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Abstract
Rank-order tournaments are usually modeled simultaneously. However,

real tournaments are often sequential. We show that agents’ strategic be-
havior in sequential-move tournaments significantly differ from the one in
simultaneous-move tournaments: In a sequential-move tournament with het-
erogeneous agents, there may be either a first-mover or a second-mover ad-
vantage. Under certain conditions the first acting agent chooses a preemp-
tively high effort so that the following agent gives up. The principal is able
to prevent preemptive behavior in equilibrium, but he will not implement
first-best efforts although the agents are risk neutral.
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1 Introduction

Rank-order tournaments have been extensively discussed in the literature.1

In the basic model, two agents compete for tournament prizes by choosing

their effort levels simultaneously. The agent who produces the highest out-

put receives the winner prize whereas the other agent gets the loser prize.

The main result of this literature is that, under certain circumstances, the

principal can design tournament prizes such that the agents choose the first-

best effort level even in cases where agents’ efforts and outputs are unveri-

fiable. In these cases, standard compensation schemes like bonus payments

or piece rates are non-contractible. The principal would always be able to

save labor costs by claiming that the agents’ outputs were low. Tournament

incentive schemes, however, consists of contractible prizes that have been

fixed in advance so that the principal cannot gain by misrepresenting the

agents’ performances (Malcomson 1984, 1986). This explains why tourna-

ments are often observed in practice: For example, sales persons compete

for bonus payments (Mantrala, Krafft and Weitz 2000). Employees compete

in job promotion tournaments to reach a better paid job on a higher rank

in the firm’s hierarchy (e.g., Baker, Gibbs and Holmström 1994a, 1994b).2

Managers of the same industry compete against each other in a kind of tour-

nament due to relative performance compensation (Antle and Smith 1986,

Gibbons and Murphy 1990, Eriksson 1999). Tournaments can be even ob-

served in connection with broiler production (Knoeber 1989, Knoeber and
1See, e.g., Lazear and Rosen (1981), Nalebuff and Stiglitz (1983), Green and Stokey

(1983), O’Keefe, Viscusi, and Zeckhauser (1984), Rosen (1986), McLaughlin (1988), Lazear

(1989).
2The contractibility property of tournaments may explain the major puzzle of Baker,

Jensen, and Murphy (1988) why promotion- instead of bonus-based incentive schemes are

so often observed in practice.
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Thurman 1994). Moreover, further advantages have been attributed to tour-

naments; especially, low measurement costs, and the filtering of common

noise.

The common assumption of the previous tournament models is that the

competing agents choose their effort levels simultaneously. This assumption

may hold in some contexts. In many other contexts, however, agents do not

decide about their efforts at the same time. Real tournaments (e.g., promo-

tion tournaments or tournaments between salesmen) show that agents often

act sequentially and may be able to observe their competitors’ efforts when

deciding on their own effort. Hence, the agents may get some information

during the tournament, which will influence their succeeding effort choices.

Obviously, these features cannot be discussed within a simultaneous-move

tournament. In addition, some tournaments are even organized sequentially

in practice, which holds for diverse sport contests (see, for example, Ehren-

berg and Bognanno [1990a, 1990b] for an empirical analysis of golf tourna-

ments).

In this paper, we consider tournaments in which the agents are assumed to

choose their efforts sequentially. In a two-agent tournament, one of the agents

first chooses his effort. After that, the other agent observes this effort and

then has to decide about his own effort level. We show that this sequential-

move tournament substantially differs from the standard simultaneous-move

tournament. In particular, the sequential-move tournament allows for ad-

ditional strategic behavior by the agents: Either, the first acting agent can

use his position as Stackelberg leader to discourage the second agent. He is

even able to choose a preemptively high effort level. Or, the second acting

agent can use his role as Stackelberg follower to outrival the first agent. The

analysis shows that, as a necessary condition for preemption, marginal costs
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have to be positive at the origin or, alternatively, luck has to be distributed

over a finite interval.

There are parallels to the discussion of Dixit (1987) and Baye and Shin

(1999) about precommitment in contests. As Dixit (1987, p. 892) states

homogeneous players lead to the symmetric simultaneous-move outcome in a

game where players choose their efforts sequentially. However, Baye and Shin

(1999) show that this result will only hold if the contest success function sat-

isfies a technical third-order condition. Our results highlight that sequential-

move tournaments fundamentally differ from simultaneous-move ones: In our

model, there will never be a symmetric equilibrium in the sequential-move

tournament as it is always the case in the simultaneous-move tournament

given homogeneity. Of course, there is at least one crucial difference be-

tween our model and the Dixit model: Dixit and Baye and Shin analyze

contests with linear costs whereas we consider tournaments with convex cost

functions.

There are also some parallels to the literature on preemptive behavior

in other setups. Fudenberg et al. (1983) and Fudenberg and Tirole (1985)

discuss preemptive behavior in R&D races, whereas Fishman (1988, 1989)

considers preemptive takeover bidding. Our paper is most related to the

literature on preemptive behavior in (rent-seeking) contests (see Leininger

and Yang 1994; Baik 1998; Weimann et al. 2000).

Besides the difference with respect to the players’ cost functions there is at

least one further difference between contests and tournaments. Often prizes

are exogenously given in contests. On the contrary, prizes are endogenous

and optimally chosen by the principal in tournaments. More generally, the

most important difference to the contest literature is that the principal can

choose the design of the tournament. The analysis shows that considering
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heterogeneous tournaments the underdog will drop out of the competition

if the spread between winner and loser prize is sufficiently large and that

the principal prevents this outcome by choosing an optimal prize spread.

Moreover, the principal does not implement first-best efforts, although both

agents are risk neutral.

The paper is organized as follows: In Section 2 we introduce the general

model of a sequential-move tournament. In Section 3 we derive necessary

conditions for preemptive behavior in the general model. Section 4 considers

the special case of uniformly distributed luck and quadratic costs in order to

derive explicit solutions.3 Section 5 concludes.

2 The general model

We follow the model of Lazear and Rosen (1981) and consider a tournament

between two risk neutral agents. According to the ranks of their outputs the

agents receive a winner prize w1 or a loser prize w2, where w1 > w2. The

output qi of agent i (i = A,B) is given by the linear production function

qi = ei + εi (1)

where ei ≥ 0 denotes agent i’s effort and εi an exogenous error term. The

error terms εA and εB are assumed to be independently and identically

distributed (i.i.d. assumption). Let the difference of εA and εB be de-

noted by Y := εB − εA with distribution function FY (·) and density fY (·).
Note that the convolution fY (·) is symmetric around zero, which implies
FY (−y) = 1 − FY (y). The principal, who is also risk neutral, is assumed

3For a discussion of sequential-move tournaments in which the agents’ outputs mostly

depend on luck rather than effort see Jost (2000).
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to observe neither ei nor εi, but he can observe the unverifiable output qi.4

Effort ei entails some costs for agent i. These costs can be described in mon-

etary terms by the function ci (ei) with ci (0) = 0, c0i (ei) > 0 and c
00
i (ei) > 0,

∀ei > 0. The subscripts of the cost functions indicate that agents are allowed
to be heterogeneous. Hence, we may have a mixed tournament between a

less talented agent with a steeper or more convex cost function and a more

able agent whose cost function is less steep. We can define that agent i is

less talented than agent j if c0i (ei) > c
0
j (ej) and c

00
i (ei) > c

00
j (ej). The prin-

cipal maximizes his expected surplus, i.e. the sum of the expected outputs

(E (qA) +E (qB)) minus the labor costs w1+w2. According to this objective

function he chooses appropriate tournament prizes to generate optimal in-

centives for the two agents. Each agent maximizes his expected tournament

prize minus his effort costs ci (ei). If agent i (i = A,B) decides to participate

in the tournament, he will at least receive his reservation utility ū ≥ 0.
We consider the following three-stage game (see Figure 1).

[Figure 1]

In stage 1 the principal decides about the tournament prizes w1 and w2, and

effort level implementation. In stage 2, agent A chooses eA. In stage 3, agent

B observes eA and then chooses eB. The realizations of εA and εB are not

known by either agent when exerting effort. After the principal has observed

qA and qB, the most successful agent gets w1, whereas the other receives w2.
4By the assumption of unverifiable outcomes we rule out the possibility that the prin-

cipal can induce proper incentives by using individual incentive schemes like piece rates.
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3 Preemptive behavior as equilibrium out-

come in the general model

To focus on preemptive behavior as equilibrium outcome consider more closely

the behavior of the two agents. Given agent A chooses eA in stage 2, agent

B then chooses eB in stage 3 to maximize

EUB (eB) = w2 +∆w · prob {qA < qB}− cB (eB)
= w2 +∆w · [1− FY (eA − eB)]− cB (eB) . (2)

with ∆w := w1 − w2 as prize spread. Let e∗B = e∗B (eA) describe B’s best

response. Agent A’s objective function then is given by

EUA (eA) = w2 +∆w · FY (eA − e∗B)− cA (eA) (3)

In order to use his first-mover position to gain a strategic advantage, A

may have the opportunity to preempt the second mover B, i.e. to choose a

sufficiently high effort so that B prefers to drop out of the tournament by

choosing zero effort instead of competing against A. Such preemption will

be an equilibrium outcome, if agent B prefers to drop out at the third stage

for a given effort of agent A, and if A prefers to choose a preemptive effort

at the second stage given B’s reaction function. Let eA,pre denote agent A’s

preemptive effort in this case. Then, at the third stage, agent B will drop

out, if

w2+∆w·[1− FY (eA,pre)] ≥ w2+∆w·[1− FY (eA,pre − eB)]−cB (eB) ,∀eB.

At the second stage, agent A will choose preemption if

w2+∆w ·FY (eA,pre)−cA (eA,pre) ≥ w2+∆w ·FY (eA − e∗B)−cA (eA) ,∀eA.

Altogether, we obtain the following result:
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Proposition 1 A preemptive equilibrium (eA,pre, 0) exists if and only if

∆w [FY (eA,pre)− FY (eA,pre − eB)] ≤ cB (eB) ,∀eB, and (4)

cA (eA,pre)− cA (eA) ≤ ∆w [FY (eA,pre)− FY (eA − e∗B)] ,∀eA. (5)

According to condition (4), agent B will choose to give up, if the addi-

tional expected return from competing is lower or equal than the associated

costs that can be saved from non-competing. Condition (5) shows that agent

A prefers to choose his preemptive effort if additional costs from preemption

are at most as high as the additional expected return. Note that a preemptive

outcome of a tournament with heterogeneous agents will be most likely if the

first mover is the favorite and the second mover the underdog: The more con-

vex cB (·) the larger the right-hand side of (4), and the less convex cA (·) the
smaller the left-hand side of (5). In this situation, the drop-out gains for B,

cB (eB), are quite large, whereas A’s preemption costs, cA (eA,pre)− cA (eA),
are not prohibitively high.

Typically, if agent B drops out for a given value of agent A’s effort, he

will also give up for even larger values of A’s effort so that the right-hand

side of (5) is positive and we can combine conditions (4) and (5) to

cA (eA,pre)− cA (eA)
FY (eA,pre)− FY (eA − e∗B)

≤ ∆w ≤ cB (eB)

FY (eA,pre)− FY (eA,pre − eB) ,∀eA,∀eB.
(6)

Condition (6) emphasizes that a preemptive equilibrium exists for interme-

diate values of the prize spread ∆w. The intuition for this result can be

explained by the ambiguity of ∆w in case of preemption: On the one hand,

a large prize spread leads to high expected returns for B from competing

with A, which works against preemption. In addition, effort incentives and,

therefore, effort costs will be quite high for agent A if the prize spread is

large. On the other hand, a small value of ∆w implies restricted gains from
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preemption for A, which also makes a preemptive outcome unlikely.

By inspection of (4) and (5) a necessary condition for a preemptive equi-

librium can be given:

Corollary For the existence of a preemptive equilibrium at least one of the

following two conditions must hold: (1) c0B (0) > 0, (2) εB− εA is distributed

over a finite interval.

If c0B (0) = 0 and fY (eA − eB) (i.e., the marginal probability of winning)
is always positive,5 a preemptive equilibrium cannot exist. Instead of drop-

ping out, agent B would always prefer to exert at least marginal positive

effort, since for eB = 0 marginal costs c0B (eB) are zero but marginal gains

∆wfY (eA − eB) are strictly positive. In other words, condition (4) can never
be met. Hence, we have two possible types of preemptive equilibria: (1)

Given eA,pre agent B drops out, since competition would be too costly (type-

I preemption with c0B (0) > 0); (2) Given eA,pre agent B gives up, since luck

is restricted and eA,pre shifts fY (·) out of the finite interval so that mar-
ginal gains from competition are zero for agent B (type-II preemption with

εB − εA being distributed over a finite interval). In either case, preemptive

effort eA,pre has to be sufficiently high to make B give up.

Of course, the existence of preemptive equilibria in the general model

introduced in Section 2 depends on the specific shape of the agents’ cost

functions and on the specific shape of the distribution function FY (·) . Since
Leininger and Yang (1994), who use Tullock’s (1980) contest success function6

and a linear cost function as specific assumptions, already considered the
5This holds, e.g., for the case in which εA and εB are independently and normally

distributed so that εB − εA also follows a normal distribution.
6Note that Tullock’s contest success function corresponds to a probit or tournament

model with exponentionally distributed noise; see, e.g., Loury (1979).
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case of type-I preemption we will focus for the rest of this paper on type-II

preemption.

4 A special case: quadratic costs and uni-

formly distributed noise

In order to analyze type-II preemption and to derive explicit solutions for

the agents’ equilibrium behavior, we now use concrete specifications for the

probability distribution and the agents’ cost functions. In particular, we

assume that luck is distributed uniformly and the agents have quadratic costs

cA(eA) = 0.5τke2A and cB(eB) = 0.5ke2B with τ > 0 and k > 0. Here the

parameter τ characterizes the types of the two agents. If τ = 1, we will have

a tournament with homogeneous agents. If τ < 1 (τ > 1), we will consider

heterogeneous competition with agent A being the favorite (underdog) and

B the underdog (favorite). When luck εi is uniformly distributed over [−ε̄, ε̄]
with ε̄ > 0, the convolution fY (y) with Y = εB − εA and y = eA − eB is
triangular with7

fY (y) =


1
2ε̄
+ y

4ε̄2
if − 2ε̄ ≤ y ≤ 0

1
2ε̄
− y

4ε̄2
if 0 < y ≤ 2ε̄

0 otherwise

(7)

and

FY (y) =



0 if y < −2ε̄
y
2ε̄
+ y2

8ε̄2
+ 1

2
if − 2ε̄ ≤ y ≤ 0

y
2ε̄
− y2

8ε̄2
+ 1

2
if 0 < y ≤ 2ε̄

1 if y > 2ε̄.

(8)

7For construction of this convolution see analogously Kräkel (2000).
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As a benchmark we can derive first-best efforts which are defined as those

effort levels that maximize E [qi]− ci (ei). In this case, we obtain

eFBA =
1

τk
and eFBB =

1

k
(9)

as first-best efforts. To ensure that these efforts lie in the interval [0, 2ε̄],

we assume throughout the paper that agents’ marginal effort costs are suffi-

ciently high at the boundary of the joint error distribution, that is c0i
¡
eFBi

¢
=

1 < c0i(2ε̄) (i = A,B), i.e.

1 < 2τkε̄ and 1 < 2kε̄. (10)

We will now consider the outcome of the sequential-move tournament, in

which agent A moves first whereas agent B follows at the next stage:8

Proposition 2 Given uniformly distributed noise and quadratic costs, there

exists a critical-value function τ̂(∆w) such that the following results hold:

(a) Let τ > τ̂(∆w). Then

e∗A =
8∆wkε̄3

τ∆w2 + (2τ − 1) 4∆wkε̄2 + 16τk2ε̄4 and (11)

e∗B =
2τ ε̄∆w (4kε̄2 +∆w)

τ∆w2 + (2τ − 1) 4∆wkε̄2 + 16τk2ε̄4 . (12)

(b) Let τ ≤ τ̂(∆w). If ∆w < 4kε̄2, then

e∗A =
8∆wkε̄3

τ∆w2 − (2τ − 1) 4∆wkε̄2 + 16τk2ε̄4 and (13)

e∗B =
2τ ε̄∆w (4kε̄2 −∆w)

τ∆w2 − (2τ − 1) 4∆wkε̄2 + 16τk2ε̄4 . (14)

If, otherwise, ∆w ≥ 4kε̄2 then

e∗A =
∆w

2kε̄
and e∗B = 0. (15)

8For the concrete shape of the critical-value function τ̂(∆w) see the appendix.
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Proof. See the appendix.

Note first that, the principal will not be able to implement first-best

efforts for both agents, if he wants to do this, which becomes obvious by

inspection of (9) and (11)—(15). Figure 2 illustrates the optimal behavior of

the two agents according to Proposition 2.

[Figure 2]

For sufficiently large values of τ , the second mover B is more aggressive — in

the sense of choosing higher efforts — than the first mover A. Interestingly, as

Figure 2 shows, this may even happen for τ < 1, i.e. for situations in which

agent B is the underdog and A the favorite. However, for sufficiently small

values of τ , the first mover A exerts more effort than the second mover B.

According to Figure 2, there exist parameter values τ > 1, where the more

aggressive player A is the underdog and the less aggressive one, B, is the

favorite. Note that there will never be a symmetric equilibrium if the agents

are homogeneous (i.e., if τ = 1 ).

Most interestingly, if the prize spread ∆w is sufficiently large, the ag-

gressive player A chooses a preemptive effort so that the second mover B

drops out. Such preemptive behavior can only happen if τ is sufficiently

small which is just in line with the findings of Proposition 1. Note that the

result concerning the sufficiently large prize spread does not contradict the

intuition given in the discussion of condition (6), which describes a closed

interval for preemptive values of ∆w. In the parametric case of Proposi-

tion 2, there is the same trade-off as in the discussion above: A high prize

spread ∆w implies large gains from preemption, but also high incentives for

both players and, therefore, high effort costs for A when preempting agent

B. Technically, as Figure 2 and the functional form of τ̂ (∆w) show (see the

appendix), the critical-value function τ̂ (∆w) is monotonically decreasing for
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∆w ≥ 4kε̄2. Hence, if ∆w becomes arbitrarily large, τ has to be very small
— i.e. heterogeneity has to be very large with agent A being a clear favorite

— for preemption to be an equilibrium outcome in the tournament.

To summarize, preemptive behavior will be optimal for agent A, if he

is sufficiently more talented than agent B and if the additional gains from

preemption, ∆w, are quite large. Moreover, note that there also exist pa-

rameter values for ∆w slightly above 4kε̄2 for which agent A preempts the

second mover B, although A is the underdog (i.e., τ > 1). In addition, the

preemption condition ∆w ≥ 4kε̄2 also indicates that preemptive behavior

will only be optimal, if the cost parameter k and the impact of luck ε̄ are not

too large. Of course, if the cost function is too convex, preemptive behavior

will be prohibitively costly for agent A. Similarly, if ε̄ is large, agent A has

to exert a very high effort to shift fY (·) out of the interval [−2ε̄, 2ε̄] which
again would be prohibitively expensive for A.

The results of Proposition 2 only highlight which agent is the more ag-

gressive one. Now we compare the agents’ expected utilities for the different

situations to check whether the agents can realize first-mover or second-mover

advantages. The preemption case is obvious. Here agent A shifts fY (·) out
of the interval [−2ε̄, 2ε̄] so that B’s winning probability is zero and he ends
up with the loser prize w2 whereas A gets an expected utility strictly greater

than w2. Let τ̂(∆w) denote the critical-value function of Proposition 2. Then

we obtain the following result:

Proposition 3 Given uniformly distributed noise and quadratic costs, if τ ≤
τ̂(∆w) we will have EUA (e∗A, e

∗
B) > EUB (e

∗
A, e

∗
B),but for τ > τ̂(∆w) the

opposite holds.

Proof. See the appendix.
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Proposition 3 shows that agent A is better off than agent B as long as

τ is sufficiently small, but B’s expected utility exceeds the one of agent A

for relative large values of τ . More interestingly, as Figure 2 shows there

are parameter constellations (∆w, τ) with ∆w not too large in which agent

A has a higher expected utility than agent B although τ > 1, i.e. agent

A is the underdog and B the favorite.9 In these cases we can speak of a

first-mover advantage. On the other hand, for sufficiently large values of ∆w

there are also constellations in which B’s expected utility is larger than A’s

despite τ < 1 so that the underdog B realizes a second-mover advantage.

The intuition for these results comes from the fact that the impact of τ —

i.e., the impact of heterogeneity — diminishes as ∆w becomes large so that

incentives are mainly determined by the prize spread. Figure 2 shows that

the number of parameter constellations which correspond to a first-mover or

a second-mover advantage increases with increasing ∆w.

At the first stage of the three-stage game, the principal chooses his optimal

tournament prizes. The following result can be derived:

Proposition 4 Given uniformly distributed noise and quadratic costs, the

principal optimally chooses ∆w < 4kε̄2 which implements positive efforts for

both agents.

Proof. See the appendix.

According to Proposition 4 the principal prefers a relatively small prize

spread, which serves two purposes: On the one hand, labor costs are fixed

on a moderate level. On the other hand, the principal prevents agent A from

preempting agent B. Hence, concerning the complete three-stage game with

optimally chosen prizes, preemptive behavior is never an equilibrium out-

come. As the proof of Proposition 4 shows, preemption would be completely
9Note that the increasing part of τ̂(∆w) is always larger than 1.
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detrimental for the principal, because it leads to strictly negative profits.

When studying tournaments with destructive behavior, Lazear (1989) shows

that from the principal’s viewpoint it may be beneficial to choose a low

prize spread ∆w to decrease the agents’ incentives for sabotaging each other.

Our analysis gives another argument for choosing a low ∆w in practice: By

choosing a low prize spread the principal can prevent agent A from exerting

preemptive effort.

5 Conclusion

In this paper, we analyzed sequential-move tournaments between two het-

erogeneous agents in which preemptive behavior by the first acting agent is

possible. As a necessary condition for preemption, either marginal costs have

to be positive at the origin or luck has to be distributed over a finite inter-

val. Using a parameterized model we then showed that preemption will be

only possible if the spread between the winner the loser prize is sufficiently

large. However, the principal who anticipates possible preemptive behavior

optimally chooses a small prize spread that prevents preemption.

An interesting question remains with respect to the agents’ strategic be-

havior in more general dynamic tournaments: Even if in practice the principal

can separate the agents so that their decisions are independent, real tour-

naments are of repeated nature. That is, the entire tournament consists of

several stages and at each stage the agents play a simultaneous-move tour-

nament. Before the next stage, the agents observe their competitors’ efforts

in the last stage. From the analysis of this paper, one would expect that if

the prize spread is sufficiently large, strategic behavior by the agents will be

possible. This strategic behavior might include a preemptive effort by the
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first acting agent. It is, however, also possible that leapfrogging might occur:

Although one agent is behind in total output, he might choose with some

small probability an effort level such that he leaves his competitor behind.
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Appendix

Proof of Proposition 2:

We analyze the sequential-move tournament using backward induction:

(1) Given the effort eA of agent A, we first consider agent B’s optimal re-

sponse e∗B (eA) at stage 3. (2) Given this reaction function, we solve for the

optimal effort level e∗A of agent A at stage 2.

(1) Agent B’s optimal reaction e∗B (eA):

Given eA agent B chooses e∗B = e
∗
B (eA) to maximize his expected utility.

Using the first-order condition agent B will react according to

∆wfY (eA − e∗B) = ke∗B (A1)

To check the second-order condition for a maximum suppose that e∗B < eA.

Then y = eA − e∗B > 0 and the second-order condition ∆w
¡
1
4ε̄2

¢ − k < 0 is
satisfied as long as

∆w < 4kε̄2 (A2)

holds, i.e. the marginal cost function is steeper than the left-hand tail of the

triangular density (times ∆w). Alternatively, suppose that e∗B > eA. Then

y = eA−e∗B < 0 and the second-order condition ∆w
¡− 1

4ε̄2

¢−k < 0 is always
satisfied. Note that condition (A2) is equivalent to e∗ < 2ε̄, where e∗ denotes

the symmetric equilibrium effort in case of a simultaneous-move tournament

between two homogeneous agents as defined by

∆wfY (0) = ke
∗ ⇔ e∗ =

∆w

2kε̄
.

Case 1: Let ∆w < 4kε̄2. Then we can distinguish three subcases.

• Suppose that eA² [0, e∗] . Since eA ≤ e∗ implies e∗B ≥ eA (c0B(e
∗
B) =

ke∗B intersects with the left-hand tail of the triangular density function

17



(times ∆w)) and we have an interior solution described by (A1) and

the left-hand tail of fY (y):

e∗B = ∆w
eA + 2ε̄

∆w + 4kε̄2
. (A3)

Note that e∗B is linearly increasing in eA with e
∗
B (0) =

2ε̄∆w
∆w+4kε̄2

and

e∗B (e
∗) = e∗.10

• Suppose that eA² [e∗, 2ε̄] . Since eA ≥ e∗ implies e∗B ≤ eA (c0B(e∗B) = ke∗B
intersects with the right-hand tail of the triangular density function

(times ∆w)) and an interior solution is given by (A1) together with

the right-hand tail of the density function:

e∗B = ∆w
2ε̄− eA
4kε̄2 −∆w

. (A4)

Note that e∗B is linearly decreasing in eA with e
∗
B (e

∗) = e∗ and e∗B (2ε̄) =

0.

• Suppose that eA ≥ 2ε̄. Then we do not have an interior solution and
agent B optimally chooses

e∗B = 0. (A5)

Case 2: Let ∆w ≥ 4kε̄2. Then e∗ ≥ 2ε̄ and we can distinguish two subcases.

• Suppose that eA² [0, e∗] . Since eA ≤ e∗ implies e∗B ≥ eA, the optimal
effort e∗B is given by (A1) and the left-hand tail of fY (y):

e∗B (eA) = ∆w
eA + 2ε̄

∆w + 4kε̄2
.

10Note that EUB (eA, e∗B (eA)) > EUB (eA, 0) iff ∆w (eA + 2ε̄)
2 > 0 which is always

satisfied.
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Note that this interior solution requiresEUB (eA, e∗B (eA)) ≥ EUB (eA, 0)
to hold. Using agent B’s best response function, this condition is sat-

isfied as long as

eA ≤ ēA := 2ε̄

∆w + 8kε̄2

³
∆w +

√
2∆w2 + 8∆wkε̄2

´
with ēA ∈ [2ε̄, e∗]. Again, e∗B is linearly increasing in eA with e∗B (0) =
2ε̄∆w

∆w+4kε̄2
.

• Suppose that eA > e∗. Since the left-hand tail of the triangular density
is steeper than the marginal cost function, we do not have an interior

solution and agent B optimally chooses

e∗B = 0.

(2) Agent A’s optimal effort e∗A:

Given tournament prizes w1 and w2 agent A chooses e∗A to maximize

his expected utility, taking into account agent B’s optimal response e∗B (eA).

Using the first-order condition agent A will act according to

∆wfY (eA − e∗B (eA))
µ
1− ∂e∗B

∂eA

¶
= τkeA. (A6)

Note that the second-order condition for an interior solution is always satis-

fied for eA > e∗B since −∆w
4ε̄2

³
1− ∂e∗B

∂eA

´2
− τk < 0, and is satisfied for eA < e∗B

iff ∆w
4ε̄2

³
1− ∂e∗B

∂eA

´2
− τk < 0. Using the argumentation above, we can distin-

guish two possible situations:

Case 1: Let ∆w < 4kε̄2. Then we have three possibilities:

• Suppose that e∗A² [0, e∗] . Then eA < e∗B and
∂e∗B
∂eA

= ∆w
∆w+4kε̄2

, and the

second-order condition reads as

4∆wkε̄2 < τ
¡
∆w + 4kε̄2

¢2
.
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This condition is satisfied as long as τ ≥ 1/4, or if τ < 1/4 and ∆w ≤
kε̄2

2τ

¡
4− 8τ − 4√1− 4τ¢ ∈ (0, 4kε̄2) which can be rewritten as

τ ≥ 4∆wkε̄2

(∆w + 4kε̄2)2
:= τ̂ 1(∆w).

Suppose we have an interior solution. Then simple calculations show

that

e∗A =
8∆wkε̄3

τ∆w2 + (2τ − 1) 4∆wkε̄2 + 16τk2ε̄4 (A7)

and that this effort is positive iff τ > τ̂ 1(∆w). Note that e∗A ≤ e∗

requires

τ ≥ 4kε̄2

∆w + 4kε̄2
=: τ̂ 2(∆w)

to hold. Furthermore, we have τ̂ 2(∆w) > τ̂ 1(∆w) for all parameter

constellations, and τ̂ 2(∆w) >
1
4
for ∆w < 4kε̄2. Altogether, a feasible

interior solution described by (A7) will hold iff τ ≥ τ̂ 2(∆w). The

corresponding expected utility is given by

EUA,(I) = w2 +
8τ∆wk2ε̄4

τ∆w2 + (2τ − 1) 4∆wkε̄2 + 16τk2ε̄4 . (A8)

Agent B’s optimal effort to e∗A then is

e∗B (e
∗
A) =

2τ ε̄∆w (4kε̄2 +∆w)

τ∆w2 + (2τ − 1) 4∆wkε̄2 + 16τk2ε̄4

with an expected utility

EUB,(I) = w2 +

∆w
τ 2 (∆w + 2kε̄2) (4kε̄2 +∆w)

3 − 8∆wτkε̄2 (4kε̄2 +∆w)
2
+ 16∆w2k2ε̄4

(τ∆w2 + (2τ − 1) 4∆wkε̄2 + 16τk2ε̄4)2 .

If, on the other hand, the second-order condition is not satisfied or the

interior solution is not feasible, we have a corner solution. Comparing
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agent A’s expected utilities for eA = 0 and eA = e∗ yields

EUA (0, e
∗
B (0)) = w2 +∆w

8k2ε̄4

(∆w + 4kε̄2)2

< EUA (e
∗, e∗B (e

∗)) = w2 +∆w
4kε̄2 − τ∆w

8kε̄2
iff

∆w <

¡
4− 8τ + 4√1 + 4τ¢

2τ
kε̄2

⇔ ∆wτ + 4τkε̄2 − 2kε̄2 < 2kε̄2√1 + 4τ . (A9)

If the left-hand side of inequality (A9) is negative, the inequality will

always hold. Otherwise we obtain

τ <
4kε̄2 (∆w + 8kε̄2)

(∆w + 4kε̄2)2
.

Since the right-hand side of this inequality is greater than τ̂ 2(∆w),

(A9) always holds for τ < τ̂ 2(∆w). Hence, agent A optimally chooses

the corner solution e∗A = e∗. Agent B then chooses e∗B (e
∗) = e∗ and

receives

EUB (e
∗, e∗B (e

∗)) = w2 +∆w
4kε̄2 −∆w

8kε̄2

• Suppose that e∗A² [e∗, 2ε̄] . Then eA > e∗B and we have an interior solu-
tion e∗A which maximizes

EUA (eA, e
∗
B (eA)) = w2

+∆w

"
eA −∆w 2ε̄−eA

4kε̄2−∆w
2ε̄

−
¡
eA −∆w 2ε̄−eA

4kε̄2−∆w
¢2

8ε̄2
+
1

2

#
−k
2
τe2A.

This yields

e∗A =
8∆wkε̄3

τ∆w2 − (2τ − 1) 4∆wkε̄2 + 16τk2ε̄4 (A10)
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and

EUA,(II) = w2 +∆w
τ∆w2 − (2τ − 1) 4∆wkε̄2 + 8τk2ε̄4
τ∆w2 − (2τ − 1) 4∆wkε̄2 + 16τk2ε̄4 . (A11)

Note that the denominator of (A10) and (A11) is always positive. The

numerator of (A11) will be positive, if ∆w <
¡
4−√8¢ kε̄2, or if ∆w >¡

4−√8¢ kε̄2 and
τ <

4∆wkε̄2

8∆wkε̄2 −∆w2 − 8k2ε̄4 =: τ̂3(∆w).

Moreover, note that e∗A described by (A10) is always smaller than 2ε̄,

but e∗A > e
∗ iff

τ <
4kε̄2

4kε̄2 −∆w
=: τ̂ 4(∆w).

Agent B’s optimal reaction to (A10) is

e∗B (e
∗
A) =

2τ ε̄∆w (4kε̄2 −∆w)

τ∆w2 − (2τ − 1) 4∆wkε̄2 + 16τk2ε̄4 .

and

EUB,(II) = w2 +
2τ 2∆wkε̄2 (4kε̄2 −∆w)

3

(τ∆w2 − 8∆wkε̄2τ + 4∆wkε̄2 + 16τk2ε̄4)2 .

• Suppose that e∗A > 2ε̄. To induce e∗B = 0, A will choose

e∗A = 2ε̄ (A12)

to maximize expected utility which gives

EUA,(III) = w2 +∆w
∆w − 2τkε̄2

∆w
. (A13)

B’s expected utility then of course is EUB,(III) = w2.

Comparing (A13) and (A11) yields

EUA,(III) < EUA,(II) ⇔−2τ 2kε̄2
¡
∆w − 4kε̄2¢2 < 0

22



which is always true. Hence, agent A never prefers preemption under ∆w <

4kε̄2. We know that for τ < τ̂2(∆w) there is no feasible interior solu-

tion e∗A² [0, e
∗]. Therefore, we have to compare EUA (e∗, e∗B (e

∗)) = w2 +

∆w 4kε̄2−τ∆w
8kε̄2

and EUA,(II).11 We obtain

w2 +∆w
4kε̄2 − τ∆w

8kε̄2
< w2 +∆w

τ∆w2 − (2τ − 1) 4∆wkε̄2 + 8τk2ε̄4
τ∆w2 − (2τ − 1) 4∆wkε̄2 + 16τk2ε̄4

⇔ −∆w ¡∆wτ − 4τkε̄2 + 4kε̄2¢2 < 0,
which is always satisfied. For τ > τ̂ 2(∆w), we have to compare (A8) and

(A11):

EUA,(I) < EUA,(II) ⇔ −∆w2
¡
τ 2∆w2 +

¡
4τ − 3τ 2 − 1¢ 16k2ε̄4¢ < 0.

Note that for τ ∈ £1
3
, 1
¤
this inequality holds for all values of ∆w, k and ε̄.

For all other values of τ we have 4τ − 3τ 2− 1 < 0, and the inequality can be
solved for ∆w as:

∆w > 4kε̄2
√
3τ 2 − 4τ + 1

τ
.

Rearranging this inequality gives

τ ∈ (τ̂ 5(∆w), τ̂ 6(∆w))

with τ̂ 5(∆w) =
4kε̄2

48k2ε̄4 −∆w2

³
8kε̄2 −

√
16k2ε̄4 +∆w2

´
and τ̂ 6(∆w) =

4kε̄2

48k2ε̄4 −∆w2

³
8kε̄2 +

√
16k2ε̄4 +∆w2

´
.

We have τ̂ 5(∆w) < τ̂ 2(∆w) < τ̂ 6(∆w) (∀ ∆w < 4kε̄2) and τ̂ 2(∆w) ∈
£
1
3
, 1
¤
.

Moreover, τ̂ 6(0) = 1 and ∂τ̂1(∆w)
∂∆w

> 0 , ∀∆w. Furthermore, τ̂ 3(∆w) >

τ̂ 6(∆w) and τ̂ 4(∆w) > τ̂ 6(∆w) (∀ ∆w < 4kε̄2). To summarize, for τ ∈
[τ̂ 2(∆w), τ̂ 6(∆w)] agentA again optimally chooses (A10), but for τ > τ̂ 6(∆w)

he switches to (A7).

Case 2: Let ∆w ≥ 4kε̄2. Then we have to consider two possibilities:
11Note that τ̂2(∆w) < τ̂4(∆w) and τ̂2(∆w) < τ̂3(∆w) for all parameter constellations

∆w < 4kε̄2.
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• Suppose that e∗A² [0, e∗] . Then e∗B ≥ eA and the second-order condition

4∆wkε̄2 < τ
¡
∆w + 4kε̄2

¢2
(A14)

is satisfied as long as τ ≥ 1/4 or if τ < 1/4 and ∆w ≥ kε̄2

2τ
(4 − 8τ +

4
√
1− 4τ) ⇔ τ ≥ τ̂ 1(∆w). Recall that τ̂ 2(∆w) > τ̂ 1(∆w) for all

parameter constellations. Hence, again τ ≥ τ̂ 2(∆w) ensures a fea-

sible interior solution where agent A chooses e∗A according to (A7)

and has an expected utility given by EUA,(I) (see (A8)). However,

if τ < τ̂ 2(∆w) we will have a corner solution with e∗A = e
∗
B (e

∗
A) = e

∗

and EUA (e∗, e∗B (e
∗)) = w2 +∆w 4kε̄2−τ∆w

8kε̄2
.

• Suppose that eA > e∗. Then agent B optimally chooses e∗B = 0 and

agent A will choose e∗A = e
∗ resulting in an expected utility

EUA (e
∗, 0) = w2 +∆w

8kε̄2 − τ∆w

8kε̄2
. (A15)

For τ < τ̂ 2(∆w), we have to compare EUA (e∗, e∗B (e
∗)) = w2 +∆w 4kε̄2−τ∆w

8kε̄2

and EUA (e∗, 0) (according (A15)). The comparison immediately shows that

EUA (e
∗, 0) > EUA (e

∗, e∗B (e
∗)), ∀∆w, τ , k, ε̄. Hence, agent A chooses pre-

emption for sufficiently small values of τ . For τ ≥ τ̂ 2(∆w), comparing (A8)

and (A15) shows that there exist two critical values

τ̂ 7 (∆w) =

³
8kε̄2 + 6∆w − 2p(16k2ε̄4 + 24∆wkε̄2 +∆w2)

´
kε̄2

∆w (∆w + 4kε̄2)

and

τ̂ 8 (∆w) =

¡
8kε̄2 + 6∆w + 2

√
16k2ε̄4 + 24∆wkε̄2 +∆w2

¢
kε̄2

∆w (∆w + 4kε̄2)

with ∂τ̂ i(∆w)
∂∆w

< 0, i = 7, 8 for all∆w ≥ 4kε̄2 such that for all τ ∈ [τ̂ 7 (∆w) , τ̂ 8 (∆w)]

EUA,(I) < EUA (e
∗, 0) .
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Note that τ̂ 7 (∆w) < τ̂2(∆w) < τ̂ 8 (∆w) ,∀∆w, τ , k, ε̄, and that e∗A according
to (A7) satisfies e∗A ≤ ēA for ∆w ≥ 4kε̄2. Therefore, if τ ∈ [τ̂ 2(∆w), τ̂ 8(∆w)]
agent A again prefers preemption, but for τ > τ̂ 8(∆w) he optimally chooses

e∗A according to (A7).

Defining the critical-value function

τ̂(∆w) =


4kε̄2(8kε̄2+

√
16k2ε̄4+∆w2)

48k2ε̄4−∆w2 ≡ τ̂ 6(∆w) if ∆w < 4kε̄2

2kε̄2(4kε̄2+3∆w+
√
16k2ε̄4+24∆wkε̄2+∆w2)

∆w(∆w+4kε̄2)
≡ τ̂ 8 (∆w) if ∆w ≥ 4kε̄2

(A16)

completes the proof.

Proof of Proposition 3:

First, consider the case of ∆w < 4kε̄2 and τ ≤ τ̂(∆w) where τ̂(∆w) is

given by (A16). Hence, using the expected utilities that have been computed

in the proof of Proposition 2, we must show that EUA,(II) > EUB,(II) in the

relevant range. We get

EUA,(II) > EUB,(II) ⇔¡
4kε̄2 −∆w

¢2 ¡
6kε̄2 −∆w

¢
τ 2

−8kε̄2 ¡6kε̄2 −∆w
¢ ¡
2kε̄2 −∆w

¢
τ − 16k2ε̄4∆w < 0.

The left-hand side of the inequality describes a parabola open to the top with

the two roots

ρ1(∆w) =
4kε̄2

³
12k2ε̄4−8∆wkε̄2+∆w2−

√
2kε̄2(6kε̄2−∆w)(12k2ε̄4−6∆wkε̄2+∆w2)

´
(6kε̄2−∆w)(4kε̄2−∆w)2 < 0

ρ2(∆w) =
4kε̄2

³
12k2ε̄4−8∆wkε̄2+∆w2+

√
2kε̄2(6kε̄2−∆w)(12k2ε̄4−6∆wkε̄2+∆w2)

´
(6kε̄2−∆w)(4kε̄2−∆w)2 > 0.

Hence, the condition τ < ρ2(∆w) must hold. As we have ρ2(∆w) > τ̂ 6(∆w)

and τ̂ 6(∆w) ≥ τ for ∆w < 4kε̄2, this condition is always satisfied.
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Next, we have to consider the preemption case with ∆w ≥ 4kε̄2 and

τ < τ̂(∆w). Since agent A receives EUA (e∗, 0) > w2 according to (A15)

and agent B EUB = w2, we immediately obtain that A’s expected utility is

greater than B’s one.

Finally, consider the case of τ > τ̂(∆w) for the full range of ∆w. Here,

we must have

EUA,(I) < EUB,(I)

⇔ ¡
∆w + 6kε̄2

¢ ¡
4kε̄2 +∆w

¢2
τ 2

−8ε̄2k ¡∆w + 2kε̄2¢ ¡∆w + 6kε̄2¢ τ + 16∆wk2ε̄4 > 0.

The right-hand side of this inequality again characterizes a parabola open to

the top. Its roots are given by

ρ3(∆w) =
4kε̄2

³
8∆wkε̄2+12k2ε̄4+∆w2−

√
2kε̄2(∆w+6kε̄2)(∆w2+6∆wkε̄2+12k2ε̄4)

´
(∆w+6kε̄2)(4kε̄2+∆w)2

> 0

ρ4(∆w) =
4kε̄2

³
8∆wkε̄2+12k2ε̄4+∆w2+

√
2kε̄2(∆w+6kε̄2)(∆w2+6∆wkε̄2+12k2ε̄4)

´
(∆w+6kε̄2)(4kε̄2+∆w)2

> 0.

It suffices to show that the condition τ > ρ4(∆w) holds ∀∆w. As ρ4(∆w) <
τ̂ (∆w), ∀∆w, and we have τ > τ̂(∆w) this condition always holds.

Proof of Proposition 4:

The principal’s objective function is given by

π = e∗A + e
∗
B − w1 − w2 = e∗A + e∗B −∆w − 2w2 (A17)

=


8∆wkε̄3+2τ ε̄∆w(4kε̄2+∆w)

τ∆w2+(2τ−1)4∆wkε̄2+16τk2ε̄4 −∆w − 2w2 if τ > τ̂(∆w)
8∆wkε̄3+2τ ε̄∆w(4kε̄2−∆w)

τ∆w2−(2τ−1)4∆wkε̄2+16τk2ε̄4 −∆w − 2w2 if τ ≤ τ̂(∆w) and ∆w < 4kε̄2

∆w
2ε̄k
−∆w − 2w2 if τ ≤ τ̂(∆w) and ∆w ≥ 4kε̄2

The principal maximizes π according to (A17) subject to the relevant re-

striction on ∆w and the two agents’ participation constraints EUi(e∗i ) ≥ ū
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(i = A,B).12 Obviously, the principal chooses w2 so that the agent with the

lower expected utility is just indifferent between accepting the contract or

not, that is, his participation constraint is binding. Using our comparison

of expected utilities above and solving for w2 then yields the following three

cases:

• If τ > τ̂(∆w), agent A’s reservation constraint becomes binding and

we have

πI (∆w) =
8∆wkε̄3 + 2τ ε̄∆w (4kε̄2 +∆w)

τ∆w2 + (2τ − 1) 4∆wkε̄2 + 16τk2ε̄4 −∆w

−2
µ
ū− 8τ∆wk2ε̄4

τ∆w2 + (2τ − 1) 4∆wkε̄2 + 16τk2ε̄4
¶
.

Solving the principal’s profit for the optimal wage spread ∆w∗ = f (τ)

shows that τ = f−1 (∆w∗) is strictly decreasing, i.e. the higher the costs

for agent A, the smaller the optimal wage spread ∆w∗.13 In particular,

∆w∗ < 4kε̄2.

• If τ ≤ τ̂(∆w) and ∆w < 4kε̄2, agent B’s reservation constraint is
12Note that here and in the following the agents’ incentive constraints e∗A and e

∗
B are

directly inserted into the principal’s objective function and the two agents’ participation

constraints.

13We obtain f−1 (∆w∗) =
8kε̄2(Θ+2

√
Ψ)

2(4kε̄2+∆w)(∆w3+12∆w2kε̄2+64k2ε̄4∆w−8∆wkε̄3−32k2ε̄5) with

Θ = ∆w3 − 2∆w2ε̄+ 8kε̄2 ¡2kε̄3 + 2∆wkε̄2 +∆w2¢
Ψ = (ε̄−∆w)∆w4ε̄

−2kε̄3 ¡(3 + 2ε̄k)∆w4 − 4∆wkε̄2 ¡16k2ε̄4 +∆w2¢¢
+2kε̄3

¡
8∆w2kε̄3

¡
6kε̄+ 4k2ε̄2 − 1¢+ 32k3ε̄7¢ .
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binding, resulting in

πII (∆w) =
8∆wkε̄3 + 2τ ε̄∆w (4kε̄2 −∆w)

τ∆w2 − (2τ − 1) 4∆wkε̄2 + 16τk2ε̄4 −∆w

−2
Ã
ū− 2τ 2∆wkε̄2 (4kε̄2 −∆w)

3

(τ∆w2 − 8∆wkε̄2τ + 4∆wkε̄2 + 16τk2ε̄4)2
!
.

• If τ ≤ τ̂(∆w) and ∆w ≥ 4kε̄2, the principal maximizes

πIII (∆w) =
∆w

2kε̄
−∆w − 2ū.

Since πIII (∆w) is monotonically decreasing because of 2kε̄ > 1 (see

condition (10)), the optimal wage spread is given by ∆w∗ = 4kε̄2 and

the principal’s profit is negative: πIII (4kε̄2) = −2ε̄ (2kε̄− 1)−2ū < 0.

To summarize, the principal always chooses ∆w∗ < 4kε̄2 for all τ ≥ 0.
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