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Abstract

The problem of designing tournament contracts under limited liability and

alternative performance measures is considered. Under risk neutrality,only the

best performing agent receives an extra premium if the liability constraint be-

comes binding. Under risk aversion, more than one prize is awarded. In both

situations, performance measures can be ranked if their likelihood ratio distri-

bution functions differ by a mean preserving spread. The latter result is applied

to questions of contest design and more general forms of relative performance
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1 Introduction

Tournaments and contests are widely used for compensation and incentive purposes.

To this end, planners apply a variety of performance indicators. In some cases, the

performance measure is identical to the organizer’s objective, in others, there seems

to be only an indirect relation to what is sought to be procured by the tournament. In

all cases, however, the incentive effects of potential performance measures are at least

implicitly taken into account.

From an economic perspective, incentive effects of performance measurement have

been extensively discussed within a standard agency framework. Starting with the pi-

oneering work of Holmström [11], numerous papers have analyzed questions of infor-

mation efficiency under the assumption of optimal contractsin a moral hazard setting.

In doing so, they established several criteria for ranking alternative information sys-

tems (see, for example, Gjesdal [6], Holmström [12], Grossman and Hart [9], Amershi

and Hughes [1], Kim [13], or Demougin and Fluet [5]).

Only little work, however, has so far been done on information efficiency in a tour-

nament setting where contracts are exogenously restrictedto the order of the agents’

performance. Under such a restriction, the criteria derived in the standard setting are

not naturally valid. As Holmström ([11], p. 86) states, "if, for administrative reasons,

one has restricted attentiona priori to a limited class of contracts (e.g., linear price

functions or instruction-like step functions), then informativeness may not be suffi-

cient for improvements within this class". In general, the same objection applies to the

other criteria. Due to the widespread use of tournaments, itis therefore worthwhile

reasoning whether the criteria derived in the standard agency setting also apply under

the specific restrictions given by a tournament contract.

The classical agency literature discusses the use of information in tournaments

mainly with regard to optimal contracts. Adapting his sufficient statistics results de-
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rived from the standard agency setting, Holmström ([12], proposition 7) proves that

relative performance evaluation will be valuable if and only if the agent’s outputs are

stochastically dependent. Similarly, Green and Stokey ([8], proposition 1) show in

a more specific setting that individual contracts dominate tournaments whenever the

agents’ outputs admit only idiosyncratic risk. Conversely,if there is common uncer-

tainty, tournaments will dominate individual contracts when the common shock be-

comes diffuse (ibid., proposition 2). Mookherjee ([20], proposition 4) applies Holm-

ström’s [11] informativeness result to show that a tournament contract will be optimal

if an agent’s rank in output is statistically sufficient for all available information with

respect to his action choice.

In all of these results, informativeness criteria are applied to distinguish between

different types of contracts. We shall return to this important question when applying

our general results. At first, however, we look for criteria to rank information systems

in a setting where contracts are exogenously restricted to rank orders. To distinguish

the analysis from the previous research onoptimalcontracts, we deliberately confine

ourselves to analyzing situations where the agents’ performances are stochastically

independent. According to Holmström’s [12] result mentioned above, a tournament

contract will not be optimal in this setting, and an application of the general infor-

mativeness results will thus not be valid. We show that nonetheless, the main criteria

also apply to the tournament setting. Thereafter, we use these criteria to distinguish

between different types of relative performance evaluation.

The remainder of this paper is organized as follows: In section 2, the analytical

framework is presented. Section 3 describes the main characteristics of an information

system with respect to the principal’s optimization problem. Sections 4 and 5 present

information efficiency results and some application to the comparison of alternative

contract types. Concluding remarks are given in section 6.
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2 Model

Consider a single-period agency setting in which a risk-neutral principal hires a num-

ber of agentsi = 1, . . . ,n (n≥ 2) to perform identical tasks. The agents who decide to

participate provide a productive inputai ∈A= [a,a]⊂R not observed by the principal.

The resulting outputsxi ∈ X ⊆ R which accrue to the principal are independent iden-

tically distributed random variables. Their probability distribution functionF(xi;ai)

is parameterized by the agent’s action choice. Increases inai are assumed to shift the

distribution function to the right in the sense of first-order stochastic dominance. Thus,

ceteris paribus the principal will prefer higher effort levels.

All agents have identical preferences. These can be described by utility functions

which are additively separable in monetary incomewi and effortai, such as

Ui(wi,ai) = u(wi)−d(ai),

whereu(wi) denotes the agent’s utility on monetary income andd(ai) denotes the

agent’s disutility of actionai. We assume that the agents are effort-averse and weakly

risk-averse1, i.e. u′ > 0,u′′ ≤ 0, d′ > 0 andd′′ > 0.

Before hiring the agents, the principal chooses an information systemk from a set

K of feasible information systems. Information systemk consists of signalsyk
1, . . . ,y

k
n∈

Yk =
[

yk,yk
]

⊆R which become observable to the principal and the agents without cost

after the action choices have been taken. The signalsk
i are independent identically dis-

tributed random variables with distribution functionGk(yk
i ;ai) and probability density

functiongk(yk
i ;ai) which depend on the respective agent’s effort. The latter isassumed

to be twice differentiable inai , and its support is independent ofai. Signalyk
i can

be regarded as a performance measure for agenti. In the simplest case, performance

is measured by output (yi = xi). More generally,yk
i may be an index of all available

information on the agent’s action. We assume that higher effort can be inferred from

1Results are presented separately for risk-neutral and strictly risk averse agents.
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a higher performance score, i.e. the monotone likelihood ratio property (MLRP) is

assumed to hold for any information servicek.

Given the information system, the principal designs an ordinal payment scheme

which determines agenti’s compensation according to his rankr i in the order of the

observed signals. Letw j denote the compensation stipulated for thejth-lowest rank

j within the order of performance measures. In the case of multiple ranking agents

the respective prize is awarded via randomization2. Under these assumptions, agenti’s

expected utility from action choicesa = (a1, . . . ,an) can be written as

E[Ui(a)] =
n

∑
j=1

u(w j)pk
i j (a)−d(ai),

where pk
i j (a) = Prob{r i = j | (a1, . . . ,an)} denotes the probability that agenti will

achieve rankj in the tournament3.

The principal wants all agents to participate. Hence, theirexpected utilities have

to reach a certain reservation levelUR which is assumed to be identical for all agents.

Furthermore, we assume that agents are of restricted wealth, and thus compensation

has to exceed a liability levelwmin for each agent.

3 The principal’s problem and properties of informa-

tion systems

The principal seeks to maximize his expected profit net of wage payments. His prob-

lem is to select compensationsw = (w1, . . . ,wn) from a setW n ⊂ R
n of feasible com-

pensations such that the agents choose actions ˆai which maximize his expected net

profit.

2However, this will occur with zero probability because the density functionsgk have no mass points.
3According to this diction, rankn denotes the highest outcome.
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Due to the principal’s risk neutrality, this problem can be split up, first considering

the least cost way of achieving a given action profile and thenturning to the question

of which actions to implement. To our purpose of comparing performance measures,

the interesting part is the first. Therefore, similar to Kim’s [13] analysis of the stan-

dard agency model, we will focus on the question of what type of information system

k implements a particular effort profilea at the lowest cost. In doing so, we restrict

the analysis to symmetric Nash equilibria of the tournamentgame. Consequently, all

agents choose the same action ˆa, and each agent’s probability of winning is 1/n. The

principal’s cost minimization problem for the symmetric equilibrium given informa-

tion systemsk is given by

min
w

n

∑
j=1

w j (1)

s.t.
1
n

n

∑
j=1

u(w j)−d(â) ≥UR (2)

â∈ argmax
ai

{

n

∑
j=1

u(w j)pk
i j (ai , â−i)−d(ai)

}

(3)

w j ≥ wmin ∀ j. (4)

The participation constraints (2) guarantee that all agents accept the contract. The

Nash - incentive constraints (3) ensure that given his opponents equilibrium strategies

â−i, the desired actionai is in agenti’s own best interest.

In this optimization problem, information systemk is characterized by a vector

pk
i = (pk

i1, . . . , pk
in) of ranking probabilities. In order to compare information systems

with regard to their cost of inducing a certain actiona, we are interested in properties

of these probabilities, which in more detail can be written as4

pk
i j (ai , â−i) =

1
n

∫

Yk

gk(y;ai)

gk(y; â)
gk

j:n(y; â)dy, (5)

4See Green and Stokey [8], p. 355.
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wheregk
j:n(y;a) denotes the density of the (j : n)-order statistic under distributionGk.

Forai = â, the integral in (5) is 1, andpk
i j = 1/n. Differing from â, the agent varies his

ranking probabilities. The way in which these changes work at â mainly determines

the incentive effects of information systemk. Similar to the standard agency setting,

further insight into the quality of a performance measure can be gained under the first-

order approach. As in the standard model, it is valid under the additional assumption

thatGk(yk;ai) is convex ina (convexity of the distribution function condition, CDFC)5.

The incentive constraints (3) can then be replaced by first-order conditions

n

∑
j=1

u(w j)
∂

∂ai
pk

i j (â)−d′(â) = 0 (6)

governed by the marginal probabilities

∂
∂ai

pk
i j (â) =

1
n

∫

Yk

gk
a(y; â)

gk(y; â)
gk

j:n(y; â)dy. (7)

The integral in (7) is the expected value of the score function ga
g for the (j : n) -

order statistic of performance scores. By MLRP, this function, which for simplicity

is often referred to as the likelihood ratio, is increasing in yk. Therefore, the agents’

action choices ˆa in the symmetric equilibrium are determined by

1
n

n

∑
j=1

u(w j)E
[

lr k,â
j:n

]

= d′(â), (8)

wherelr k,â
j:n denotes the (j : n) - order statistic of likelihood ratios derived fromgk at

point â. Note that∑n
j=1E

[

lr k,â
j:n

]

= nE
[

lr k,â
]

= 0 by the assumption of non-moving

supports6. Therefore, the incentive effects of some prizesw1, . . . ,wl (l < n) will be

negative, whereas those of the remaining ones will be positive.

In the following sections, we will exploit further properties of moments and distri-

butions of order statistics in order to compare different information services. Section

5A proof is available from the author upon request.
6For the relation of order statistics, see Arnold et al. 1992,p. 110.
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4 derives results for the risk neutral agency, and section 5 presents the findings for

risk-averse agents. Both sections contain applications to questions of contest design

and more general forms of relative performance payment.

4 risk neutral agents

4.1 Optimal reward structure

If the agents are risk-neutral, the principal’s problem simplifies to

min
w1,...,wn

n

∑
j=1

w j (9)

s.t.
1
n

n

∑
j=1

w j −d(a) ≥UR (10)

1
n

n

∑
j=1

w jE
[

lr k,a
j:n

]

= d′(a) (11)

w j ≥ wmin ∀ j. (12)

Similar to Lazear’s and Rosen’s [15] analysis of a tournamentwith two agents,

the first-best solution can be achieved underany informative performance measure

as long as the liability constraints (12) are not binding. Starting from equal prizes

for all ranks, the principal just has to increase the prize differentialsw j −w j−1 for

arbitrary ranksj with positive value of E
[

lr k,a
j:n

]

until the Nash incentive constraints

(11) are fulfilled. By adjustment ofw1, the participation constraint can be fulfilled

with equality. Implementation is without additional cost because of the agent’s risk

neutrality. The resulting total compensation cost isn
(

d(a)+UR
)

.

Under limited liability, however, this procedure, in general, will not be feasible.

For low levels ofUR and E
[

lr k,a
j:n

]

, the liability constraints will become binding in the

optimal solution. As a consequence, it will matter to which ranks the prize differentials

are allocated. Due to the agents’ risk neutrality, however,the optimal prize structure is
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apparently simple:

Proposition 1 If the agents’ liability constraint is binding under information system

k, the cost-minimizing tournament only awards a prize to the best performing agent.

Proof The proof is in the appendix.

Essentially, the proof of proposition 1 shows that compensation cost can be lowered

by shifting compensation from lower ranks to the the highestrank of the tournament.

The economics of the result are similar to those in the standard agency setting as de-

rived by Demougin and Fluet [4]. If the agents are risk neutral, income smoothing

only matters with regard to the minimum wage. Incentives, however, are least costly

provided by rewarding only those results the probability ofwhich reacts most sensitive

to changes in the agent’s effort. In the contest setting, dueto the MLRP this is the top

rankrn:n.

The proposition also complies with results of Moldovanu andSela [18] who find

that in a symmetric equilibrium of privately informed contestants, a total premium is

most effectively allocated to only the winner of the contest7. Similar to the moral

hazard setting analyzed here, the result is driven by the fact that a single prize pro-

vides the strongest incentives for risk neutral contestants. However, since under pri-

vate pre-decision information different types of agents choose different effort levels in

equilibrium, Moldovanu’s and Sela’s result requires linear or concave cost functions

for which variations in effort have no cost increasing effects. In the present setting,

convexity of the cost function is not an issue since all agents choose identical actions.

7The same result is derived by Glazer and Hassin [7] in a related framework, but under more restric-

tive assumptions.
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4.2 Information efficiency

Given the structure of the optimal contract, a comparison ofalternative information

systems is straightforward. Whenever the agents’ liabilityconstraints are binding, the

optimal reward scheme takes the formw = (wmin, . . . ,wmin,wn). In this scheme,wn has

to be chosen to fulfil the agents’ Nash incentive compatibility constraint (11), which

takes the form
1
n
(wn−wmin)E[lr k,a

n:n] = d′(â). (13)

According to (13), the necessary wage spread to induce action â is given by

(wn−wmin) =
nd′(â)

E[lr k,a
n:n]

.

As a consequence, the total compensation cost under information systemk in a

symmetric equilibrium ofn contestants with action choices ˆa can be written as

Ck
n(â) = n·max

{

d(â)+UR,wmin+
d′(â)

E[lr k,a
n:n]

}

. (14)

By inspection of (14), it is obvious that an information systems cost impact is solely

determined by E[lr k,a
n:n]:

Proposition 2 In the symmetric equilibrium̂a of the tournament under information

system k, total compensation cost is the lower, the higher E[lr k,â
n:n].

Proof Obvious from (14).Ck
n is decreasing in E[lr k,a

n:n]. 2

Given the prominent role of the likelihood ratio in (14), proposition 2, when related

to the literature on informativeness criteria, provides a direct reference to Kim’s [13]

criterion of a mean preserving spread of likelihood ratio distribution functions. Kim

[13] proves that in a standard agency setting with one risk-averse agent, an action

â can be induced under a signalyl at a lower cost than under another signalym if

the distribution function of the likelihood ratiog
l
a

gl under signalyl differs from that
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under signalym by a mean preserving spread (MPS)8. Since due to the assumption of a

non-moving support the expected likelihood ratio is zero for all information systems,

the MPS relation reduces to second order stochastic dominance. In order to exploit

this property, Kim essentially shows that the compensationcost is a concave function

of likelihood ratios, the expectation of which is lower under second order stochastic

dominance9. A related convexity argument can be applied here to establish the mean

preserving spread criterion as a device to rank informationsystems in the tournament

setting:

Proposition 3 In the symmetric equilibrium̂a of the tournament, total compensation

cost under information system yl is lower than that under information system ym if the

distribution function of the likelihood ratio lrl ,â =
gl

a(y
l ;â)

gl (yl ;â)
under signal yl differs from

that under signal ym by a mean preserving spread.

Proof 10 The proof is in the appendix.

The proof of proposition 3 makes use of the fact that the well known consequences

of second order stochastic dominance between univariate distributions extend to the

product distribution of i.i.d. random variables. By the convexity of the maximum

operator, it is thus obvious that a mean preserving spread relation yields a unique order

of highest order statistics. Therefore, like in the standard agency setting, information

systems can be compared by the distributions of their likelihood ratios. Similarly, the

mean preserving spread property only provides a local criterion for a specific action

â. To make general predictions for arbitrary levels ofa, the relation must hold forall

a ∈ (a,a]. This, again, has been proven by Kim ([13], proposition 4) tofollow from

8For the definitions of a mean preserving spread see Rothschild and Stiglitz [21].
9The result can also be carried forward to a standard agency model with a risk neutral agent who is

of limited wealth.
10A related proof for risk-averse agents can be found in Budde and Gaffke [3].
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the criterion of Blackwell informativeness (the opposite isnot true). From this, the

following conclusion is obvious:

Corrollary 1 In any symmetric equilibrium of the tournament, total compensation

cost under information system yl is lower than that under information system ym if yl

is Blackwell sufficient for ym with respect to a.

Proof The claim follows from proposition 3 by the relation of Blackwell suffi-

ciency and the mean preserving spread criterion.

Although more information systems will be comparable by themean preserving

spread criterion, Blackwell sufficiency is useful for at least two reasons. First, it is a

global criterion which does not focus on a particular effortlevel â. Therefore, infor-

mation systems can be compared by it without specifying which action is sought to be

induced. Second, and for the application even more important, the criterion refers to

the signal distributions instead of the distributions of likelihood ratios. Usually, this

will make its use much easier. In the following subsection, we apply Corollary 1 to

rank different types of relative performance payment.

4.3 Application

4.3.1 Alternative forms of relative performance evaluation

Perhaps the most important property of tournament contracts is the fact that the total

compensation paid to alln agents is constant. Malcomson [16] uses this property to

propose tournaments as a general device to overcome the unverifiability problem, i.e.

tournaments can be used for compensation even if the appliedperformance measures

are not verifiable and the principal could misreport these measures in order to cut

wages. Yet, this is impossible under a tournament contract as long as contracts and

payments are observable.
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Tournaments, however, are not the only compensation form tofulfil the desired

property of a constant total wage payment. In particular, Japanese firms make extensive

use of a special kind of relative performance payment in which a constant bonusW is

distributed to workers of a group according to their relative outputs. Agenti’s wage in

accordance with outputsx1, . . . ,xn is given by

wi = w0 +
xi

∑n
j=1x j

W. (15)

Due to its similarity to a tournament, this type of compensation has also been referred

to as aJ-Type tournamentafter to its Japanese origin as opposed toU-Type tourna-

mentsof the form described in section 2, which are predominantly applied in the US

(Kräkel [14]).

With regard to the general question of compensation cost analyzed here, the two

types of compensation contracts can be compared by application of the criteria derived

in the previous section:

Proposition 4 In the symmetric equilibrium̂a of the tournament game, total compen-

sation cost in a U-type tournament is lower than that in a J-type tournament.

Proof The proof is in the appendix.

The proof of proposition 4 makes use of the fact that the bonusportion in (15) is

identical to a contest success function. This contest success function, in turn, is known

in a two-player contest to be identical to the winning probability under exponentially

distributed outputs (see Hirshleifer and Riley [10], p. 380n.). The proof generalizes

this property by assuming ann-player tournament and shows that risk-neutral agents

assess a J-Type tournament equal to a U-Type tournament withan additional random-

ization. This randomization, however, weakens the incentives of the contest, leading

to a higher compensation cost.
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4.3.2 Contest design

Moldovanu and Sela [19] analyze (amongst others) the question of whether a contest

should be split into several sub-contests in a situation of private pre-decision informa-

tion. They prove that for linear or convex cost functions, the grand contest generates

a higher expected output than any contest divided into subgroups of equal size (ibid.,

Theorem 1). Adapting this question to the present moral hazard situation, we find the

following result:

Proposition 5 Total compensation cost to induce a certain actionâ in a symmetric

equilibrium of risk neutral contestants is lower under a grand contest of n agents than

under any split contest of subgroups with n1 ∈ {2, . . .n−2} and n2 = n−n1 agents.

Proof Average compensation cost per agent in each of the subgroupsis

cni(â) =
Cni(â)

ni
= max

{

d(â)+UR,wmin+
d′(â)

E[lr k,a
ni :ni ]

}

, i = 1,2. (16)

Since E[lr k,a
ni :ni ] < E[lr k,a

n:n] for ni < n, average compensation cost is higher in each

subgroup, from which the claim follows by the fact thatn1 +n2 = n. 2

The result is derived from the fact that the average cost (16)is decreasing in the

number of contestants11. Due to the agent’s risk neutrality, the fact that each agent’s

probability of winning decreases does not result in an additional cost. Due to the

MLRP, however, compensation reacts most sensitively to changes in the agents’ effort

if they compete in a grand contest.

11This is in line with proposition 2 in Moldovanu and Sela [19].
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5 Risk averse agents

5.1 Optimal reward structure

If the competing agents are risk averse, the proposed extreme prize schedule in which

only the best performing agent receives an extra payment will no longer be optimal.

This can be illustrated by the following counterexample:

Example Consider a group ofn = 3 risk-averse agents competing in a contest

with prize structurew = (w1,w2,w3). Prizes are allocated according to signalsyi ∈R
+

which follow the same family of probability distributions described by cumulative dis-

tribution functionsG(yi | ai) = 1−exp(yi/ai). Thus, the agent’s performance measures

are exponentially distributed with meanai. Furthermore, let the agents’ preferences be

described by identical utility functionsUi(wi ,ai) =
√

wi −a2
i , and let their reservation

utilities beUR = 0. Prizes have to be nonnegative. Assuming a symmetric equilibrium

of the contest game, the principal wants to implement an equilibrium effort â = 1 for

all agents. His cost minimization problem described in (1) -(4) then becomes

min
w1,w2,w3

w1 +w2 +w3 (17)

s.t.
1
3

[√
w1 +

√
w2 +

√
w3
]

−1≥ 0 (18)

−2
3

√
w1 +−1

6

√
w2 +

5
6

√
w3 = 2 (19)

w j ≥ 0 j = 1,2,3. (20)

The coefficients in (19) are the expected values of the likelihood ratio order statistics

under the exponential distribution with mean 1. The cost minimizing prize structure is

given byw1 = 0,w2 = (6/7)2 andw3 = (18/7)2. Obviously, it assigns positive prizes

to more than just the top ranking position. 2

Similar to the situation analyzed in proposition 1, the agent’s liability constraint is
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binding in the example. However, the contract proposed there would impose too much

risk on the agents. Therefore, incentives have to be provided also byw2. This is less

effective than solely rewarding the best performing agent,but under risk aversion also

less costly.

5.2 Information efficiency

Given the counterexample, the ranking criteria derived in the previous section cannot

directly be translated to the model with risk averse-agentsbecause they build on the

extreme contract of proposition 1. Under a more general prize structure, the compen-

sation will not only depend on the value of E
[

lr k,â
n:n

]

as in (14), but in general on the

expectations ofall likelihood ratio order statistics. Yet, since E
[

E
[

lr k,â
n:n

]]

= 0 for all

k, the relation of order statistics used in propositions 2 and3 cannot hold forall ranks.

However, if the distribution function of the likelihood ratio lr l ,â =
gl

a(y
l ;â)

gl (yl ;â)
under signal

yl differs from that under signalym by a mean preserving spread, the same should hold

for the likelihood ratio distribution functions of the ranks achieved in a contest under

these measures. Intuitively, this results in prizes which are less dispersed, which in

turn yields lower compensation cost due to the agents’ risk aversion.

To prove this intuition, we first give a condition of less dispersed prizes under

which total compensation cost is reduced (lemma 1). Subsequently, we prove that this

condition is fulfilled under the mean preserving spread criterion (proposition 6).

Lemma 1 Let w = (w1, . . . ,wn) and v = (v1, . . . ,vn) be incentive compatible prize

schedules fulfilling restrictions (2), (4) and (8) in the symmetric equilibrium of the

tournament. If the utility spreads resulting from that prizes under a concave utility
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function u are higher underw, then total compensation cost is less underv, i.e.

u(w j)−u(w j−1) ≥ u(v j)−u(v j−1) for j = 2, . . . ,n (21)

⇒
n

∑
j=1

w j ≥
n

∑
j=1

v j . (22)

Proof The proof is in the appendix.

The lemma intuitively follows from the agents’ risk aversion and limited liability.

Under an optimal prize structure, either the agents’ participation constraint or their

liability constraint will be binding. If the participationconstraint is binding under

both schedules, the higher utility spreads under schedulew produce a mean preserving

spread relation of the distribution functions of utilities. The claim then follows from

the agents’ risk aversion. If on the other hand the liabilityconstraint is binding, the

higher utility spreads underw result in prizes which are higher for each rank. In this

case, the claim is even more obvious.

The lemma can be used to compare different information structures. For this pur-

pose, it is convenient to write the agents’ expected utilityin a way which refers to

utility spreads:

EUi(a) = u(w1)+
n

∑
j=2

[

u(w j)−u(w j−1)
]

Pk
i j (a)−d(ai). (23)

The termPk
i j (a) = Prob{r i > j−1} denotes the probability that agenti achievesat least

rank j in the tournament under information systemyk. Given his opponents’ effort ˆa

in the symmetric equilibrium, this probability is given by

Pk
i j (ai ,a−i) =

∫

Yk

(1−Gk(yk;ai))g j−1:n−1(y
k; â)dyk. (24)

Substituting (24) in (23), the agent’s first-order condition becomes

∂
∂ai

EUi(a) =
n

∑
j=2





[

u(w j)−u(w j−1)
]

∫

Yk

−Gk
a(y

k;ai)g j−1:n−1(y
k; â)dyk



−d′(ai).

(25)
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This expression can be used to prove that the mean preservingspread criterion

also applies to the setting with risk averse agents. For thispurpose, we make use of

a recent finding by Demougin and Fluet [5] who prove that Kim’smean preserving

spread criterion is equivalent to their so-called integralcondition, which is defined for

the transformed signalszl = Gl (yl ; â) andzm = Gm(ym; â). Due to the assumption of

non-moving supports,zk is as informative asyk sinceGk is strictly monotonic and an

optimal contract can be based onzk as well as onyk. Denote byH l (zl ,a) andHm(zm,a)

the cumulative distribution functions of that signals, givena. The integral condition is

fulfilled if

−H l
a(z | â) ≥−Hm

a (z | â) ∀z∈ [0,1] (26)

and is identical to the fact that the distribution function of lr l ,â differs from that of

lr m,â by a mean preserving spread (see [5], proposition 3). The main advantage of the

criterion is that in contrast to the mean preserving spread relation, it allows for a simple

and intuitive comparison of information structures in the standard agency setting (see

[5], proposition 1). Similarly, the criterion can be applied in the contest setting to prove

the following result:

Proposition 6 In the symmetric equilibrium̂a of the tournament of risk-averse agents,

total compensation cost under information system yl is lower than that under informa-

tion system ym if the distribution function of the likelihood ratio lrl ,â under signal yl

differs from that under signal ym by a mean preserving spread.

Proof Let w = (w1, . . . ,wn) denote the optimal prize structure under information

18



systemym or zm respectively12, fulfilling the agents incentive compatibility constraint

∂
∂ai

EUi(a) =
n

∑
j=2





[

u(w j)−u(w j−1)
]

1
∫

0

−Hm
a (zm;ai)h

m
j−1:n−1(z

m; â)dzm



−d′(ai).

(27)

By comparing this to the incentive constraint

∂
∂ai

EUi(a) =
n

∑
j=2





[

u(v j)−u(v j−1)
]

1
∫

0

−H l
a(z

l ;ai)h
l
j−1:n−1(z

l ; â)dzl



−d′(ai) (28)

under information systemzl derived fromyl and the respective prize schedulev =

(v1, . . . ,vn), the integral condition can be applied:

Sincezl andzm are values of cumulative distribution functions, they follow a uni-

form distribution on[0,1]. Thus,hl
j−1:n−1 = hm

j−1:n−1 for all j. From this, the integral

in (27) is smaller than that in (28) for eachj, provided that (26) is fulfilled. There-

fore, there exists a prize schedulev such that (28) is fulfilled andu(w j)−u(w j−1) ≥

u(v j)−u(v j−1) for j = 2, . . . ,n. The claim then follows from Lemma 1. 2

The intuition of the result is readily carried forward from the arguments in Demou-

gin and Fluet [5]. Relating the integral condition to their previous findings on bonus

type contracts in the risk-neutral agency (see Demougin andFluet [4]), they argue that

under risk aversion, a signal is preferred in an optimal contract if it is also preferred

under any bonus contract (see Demougin and Fluet [5], 490). The latter is obviously

fulfilled under the integral condition.

We also make use of this fact and show that if a signal is preferred under any

bonus contract, it is also preferred in a tournament. From a single agent’s perspective,

a tournament in this regard can best be described as a series of bonus contracts with

randomized aspiration levels. These levels are given by theperformances of the agent’s

12Optimal prizes are identical underym andzm because of the monotonicity of the distribution func-

tion.
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rivals in the tournament. If a signal is more sensitive with respect to the agent’s action

for any possible value of these levels, it is also more sensitive in expected terms.

5.3 Application

Similar to the analysis of the tournament with risk neutral agents, the information ef-

ficiency results can be applied to compare different types oftournaments. In doing

so, we again refer to the analysis of Moldovanu and Sela [19] of contest architecture.

Our aim is to reinforce their result on the efficiency of the grand contest in the moral

hazard setting analyzed here. Different to our proof in section 4, however, we cannot

simply compare functions of total compensation cost as in (14) because now the com-

pensation cost depends on the agent’s risk attitude. To derive the desired result, we

therefore at first prove that average compensation cost is decreasing in the number of

agents (proposition 7), and then turn to the question of whether to split the contest or

not (proposition 8).

Proposition 7 Average compensation cost to induce a certain actionâ in a symmetric

equilibrium of risk averse agents is decreasing in the number of contestants.

Proof The proof is in the appendix.

The proof of proposition 7 makes use of the fact that the principal’s optimization

problem (1)–(4) is similar to the one of a standard single agent model in which the

agent’s performance is measured by his rank amongn−1 agents choosing the equi-

librium action â. The proof shows that this signal becomes more informative in the

sense of the mean preserving spread criterion when the number n of competitors in-

creases. At first glance, this seems counterintuitive because each of the contestants

adds noise to the performance measure. At the same time, however, the number of

ranks increases, thereby enriching the principal’s opportunities to calibrate the con-
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tract. As Malcomson [17] shows, for an infinite number of competitors this results in

the equivalence of a rank order contract and a piece rate contract.

The result can directly be applied to answer the initial question:

Proposition 8 Total compensation cost to induce a certain actionâ in a symmetric

equilibrium of risk averse contestants is lower under a grandcontest of n players than

under any split contest of subgroups with n1 ∈ {2, . . .n−2} and n2 = n−n1 players.

Proof Obvious because average compensation cost is higher in bothsub-contests,

compared to the grand contest, which follows from proposition 7.

The reasoning behind proposition 8 is similar to the one of the preceding propo-

sition 7. Although the grand contest determines an agent’s compensation based on

the noisiest information, it dominates all other architectures because it allows for the

most precise stipulation of prizes. Since in general the tradeoff of these two effects

is not obvious, the main contribution of the two propositions is to prove that the lat-

ter effect always dominates the former. At the same time, thedifference to a model

without exogenous restriction to a rank order tournament ishighlighted. Without the

restriction, each agent would receive a payment which is based only on his individ-

ual performance, because outputs are assumed to be independent. Since any contract

based onyk
i can be written, any information on another agent’s output only adds noise

to the compensation. Therefore, in that sense the result contrasts Holmström’ s [11]

informativeness result.

6 Conclusion

This paper analyzed whether the informativeness criteria derived for information sys-

tems in a standard agency setting of moral hazard, where the principal chooses an op-

timal contract in the second best solution, also apply to a tournament setting where the
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contract is exogenously restricted to be rank-dependent. As a main result, Kim’s [13]

mean preserving spread criterion was approved to be capableof ranking performance

measures in the symmetric equilibrium of the tournament game. As a consequence,

Blackwell sufficiency also applies. Although in view of theseparallels transferability

seems to be obvious, it is not trivial. The key feature connecting the two settings is that

the MPS relation of likelihood ratios carries forward from the original signals to the

ranks in the contest. Only from this, the result from second best contracts also holds

in the constrained model.

Various applications of the result are possible. We used it to compare different

types of contracts. The key idea is to attribute the comparison of contracts to that

of different information systems using the same type of contract. While the present

paper focussed on the comparison of specific contracts, the procedure could also be

applied to more general questions of contract design. In particular, it may be used to

identify conditions under which tournaments are optimal agreements with regard to a

special class of contracts. One such class could be given by contracts which distribute a

constant sum of payments among a group of agents. This class is of particular interest

with respect to unverifiable or subjective performance information, as mentioned in

subsection 4.3. Therefore, the furnished results may be a device to prove the optimality

of tournaments as a solution to the so-calledunverifiability problem.
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A Proofs

Proof of proposition 1: Suppose not. Letw = (w1, . . . ,wn) denote the respective

compensation schedule, withw j ≥ wmin for all j andw j > wmin for at least onej ∈

{1, . . . ,n−1}. We show that this contract can be improved by one of the type described

in the proposition.

To that purpose, consider the wage structurev′ = (v1, . . . ,vn) with

v j = wmin for j = 1, . . . ,n−1

and

vn = wn +
n−1

∑
j=1

(w j −wmin)
E[lr k,â

j:n]

E[lr k,â
n:n]

.

According to (11), the incentive effects ofv are identical to those ofw:

n

∑
j=1

v jE
[

lr k,â
j:n

]

=
n−1

∑
j=1

wminE
[

lr k,â
j:n

]

+E[lr k,â
n:n]

[

wn +
n−1

∑
j=1

(w j −wmin)
E[lr k,â

j:n]

E[lr k,â
n:n]

]

.

=
n

∑
j=1

w jE[lr k,â
j:n].

The total wage payment, however, is lower underv:

n

∑
j=1

v j = (n−1)wmin+wn +
n−1

∑
j=1

(w j −wmin)
E[lr k,â

j:n]

E[lr k,â
n:n]

< (n−1)wmin+wn +
n−1

∑
j=1

(w j −wmin)

=
n

∑
j=1

w j .

The inequality follows from the fact that E[lr k,â
j:n] < E[lr k,â

n:n] for all j < n by MLRP. 2

Proof of proposition 3: Denote byLk,â the distribution function of the likelihood

ratio lr k,â, k = l ,m. If Ll ,â differs fromLm,â by a mean preserving spread, it is said to
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be larger than Lm,â in the convex order, which means that

ELl ,â[φ] ≥ ELm,â[φ]

for any convex functionφ : R → R, provided the expectation exists13. The same holds

for the joint distributions

Ml ,â(z1, . . . ,zn) =
n

∏
i=1

Ll ,â(zi) and Mm,â(z1, . . . ,zn) =
n

∏
i=1

Lm,â(zi)

of independent identically distributed random variableszi ∈ R which are distributed

according toLl
a andLm

a , respectively. The expectation of any convex functionψ : R
n →

R is higher under distributionMl ,â (This follows from Theorem 5.A.3. in Shaked &

Shantikumar [22].). The relation also applies to the convexfunction ψ(z1, . . . ,zn) =

max
i=1,...,n

zi. Thus,

E[lr l ,â
n:n] = EMl ,â

{

max
i=1,...,n

zi

}

≥ EMm,â

{

max
i=1,...,n

zi

}

= E[lr m,â
n:n ], (29)

which establishes the proposed relation due to proposition2. 2

Proof of proposition 4: Consider performance measuresyi ∈ [−∞,0] with cumula-

tive distribution functionG(yi | xi) = exp(xiyi) and probability density functiong(yi |

xi) = xi exp(xiyi) parameterized by the outputxi . Suppose that the signalsyi are used

in a U-Type tournament of the form derived in proposition 1, and only the best per-

forming agent receives a prize. Givenx = (x1, . . . ,xn), agenti′sprobability of winning

13See Shaked & Shanthikumar [22], p. 55, for a definition of convex orders, and Scarsini [23], p.

357, for the (explicit) relation of convex orders and mean preserving spreads.
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this prize is

Prob
[

yi = max{y j} j=1,...,n | x
]

=

0
∫

−∞

g(y | xi)
n

∏
j=1
j 6=i

G(y | x j)dy

=

0
∫

−∞

xi exp(xiy)
n

∏
j=1
j 6=i

exp(x jy)dy

=

0
∫

−∞

xi exp

(

y
n

∑
i=1

x j

)

dy

=
xi

∑n
j=1x j

.

Taking into account the stochastic nature of the outputsx j , agentj ’s (ex ante) expected

utility is given by

EUi =
∫

X

[

wmin+
xi

∑n
j=1x j

wn

]

n

∏
j=1

f (x j ;a j)dx1 . . .dxn−d(ai).

This is identical to his utility in a J-type tournament in which the shared bonusW is

equal to the winner prizewn and the base salaryw0 is given bywmin. Therefore, a com-

parison of compensation cost in a U-type to that in a J-type tournament is equivalent to

a comparison of the costs in U-type tournaments under performance measuresxi and

yi.

Given the previous results, however, the latter is straightforward. Sinceyi depends

onai only viaxi, its probability density function, givenai, can be written as

g(yi | ai) =
∫

X

g(yi | x) f (x | ai)dx.

Since the functiong(yi | xi) meets the requirements of a Markov kernel,xi is Blackwell

sufficient foryi. From this, the claim immediately follows by corollary 1. 2

Proof of lemma 1 The proof analyzes the possible cases regarding the agents’lia-

bility constraints.
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1. The agents’ liability constraint is not binding underv andw.

In this case, the participation constraints is binding and E[u(w)] = E[u(v)]. De-

note byFw andFv the cumulative distribution functions of one agent’s utilities

resulting fromw andv in the symmetric equilibrium. From the relation of utility

spreads (21), it follows that

(a) u(wn) ≥ u(vn) (obvious).

(b) u(w1) ≤ u(v1) (obvious).

(c) The distribution functionsFv andFw only cross once, i.e.∃û such that

Fw(u)















≤ Fv(u) ∀ u < û

≥ Fv(u) ∀ u > û,

because the jumps in the cumulative distribution functionsare pi j = 1/n

for each rankj.

Since E[u(w)] = E[u(v)], it must hold that

U
∫

−∞

Fw(u)du=

U
∫

−∞

Fv(u)du

for all U such thatFv(U) = Fv(U) = 1. From this and 1a–1c above it follows

that

U
∫

−∞

Fw(u)du≥
U
∫

−∞

Fv(u)du (30)

for all U ∈ R. Therefore,Fw andFv differ by a mean preserving spread (cf.

Rothschild and Stiglitz [21], p. 230f.), and the expectationof each convex func-

tion is lower underFv. Since due to the agent’s risk aversion the inverse utility

function is convex, expected compensation of a single agent(and thus total com-

pensation of all agents) is lower underv.
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2. The agents’ liability constraint is binding under bothw andv.

Then,v1 = w1. From this and (21), it follows thatw j ≥ v j ∀ j, and therefore
n
∑
j=1

w j ≥
n
∑
j=1

v j .

3. The agents’ liability constraint is binding underw and not binding underv.

In this case, the participation constraints will be bindingunderv, but not nec-

essarily underw, and E[u(w)] ≥ E[u(v)]. From 1 above, it immediately follows

that
n
∑
j=1

w j ≥
n
∑
j=1

v j .

4. The agents’ liability constraint is binding underv and not binding underw.

In this case, the participation constraint is binding underw andw1 ≥ v1. From

this and (21), it follows that E[u(v)] ≤ E[u(w)] = UR, a contradiction. 2

Proof of proposition 7 In the symmetric equilibrium ofn risk neutral contestants,

each player’s compensation is based on his rankr â,k
in ∈ {1, . . . ,n}, and all ranks are

equally likely. In what follows, it is shown that the likelihood ratio distribution function

of r â,k
in is a mean preserving spread of that ofr â,k

i,n−1, the rank in a contest ofn− 1

participants. The claim then follows from Kim’s (1995) results in the standard agency

setting.

From (7), the likelihood ratio
∂

∂ai
pk

i j (â)

pk
i j (â)

is given by E[lr k,â
j:n]. Yet, from a triangle rule

in order statistics (see Arnold et al., Theorem 5.3.1), expectations of order statistics

are related as follows:

jE[lr k,â
j+1:n]+ (n− j)E[lr k,â

j:n] = nE[lr k,â
j:n−1]. (31)

This can be exploited to construct the likelihood ratio distribution function ofrk
i,n from

that of rk
i,n−1 by a sequence of mean preserving spreadssj , j = 1, . . . ,n−1, wheresj
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is defined as follows:

sj =



























j
n

1
n−1 for E[lr k,â

j:n]

− 1
n−1 for E[lr k,â

j:n−1]

n− j
n

1
n−1 for E[lr k,â

j+1:n].

Thus,sj distributes the probability mass 1/(n−1) of E[lr k,â
j:n−1] to E[lr k,â

j:n] and E[lr k,â
j+1:n].

It is a spread (which defers probability mass to the tails of adistribution) because

E[lr k,â
j:n] ≤ E[lr k,â

j:n−1] ≤ E[lr k,â
j+1:n], and it is mean preserving because

E[sj ] =
j
n

1
n−1

E[lr k,â
j:n]−

1
n−1

E[lr k,â
j:n−1]+

n− j
n

1
n−1

E[lr k,â
j+1:n]

=
1
n

1
n−1

(

jE[lr k,â
j:n]−nE[lr k,â

j:n−1]+ (n− j)E[lr k,â
j+1:n]

)

= 0

by the triangle rule (31) and the fact that E
[

E[lr k,â
j:n−1]

]

= E[lr k,a] = 0. The resulting

probabilities

p
(

E[lr k,â
j:n]
)

=



























n−1
n

1
n−1 = 1

n for j = 1

i
n

1
n−1 + n−(i+1)

n
1

n−1 = 1
n for j = 1, . . . ,n−1

n−1
n

1
n−1 = 1

n for j = n

are those in the contest ofn agents. 2
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