetric model there exists a “general revenue ranking” in favor of

first-price auctions, provided bidders play the value-bidding equilibrium in the second-price

auction. Lebrun shows that, depending on the selected equilibria, this ranking does not

necessarily hold when behavior (mixed) strategies are allowed. Our construction of equilibria

for second-price auctions that interim Pareto-dominate value bidding does not challenge the

revenue ranking established by Hafalir and Krishna. Because the value-bidding equilibrium

is efficient, it yields a seller revenue that is necessarily greater than in any interim Pareto-

dominating equilibrium.

Collusive equilibria have been constructed for multi-unit auctions by Milgrom (2000),

Brusco and Lopomo (2002) and Engelbrecht-Wiggans and Kahn (2005), however resale does

not play a role.5 In these multi-unit environments bidders signal their preferences in early

rounds and then optimally abstain from bidding on other bidders’ preferred items. Interest-

ingly, the open aspect of the ascending English auction is essential in their construction, as

it is here in the case of ex-ante asymmetric bidders.

5Pagnozzi (2007) analyzes multi-unit auctions with resale in a complete information model.
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2 Model

We consider environments with n ≥ 2 risk-neutral bidders pursuing a single indivisible

private good. Bidder i ∈ N := {1, . . . , n} has a privately known use value, or type, ti ∈
Ti = [0, ti] (ti > 0), for the good. The type space is denoted by T := T1 × · · · × Tn.6 From

the viewpoint of the other bidders, ti is independently distributed according to a probability

distribution with cumulative distribution function Fi, called prior belief , with support Ti and

Lipschitz continuous positive density fi. We consider a 2-period interaction, which begins

after each bidder i has privately observed her use value ti.

In period 1, the good is offered via an English auction that is modelled as in Milgrom

and Weber (1982). The auctioneer continuously raises the current price beginning at 0.

Remark 1 extends the equilibrium construction to an English auction that starts at a positive

price). Initially, all bidders are “in” or “active”. As the current price rises, each bidder can

irreversibly “drop out” at any point. When somebody drops out, other bidders may react

by dropping out at the same price. Dropout decisions are publicly observed. The auction

ends at the first current price where at most one bidder is active. The ending current price

is called the auction price. If one bidder is active at the end, this is the auction winner; if

all active bidders drop out at the auction price, there is a tie among the previously active

bidders, and any tieing bidder becomes the winner with equal probability.

The auction winner either consumes the good in period 1, thereby ending the game, or

becomes the period-2 seller . The period-2 seller proposes a sales mechanism to the losing

bidders, called period-2 buyers . A sales mechanism is any game form to be played by the

period-2 buyers. The mechanism is played if it is accepted by all period-2 buyers; otherwise

the resale seller consumes the good in period 2.7 Observe that the period-2 seller faces no

restrictions: she can choose an arbitrary sales mechanism. No bidder can pre-commit in

period 1 to use a particular mechanism in period 2.

Every bidder’s discount factor is δ ∈ (0, 1]. From the viewpoint of period 1, the payoff

6We shall use boldface letters to denote multidimensional quantities.
7We assume that there is no further resale after the re-seller’s resale mechanism. However, for certain

prior value distributions, this assumption can be weakened to allow the winner of the resale mechanism to

offer further resale à la Zheng (2002).
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of type ti of bidder i is ti(q
1 + δq2) − p1 − δp2, where qk (k = 1, 2) denotes the probability

of her consuming the good in period k, and pk denotes her net expected monetary payment

in period k. From the viewpoint of period 2, the bidders only care about their period-2

payments and period-2 allocation probabilities.

2.1 Histories, strategies, beliefs, and period-2 outcome

A non-terminal history lists the observed dropout decisions and the current price at any point

before the period-1 auction ends. The set of non-terminal histories where bidder i ∈ N is

active is denoted Hi. A terminal history lists the observed dropout decisions up to the end

of the auction, the auction price, and the winner. The set of terminal histories is denoted

Hterm. The set of all histories is denoted H = H1 ∪ · · · ∪ Hn ∪Hterm.

A bidding strategy profile (βi(· | h))i∈N,h∈Hi
determines, for any bidder i ∈ N , any history

h ∈ Hi and any type ti ∈ Ti, the current price b = βi(ti | h) at which bidder i plans to drop

out. We call b the bid of type ti of bidder i at h. If b is smaller than or equal to the current

price at h, then b is interpreted as dropping out immediately at h. Observe that, if at h a

bidder 6= i bids b′ < b, then the plan to drop out at b becomes irrelevant once the current

price b′ is reached.

A resale decision profile is a vector (γh)h∈Hterm , where γh(t) = resale if type t of the

winner offers the good for resale at the terminal history h, and γh(t) = consume if the winner

consumes the good in period 1. A period-1 belief profile (Ah)h∈H assigns to each history h a

probability distribution Ah on T that represents the (common) belief at h about the bidders’

types. A period-2 belief profile (Gh)h∈Hterm assigns to each h a probability distribution Gh

on T that represents the (common) belief about the bidders’ types if the winner offers the

good for resale, given the terminal history h.

Using the revelation principle, we can describe a period-2 outcome as a vector (Pi(t),

Qi(t))i∈N, t∈T such that, for any bidder i and type profile t ∈ T, the number Pi(t) denotes

the expected net period-2 monetary transfer of bidder i, and Qi(t) denotes the probability

that bidder i consumes the good in period 2, where
∑

k∈N Qk(t) = 1 and
∑

k∈N Pk(t) = 0.
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2.2 The equilibrium concept

An equilibrium consists of a bidding profile (βi(· | h))i∈N,h∈Hi
, a resale-decision profile

(γh)h∈Hterm , a period-1 belief profile (Ah)h∈H, a period-2 belief profile (Gh)h∈Hterm , and a

family of period-2 outcomes (Pi,h(t), Qi,h(t))i∈N, t∈T, h∈Hterm with the following properties:

a. for all h ∈ Hterm, the period-2 outcome (Pi,h(t), Qi,h(t))i∈N, t∈T is induced by a perfect

Bayesian equilibrium of the period-2 continuation game, given the period-2 seller from

terminal history h and the (commonly known) period-2 belief Gh;

b. the period-1 belief profile (Ah)h∈H obeys Bayes’ rule with respect to the bidding profile

(βi(· | h))i∈N,h∈Hi
;

c. for all h ∈ Hterm, j ∈ N , and tj ∈ Tj, if bidder j with type tj is the period-1 winner at

history h, then γh(tj) = resale (resp., consume) if tj is strictly smaller (resp., greater)

than j’s discounted period-2 payoff, given the period-2 belief Gh and the expected

period-2 outcome (Pi,h(t), Qi,h(t))i∈N, t∈T;

d. the period-2 belief profile (Gh)h∈H obeys Bayes’ rule with respect to the period-1 belief

profile (Ah)h∈H and the resale-decision profile (γh)h∈Hterm ;

e. for all i ∈ N , ti ∈ Ti, and h ∈ Hi, the bid βi(ti | h) maximizes the expected payoff of

type ti of bidder i at the history h, given the belief Ah, provided that everyone else

abides to the bidding profile, bidder i abides to her bidding strategy after additional

bidders drop out, and that the resale-decision profile and family of period-2 outcomes

are implemented.

We construct equilibria where period-1 beliefs and period-2 beliefs are stochastically

independent across bidders, and where any belief about bidder i’s (i ∈ N) type is derived

from the prior belief and the information that her type lies in a (possibly degenerate) interval

Ji ⊆ Ti. Let J denote the set of interval products J = J1 × · · · × Jn ⊆ T. We identify

any belief with an element of J . That is, we will treat J variably as a product of intervals

or as a cumulative distribution function on T, and will treat Ji variably as an interval or a

cumulative distribution function on Ti.
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3 The period-2 continuation game

In view of equilibrium condition (a), we select a perfect Bayesian equilibrium of the period-2

continuation game for any period-2 seller j ∈ N and any belief J = J1 × · · · × Jn ∈ J .

We use a well-known selection: the mechanism proposed by the period-2 seller is Myer-

son’s (1981) auction that is optimal for period-2 seller j based on period-2 belief profile J,

given the assumption that resale after period 2 is impossible.8 Denote the period-2 outcome

implemented by this auction by (P j,J
i (t), Qj,J

i (t))i∈N, t∈T for any (j,J) specified above.9

Notation is needed to describe the properties of the Myerson optimal auction outcome

that are used in the following analysis. For all i ∈ N , let J−i =
∏

k 6=i Jk denote the marginal

distribution induced by J on T−i :=
∏

k 6=i Tk. The probability that type ti ∈ Ti of bidder i

consumes the good in period 2 (by keeping it if i = j and obtaining it if i 6= j) is denoted

qij(ti,J) =

∫

T−i

Qj,J
i (t)dJ−i(t−i),

and her period-2 expected payoff is denoted

lij(ti,J) = tiqij(ti,J)−
∫

T−i

P j,J
i (t)dJ−i(t−i).

For the period-2 seller we will use the shortcuts qj(tj,J) = qjj(tj,J) and wj(tj,J) = ljj(tj,J).

A well-known implication of the incentive compatibility of the period-2 outcome, proved

via the envelope theorem in integral form (Milgrom and Segal, 2002), are the following

8Our period-2 environment differs from Myerson’s environment insofar as the period-2 seller may be

privately informed about her type. This plays no role because by assumption the period-2 seller is not a

player in her sales mechanism, so that the period-2 buyers’ beliefs about the seller’s type have no impact

on their behavior. If we did allow mechanisms where the period-2 seller is a player, the Myerson optimal

auction outcome would still be a “strong solution” defined by Myerson (1983); see Mylovanov and Tröger

(2008).
9Observe that the period-2 outcome includes payments and allocation probabilities for types not in J.

The period-2 seller believes that types ti 6∈ Ji occur with probability 0. We assume that any type ti > sup Ji

obtains the good with the same probability as type supJi, and any type ti < inf Ji obtains the good with

probability 0.
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envelope formulas: for all ti, t
′
i ∈ Ti (t′i < ti) and tj, t

′
j ∈ Tj (t′j < tj),

lij(ti,J)− lij(t
′
i,J) =

∫ ti

t′i

qij(x,J)dx, (1)

wj(tj,J)− wj(t
′
j,J) =

∫ tj

t′j

qj(x,J)dx. (2)

Period-2 payments can be defined such that the ex-post participation conditions are satisfied:

for all t ∈ T, j ∈ N , and i 6= j,

tj ≤ tjQ
j,J
j (t)− P j,J

j (t), (3)

0 ≤ tiQ
j,J
i (t)− P j,J

i (t). (4)

If there are expected gains from trade between the period-2 seller and all buyers, then by

using an optimal auction the period-2 seller j captures a nonzero share of the gains: for all

tj ∈ Tj,

[∀i ∈ N \ {j}, max Ji >> tj] =⇒ wj(tj,J) > tj. (5)

A further straightforward property of the Myerson optimal auction outcome is that the

period-2 seller’s period-2 payoff is continuous in the period-2 belief about her type (in fact,

the payoff is independent of the belief). To state this property, let [0, x] × J−j denote the

belief that bidder j’s type is at most x and other bidders’ types are in J−j. For all j ∈ N ,

tj ∈ Tj, and J ∈ J , the map

x 7→ wj(tj, [0, x]× J−j) is continuous on Tj. (6)

The next property—that a bidder’s period-2 payoff as a buyer is never larger than as a

seller—follows from the fact that the bidder’s type is a lower bound for her period-2 payoff

as a seller and an upper bound for her period-2 payoff as a buyer. For all i ∈ N , ti ∈ Ti,

j ∈ N \ {i}, and J ∈ J ,

wi(ti,J) ≥ lij(ti,J). (7)

The next relevant property of the Myerson optimal auction outcome is proved in Appendix

A: each bidder as a period-2 seller consumes the good with a weakly higher probability than

obtaining it as a period-2 buyer, given the same period-2 beliefs.
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Lemma 1 Let i ∈ N , ti ∈ Ti, j ∈ N \ {i}, and J ∈ J . Then

qi(ti,J) ≥ qij(ti,J). (8)

Our equilibrium construction in the next section applies to any resale market that satisfies

properties (1)–(8). None of these properties appears specific to the Myerson optimal auc-

tion outcome. In particular, (5) simply reflects the facts that the period-2 seller has some

bargaining power and there is some resale trade. Property (7) is implied by (3)–(4) if n = 2;

otherwise (7) essentially provides an upper bound on an auction loser’s ability to extract

rents if two other bidders trade the good in period 2. Property (8) reflects the basic intuition

that private information leads to less trade than efficiency requires.

4 Equilibria for English auctions with resale

In this section, we construct a family of equilibria for the English auction with resale. In

each equilibrium, one of the bidders, say bidder 1, is commonly known to be the designated

bidder of the period-1 auction. Bidding strategies depend upon a threshold t∗, which can

take on any value in the interval (0, mini∈N ti]. Every bidder with type above t∗ bids her own

type. All designated-bidder types below t∗ bid more than 0 and not more than t∗. Any other

bidder with a type below t∗ drops out at the beginning of the auction. If someone with type

above t∗ wins, resale does not occur. Otherwise, the designated bidder wins at price 0; if her

type is sufficiently low, she offers the good for resale in period 2 according to a continuation

equilibrium described in Section 3. Since the selection of the designated bidder does not

depend upon her type and informational asymmetries remain at resale, these equilibria are

inefficient, contrary to the value-bidding equilibrium of English auctions.10

Before we present the equilibria (Proposition 1), we state some results that are used to

specify the period-1 strategy for bidder 1. First, we establish that bidder 1’s resale decision

is defined by a non-zero cutoff (Lemma 2) such that lower types of bidder 1 prefer offering

resale to immediate consumption, and higher types have the reverse preference. Second,

10Haile (1999) proves that when resale after an English or second-price auction is allowed, the efficient

value-bidding equilibrium remains valid.
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for each bidder i 6= 1 we define a price at which type t∗ is indifferent between winning the

period-1 auction and waiting for resale, and we show that these prices are strictly positive

(Lemma 3). These prices become the bids for all types below t∗ of bidder 1 who offer resale.

Fix a threshold t∗ > 0. For any x ∈ T1, let J∗x = [0, x]× [0, t∗]n−1 denote the belief resulting

from the prior belief and the information that bidder 1’s type is below x and the other

bidders’ types are below t∗.

If the period-2 belief is J∗t∗ , then a period-2 buyer’s highest possible use value is t∗,

so that types just below t∗ of bidder 1 prefer consuming the good in period 1 to offering

resale in period 2 if period-2 payoffs are discounted (δ < 1). To find a cutoff type between

consumption and offering resale, let

τ ∗ := sup {x ∈ T1 | δw1(x,J∗x) > x} if δ < 1. (9)

Observe that τ ∗ < t∗, because by (3)–(5) the set in (9) contains a type below t∗. We define

τ ∗ = t1 if δ = 1.

Lemma 2 Let t∗ be a threshold. Then τ ∗ > 0. For all t1 ∈ T1,

t1 ≥ δw1(t1,J
∗
τ∗) if t1 > τ ∗, (10)

t1 ≤ δw1(t1,J
∗
τ∗) if t1 < τ ∗, (11)

τ ∗ → t∗ as δ → 1, δ 6= 1. (12)

For all bidders i 6= 1, let b∗i denote the price that makes type t∗ of bidder i indifferent

between (i) winning the auction at price b∗i and consuming the good, and (ii) participating

in a resale market where bidder 1 is the period-2 seller and the period-2 belief is J∗τ∗ :

b∗i := t∗ − δli1(t
∗,J∗τ∗). (13)

The following lemma provides bounds for b∗i .

Lemma 3 Let t∗ be a threshold. Then 0 < b∗i < t∗ for all bidders i 6= 1.

The bidding strategy for designated-bidder types below t∗ is as follows. If her type is

below τ ∗, then at any history h ∈ H1 she bids maxi∈S1(h) b∗i , where S1(h) denotes the set of

bidders other than 1 who are active at the history h; and she will offer resale if she wins. If

her type is between τ ∗ and t∗, then she bids t∗ and she does not offer resale if she wins.
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Proposition 1 For any threshold t∗, there exists an equilibrium with properties (i)-(iv).

(i) For any history h ∈ H1, type t1 ∈ T1 of bidder 1 bids the maximum of the current price

and

β1(t1 | h) =





maxi∈S1(h) b∗i if t1 ≤ τ ∗,

t∗ if τ ∗ < t1 ≤ t∗,

t1 if t1 > t∗.

(14)

(ii) For all bidders i 6= 1 and any history h ∈ Hi, type ti ∈ Ti of bidder i bids the maximum

of the current price and

βi(ti | h) =





0 if ti ≤ t∗,

ti if ti > t∗.
(15)

(iii) Let ĥ ∈ Hterm denote the history where all bidders other than bidder 1 have dropped

out at the beginning of the auction. Bidder 1’s resale decision at history ĥ is

γĥ(t1) :=





resale if t1 ≤ τ ∗,

consume if t1 > τ ∗.
(16)

(iv) At history ĥ, the period-2 outcome is the Myerson optimal auction outcome given the

period-2 seller 1 and the period-2 belief [0, τ ∗]× [0, t∗]n−1.

Any equilibrium that satisfies properties (i)-(iv) is called a t∗-equilibrium.

Proposition 1 is proved in Appendix A. Here we explain heuristically why a bidder i 6= 1,

who is not the designated bidder, would abide by the equilibrium strategy of dropping out

of the auction when his type is below the threshold t∗. Bidder i can deviate in at least two

ways. He can either try to outbid the designated bidder (bidder 1) and consume the good

upon winning it. Or he can try to outbid bidder 1 and offer resale upon winning.

To explain why both kinds of deviation are unprofitable, let us suppose that every other

bidder’s type is below t∗. Otherwise, someone else is bidding above bidder i’s use value and

bidder i’s deviation does not increase his payoff on the equilibrium path.

If bidder i manages to outbid bidder 1 and consumes the good upon winning, then

bidder i’s payoff is equal to ti − b∗i , as the low-type bidder 1 bids up to b∗i against bidder i

13



payoff

ti
t∗

Y : slope = δqi1(ti)

X: slope = 1

Z: slope = δqi(ti)

Figure 1: X: consume now; Y: buy at resale; Z: win now and offer resale

and everyone else, low-type and obedient, quits at zero price. This payoff is represented by

the slope-1 straight line, labeled X, in Figure 1.

If bidder i plays the equilibrium strategy of dropping out of the auction and trying to

buy the good at resale, then his expected payoff is equal to δli1(ti,J
∗
τ∗). That is because,

when everyone’s type is below t∗ and everyone abides by the equilibrium, bidder 1 wins the

good at zero price and hence the post-auction belief is J∗τ∗. (Bidder i cannot profit from

dropping out at a positive price given the off-path post-auction belief in our construction.)

This expected payoff is represented by the curve labeled Y in Figure 1. Note that curve Y

and line X intersect at the threshold t∗. That is because bidder 1’s highest bid b∗i against a

deviant bidder i, defined by (13), makes bidder i of type t∗ indifferent between X and Y .

An important point is that curve Y is less steep than line X, so that bidder i with types

below t∗ prefers Y (abiding by the equilibrium and waiting for resale) to X (outbidding

bidder 1 and consuming the good). That follows from the envelope formula (1): When ti

changes from t∗, the payoff from X, ti − bi(t
∗), changes at the rate one while the payoff

from Y , δli1(ti,J
∗
τ∗), changes at the rate δqi1(ti,J

∗
τ∗) < 1.

Now consider the deviation where bidder i outbids the designated bidder and offers the

good for resale upon winning. If bidder i manages to do that, his role in period 2 is switched

from a bidder to a seller, and the post-auction beliefs J∗τ∗ are unchanged. His expected payoff

at the start of period 2 will be equal to wi(ti,J
∗
τ∗), so his present expected payoff from such

deviation is equal to δwi(ti,J
∗
τ∗)− bi(t

∗).

14



This payoff is represented by the curve labeled as Z in Figure 1. Note that the position

of the curve for ti ≥ t∗ is lower than that of line X. That is because a reseller whose type

is above t∗ cannot profit from resale, since everyone else’s type is below t∗. Thus, this part

of curve Z coincides with the corresponding part of X if there is no discounting, and it lies

below X if there is discounting.

A crucial observation is that, for ti < t∗, the curve Z is steeper than the curve Y . As Z

is below Y at t∗, that means Z is always below Y for types below t∗, i.e., bidder i with types

below t∗ would rather be a period-2 buyer than a period-2 seller. To show this relationship

between the slopes, recall the definition of bi(t
∗) given in (13). We have

Z∗ := δwi(t
∗,J∗τ∗)− bi(t

∗)

≤ wi(t
∗,J∗τ∗)− bi(t

∗)

= t∗ − bi(t
∗)

= δli1(t
∗,J∗τ∗) =: Y ∗.

By the envelope formulae (1)–(2), ∂wi

∂ti
(ti,J

∗
τ∗) = qi(ti,J

∗
τ∗) and ∂li1

∂ti
(ti,J

∗
τ∗) = qi1(ti,J

∗
τ∗). By

the inequality (8), qi(ti,J
∗
τ∗) ≥ qi1(ti,J

∗
τ∗). Thus, the expected payoff from achieving Z,

δwi(ti,J
∗
τ∗) − bi(t

∗), decreases from the level Z∗ faster than the expected payoff from Y ,

δli1(ti,J
∗
τ∗), decreases from the level Y ∗. As Z∗ ≤ Y ∗, the claim is established.

We provide some remarks on Proposition 1.

Remark 1. Proposition 1 can be extended to the case where the English auction in

period 1 has a reserve price r > 0. Amend the English auction as follows. The auction starts

with a current price lower than r (say zero price) that corresponds to “no sale.” If someone

drops out at no-sale, then the price clock pauses to give others a chance to drop out. Once

no more bidders drop out at no-sale, the price clock jumps to the reserve price r.

An equilibrium can be constructed for any threshold t∗ > r, provided the discount factor

is sufficiently close to 1. Let t̂ ∈ T1 be the type of bidder 1 such that her expected payoff

(for the entire auction-resale game) is zero if she wins the good at price r and offers the good

for resale, given the belief that the types in [0, t∗] of other bidders participate in the resale
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market. Suppose δ is sufficiently close to 1, so that t̂ < r. According to the equilibrium,

bidder 1 drops out at “no sale” if and only if her type is below t̂. Once bidder 1 has dropped

out at no-sale, other bidders play the value-bidding equilibrium; if bidder 1 does not drop

out at no-sale, then the bidders’ subsequent actions are analogous to the equilibria described

in Proposition 1, where “dropping out at zero price” is replaced by “dropping out at no-

sale.” Resale occurs given the belief that (i) bidder 1’s type is distributed on [t̂, τ ] for some

τ ∈ (r, t∗), and (ii) the other bidders’ types are distributed on [0, t∗].

Remark 2. The t∗-equilibrium construction makes essential use of the transparent dy-

namic nature of an English auction, because the designated bidder’s dropout price depends

on the set of the other bidders who have not dropped out (the upper branch of (14)). This

dependence is important in our construction because by (13), bidders drawn from different

distributions need different prices b∗i to be kept obedient to the threshold t∗. For exactly this

reason, the t∗-equilibrium construction does not generally extend to second-price auctions.

The construction does extend if b∗2 = · · · = b∗n, which holds if bidders 2 to n are ex ante

symmetric.

Remark 3. The t∗-equilibria are not the only equilibria that differ from the value-bidding

equilibrium. There also exist “extreme equilibria” where bidder 1’s bid is so high that all

types of all other bidders find it optimal to drop out at the beginning of the auction.11

Extreme equilibria are conceptually simpler than t∗-equilibria, however there are practical

reasons why extreme equilibria might not be played. First, in an extreme equilibrium,

the good is always sold at zero price at the initial auction. That would make a regulator

suspicious of collusion, which the bidders may want to avoid. Second, if low-type bidders

have a budget constraint that prevents them from staying active up to very high prices, then

a designated bidder’s bidding strategy in an extreme equilibrium is not credible.12 Third,

extreme equilibria cannot generally be used to obtain the interim Pareto dominance property

described below (see Section 5.1 for an example).

11Zheng (2000, Section 5.2) constructs an extreme equilibrium in a second-price-auction-type mechanism

with reserve prices. See also Garratt and Tröger (2006, Section 4).
12Brusco and Lopomo (2006) made this point previously in a no-resale model.
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Remark 4. One may drop the assumption that the period-2 seller can prevent further re-

sale transactions. Suppose that, beginning with the period-2 seller, each current owner of the

good designs a sales mechanism, given that the next owner will design her own sales mech-

anism, and so on. This amounts to using Zheng’s (2002) repeated-resale game to describe

period 2 of our model. For a certain class of period-2 beliefs,13 Zheng’s result shows that

there exists a period-2 perfect Bayesian continuation equilibrium such that the final outcome

is still the Myerson optimal auction outcome intended by the period-2 seller (though this

outcome is achieved via intermediate sales mechanisms different from Myerson’s). Accord-

ingly, for certain prior beliefs our t∗-equilibrium construction extends to the repeated-resale

market without any change; this is true in particular for symmetric environments (i.e., where

prior beliefs are identical across bidders). One may conjecture that the properties (1)–(8)

hold for the repeated-resale market for a larger class of prior beliefs, but proving this hinges

on first solving Zheng’s repeated-resale game for the corresponding beliefs.

5 The interim Pareto dominance of collusion

We assume that a sunspot (à la Shell, 1977 and Cass and Shell, 1983) with n equally

likely states is commonly observed before the period-1 auction starts (and after the bidders

have been privately informed). This extends the game so that actions can depend on the

realization of the sunspot state. Given any strategy profile, the payoff of any type of a

given bidder is defined via the expectation over the n sunspot states. We call an equilibrium

in the extended game Pareto improving if it interim-Pareto-dominates the value-bidding

equilibrium, that is, if every type of every bidder is strictly better-off than in the value-

bidding equilibrium. We show that Pareto improving equilibria exist in any environment.

For any threshold t∗, we define a t∗-collusive equilibrium: if the realized state is j =

1, . . . , n, then a t∗-equilibrium is played, with bidder j taking the role of the designated

bidder. Clearly this constitutes an equilibrium.

13Mylovanov and Tröger (forthcoming) characterize the class of beliefs such that Zheng’s construction

applies.
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Proposition 2 The t∗-collusive equilibria are Pareto improving for all t∗ sufficiently close

to 0.

Note the generality of this result. A Pareto improving equilibrium exists in any symmetric

or asymmetric environment; in particular, strong bidders can gain from colluding with weak

bidders. Moreover, the discount factor does not have to be close to 1; the result applies to

any non-zero discount factor.

The proof of Proposition 2 utilizes two regularity properties of the period-2 outcome

when the period-2 belief is concentrated on types close to 0. These properties, which are

stated in Lemma 5 and Lemma 6, do not appear to be specific to the Myerson optimal

auction outcome; the conclusion of Proposition 2 holds for any resale market outcome that

satisfies these properties.

The first step towards the proof of Proposition 2 is to observe that it is sufficient to focus

the payoff comparison on the types in the interval [0, t∗].

Lemma 4 If in a t∗-collusive equilibrium, type t∗ of a given bidder is strictly better-off than

in the value-bidding equilibrium, then all types above t∗ of this bidder are strictly better-off.

Proof. Consider any type ti ≥ t∗ of a bidder i ∈ N . Her payoff in the t∗-collusive

equilibrium can be different from her value-bidding equilibrium payoff only in the event that

the highest type among the other bidders t
(1)
−i ≤ t∗. Then bidder i’s payoff in the t∗-collusive

equilibrium is ti − n−1
n

b∗i , and her payoff in the value-bidding equilibrium is ti − t
(1)
−i . The

payoff difference is independent of ti.

The idea behind using t∗ close to 0 in Proposition 2 is to make the interval of relevant

types [0, t∗] small, so that approximations of payoff comparisons can be obtained using first-

order Taylor expansions of the prior distributions,

Fi(x) = fi(0)x + hi(x), (x ≥ 0, i = 1, . . . , n), (17)

where hi(x)/x → 0 as x → 0.

The Taylor expansions (17) are exact (hi(x) = 0) if the priors are (possibly asymmetric)

uniform distributions. The uniform-priors example captures the rough idea why Proposi-

tion 2 is correct. In the value-bidding equilibrium with uniform priors, it is well-known that
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the payoff of type ti ≤ t∗ of bidder i is

U val, uniform

i (ti) =

∫ ti

0

∏

k 6=i

Fk(x) dx =
∏

k 6=i

fk(0)
tni
n

. (18)

For the t∗-collusive equilibrium payoff with uniform priors, denoted U∗,uniform

i (ti), we obtain

a lower bound by not counting the gains from resale trade:

U∗,uniform

i (ti) ≥ 1

n

∏

k 6=i

fk(0) (t∗)n−1 ti, (19)

because with probability 1/n bidder i is the designated bidder, in which case she gets the

good for free if all others have valuations below t∗. Clearly, (18) and (19) imply

U∗,uniform

i (ti) > U val, uniform

i (ti) for all ti ∈ (0, t∗). (20)

The strict inequality in (20) also holds at ti = 0 and ti = t∗, because in a t∗-collusive

equilibrium type 0 makes a profit as a period-2 seller with positive probability, and type

t∗ gets an information rent as a period-2 buyer with positive probability. Thus, in the

uniform-priors example, t∗-collusive equilibria are Pareto improving for all t∗. Using the

Taylor expansion (17), we generalize this result to arbitrary prior distributions and small t∗,

via several lemmas that are proved in Appendix A.

For all i ∈ N , let τ ∗i be defined analogously to τ ∗, with bidder i instead of bidder 1 taking

the designated-bidder role. Lemma 5 states that, for small t∗, a non-vanishing fraction of

the designated-bidder types below t∗ offer the good for resale on the equilibrium path of a

t∗-equilibrium.

Lemma 5 There exists 0 < θ < 1 such that, for all t∗ sufficiently close to 0,

∀i ∈ N : τ ∗i > θt∗. (21)

The proof uses the fact that the period-2 seller, if she believes that each buyer’s type belongs

to [0, t∗], is free to make a take-it-or-leave-it fixed-price offer at t∗/2 to any buyer. This lower

bound on what the period-2 seller can achieve ensures that all types that are sufficiently small

relative to t∗ offer resale, thus bounding τ ∗i from below.

For all i ∈ N , let J∗i denote the belief resulting from the prior belief and the information

that bidder i’s type is below τ ∗i and the other bidders’ types are below t∗. Lemma 6 states
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that, given the period-2 belief J∗i for any small t∗, a non-vanishing fraction of the period-2-

buyer types below t∗ buy the good with a non-vanishing probability; if δ = 1, the probability

is conditional on the seller’s type being below t∗.

Lemma 6 There exist 0 < ξ < 1 and ε > 0 such that, for all t∗ sufficiently close to 0,

∀i ∈ N, j ∈ N \ {i}, ti ∈ [ξt∗, t∗] : ε <





qij(ti,J
∗j), if δ < 1,

qij(ti,J
∗j)

Fj(t∗)
, if δ = 1.

(22)

The intuition behind this result is that, because the conclusion (22) holds for any t∗ in the

uniform-priors example, one can use the Taylor expansion (17) to show the conclusion for

arbitrary priors and small t∗. The proof uses the assumption that the prior densities are

Lipschitz continuous. This implies that the virtual valuation functions (Myerson, 1981) for

the period-2 beliefs about the period-2 buyers’ types are strictly increasing if t∗ is small.

According to the Myerson optimal auction outcome, the good is then resold to the period-2

buyer with the highest virtual valuation, unless the period-2 seller’s type is higher. This

allocation rule yields explicit formulas for the buyer-allocation probabilities qij(ti,J
∗j). The

lower bound (22) is obtained via approximations for the virtual valuation functions that are

obtained using (17).

The next lemma provides an approximation result for payoffs in the value-bidding equi-

librium.14

Lemma 7 The payoff of type ti ≤ t∗ of bidder i ∈ N in the value-bidding equilibrium is

U val

i (ti) =
∏

k 6=i

fk(0)
1

n
ti

n + O((t∗)n).

The next lemma states that, given the period-2 belief J∗i for any small t∗, a non-vanishing

fraction of the period-2-seller types below t∗ sell the good with a non-vanishing probability.

Lemma 8 Let θ be as in Lemma 5. There exist 0 < ξ < θ and ε > 0 such that, for all t∗

sufficiently close to 0,

∀j ∈ N, tj ∈ [0, ξt∗] : qj(tj,J
∗j) < 1− ε. (23)

14For any k ≥ 0, we will use O((t∗)k) to denote any function h(x, t∗) (or h(t, t∗) or h(ti, t∗)) such that

supx∈[0,t∗] |h(x, t∗)|/(t∗)k → 0 as t∗ → 0.
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To prove this, we observe that the upper bound (23) follows from the lower bound (22)

because buyer- and seller-allocation probabilities add up to 1 in expectation over all types.

Let U b
ij(ti) denote the payoff of type ti ≤ t∗ of bidder i ∈ N in a t∗-equilibrium where

j 6= i is the designated bidder. Using the lower bound on the trading probability (22) and

the envelope formula (1), we obtain a lower bound for her payoff.

Lemma 9 Let ξ and ε be as in Lemma 6. For all sufficiently small t∗ and ti ∈ [0, t∗],

U b
ij(ti) ≥ δε max{0, ti − ξt∗}Fj(θt

∗)
∏

k 6∈{i,j}
Fk(t

∗).

Let U s
i (ti) denote the payoff of type ti ≤ t∗ of bidder i ∈ N in a t∗-equilibrium where i

is the designated bidder. Using the upper bound on the no-trade probability (23) and the

envelope formula (2), we obtain a lower bound for her payoff.

Lemma 10 Let ξ and ε be as in Lemma 8. For all sufficiently small t∗ and ti ∈ [0, t∗],

U s
i (ti) ≥ (

ti + δε max{0, ξt∗ − ti}
) ∏

k 6=i

Fk(t
∗).

Let U∗
i (ti) denote the payoff of type ti ≤ t∗ of bidder i ∈ N in a t∗-collusive equilibrium.

Combining Lemma 9 and Lemma 10, we get, for all sufficiently small t∗ and ti ∈ [0, t∗],

U∗
i (ti) ≥ 1

n

(
ti + δε max{0, ξt∗ − ti}

) ∏

k 6=i

Fk(t
∗) (24)

+
n− 1

n
δε max{0, ti − ξt∗}Fj(θt

∗)
∏

k 6∈{i,j}
Fk(t

∗)

(17)
=

(
1

n
ti +

1

n
δε max{0, ξt∗ − ti}+

n− 1

n
δε max{0, ti − ξt∗}θ

)
(25)

·
(∏

k 6=i

fk(0)(t∗)n−1 + O((t∗)n−1)

)

=
∏

k 6=i

fk(0)g(
ti
t∗

)(t∗)n + O((t∗)n), (26)

where

g(x) =
1

n
x +

1

n
δε max{0, ξ − x}+

n− 1

n
δε max{0, x− ξ}θ (x ∈ [0, 1]).
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Because g(0) > 0, g(1) > 1/n, and x > xn if 0 < x < 1,

∀x ∈ [0, 1] : g(x) >
xn

n
.

Hence, combining (26) with Lemma 7,

U∗
i (ti)− U val(ti)

(t∗)n
≥

∏

k 6=i

fk(0) min
x∈[0,1]

(g(x)− xn

n
)

︸ ︷︷ ︸
>0

+O(1).

Hence, for sufficiently small t∗,

min
ti∈[0,t∗]

(U∗
i (ti)− U val(ti)) > 0.

This completes the proof of Proposition 2.

We provide some remarks on Proposition 2:

Remark 5. The uniform-priors example shows that the gains to playing a Pareto improv-

ing equilibrium can be quite large. Table 1 shows the gains to a bidder with type t∗ = .9

in an environment with Fi (i ∈ N) uniform on [0, 1], for various numbers of bidders n. The

gains to type t∗ are the minimum gains over all types in this example.

n U val
i (.9) U∗

i (.9) % increase

2 0.405 0.50625 25

5 0.1181 0.19043 61.24

10 0.03487 0.06277 80.01

Table 1: Fi(t) = t, t∗ = .9

Remark 6. Proposition 2 extends to an English auction with a small reserve price. This

follows from Remark 1, by continuity. For larger reserve prices r, the question is whether

bidders can collude so that the payoff of any bidder-type above r is larger than in the value-

bidding equilibrium with reserve price r (where bidders with types below r abstain). We

have three results for environments where the prior beliefs Fi (i ∈ N) are uniform on [0, 1].
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First, if n = 2, then a Pareto improving equilibrium exists for any reserve price below 1.

Second, if n ≥ 4, then a Pareto improving equilibrium exists if the optimal reserve price

under value-bidding, 1/2, is used. Third, a Pareto improving equilibrium exists for any

reserve price arbitrarily close to 1 if n is sufficiently large.

Proposition 2 establishes that the bidders can always achieve some, possibly small, Pareto

improvement over value-bidding. This raises two questions. First, is the restriction to small

t∗ needed for this result? Second, is resale trade needed?

5.1 Not all t∗-collusive equilibria are Pareto improving

In this section we provide an example showing that the Pareto improvement can break

down if t∗ is not sufficiently small. We consider a symmetric 2-bidder environment without

discounting (δ = 1). Let t∗ = 1.15 We will construct a prior belief F := F1 = F2 with

support [0, 1] such that the payoff of type t∗ = 1 of any bidder in a 1-collusive equilibrium

is smaller than in the value-bidding equilibrium.16 Hence, by continuity, a positive mass of

types prefers value bidding.

Let t̃ denote a random variable with cumulative distribution function F . In the value-

bidding equilibrium, type 1 of any bidder obtains the payoff 1−E[t̃], where E[·] denotes the

expected-value operator. In a 1-collusive equilibrium, her payoff is

1

2
+

1

2

(
1− E[p∗(t̃)]

)
,

where p∗(t) (t ∈ [0, 1]) denotes an optimal resale price of type t of any bidder given the

period-2 belief [0, 1] about the other bidder. Thus, type 1 strictly prefers the value-bidding

15The example can be easily generalized to show that for any t∗ > 0 there exists an F such that a

t∗-collusive equilibrium is not Pareto improving.
16Obtaining a Pareto improvement remains impossible if arbitrary probabilities are allowed for the sunspot

states. Let u1 and u2 denote the two bidders’ type-t∗ payoffs in a t∗-equilibrium. Let uval denote the type-t∗

payoff in the value-bidding equilibrium. Let σ denote the sunspot probability that bidder 1 is the designated

bidder. If (u1 + u2)/2 < uval, then we cannot have that both bidder 1 is better off (σu1 + (1− σ)u2 ≥ uval)

and bidder 2 is better off ((1− σ)u1 + σu2 ≥ uval). To see this, add the inequalities.
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equilibrium if

E[p∗(t̃)] > 2E[t̃]. (27)

We construct a distribution F such that (27) holds. F is piecewise linear with a single kink

at some point α ∈ (0, 1/3). We compute an explicit solution for the resale price function p∗.

This allows us to verify (27). For all t ∈ [0, 1], let17

F (t) :=





1−α
α

t if 0 ≤ t ≤ α,

1− α + α
1−α

(t− α) if α ≤ t ≤ 1.

Straightforward calculations show that E[t̃] = α.

Let t ∈ (0, 1). To find the optimal resale price p∗(t) for a type-t seller, observe that

p = p∗(t) maximizes the period-2 payoff π(p, t) := (p− t)(1−F (p)) (written net of own type

t) among all p ∈ [0, 1].

Suppose that p∗(t) < α. Because p∗(t) > t > 0, the first-order condition

0 =
∂

∂p
π(p, t)

∣∣∣∣
p=p∗(t)

= 1− 1− α

α
(2p∗(t)− t)

holds. This implies p∗(t) = α
2(1−α)

+ t
2
. Using p∗(t) < α we find

t <
α

1− α
. (28)

Comparing the payoff obtained from p∗(t) with the payoff obtained from the price p =

(1 + t)/2 contradicts the optimality of p∗(t):

π(p∗(t), t) =
α

2(1− α)

(
1− 1− α

α
t

)
2

(28)
<

α

2(1− α)
(1− t) 2 = π(p, t).

Hence, p∗(t) ∈ [α, 1]. For all p ∈ (α, 1),

∂

∂p
π(p, t) =

α

1− α
(1− 2p + t) .

17To simplify the exposition, the example uses a distribution with a discontinuous density. There exists

an approximating distribution with a Lipschitz continuous density such that the conclusion of the example

still holds. In fact, the conclusion holds for any distribution function on [0, 1] that is sufficiently close, in

the L1-topology on densities, to the distribution in the example. This follows from Berge’s Theorem of

Maximum because in the example all non-zero types have a unique optimal resale price.
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Because π(·, t) is strictly concave on [α, 1], the first-order condition 0 = (∂/∂p)π(p, t) implies

p∗(t) =
1 + t

2
.

Now (27) follows because

E[p∗(t̃)] =

∫ α

0

1 + t

2

1− α

α
dt +

∫ 1

α

1 + t

2

α

1− α
dt =

1 + α

2

α<1/3
> 2α = 2E[t̃].

In this example, even though the 1-collusive equilibrium does not Pareto dominate value-

bidding, a Pareto dominating t∗-collusive equilibrium still exists by Proposition 1.

5.2 There may be no Pareto improvement without resale

As pointed out by Blume and Heidhues (2004), the second-price auction without resale has

equilibria (in dominated strategies) with bidding profiles similar to our t∗-equilibria. Given

any t∗ ≥ 0, there exists a no-resale t∗-equilibrium in which bidders whose use values are

above t∗ bid their use values, all bidders except a designated bidder bid 0 if their use values

are below t∗, and the designated bidder bids t∗ if her use value is below t∗. These equilibria

remain valid if the second-price auction is replaced by the English auction. In fact, bidding

in any of our t∗-equilibria converges to the no-resale t∗-equilibrium with designated bidder

1 in the limit δ → 0 because τ ∗ → 0.

Is it possible to construct a Pareto improving equilibrium without resale based on the

no-resale t∗-equilibria, using a sunspot as in the model with resale? In many environments

it is not possible because high-type bidders are better off with value-bidding. To state

this result, label the no-resale t∗-equilibrium with designated bidder i by (i, t∗) ∈ N × IR+.

For any probability distribution D on N × IR+, call the equilibrium obtained by playing a

no-resale equilibrium according to the distribution D a no-resale collusive equilibrium.

Proposition 3 Suppose that the prior belief is strictly concave and identical for all bidders.

Then in any no-resale collusive equilibrium there exists a bidder, the highest possible type of

which, is strictly worse off than in the value-bidding equilibrium.

Proof. Let F = Fi (i ∈ N) denote the prior belief. Let t denote the highest possible

type. Let uval denote the payoff of type t in the value-bidding equilibrium. For any no-resale

equilibrium (i, t∗) ∈ N × IR+ and any k ∈ N , let ui,t∗
k denote the payoff of type t of bidder k.
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We first show that

uval >
1

n

n∑

k=1

ui,t∗
k . (29)

Because the designated bidder gets the good for free if all others have types below t∗,

1

n

n∑

k=1

ui,t∗
k = F (t∗)n−1 1

n
t∗ +

∫ t

t∗
F (t)n−1dt.

It is well-known that

uval =

∫ t

0

F (t)n−1dt.

Strict concavity of F implies

∀0 < t < t∗ :
F (t)

t
>

F (t∗)
t∗

.

Therefore,

uval −
∫ t

t∗
F (t)n−1dt >

F (t∗)n−1

(t∗)n−1

∫ t∗

0

tn−1dt =
F (t∗)n−1

(t∗)n−1

1

n
(t∗)n =

1

n

n∑

k=1

ui,t∗
k −

∫ t

t∗
F (t)n−1dt,

implying (29).

In a no-resale collusive equilibrium based on a probability distribution D, the payoff of

type t of bidder k ∈ N is

uD
k :=

∫
ui,t∗

k dD(i, t∗).

Suppose that the highest possible type of each bidder is at least as well off as in the value-

bidding equilibrium: uD
k ≥ uval for all k ∈ N . Then

uval ≤ 1

n

n∑

k=1

uD
k =

∫
1

n

n∑

k=1

ui,t∗
k dD(i, t∗)

(29)
< uval,

a contradiction.

The proof works by showing that, in any no-resale collusive equilibrium, the payoff of

the highest type averaged over all bidders, is smaller than her value-bidding payoff. Hence,

somebody must be worse off in any no-resale collusive equilibrium. Of course, by continuity,

the result can be extended to types close to the highest possible type.
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Blume and Heidhues (2004) show that in environments where the priors (Fi)i∈N have

a common support and there are at least three bidders, the no-resale t∗-equilibria, with t∗

ranging in [0, maxi∈N t̄i], are the only equilibria of the second-price auction without resale.18

Thus, the set of no-resale collusive equilibria span all of the possible equilibrium utility

profiles in this environment. Hence we have the following additional result.

Corollary 1 Suppose that the prior belief is strictly concave and identical for all of the

n ≥ 3 bidders. Then, assuming no resale, the value-bidding equilibrium of the second-price

auction is not Pareto dominated by any equilibrium of the second-price auction with a public

randomization device.

6 Appendix A

Proof of Lemma 1. From Myerson (1981, p. 68–69), there exist weakly increasing

functions ci : Ti → IR (i ∈ N) such that, given any type profile t ∈ T, the period-2 seller

j ∈ N optimally assigns the good with equal probability to any one of the buyers in the set

{i ∈ N \ {j} | tj < ci(ti) = max
k∈N\{j}

ck(tk)}, 19 20

and consumes the good if the set is empty. Hence, for all i ∈ N , ti ∈ Ti, and j ∈ N \ {i},

qij(ti,J) ≤ Pr[ci(ti) > t̃j] · Pr[ci(ti) ≥ max
k∈N\{i,j}

ck(t̃k)], (30)

where (t̃1, . . . , t̃n) denotes a random vector with distribution J. Similarly,

qi(ti,J) = Pr[ti ≥ max
k∈N\{i}

ck(t̃k)]

= Pr[ti ≥ cj(t̃j)] · Pr[ti ≥ max
k∈N\{i,j}

ck(t̃k)]. (31)

18They also show that with any positive reserve price only the value-bidding equilibrium (t∗ = 0) remains.

This is in contrast to the “with resale” case where t∗-equilibria with t∗ > 0 are robust to reserve prices

(Remark 1).
19Writing “tj < . . . ” instead of “tj ≤ . . . ”, we deviate from Myerson’s original definition while retaining

optimality for the seller.
20For all i ∈ N , we extend ci to Ti via ci(ti) = −∞ if ti < inf Ji and ci(ti) = ci(sup Ji) if ti > sup Ji. Cf.

footnote 9.
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From Myerson’ construction, ci(ti) ≤ ti and ci(t̃j) ≤ t̃j. Hence, (30) and (31) yield (8).

Proof of Lemma 2. For any x, the function φ(x, t) := δw1(t,J
∗
x)−t is Lipschitz continuous

in t, where the Lipschitz constant is independent of x by (2). By (6), for any t the function

φ(x, t) is continuous in x. Hence, φ is continuous. By (5), φ(0, 0) > 0. Moreover, φ(t, t) ≤ 0

for all t ≥ t∗. Hence, φ(τ ∗, τ ∗) = 0 and τ ∗ > 0.

To prove (10) and (11) if δ < 1, observe that (2) together with q1(s,J
∗
τ∗) ≤ 1 (s ∈ T1)

implies that φ(τ ∗, t) is weakly decreasing in t.

To prove the limit result (12), consider the correspondence

ψ : δ 7→ {t ∈ [0, t∗] | φ(t, t) ≤ 0}.

Because φ is continuous, ψ is upper-hemicontinuous. From (5), ψ(1) = {t∗}. Hence, τ ∗ =

min ψ(δ) → min ψ(1) = t∗ as δ → 1, δ 6= 1.

Proof of Lemma 3. By Lemma 2, τ ∗ > 0. Hence, (3)–(4) implies li1(t
∗,J∗τ∗) < t∗, so (13)

implies 0 < b∗i . By (13), the remaining claim b∗i < t∗ is implied by the claim li1(t
∗,J∗τ∗) > 0,

which we establish now. Suppose that li1(t
∗,J∗τ∗) ≤ 0. Then li1(ti,J

∗
τ∗) ≤ 0 for all ti < t∗

by (1). However, li1(ti,J
∗
τ∗) ≥ 0 by (4). Hence, li1(ti,J

∗
τ∗) = 0. Thus, qi1(ti,J

∗
τ∗) = 0 by

(1). Hence, Q
1,J∗

τ∗
i (t) = 0 for almost all t ∈ J∗τ∗ . Thus, P

1,J∗
τ∗

i (t) = 0 by (4). Because

probabilities sum up to 1 and payments sum up to 0, Q
1,J∗

τ∗
1 (t) = 1 and P

1,J∗
τ∗

1 (t) = 0 for

almost all t ∈ J∗τ∗ . Hence, w1(t1,J
∗
τ∗) = t1 for almost all t1 ≤ τ ∗, contradicting (5).

Proof of Proposition 1. We begin with a complete description of period-1 beliefs and

period-2 beliefs. For any i ∈ N and p ≥ 0, let Ha
i,p denote the set of histories with current

price p (= auction price if the history is terminal) where bidder i is active; let Hd
i,p denote

the set of histories where bidder i has dropped out at price p (while the current price is ≥ p).

Observe that, for any i ∈ N , these sets cover the set of all histories: H = ∪p≥0(Ha
i,p ∪Hd

i,p).

Hence, to describe the equilibrium period-1 belief profile (Ah)h∈H, it is sufficient to specify,

for all i ∈ N , p ≥ 0, and h ∈ Ha
i,p ∪Hd

i,p, the period-1 belief Ah,i about bidder i at history h.

In the following Tables 2–4, we shall identify the posterior distributions Ah,i and Gh,i with

their posterior supports.
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Let i ∈ N . At the initial history h0, all bidders are active and Ah0,i = Fi. Table 2

provides information on period-1 beliefs about bidder i at any history where bidder i has

dropped out at price p.

i i’s dropout price Ah,i at h ∈ Hd
i,p

p

≥ 2 ≤ t∗ [0, t∗]

≥ 1 ∈ (t∗, ti] {p}
≥ 1 > ti {ti}
= 1 < t∗ [0, τ ∗]

= 1 = t∗ [τ ∗, t∗]

Table 2: Period-1 beliefs about bidder i at any history where bidder i has dropped out.

Table 3 provides information on period-1 beliefs about bidder i at any non-initial history

where bidder i is active. Let Ĥ denote the set of histories such that bidder 1 is active while,

according to β1, she would not be active if her type were ≤ τ ∗.

i current price Ah,i at h ∈ Ha
i,p

p

≥ 2 ≤ t∗ [t∗, ti] if h 6= h0

≥ 1 ∈ [t∗, ti] [p, ti]

≥ 1 > ti {ti}

= 1 < t∗
[τ ∗, t1] if h ∈ Ĥ
T1 if h 6∈ Ĥ

Table 3: Period-1 beliefs about bidder i at any non-initial history where bidder i is active.

Equilibrium condition (b) can be verified in a straightforward manner using (14), (15),

Table 2 and Table 3. For example, if bidder 2 drops out at the initial history h0, then

(15) implies the period-1 belief [0, t∗]. The event that she drops out at a price in (0, t∗] has

probability 0; hence, Bayes rule allows an arbitrary period-1 belief such as [0, t∗].

Next we specify period-2 beliefs for any terminal history h ∈ Hterm. Let ω(h) ∈ N denote

the winner at the terminal history h. Period-2 beliefs about losing bidders are identical to
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the beliefs at the end of the auction, because the decision whether to offer the good for resale

is not made by the losing bidders.

Gh,i = Ah,i for all h ∈ Hterm and i 6= ω(h).

In the no-discounting case δ = 1, the same equation Gh,i = Ah,i is assumed for the winner

i = ω(h), and γh(ti) = resale, so that equilibrium conditions (c) and (d) are clearly satisfied.

Suppose that δ < 1. Consider a terminal history h where any bidder i ≥ 2 wins at a

price p ≤ t∗, that is, h ∈ (Ha
i,p ∪ Hd

i,p) ∩ Hterm and i = ω(h). As in the proof of Lemma 2,

there exists τh ∈ (0, t∗) such that

δwi(τh,Gh) = τh if Gh,i = [0, τh].

Table 4 specifies, for any δ < 1, information on the period-2 beliefs about the period-1

winner (non-zero probability types) and the resale decision profile, where h′ is any history

in (Ha
i,p ∪Hd

i,p) ∩Hterm.

i auction price

p

Gh,i at h ∈ (Ha
i,p ∪Hd

i,p) ∩Hterm, i = ω(h)
γh(ti) =





resale if ti ≤ x,

consume if ti > x.

≥ 2 ≤ t∗
[0, τh′ ] if h ∈ Ha

i,p

[0, τh] if h ∈ Hd
i,p

x = τh′

x = τh

≥ 1 ∈ (t∗, ti] any belief any optimal x < p

≥ 1 > ti {ti} any optimal x

= 1 ≤ t∗ [0, τ ∗] x = τ ∗

Table 4: Period-2 beliefs about the period-1 winner and the resale decision profile.

Equilibrium condition (d) can be verified using Table 4. To understand the row with h′,

observe that at history h ∈ Ha
i,p the belief about bidder i is [t∗, ti], by Table 3. According to

γh, no type in [t∗, ti] chooses “resale” at h. Hence, Bayes rule allows an arbitrary period-2

belief such as [0, τh′ ]. Verifying equilibrium condition (d) for the next row is analogous to

Lemma 2.

To verify equilibrium condition (d) for the row with “any belief”, observe that by the

second row of Table 2 losing bidders are believed to have types ≤ p, and by the second row
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of Table 3 the winner is believed to have a type ≥ p. Because none of the winning types

chooses “resale”, Bayes rule allows for any belief.

To verify equilibrium condition (d) for the next row, observe that either γh(ti) = resale

or γh(ti) = consume. In the “resale” case, Gh,i = {ti} follows from Ah,i = {ti} (the third row

of Table 3) by Bayes rule. In the “consume” case, the event that bidder i offers resale has

probability 0, so Bayes rule allows for any period-2 belief.

To verify equilibrium condition (d) for the last row of Table 4, we distinguish two cases.

If Ah,1 ∈ {T1, [0, τ
∗]} then, according to γh, Bayes rule implies Gh,1 = Ah,1 ∩ [0, τ ∗] = [0, τ ∗];

if Ah,1 ∈ {[τ ∗, t1], [τ ∗, t∗]}, then the event that bidder 1 chooses “resale” has probability 0,

so Bayes rule allows for any belief, such as Gh,1 = [0, τ ∗].

The proof of equilibrium condition (c) for the first two rows of Table 4 is analogous to

the corresponding argument in the proof of Lemma 2. To verify equilibrium condition (c)

for the row with “any belief”, observe that type p of the winner strictly prefers “consume”

because δ < 1 and the highest type among the losing bidders is ≤ p by Table 2. The exact

value of the optimal cutoff type x in this row and the next one plays no role. Equilibrium

condition (c) for the last row of Table 4 follows from Lemma 2.

Equilibrium condition (a) follows by construction of the Myerson optimal auction out-

come because all beliefs in Table 4 belong to J .

To verify equilibrium condition (e), write b′ ºh,i,ti b if at history h the expected payoff

of type ti of bidder i when she bids b′ is not smaller than when she bids b, given that other

bidders stick to their candidate equilibrium strategies from h onwards, and bidder i sticks

to her candidate equilibrium strategy after additional bidders drop out. We write b′ 'h,i,ti b

if b′ ºh,i,ti b and b ºh,i,ti b′. We will sometimes omit the lower indices.

First we consider bidder-1 types above the threshold t∗,

∀h ∈ H1, t1 ≥ t∗, b ≥ 0 : t1 ºh,1,t1 b. (32)

We prove (32) for the initial history h = h0; other histories are treated similarly. Fix b ≥ 0.

One of the events I-IV occurs; in each event, the payoff from bid t1 is not lower than from

bid b.

Event I: “some bidder 6= 1 bids < min{b, t1}.” Then the bid b leads to the same ending
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history (thus, same payoff) as the bid t1 because bidder 1’s bid at the initial history h0

becomes irrelevant.

Event II: “all bidders 6= 1 bid > b.” Then the highest type among the bidders 6= 1 is

some t′ > max{b, t∗}. With discounting (δ < 1), the bid b yields the payoff 0 because by

Table 4 the winner consumes the good. Without discounting (δ = 1), the good is offered

for resale, but the bidders’ period-2 payoffs add up to at most max{t1, t′} (= the highest

type among all bidders), and the winner obtains a period-2 payoff of ≥ t′ by (3), implying

that bidder 1 obtains from bid b a payoff of ≤ max{t1 − t′, 0} by (4). But the bid t1 yields

a payoff equal to max{t1 − t′, 0} because bidder 1 pays t′ if she wins. Hence, t1 is weakly

better than b.

Event III: “all bidders 6= 1 bid > min{b, t1}, and the first dropping out of a bidder 6= 1

occurs at a price t′ ≤ b.” Then t1 < b. Hence, t1 < t′ ≤ b and the highest type among

the bidders 6= 1 is t′ > t∗. The bid b of bidder 1 becomes irrelevant once the current price

t′ is reached because a bidder has dropped out. Either bidder 1 wins at price t′ or, given

her candidate equilibrium strategy (14), she drops out at price t′. In both cases, payoffs are

bounded due to (3) and (4). If she wins, then the bidders’ period-2 payoffs add up to at

most t′, hence bidder 1’s payoff is ≤ 0 due to the auction price t′. If she loses at price t′,

then her payoff is 0. In any case, the bid b yields a payoff ≤ 0 so that the bid t1 is weakly

better.

Event IV: “at least one bidder 6= 1 bids min{b, t1}, and all others bid more.” The

probability of IV is positive (and hence IV is payoff-relevant) only if b = 0. If all bidders 6= 1

bid 0, then bidder 1’s type t1 ≥ t∗ is the highest among all bidders, implying that bidder

1’s payoff from the bid b = 0 is ≤ t1 (whether or not she wins the tie at 0), so that the bid

t1, which yields payoff t1, is weakly better. If some bidders 6= 1 bid more than 0, then the

highest type among bidders 6= 1 is some t′ > t∗, implying that bidder 1’s payoff from bid 0

is ≤ max{t1− t′, 0} by (3) and (4), while her payoff from bid t1 equals max{t1− t′, 0}. This

completes the proof of (32).

For bidder-1 types below the threshold any bid between 0 and the threshold is optimal,

∀h ∈ H1, t1 ≤ t∗, b ∈ (0, t∗], b′ ≥ 0 : b ºh,1,t1 b′. (33)

The proof of (33) uses similar arguments as the proof of (32). The only essentially new
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aspects are that the proof of b º 0 uses the property (7), and that bidder 1 is indifferent in

the range (0, t∗] where no other bidder is expected to drop out. We omit the details.

Turning to the non-designated bidder-types above the threshold, observe that value-

bidding is at least as good as any bid above the designated bidder’s competing bid,

∀i 6= 1, h ∈ Hi, ti ≥ t∗, b > b∗i : ti ºh,i,ti b. (34)

The proof of (34) uses similar arguments as the proof of (32). One defines events I’–IV’

analogous to I–IV, with bidder 1 replaced by bidder i, and t1 replaced by ti. One of the

events I’–IV’ occurs; in each event, the payoff from bid ti is not lower than from bid b.

The only essentially new aspect is that Event IV’ has positive probability (and, hence, is

payoff-relevant) only if b = t∗ and δ < 1, in which case bidder 1 bids t∗. Consider Event IV’.

Suppose that n = 2. Then the bid b = t∗ ends the auction with a tie between bidder 1 and

bidder i = 2. If bidder 1 wins the tie, then by Table 2 and Table 4 bidder 1 consumes the

good so that bidder i obtains the payoff 0; if bidder i wins the tie, then she obtains ti − t∗.

In any case, the bid ti is weakly better than b. Suppose that n > 2. Then bidder i loses with

bid b and obtains the payoff 0, so that the bid ti is weakly better. This completes the proof

of (34).

For non-designated-bidder types below the threshold, any bid between the designated

bidder’s competing bid and t∗ is at least as good as any bid above t∗,

∀i 6= 1, h ∈ Hi, ti ≤ t∗, b ∈ (b∗i , t
∗], b′ > t∗ : b ºh,i,ti b′. (35)

To prove (35), first consider the initial history h = h0. If at least one bidder 6= i has a type

above t∗, bidder i obtains payoff 0 with any b. Otherwise all bidders 6= i have types below t∗.

If n > 2, then some bidder drops out at price 0, so that bidder i’s bid at the initial history

becomes irrelevant and any b > 0 leads to the same ending history. Suppose that n = 2. If

t1 ≤ τ ∗, then bidder 1 drops out at price b∗i , which ends the auction, so that all b lead to

the same ending history. If t1 > τ ∗, then bidder 1 drops out at price t∗ and bidder i obtains

payoff 0 with any b. Arguments are similar for h 6= h0. This completes the proof of (35).

For non-designated-bidder types above the threshold, value-bidding is at least as good

as any bid below the designated bidder’s competing bid,

∀i 6= 1, h ∈ Hi, ti ≥ t∗, b ≤ b∗i : ti ºh,i,ti b. (36)
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We prove (36) at h = h0 (other histories are treated similarly). Also, we do not consider

the bid b = b∗i ; its treatment combines the arguments used to prove (34) with the arguments

below, depending on whether or not bidder i wins the tie against bidder 1.

Suppose first that n = 2. One of the events V–VII occurs; in each event, the payoff from

bid ti is not lower than from bid b.

Event V: “bidder 1 bids b∗2.” Then with bid ti bidder i wins at price b∗2, the period-2

belief is J∗τ∗ , and bidder i’s payoff is

max{δwi(ti,J
∗
τ∗), ti} − b∗i = ti − b∗i .

With any bid b < b∗i , bidder i loses, the period-2 belief is J∗τ∗ , and her payoff is

δli1(ti,J
∗
τ∗)

(1)

≤ δ(ti − t∗) + δli1(t
∗,J∗τ∗)

(13)
= δ(ti − t∗) + δ(t∗ − b∗i )

= δ(ti − b∗i ) ≤ ti − b∗i .

Hence, the bid ti is weakly better.

Event VI: “bidder 1 bids t∗.” This event has positive probability only if δ < 1, in which

case bidder 1 consumes the good if she wins, so that any bid b < b∗i yields the bidder-i payoff

0. But the bid ti yields the payoff ti − t∗ ≥ 0.

Event VII: “bidder 1 bids > t∗.” Then the proof that ti is weakly better than any bid

b < b∗i uses similar arguments as the proof of (32).

Now suppose that n ≥ 3. Consider first the bid b = 0. If all bidders 6∈ {1, i} bid 0,

then the proof that bid ti is weakly better is analogous to the treatment of Event V. If some

bidder 6∈ {1, i} does not bid 0, then this bidder bids more than t∗ and this case is analogous

to the treatment of Event VII.

Now consider bids b > 0. If some bidder 6∈ {1, i} bids 0, then all bids b > 0 (in particular,

the bid ti) yield the same ending history and hence same payoff (because the initial-history

bid becomes irrelevant). Otherwise all bidders 6∈ {1, i} bid > t∗, so that any bid b < b∗i yields

the payoff 0 and the bid ti is weakly better (similar arguments as in the proof of (32)). This

completes the proof of (36).

For non-designated-bidder types below the threshold, the bid 0 is at least as good as any
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bid below the designated bidder’s competing bid,

∀i 6= 1, h ∈ Hi, ti ≤ t∗, b < b∗i : 0 ºh,i,ti b. (37)

To prove (37), observe that the bid 0 yields the same period-2 belief as any bid b < b∗i in

any event, and bidder i always loses the auction. Hence, payoffs are the same.

Finally, for non-designated-bidder types below the threshold, the bid 0 is at least as good

as any bid between the designated bidder’s competing bid and t∗,

∀i 6= 1, h ∈ Hi, ti ≤ t∗, b ∈ [b∗i , t
∗] : 0 ºh,i,ti b. (38)

We prove (38) at h = h0 (other histories are treated similarly). Also, we do not consider

the bid b = b∗i ; its treatment combines the arguments used to prove (37) with the arguments

below, depending on whether or not bidder i wins the tie against bidder 1.

Suppose first that n = 2. One of the events V–VII defined above occurs; in each event,

the payoff from bid ti is not lower than from bid b.

Suppose Event V occurs. Then with bid b bidder i wins at price b∗2, the period-2 belief

is J∗τ∗ , and bidder i’s payoff is

Ûi(ti) = max{δwi(ti,J
∗
τ∗), ti} − b∗i

With bid 0, bidder i loses, the period-2 belief is J∗τ∗ , and her payoff is

U∗
i (ti) = δli1(ti,J

∗
τ∗).

Observe that

Ûi(t
∗) = t∗ − b∗i

(13)
= U∗

i (t∗).

From (1), U∗
i is Lipschitz continuous and hence is differentiable almost everywhere, and the

derivative is

U∗
i
′(ti) = δqi1(ti,J

∗
τ∗).

Similarly, the derivative of Ûi is

Ûi
′
(ti) ≥ δqi(ti,J

∗
τ∗).
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Hence,

U∗
i (ti) = U∗

i (t∗)−
∫ t∗

ti

U∗
i
′(s)ds

= Ûi(t
∗)− δ

∫ t∗

ti

qi1(s,J
∗
τ∗)ds

(8)

≥ Ûi(t
∗)− δ

∫ t∗

ti

qi(s,J
∗
τ∗)ds

≥ Ûi(t
∗)−

∫ t∗

ti

Ûi
′
(s)ds

= Ûi(ti).

Hence, the bid 0 is weakly better.

If Event VI or Event VII occurs, bidder i’s payoff is 0 with either bid 0 or any b ∈ (b∗i , t
∗].

Now suppose that n ≥ 3. If all bidders 6∈ {1, i} bid 0, then the proof that bid 0 is weakly

better than b ∈ (b∗i , t
∗] is analogous to the treatment of Event V. If some bidder 6∈ {1, i}

does not bid 0, then bidder i’s payoff is 0 anyway.

Proof of Lemma 5. If δ = 1, the result is obvious because τ ∗i = ti. Let δ < 1 and let

θ < min{1

4
,

δ

1− δ

1

12
}. (39)

Let i = 1 (the proof is analogous for other bidders). From (17), F2(t
∗/2)/F2(t

∗) → 1/2 as

t∗ → 0. Hence, for all t∗ sufficiently close to 0,

1− F2(t
∗/2)

F2(t∗)
>

1

3
. (40)

A lower bound for the period-2 payoff of any type x ≤ θt∗ of bidder 1 is the payoff from a

take-it-or-leave-it fixed-price offer at t∗/2 to bidder 2,

w1(x,J∗x) ≥ x + (1− F2(t
∗/2)

F2(t∗)
)(

t∗

2
− x)

(39), (40)
> x +

1

3

t∗

4
.

Therefore, for all x ≤ θt∗,

δw1(x,J∗x)− x >
δ

12
t∗ − (1− δ)x

(39)

≥ 0,

implying τ ∗ ≥ θt∗ by (9).
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Proof of Lemma 6. For any threshold t∗, i ∈ N , and ti ∈ [0, t∗], let21

Vi(ti) := ti − Fi(t
∗)− Fi(ti)

fi(ti)
. (41)

Step 1. If t∗ is sufficiently close to 0, then Vi is strictly increasing.

To show this, consider any t, t′ such that 0 ≤ t < t′ ≤ t∗. Then

Vi(t
′)− Vi(t) = t′ − t− Fi(t

∗)− Fi(t
′)

fi(t′)
+

Fi(t
∗)− Fi(t)

fi(t)

= t′ − t− Fi(t
∗)− Fi(t

′)
fi(t′)

+
Fi(t

∗)− Fi(t)

fi(t′)

−Fi(t
∗)− Fi(t)

fi(t′)
+

Fi(t
∗)− Fi(t)

fi(t)

= t′ − t +
Fi(t

′)− Fi(t)

fi(t′)
+ (Fi(t

∗)− Fi(t))
fi(t

′)− fi(t)

fi(t)fi(t′)

≥ t′ − t + (Fi(t
∗)− Fi(t))

fi(t
′)− fi(t)

fi(t)fi(t′)

≥ (t′ − t)

(
1− Fi(t

∗)
L

fi(t)fi(t′)

)
, (42)

where L is a Lipschitz constant for fi.

Let t∗ be so close to 0 that fi(0)/2 < fi(s) < 2fi(0) for all s ∈ [0, t∗]. Then Fi(t
∗) =

∫ t∗

0
fi(s)ds < 2fi(0)t∗ and (42) implies

Vi(t
′)− Vi(t) ≥ (t′ − t)

(
1− 2fi(0)t∗

4L

fi(0)2

)
.

The right-hand side is strictly positive if t∗ < fi(0)/8L, showing that Vi is strictly increasing.

The next step is to provide lower bounds for the virtual valuation functions Vi (i ∈ N) if

t∗ is small. To this end, define

κi(t
∗) :=

fi(0)

minx∈[0,t∗] fi(x)
. (43)

Observe that κi(t
∗) → 1 as t∗ → 0. Hence, if t∗ is small, the lower bound established in Step

2 approximates the virtual valuation function for a uniform distribution on [0, t∗].

21This is the virtual valuation function (cf. Myerson, 1981) for the belief [0, t∗] about bidder i.
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Step 2. For all i ∈ N , t ∈ [0, t∗], and any threshold t∗,

Vi(t) ≥ t− κi(t
∗)(t∗ − t) + O(t∗).

Using (17) and (41),

Vi(t) = t− fi(0)t∗ + hi(t
∗)− fi(0)t− hi(t)

f(t)

= t− fi(0)

fi(t)
(t∗ − t) + h1

i (t, t
∗)

≥ t− κi(t
∗)(t∗ − t) + h1

i (t, t
∗), (44)

where

h1
i (t, t

∗) :=
hi(t

∗)− hi(t)

fi(t)
. (45)

Observe that (17) implies

supx∈[0,t∗] | hi(x) |
t∗

≤ sup
x∈[0,t∗]

| hi(x) |
x

→ 0 as t∗ → 0.

Hence, defining f
i
(t∗) := minx∈[0,t∗] fi(x),

supx∈[0,t∗] |h1
i (x, t∗)|

t∗
≤ 1

f
i
(t∗)

( |hi(t
∗)|

t∗
+

supx∈[0,t∗] |hi(x)|
t∗

)
→ 0 as t∗ → 0.

The next step is to provide formulas for period-2-buyer allocation probabilities. From now

on, suppose that t∗ is sufficiently close to 0 so that the conclusion of Step 1 holds.

Step 3. For any j ∈ N , i ∈ N \ {j}, and ti ∈ [0, t∗],

qij(ti,J
∗j) =

Fj(Vi(ti))

Fj(τ j∗)

∏

k∈N\{i,j}

Fk(V
−1
k (Vi(ti)))

Fk(t∗)
. (46)

According to the Myerson optimal auction outcome given the period-2 seller j ∈ N and

the belief J∗j, the good is assigned to the buyer with the highest virtual valuation, unless

j’s use value is higher (cf. Myerson, 1981). From this the allocation probabilities (46) are

straightforward.

Step 4. Proof of (22).
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Define ξ = 4/5. Using Step 2, for any i ∈ N ,

Vi(ξt
∗)

t∗
=

4

5
− κi(t

∗)
1

5
+ O(1).

Hence, Vi(ξt
∗)/t∗ → 3/5 as t∗ → 0. Thus, using Step 1, if t∗ is sufficiently close to 0,

∀ti ∈ [ξt∗, t∗] : Vi(ti) ≥ t∗

2
. (47)

Using (46), for any j 6= i, if δ < 1,

qij(ti,J
∗j) =

Fj(Vi(ti))

Fj(τ ∗j)

∏

k∈N\{i,j}

Fk(V
−1
k (Vi(ti)))

Fk(t∗)

(47), τ∗j<t∗

≥ 1∏
k 6=i Fk(t∗)

Fj(
t∗

2
)

∏

k∈N\{i,j}
Fk(V

−1
k (

t∗

2
)

︸ ︷︷ ︸
≥t∗/2

)

≥
∏

k 6=i

Fk(
t∗
2
)

Fk(t∗)

=
∏

k 6=i

fk(0) t∗
2

+ O(t∗)

fk(0)t∗ + O(t∗)

=
∏

k 6=i

fk(0)1
2

+ O(1)

fk(0) + O(1)
→ 1

2n−1
> 0 as t∗ → 0.

If δ = 1, similar arguments show that qij(ti,J
∗j)/Fj(t

∗) → 1/2n−1 because τ j∗ = tj. Hence,

we can choose any ε < 1/2n−1.

Proof of Lemma 7. Using the envelope theorem,

U val

i (ti) =

∫ ti

0

∏

k 6=i

Fk(x) dx

(17)
=

∫ ti

0

∏

k 6=i

(fk(0)x + hk(x)) dx

=

∫ ti

0

(
∏

k 6=i

fk(0)xn−1 + h1(x)) dx where
h1(x)

xn−1
→ 0 as x → 0.

=
∏

k 6=i

fk(0)
1

n
ti

n +

∫ ti

0

h1(x) dx.

Let ε > 0. If t∗ is sufficiently small, then |h1(x)| ≤ ε xn−1 for all x ≤ t∗. Therefore
∣∣∣∣
∫ ti

0

h1(x)dx

∣∣∣∣ ≤
∫ ti

0

|h1(x)| dx ≤ ε

∫ ti

0

xn−1dx ≤ ε (t∗)n,
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which completes the proof.

Proof of Lemma 8. First let δ < 1. Let ξ < θ and ε > 0 be so close to 0 that

1− (n− 1)ε(1− ξ) < (1− ξ/θ)(1− ε). (48)

Because probabilities add up to 1,

∫ τ∗j

0

qj(tj,J
∗j)

dFj(tj)

Fj(t∗)
+

∑

i6=j

∫ t∗

0

qij(ti,J
∗j)

dFi(ti)

Fi(t∗)
= 1. (49)

Using Lemma 5,

lim inf
t∗→0

Fj(τ
∗j)− Fj(ξt

∗)

Fj(τ ∗j)
≥ lim inf

t∗→0

Fj(θt
∗)− Fj(ξt

∗)

Fj(θt∗)
(17)
= 1− ξ/θ. (50)

It is well-known that the incentive compatibility constraints for period 2 imply that (*) the

functions qj(·,J∗j) are weakly increasing. We find

(1− ξ/θ) lim sup
t∗→0

qj(ξt
∗,J∗j)

(50)

≤ lim inf
t∗→0

Fj(τ
∗j)− Fj(ξt

∗)

Fj(τ ∗j)
lim sup

t∗→0
qj(ξt

∗,J∗j)

≤ lim sup
t∗→0

Fj(τ
∗j)− Fj(ξt

∗)

Fj(τ ∗j)
qj(ξt

∗,J∗j)

(∗)
≤ lim sup

t∗→0

∫ τ∗j

0

qj(tj,J
∗j)

dFj(tj)

Fj(τ ∗j)

(49)
= 1− lim inf

t∗→0

∑

i 6=j

∫ t∗

0

qij(ti,J
∗j)

dFi(ti)

Fi(t∗)

≤ 1− lim inf
t∗→0

∑

i 6=j

∫ t∗

ξt∗
qij(ti,J

∗j)
dFi(ti)

Fi(t∗)

(22)

≤ 1− ε lim inf
t∗→0

∑

i6=j

∫ t∗

ξt∗

dFi(ti)

Fi(t∗)

= 1− ε lim inf
t∗→0

∑

i6=j

Fi(t
∗)− Fi(ξt

∗)
Fi(t∗)

(17)
= 1− (n− 1)ε(1− ξ)

(48)
< (1− ξ/θ)(1− ε).

Dividing both sides by 1− ξ/θ yields (23).
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Now let δ = 1. Define ξ < 1 and ε > 0 as in (48) with θ = 1. Using (3) and (4),

qj(tj,J
∗j) = 1 for all tj > t∗. Hence, because τ ∗j = tj and probabilities sum up to 1,

∫ t∗

0

qj(tj,J
∗j)dFj(tj) + (1− Fj(t

∗)) +
∑

i6=j

∫ t∗

0

qij(ti,J
∗j)

dFi(ti)

Fi(t∗)
= 1.

Rearranging yields

∫ t∗

0

qj(tj,J
∗j)

dFj(tj)

Fj(t∗)
+

∑

i6=j

∫ t∗

0

qij(ti,J
∗j)

Fj(t∗)
dFi(ti)

Fi(t∗)
= 1. (51)

Similar to the cases δ < 1, we obtain (23) because

(1− ξ) lim sup
t∗→0

qj(ξt
∗,J∗j)

(17)
= lim sup

t∗→0

Fj(t
∗)− Fj(ξt

∗)

Fj(t∗)
qj(ξt

∗,J∗j)

(∗)
≤ lim sup

t∗→0

∫ t∗

0

qj(tj,J
∗j)

dFj(tj)

Fj(t∗)

(51)
= 1− lim inf

t∗→0

∑

i6=j

∫ t∗

0

qij(ti,J
∗j)

Fj(t∗)
dFi(ti)

Fi(t∗)

(22)

≤ 1− ε lim inf
t∗→0

∑

i 6=j

∫ t∗

ξt∗

dFi(ti)

Fi(t∗)
.

Proof of Lemma 9. If ti < ξt∗, the claim U b
ij(ti) ≥ 0 is immediate from (4). Let ti > ξt∗.

Using (1) and lij(0,J
∗j) ≥ 0 (from (4)), if δ < 1,

1

Fj(τ ∗j)
1∏

k 6∈{i,j} Fk(t∗)
U b

ij(ti) ≥ δ

∫ ti

0

qij(x,J∗j) dx
(22)

≥ δ

∫ ti

ξt∗
ε dx = δε(ti − ξt∗),

which together with Lemma 5 implies the claim. If δ = 1, similar arguments imply

1∏
k 6∈{i,j} Fk(t∗)

U b
ij(ti) ≥ εFj(t

∗)(ti − ξt∗).

Proof of Lemma 10. If ti > ξt∗, the claim U s
i (ti) ≥ ti is immediate from equilibrium

condition (c). Let ti ≤ ξt∗. First let δ < 1. Then ti < θt∗ ≤ τ ∗i by Lemma 5. Using (2) and
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the fact that δwi(τ
∗i,J∗i) = τ ∗i (from the definition of τ ∗i),

1∏
k 6=i Fk(t∗)

U s
i (ti) = τ ∗i − δ

∫ τ∗i

ti

qi(x,J∗i) dx

= τ ∗i − δ(τ ∗i − ti) + δ

∫ τ∗i

ti

(1− qi(x,J∗i)) dx

(23)

≥ ti + δε(ξt∗ − ti),

as was to be shown. If δ = 1, then the claim follows from analogous arguments with τ ∗i

replaced by t∗.

7 Appendix B

We wish to show that the strategies used in t∗-equilibria are undominated. To do so we utilize

the “type-player interpretation” of the auction-with-resale game, where different types of a

bidder represent different players (see, e.g., Osborne and Rubinstein, 1994, p. 26).22 A pure

strategy s for type ti ∈ Ti of bidder i is undominated if, for any strategy s′ 6= s, either s′

yields the same (expected) payoff as s no matter what other bidders do, or

(*) there exists a profile of strategies s−i for the bidders other than i such that

s yields a strictly higher payoff than s′ against s−i.

Assume that there are n = 2 bidders, so that the period-2 seller makes a fixed-price take-

it-or-leave-it offer according to the Myerson optimal auction outcome; at the end of this

section we comment on the extension of the arguments to environments with n ≥ 3 bidders.

A pure strategy s for type ti of bidder i is described by a bid βi(ti) and a resale price function

ri(ti, ·), where ri(ti, p) ∈ [0,∞)∪{consume} denotes her resale price or consumption decision

when she wins the auction at price p. The domain of the function ri can be restricted to the

set {(ti, p) | ti ∈ [0, ti], p ∈ [0, βi(ti)]}.23 Any resale price is accepted by all losing-bidder

types greater than or equal to this price.

22This corresponds to the natural viewpoint that the bidders select their strategies after they have learned

their private information.
23We do not have to specify a bidder’s resale price if she wins at a price higher than her bid, because

different prices yield equivalent strategies.
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The t∗-equilibrium strategies can be defined such that, for all p,24

ri(ti, p) ∈





(ti/δ, t−i) ∪ {consume} if δ < 1,

(ti, t−i) if δ = 1 and ti < t−i,

ti if δ = 1 and ti ≥ t−i.

(52)

Proposition 4 shows that pure strategies satisfying (52) are undominated, except possibly

for 0-type bidders.25 The proof proceeds in two steps. First, we show that a strategy of any

type of bidder i that involves a bid b cannot be weakly dominated by an alternative strategy

where the bidder submits a bid 6= b. This is true because assuming the other bidder bids so

aggressively that bidder i must wait for a resale offer, it may be the case that a favorable

resale offer is made only if bidder −i wins at price b, making the bid b uniquely optimal. In

the second step we show that a strategy of any type of bidder i that involves a bid b and a

certain resale price x 6= consume if the bidder wins at a given price p ≤ b cannot be weakly

dominated by a strategy where bidder i sticks to the bid b, but changes her resale behavior

upon winning at p. Here we use the assumption that bidder −i’s valuation density is positive

at x. Indeed, if, for some small ε > 0, types [x, x + ε] of bidder −i bid p and all other types

bid more than b, then it is uniquely optimal to offer resale at price x upon winning at p (and

the resale decisions when winning at a price 6= p are irrelevant). The argument is slightly

different if x = consume.

Proposition 4 Let n = 2. For all types ti 6= 0 of all bidders i, any pure strategy satisfying

(52) is undominated.

Proof. Consider any pure strategy s for type ti of bidder i consisting of a bid b and a

resale price function ri(ti, ·). Let V (b) denote the set of all (pure or mixed) strategies of type

ti of bidder i where she bids b with certainty.

24If δ = 1 and ti ≥ t−i, all resale prices ≥ ti yield the same payoff as “consume”, so we can as well fix the

price at ti. Otherwise, any strategy not satisfying (52) is dominated. If δ < 1, any price ≤ ti/δ is no better,

and sometimes worse, than consuming the good. If δ = 1, any price ≤ ti is no better, and sometimes worse,

than any price in (ti, t−i). Any price ≥ t−i will be accepted with probability 0 from an ex-ante viewpoint.
25The 0-types’ t∗-equilibrium strategies are in fact dominated. Each 0-type bidder may switch to any

undominated strategy at the cost of complicating the definition of t∗-equilibria and leaving the rest of the

analysis unchanged because the 0 types occur with probability 0.
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Step 1. (*) holds if s′ 6∈ V (b).

Define strategies s−i = (β−i(t−i), r−i(t−i, ·)) for the various types t−i ∈ T−i of bidder −i

as follows. Bidder −i of type t−i bids β−i(t−i) > max{b, t−i}. If she wins at any price p 6= b,

then she chooses a resale price r−i(t−i, p) optimally given the belief that bidder i’s type is in

[ti − ε, ti], where ε > 0 is defined below.26 She chooses r−i(t−i, b) optimally given the belief

that bidder i’s type is in [0, ti].

Now consider bidder i of type ti who is bidding against s−i. Any bid 6= b yields a payoff

≤ ε, while the bid b yields a positive expected payoff û > 0 because with positive probability

bidder i gets a resale offer priced below ti. Choosing ε < û, the strategy s is strictly better

than any strategy not in V (b). This completes Step 1.

If δ = 1 and ti ≥ t−i, we are done because V (b) = {s}. From now on, assume that δ < 1

or ti < t−i.

Given any p ≤ b, let W (p, b) denote the set of all (pure or mixed) strategies where type

ti of bidder i chooses the resale price ri(ti, p) with certainty when she wins at price p.

Step 2. (*) holds if s′ ∈ V (b) \W (p, b).

First assume that ri(ti, p) =: x 6= consume. Observe that ti < t−i by (52). Define

strategies s−i = (β−i(t−i), r−i(t−i, ·)) such that β−i(t−i) = p if t−i ∈ [x, x+ε], and β−i(t−i) > b

otherwise, where ε > 0 is chosen so small that

y − F−i(x + ε)− F−i(y)

f−i(y)
> ti ∀y ∈ [x, x + ε]. (53)

Resale prices r−i(t−i, ·) are arbitrary. Against s−i, if type ti of bidder i wins at price p,

then the resale price x is uniquely optimal for her (her period-2 payoff from resale price y

is strictly decreasing for y ∈ [x, x + ε], which can be seen by computing the derivative of

the payoff and using (53)). Because the price x > ti/δ is accepted with certainty, it is also

better than “consume”. Hence, s is strictly better than any s′.
26The argument works with ε = 0 if ti < ti. But the belief {ti} implies r−i(t−i, p) = ti if t−i is small,

which violates (52).
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Now assume that ri(ti, p) = consume. Define strategies s−i = (β−i(t−i), r−i(t−i, ·)) such

that β−i(t−i) = p if t−i ∈ [0, ε], and β−i(t−i) > b otherwise, where ε < ti. Resale prices

r−i(t−i, ·) are arbitrary. If type ti of bidder i wins at price p against s−i, then “consume” is

better than offering resale. Hence, s is strictly better than any s′. This completes Step 2.

Step 1 and Step 2 show that s is undominated because27

{s} = ∩p≤bW (p, b) ∩ V (b).

Now consider environments with n ≥ 3 bidders. The crucial complication in extending

Proposition 4 occurs in Step 1 of the proof. Below we outline a proof that strategies that in-

volve arbitrary bid functions are undominated, so long as the resale behavior is appropriately

restricted in a manner similar to (52).

Any type of a given bidder must choose a planned dropout price (bid) at each history

during the English auction. First one shows that a strategy that involves some bid b at

the initial history cannot be weakly dominated by a strategy that involves a bid 6= b at the

initial history. The resale mechanisms involved in this argument are second-price auctions

with reserve prices similar to the resale prices used in the 2-bidder proof. Next, a strategy

that involves a bid b at the initial history and a bid b′ at the history h′ reached when a certain

bidder drops out at a certain price cannot be dominated by a strategy where she submits

the bid b at the initial history and a bid 6= b′ at h′; to show this, one constructs strategies of

the other bidders such that history h′ is reached and then, as before, the remaining active

rivals bid so aggressively that the bidder must wait for a resale offer. Continuing inductively

to the end of the auction, one sees that a strategy cannot be dominated by any strategy that

involves a bidding structure different from the one used in the original strategy.

27Observe that, for the verification of (*) in steps 1 and 2, the strategy profile s−i can itself be taken to

be a profile of strategies satisfying (52). In this sense, any pure strategy satisfying (52) survives any iterated

elimination of dominated strategies.

45



8 References

Blume, A. and P. Heidhues (2004): “All Equilibria of the Vickrey Auction,” Journal of

Economic Theory, 114, 170-177.

Brusco, S. and G. Lopomo (2002): “Collusion via Signalling in Simultaneous Ascending

Bid Auctions with Heterogeneous Objects, with and without Complementarities,” Review of

Economic Studies, 69, 407–436.

— (2006): “Simultaneous Ascending Bid Auctions with Privately Known Budget Con-

straints,” Journal of Industrial Economics, forthcoming.

Calzolari, G., and A. Pavan (2006): “Monopoly with Resale,” RAND Journal of Eco-

nomics, 37(2), 362–375.

Cass, D., and K. Shell (1983): “Do Sunspots Matter?” Journal of Political Economy,

91(2), 193–227.

Engelbrecht-Wiggans, R. and C. M. Kahn (2005): “Low-Revenue Equilibria in Si-

multaneous Ascending-Bid Auctions,” Management Science, 51, 508–518.

Garratt, R. and T. Tröger (2006): “Speculation in Standard Auctions with Resale,”

Econometrica, 74, 753–769.

Graham, D. A. and R. C. Marshall (1987): “Collusive Bidder Behavior at Single-

Object Second-Price and English Auctions,” Journal of Political Economy, 95, 1217–1239.

Hafalir, I. and V. Krishna (2007): “Asymmetric Auctions with Resale” American

Economic Review, forthcoming.

Haile, P. (1999): “Auctions With Resale,” mimeo, University of Wisconsin, Madison.

— (2003): “Auctions with Private Uncertainty And Resale Opportunities,” Journal of Eco-

nomic Theory, 108, 72–100.

Lebrun, B. (2007): “First-Price and Second-Price Auctions with Resale,” mimeo.

Lopomo, G., R.C. Marshall and L.M. Marx (2005): “Inefficiency of Collusion at

English Auctions,” Contributions to Theoretical Economics, 5, Article 1.

Marshall, R.C. and L.M. Marx (2007): “Bidder Collusion,” Journal of Economic

Theory, 133, 374–402.

Mailath, G. J. and P. Zemsky (1991): “Collusion in Second Price Auctions with Het-

46



erogeneous Bidders,” Games and Economic Behavior, 3, 467–486.

McAfee, R. P. and J. McMillan (1992): “Bidding Rings,” American Economic Review,

82, 579–599.

Milgrom, P. R. (2000): “Putting Auction Theory to Work: The Simultaneous Ascending

Auction,” Journal of Political Economy, 108, 245–272.

Milgrom, P. R. and I. Segal (2002): “Envelope Theorems for Arbitrary Choice Sets,”

Econometrica, 70, 583–601.

Milgrom, P. R. and R. J. Weber (1982): “A Theory of Auctions and Competitive

Bidding,” Econometrica, 50, 1089–1122.

Myerson, R. (1981): “Optimal Auction Design,” Mathematics of Operations Research, 6,

58–73.

Myerson, R. (1983): “Mechanism Design by an Informed Principal,” Econometrica, 51,

1767–1797.
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