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1 Introduction

Tournaments and contests are widely used for compensatmimaentive purposes.
To this end, planners apply a variety of performance indisat In some cases, the
performance measure is identical to the organizer’s olbggcin others, there seems
to be only an indirect relation to what is sought to be produrg the tournament. In
all cases, however, the incentive effects of potentialggarance measures are at least
implicitly taken into account.

From an economic perspective, incentive effects of perémre measurement have
been extensively discussed within a standard agency framkeBtarting with the pi-
oneering work of Holmstrém [11], numerous papers have aealyjuestions of infor-
mation efficiency under the assumption of optimal contracesmoral hazard setting.
In doing so, they established several criteria for rankiltgraative information sys-
tems (see, for example, Gjesdal [6], Holmstrom [12], Gramsiend Hart [9], Amershi
and Hughes [1], Kim [13], or Demougin and Fluet [5]).

Only little work, however, has so far been done on informagéficiency in a tour-
nament setting where contracts are exogenously restrigtédwe order of the agents’
performance. Under such a restriction, the criteria ddrinethe standard setting are
not naturally valid. As Holmstrom ([11], p. 86) states, "iby fadministrative reasons,
one has restricted attenti@priori to a limited class of contracts (e.g., linear price
functions or instruction-like step functions), then infativeness may not be suffi-
cient for improvements within this class”. In general, thesabjection applies to the
other criteria. Due to the widespread use of tournaments,titerefore worthwhile
reasoning whether the criteria derived in the standard@gsetting also apply under
the specific restrictions given by a tournament contract.

The classical agency literature discusses the use of imfitom in tournaments

mainly with regard to optimal contracts. Adapting his suéfit statistics results de-



rived from the standard agency setting, Holmstrom ([12pppssition 7) proves that
relative performance evaluation will be valuable if andyoifithe agent’s outputs are
stochastically dependent. Similarly, Green and Stoke}; (jBposition 1) show in
a more specific setting that individual contracts dominatertaments whenever the
agents’ outputs admit only idiosyncratic risk. Convers#lyhere is common uncer-
tainty, tournaments will dominate individual contractsemhthe common shock be-
comes diffuse (ibid., proposition 2). Mookherjee ([20]pposition 4) applies Holm-
strom’s [11] informativeness result to show that a tournatneentract will be optimal
if an agent’s rank in output is statistically sufficient fdr @available information with
respect to his action choice.

In all of these results, informativeness criteria are agpto distinguish between
different types of contracts. We shall return to this impattquestion when applying
our general results. At first, however, we look for critenaank information systems
in a setting where contracts are exogenously restrictedrtb orders. To distinguish
the analysis from the previous researchomiimal contracts, we deliberately confine
ourselves to analyzing situations where the agents’ pedoces are stochastically
independent. According to Holmstrom’s [12] result menédrabove, a tournament
contract will not be optimal in this setting, and an appiiatof the general infor-
mativeness results will thus not be valid. We show that rfegless, the main criteria
also apply to the tournament setting. Thereafter, we ussethgteria to distinguish
between different types of relative performance evalumatio

The remainder of this paper is organized as follows: In sac, the analytical
framework is presented. Section 3 describes the main deaistcs of an information
system with respect to the principal’s optimization probleSections 4 and 5 present
information efficiency results and some application to tbeparison of alternative

contract types. Concluding remarks are given in section 6.



2 Model

Consider a single-period agency setting in which a risksia¢ptincipal hires a num-
berofagents=1,....n (n>2)to performidentical tasks. The agents who decide to
participate provide a productive inpaite A= [a,a] C R not observed by the principal.
The resulting outputs; € X C R which accrue to the principal are independent iden-
tically distributed random variables. Their probabilitisttibution functionF (x;; &)
is parameterized by the agent’s action choice. Increasasare assumed to shift the
distribution function to the right in the sense of first-ardechastic dominance. Thus,
ceteris paribus the principal will prefer higher effort éés.

All agents have identical preferences. These can be desichy utility functions

which are additively separable in monetary incomend efforta;, such as

Ui(wi, &) = u(wi) — d(&),

whereu(w') denotes the agent’s utility on monetary income alid;) denotes the
agent’s disutility of actiorg;. We assume that the agents are effort-averse and weakly
risk-aversé, i.e.u’ > 0,u” <0,d > 0andd” > 0.

Before hiring the agents, the principal chooses an infolwnatystenk from a set
X of feasible information systems. Information systeoonsists of signalﬁj, Loyke
Yk = [y*,¥¥] € R which become observable to the principal and the agenteufitost
after the action choices have been taken. The sié‘rmls independent identically dis-
tributed random variables with distribution functi@'i(y}(; &) and probability density
functiong(yX; &) which depend on the respective agent’s effort. The lattesssimed
to be twice differentiable irg;, and its support is independent af Signalyik can
be regarded as a performance measure for dgéntthe simplest case, performance
is measured by outpuyi(= x;). More generallyyk may be an index of all available

information on the agent’s action. We assume that highertetain be inferred from

lResults are presented separately for risk-neutral aradlgtrisk averse agents.
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a higher performance score, i.e. the monotone likelihotid Eoperty (MLRP) is
assumed to hold for any information service

Given the information system, the principal designs anr@dpayment scheme
which determines ageiis compensation according to his rankin the order of the
observed signals. Let! denote the compensation stipulated for fkielowest rank
j within the order of performance measures. In the case ofipheiltanking agents
the respective prize is awarded via randomizatidinder these assumptions, agest

expected utility from action choices= (ay,...,an) can be written as
n
z WJ plj d<a|)7
=1

where p}‘j (a) = Prob{ri = j | (a1,...,a)} denotes the probability that ageintvill
achieve rankj in the tournament.

The principal wants all agents to participate. Hence, tbgjrected utilities have
to reach a certain reservation let#f which is assumed to be identical for all agents.
Furthermore, we assume that agents are of restricted wealththus compensation

has to exceed a liability leved™" for each agent.

3 The principal’'s problem and properties of informa-
tion systems

The principal seeks to maximize his expected profit net ofeya@yments. His prob-
lem is to select compensations= (W', ...,w") from a setwW" c R" of feasible com-
pensations such that the agents choose actpmgich maximize his expected net

profit.

2However, this will occur with zero probability because tiemsity functiong) have no mass points.
3According to this diction, rank denotes the highest outcome.



Due to the principal’s risk neutrality, this problem can pétup, first considering
the least cost way of achieving a given action profile and themng to the question
of which actions to implement. To our purpose of comparingggemance measures,
the interesting part is the first. Therefore, similar to KSfiL3] analysis of the stan-
dard agency model, we will focus on the question of what tyfjdaformation system
k implements a particular effort profike at the lowest cost. In doing so, we restrict
the analysis to symmetric Nash equilibria of the tournangamie. Consequently, all
agents choose the same act@mrand each agent’s probability of winning igrl The
principal’s cost minimization problem for the symmetricuddprium given informa-

tion systems is given by

wo2w (1)
s.t. %iu(wj)—d(} > UR 2)

> U(Wj>p=(j(ai>éLi)_d(ai)} 3)
=1
wl >wnin g (4)

dearg max{
aj

The participation constraints (2) guarantee that all agaotept the contract. The
Nash - incentive constraints (3) ensure that given his opptanequilibrium strategies
a_j, the desired actiog; is in agent’s own best interest.

In this optimization problem, information systeknis characterized by a vector
pX = (p,...,pk) of ranking probabilities. In order to compare informatigrstems
with regard to their cost of inducing a certain acteyrwe are interested in properties
of these probabilities, which in more detail can be writteh a

Kooon 1 dya)
@A) =5 F

gn(y; 8)dy, (5)

4See Green and Stokey [8], p. 355.



Whereg'j‘:n(y; a) denotes the density of th¢ {n)-order statistic under distributio®X.
Fora = 4, the integral in (5) is 1, and{‘j = 1/n. Differing from &, the agent varies his
ranking probabilities. The way in which these changes work mainly determines
the incentive effects of information systdm Similar to the standard agency setting,
further insight into the quality of a performance measurelmagained under the first-
order approach. As in the standard model, it is valid underatiiditional assumption
thatGK(y¥; &) is convex ina (convexity of the distribution function condition, CDFT)

The incentive constraints (3) can then be replaced by frd+aconditions
5 uwi)-2-pl ()~ (8) — 0 ©
jzl o8, " N

governed by the marginal probabilities

0 w1 7d)d

gn(y; 8)dy. (7)

The integral in (7) is the expected value of the score func%?ofor the (j : n) -
order statistic of performance scores. By MLRP, this functiwhich for simplicity
is often referred to as the likelihood ratio, is increasing’i. Therefore, the agents’

action choices in the symmetric equilibrium are determined by

Sl

i u(wHE [|rjk;;ﬂ —d'(a), ®)
=1

wherelr'j‘;ﬁ denotes thej(: n) - order statistic of likelihood ratios derived frogt at
pointd Note thaty{_; E [Ir'f,"ﬂ = nE [Ir%4] = 0 by the assumption of non-moving
support§. Therefore, the incentive effects of some prizés...,w (I < n) will be
negative, whereas those of the remaining ones will be pesiti

In the following sections, we will exploit further propezs of moments and distri-

butions of order statistics in order to compare differefdrimation services. Section

5A proof is available from the author upon request.
6For the relation of order statistics, see Arnold et al. 1$92,10.
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4 derives results for the risk neutral agency, and sectioneSemts the findings for
risk-averse agents. Both sections contain applicationsiéstgpns of contest design

and more general forms of relative performance payment.

4 risk neutral agents

4.1 Optimal reward structure

If the agents are risk-neutral, the principal’s problemgdifies to

: j
10 R
s.t. ; jzlw —d(@>U (10)
10
= J-;WJ E(Irfa] =d'(a) (11)
wh>wmn oy, (12)

Similar to Lazear's and Rosen’s [15] analysis of a tournamgtit two agents,
the first-best solution can be achieved undry informative performance measure
as long as the liability constraints (12) are not bindingargtg from equal prizes
for all ranks, the principal just has to increase the priftedintialsw! —w/—1 for
arbitrary ranksj with positive value of E[Ir‘j‘;ﬁ] until the Nash incentive constraints
(11) are fulfilled. By adjustment of, the participation constraint can be fulfilled
with equality. Implementation is without additional cosidause of the agent’s risk
neutrality. The resulting total compensation cost (sl(a) +UR).

Under limited liability, however, this procedure, in gealewill not be feasible.
For low levels ofUR and E[Ir'j‘;,‘ﬂ , the liability constraints will become binding in the
optimal solution. As a consequence, it will matter to whiahks the prize differentials

are allocated. Due to the agents’ risk neutrality, howewerpptimal prize structure is



apparently simple:

Proposition 1 If the agents’ liability constraint is binding under infoation system

k, the cost-minimizing tournament only awards a prize to @ performing agent.

Proof The proof is in the appendix.

Essentially, the proof of proposition 1 shows that compeosa&ost can be lowered
by shifting compensation from lower ranks to the the highask of the tournament.
The economics of the result are similar to those in the stahalgency setting as de-
rived by Demougin and Fluet [4]. If the agents are risk ndutrcome smoothing
only matters with regard to the minimum wage. Incentivesydwer, are least costly
provided by rewarding only those results the probabilitywbfch reacts most sensitive
to changes in the agent’s effort. In the contest setting tdtlee MLRP this is the top
rankrn:n.

The proposition also complies with results of Moldovanu &atia [18] who find
that in a symmetric equilibrium of privately informed costi@nts, a total premium is
most effectively allocated to only the winner of the contesBimilar to the moral
hazard setting analyzed here, the result is driven by thetliat a single prize pro-
vides the strongest incentives for risk neutral contestaHbwever, since under pri-
vate pre-decision information different types of agentsade different effort levels in
equilibrium, Moldovanu’s and Sela’s result requires lineaconcave cost functions
for which variations in effort have no cost increasing etffedn the present setting,

convexity of the cost function is not an issue since all agehbose identical actions.

"The same result is derived by Glazer and Hassin [7] in a efatenework, but under more restric-

tive assumptions.



4.2 Information efficiency

Given the structure of the optimal contract, a comparisoalt@rnative information
systems is straightforward. Whenever the agents’ liabdidgstraints are binding, the
optimal reward scheme takes the fonm= (W™", ... w™" w"). In this schemey” has
to be chosen to fulfil the agents’ Nash incentive compatibdbnstraint (11), which
takes the form

L W ElIrkE) = o' (a). (13)

According to (13), the necessary wage spread to induceregiogiven by

nd (&)

W = e

As a consequence, the total compensation cost under infionmsystemk in a

symmetric equilibrium oh contestants with action choicasan be written as

ck@a) = n-max{d(é) +UR wmin . E‘][';r(% } : (14)

By inspection of (14), itis obvious that an information sysgecost impact is solely

determined by FrK3):

Proposition 2 In the symmetric equilibriund of the tournament under information

system k, total compensation cost is the lower, the higlﬁeﬁ?ﬁ.

Proof Obvious from (14)CK is decreasing in i &) O

Given the prominent role of the likelihood ratio in (14), position 2, when related
to the literature on informativeness criteria, providesraal reference to Kim’s [13]
criterion of a mean preserving spread of likelihood ratistritbution functions. Kim
[13] proves that in a standard agency setting with one ngls®e agent, an action
a can be induced under a signalat a lower cost than under another sigglif

the distribution function of the likelihood rati%l% under signaly differs from that
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under signay™ by a mean preserving spread (MBSSince due to the assumption of a
non-moving support the expected likelihood ratio is zemodibinformation systems,
the MPS relation reduces to second order stochastic doegenam order to exploit
this property, Kim essentially shows that the compensatast is a concave function
of likelihood ratios, the expectation of which is lower undecond order stochastic
dominanc@. A related convexity argument can be applied here to estalfie mean
preserving spread criterion as a device to rank informagy@tems in the tournament

setting:

Proposition 3 In the symmetric equilibrium of the tournament, total compensation
cost under information systerhig lower than that under information systef ij the

distribution function of the likelihood ratio }# — %Y@ ynder signal Y differs from

da
that under signal ¥ by a mean preserving spread.

Proof 10 The proof is in the appendix.

The proof of proposition 3 makes use of the fact that the wedn consequences
of second order stochastic dominance between univariatglditions extend to the
product distribution of i.i.d. random variables. By the cexwy of the maximum
operator, it is thus obvious that a mean preserving spréatioe yields a unique order
of highest order statistics. Therefore, like in the staddagency setting, information
systems can be compared by the distributions of their hibeld ratios. Similarly, the
mean preserving spread property only provides a localriitdor a specific action
a. To make general predictions for arbitrary levelsapthe relation must hold faall

€ (a,a). This, again, has been proven by Kim ([13], proposition 4joitow from

8For the definitions of a mean preserving spread see Rotdsaidl Stiglitz [21].
9The result can also be carried forward to a standard agendglmgth a risk neutral agent who is

of limited wealth.
10A related proof for risk-averse agents can be found in BuddkeGaffke [3].
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the criterion of Blackwell informativeness (the oppositenct true). From this, the

following conclusion is obvious:

Corrollary 1 In any symmetric equilibrium of the tournament, total compersati
cost under information systerhig lower than that under information systeffi i y!

is Blackwell sufficient for% with respect to a.

Proof The claim follows from proposition 3 by the relation of Blacklvsuffi-

ciency and the mean preserving spread criterion.

Although more information systems will be comparable by tiean preserving
spread criterion, Blackwell sufficiency is useful for at letgo reasons. First, it is a
global criterion which does not focus on a particular effeviel &. Therefore, infor-
mation systems can be compared by it without specifying whition is sought to be
induced. Second, and for the application even more impprtia@ criterion refers to
the signal distributions instead of the distributions &elihood ratios. Usually, this
will make its use much easier. In the following subsectior, apply Corollary 1 to

rank different types of relative performance payment.

4.3 Application
4.3.1 Alternative forms of relative performance evaluatio

Perhaps the most important property of tournament comstiadhe fact that the total
compensation paid to afl agents is constant. Malcomson [16] uses this property to
propose tournaments as a general device to overcome thefiability problem, i.e.
tournaments can be used for compensation even if the agmiddrmance measures
are not verifiable and the principal could misreport thes@suees in order to cut
wages. Yet, this is impossible under a tournament contébreg as contracts and

payments are observable.
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Tournaments, however, are not the only compensation forfultib the desired
property of a constant total wage payment. In particulgpgadase firms make extensive
use of a special kind of relative performance payment in twaiconstant bonu4/ is
distributed to workers of a group according to their reatwutputs. Agenits wage in

accordance with outputs, ..., X, is given by

Xi
Wi =W+ W. (15)
| >1X]

Due to its similarity to a tournament, this type of compeimsahas also been referred
to as aJ-Type tournamendfter to its Japanese origin as opposedltdype tourna-
mentsof the form described in section 2, which are predominantipliad in the US
(Krakel [14]).

With regard to the general question of compensation codyzet here, the two
types of compensation contracts can be compared by appfaztthe criteria derived

in the previous section:

Proposition 4 In the symmetric equilibriura of the tournament game, total compen-

sation cost in a U-type tournament is lower than that in a Jetygurnament.

Proof The proof is in the appendix.

The proof of proposition 4 makes use of the fact that the bgauson in (15) is
identical to a contest success function. This contest ssdoaction, in turn, is known
in a two-player contest to be identical to the winning praligounder exponentially
distributed outputs (see Hirshleifer and Riley [10], p. 330 he proof generalizes
this property by assuming amplayer tournament and shows that risk-neutral agents
assess a J-Type tournament equal to a U-Type tournamenamwaldditional random-
ization. This randomization, however, weakens the ingestdf the contest, leading

to a higher compensation cost.
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4.3.2 Contest design

Moldovanu and Sela [19] analyze (amongst others) the dquresfiwhether a contest
should be split into several sub-contests in a situatiorrigfe pre-decision informa-
tion. They prove that for linear or convex cost functiong grand contest generates
a higher expected output than any contest divided into sulpgr of equal size (ibid.,
Theorem 1). Adapting this question to the present moralrdesiguation, we find the

following result:

Proposition 5 Total compensation cost to induce a certain actéom a symmetric
equilibrium of risk neutral contestants is lower under a giarontest of n agents than

under any split contest of subgroups witha{2,...n— 2} and n = n— n; agents.

Proof Average compensation cost per agent in each of the subgi®ups

cni(“):C”‘(A) =max{d(é)+UR,wmi“+%}, i=12 (16)
Mg

Since Elrﬁ;fani] < E[Irﬁ?ﬁ] for nj < n, average compensation cost is higher in each

subgroup, from which the claim follows by the fact timat+ n, = n. a

The result is derived from the fact that the average costi€l@gcreasing in the
number of contestarits Due to the agent’s risk neutrality, the fact that each dgent
probability of winning decreases does not result in an &uthl cost. Due to the
MLRP, however, compensation reacts most sensitively togémim the agents’ effort

if they compete in a grand contest.

UThis is in line with proposition 2 in Moldovanu and Sela [19].
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5 Risk averse agents

5.1 Optimal reward structure

If the competing agents are risk averse, the proposed egtpeize schedule in which
only the best performing agent receives an extra paymehnwilonger be optimal.

This can be illustrated by the following counterexample:

Example Consider a group of = 3 risk-averse agents competing in a contest
with prize structurav = (w!,w?, w®). Prizes are allocated according to signgals R*
which follow the same family of probability distributiongsicribed by cumulative dis-
tribution functionsG(y; | &) = 1—exp(yi/a;). Thus, the agent’s performance measures
are exponentially distributed with mean Furthermore, let the agents’ preferences be
described by identical utility functiorsj(wi,a) = /Wi — aiz, and let their reservation
utilities beUR = 0. Prizes have to be nonnegative. Assuming a symmetriciequih
of the contest game, the principal wants to implement anlibgum effort a = 1 for

all agents. His cost minimization problem described in ()then becomes

erwznw3 wh+w? +w? (17)
st %[\/vﬁ+\/v?+\/m_/3 ~1>0 (18)
2Vl VW Ve =2 (19)

w >0 j=1,23. (20)

The coefficients in (19) are the expected values of the hbkeld ratio order statistics
under the exponential distribution with mean 1. The cosimmizing prize structure is
given byw! = 0,w? = (6/7)? andw? = (18/7)2. Obviously, it assigns positive prizes

to more than just the top ranking position. O
Similar to the situation analyzed in proposition 1, the dgdmability constraint is

15



binding in the example. However, the contract proposecetiveruld impose too much
risk on the agents. Therefore, incentives have to be prdvadso byw?. This is less
effective than solely rewarding the best performing ageutunder risk aversion also

less costly.

5.2 Information efficiency

Given the counterexample, the ranking criteria derivedhegrevious section cannot
directly be translated to the model with risk averse-agbetsause they build on the
extreme contract of proposition 1. Under a more generagsiricture, the compen-
sation will not only depend on the value of[Eﬁ?ﬁ] as in (14), but in general on the
expectations oéll likelihood ratio order statistics. Yet, since[E [Irﬁ?}” =0 for all
k, the relation of order statistics used in propositions 2&wdnnot hold foall ranks.
However, if the distribution function of the likelihood ratr'a = % under signal
y differs from that under signgi™ by a mean preserving spread, the same should hold
for the likelihood ratio distribution functions of the ramlachieved in a contest under
these measures. Intuitively, this results in prizes whiehlass dispersed, which in
turn yields lower compensation cost due to the agents’ rnsksion.

To prove this intuition, we first give a condition of less disped prizes under
which total compensation cost is reduced (lemma 1). Sulesetyiwe prove that this

condition is fulfilled under the mean preserving spreactaoh (proposition 6).

Lemmal Letw = (w!,...,w") andv = (V},...,v") be incentive compatible prize
schedules fulfilling restrictions (2), (4) and (8) in the syetric equilibrium of the

tournament. If the utility spreads resulting from that gszunder a concave utility

16



function u are higher undew, then total compensation cost is less undeie.

uw) —uw =1 > uv) —u Y forj=2...,n (21)
Swi> Y vl 22
= j;w > j;v (22)

Proof The proof is in the appendix.

The lemma intuitively follows from the agents’ risk aversiand limited liability.
Under an optimal prize structure, either the agents’ pagitmon constraint or their
liability constraint will be binding. If the participationonstraint is binding under
both schedules, the higher utility spreads under schedpl®duce a mean preserving
spread relation of the distribution functions of utilitiehe claim then follows from
the agents’ risk aversion. If on the other hand the liabitibnstraint is binding, the
higher utility spreads undev result in prizes which are higher for each rank. In this
case, the claim is even more obvious.

The lemma can be used to compare different information &tres. For this pur-
pose, it is convenient to write the agents’ expected utilita way which refers to

utility spreads:
EUi(a) = u(w!) + i [uw!) —u(wi 1] P¥(a) — d(a). (23)
]=

The termPi'j (a) = Prob{ri > j — 1} denotes the probability that agerichievest least
rank j in the tournament under information systgtn Given his opponents’ effod "
in the symmetric equilibrium, this probability is given by

Pl (@) = [ (1- G¥5a))gj 116K 81y @4

Yk
Substituting (24) in (23), the agent’s first-order conditliecomes

aiaiEUi(a) = ji ([u(wj)u(wjl)}Y[Gg(yk;ai)gjlznl(yk;é)d)}() —d'(a).

(25)
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This expression can be used to prove that the mean presespneg@d criterion
also applies to the setting with risk averse agents. Forpinmpose, we make use of
a recent finding by Demougin and Fluet [5] who prove that Kimean preserving
spread criterion is equivalent to their so-called integaaidition, which is defined for
the transformed signaid = G'(y';4) andz™ = G™(y™ 4). Due to the assumption of
non-moving supportsy is as informative ag® sinceGX is strictly monotonic and an
optimal contract can be based zras well as ony¥. Denote byH' (7, a) andH™(Z", a)
the cumulative distribution functions of that signals,egia. The integral condition is
fulfilled if

—Hl(z| &) > —HM(z|a) Vze[0,1] (26)

and is identical to the fact that the distribution functidnlid-2 differs from that of
Ir™2a by a mean preserving spread (see [5], proposition 3). Tha athiantage of the
criterion is that in contrast to the mean preserving sprekadion, it allows for a simple
and intuitive comparison of information structures in tkenslard agency setting (see
[5], proposition 1). Similarly, the criterion can be appli@ the contest setting to prove

the following result:

Proposition 6 In the symmetric equilibriuré of the tournament of risk-averse agents,
total compensation cost under information systéis jower than that under informa-
tion system ¥ if the distribution function of the likelihood ratio t? under signal

differs from that under signal¥/by a mean preserving spread.

Proof Letw = (w!,...,w,) denote the optimal prize structure under information

18



systemy™ or 2™ respectively?, fulfilling the agents incentive compatibility constraint

n i . 1
Bl (a) = 3 | fuwh—uw=) 0/ SHIEM 8T 1 1(Z%8)d2 | — ().
27)

By comparing this to the incentive constraint

n i . 1
a%Eui(a):j; [u(v)) —u(v™h] O/ —Hy(Z;a)h 1, 1(Z;8)dZ | —d'(a) (28)

under information system derived fromy' and the respective prize schedwie=
(v1,...,Vn), the integral condition can be applied:

SinceZ andZz™ are values of cumulative distribution functions, theydella uni-
form distribution on[0, 1]. Thus,h'j_l:n_1 =h{" 1., forall j. From this, the integral
in (27) is smaller than that in (28) for eaghprovided that (26) is fulfilled. There-
fore, there exists a prize schedwlsuch that (28) is fulfilled and(w!) — u(w/~1) >

u(v)) —u(vi=1) for j = 2,...,n. The claim then follows from Lemma 1. m

The intuition of the result is readily carried forward frohetarguments in Demou-
gin and Fluet [5]. Relating the integral condition to theieyipus findings on bonus
type contracts in the risk-neutral agency (see DemougirFaunet [4]), they argue that
under risk aversion, a signal is preferred in an optimal @tf it is also preferred
under any bonus contract (see Demougin and Fluet [5], 490¢. |atter is obviously
fulfilled under the integral condition.

We also make use of this fact and show that if a signal is predeunder any
bonus contract, it is also preferred in a tournament. Fromglesagent’s perspective,
a tournament in this regard can best be described as a sébesus contracts with

randomized aspiration levels. These levels are given bgehfermances of the agent’s

20ptimal prizes are identical undgf andz™ because of the monotonicity of the distribution func-

tion.
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rivals in the tournament. If a signal is more sensitive wéhpect to the agent’s action

for any possible value of these levels, it is also more sieasit expected terms.

5.3 Application

Similar to the analysis of the tournament with risk neutigerats, the information ef-
ficiency results can be applied to compare different typemwfnaments. In doing
so, we again refer to the analysis of Moldovanu and Sela [L8bntest architecture.
Our aim is to reinforce their result on the efficiency of thamgt contest in the moral
hazard setting analyzed here. Different to our proof inisact, however, we cannot
simply compare functions of total compensation cost as4y kecause now the com-
pensation cost depends on the agent’s risk attitude. Toeddre desired result, we
therefore at first prove that average compensation costcigdsing in the number of
agents (proposition 7), and then turn to the question of adretb split the contest or

not (proposition 8).

Proposition 7 Average compensation cost to induce a certain acdiama symmetric

equilibrium of risk averse agents is decreasing in the nurobeontestants.

Proof The proof is in the appendix.

The proof of proposition 7 makes use of the fact that the jpails optimization
problem (1)—(4) is similar to the one of a standard singlenageodel in which the
agent’s performance is measured by his rank amord agents choosing the equi-
librium actiona The proof shows that this signal becomes more informativine
sense of the mean preserving spread criterion when the mumdifecompetitors in-
creases. At first glance, this seems counterintuitive ksxaach of the contestants
adds noise to the performance measure. At the same timeyvagwiee number of

ranks increases, thereby enriching the principal’s opmities to calibrate the con-
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tract. As Malcomson [17] shows, for an infinite number of cetitprs this results in
the equivalence of a rank order contract and a piece rateamint

The result can directly be applied to answer the initial ¢tjoas

Proposition 8 Total compensation cost to induce a certain actéoim a symmetric
equilibrium of risk averse contestants is lower under a graodtest of n players than

under any split contest of subgroups withen{2,...n—2} and n, = n—ny players.

Proof Obvious because average compensation cost is higher irsbbtbontests,

compared to the grand contest, which follows from proposif.

The reasoning behind proposition 8 is similar to the one efgtreceding propo-
sition 7. Although the grand contest determines an agentispensation based on
the noisiest information, it dominates all other architees because it allows for the
most precise stipulation of prizes. Since in general theein#f of these two effects
is not obvious, the main contribution of the two proposiias to prove that the lat-
ter effect always dominates the former. At the same timedifierence to a model
without exogenous restriction to a rank order tournamehtghlighted. Without the
restriction, each agent would receive a payment which igdasly on his individ-
ual performance, because outputs are assumed to be indgpeSihce any contract
based oryik can be written, any information on another agent’s outplit adds noise
to the compensation. Therefore, in that sense the resultasi® Holmstrom’ s [11]

informativeness result.

6 Conclusion

This paper analyzed whether the informativeness critestaveld for information sys-
tems in a standard agency setting of moral hazard, whereith@gal chooses an op-

timal contract in the second best solution, also apply taian@ment setting where the
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contract is exogenously restricted to be rank-dependent Wain result, Kim’s [13]
mean preserving spread criterion was approved to be capatdeking performance
measures in the symmetric equilibrium of the tournamentegaAs a consequence,
Blackwell sufficiency also applies. Although in view of thgssrallels transferability
seems to be obvious, itis not trivial. The key feature coting¢he two settings is that
the MPS relation of likelihood ratios carries forward frohetoriginal signals to the
ranks in the contest. Only from this, the result from secoest loontracts also holds
in the constrained model.

Various applications of the result are possible. We used d¢ampare different
types of contracts. The key idea is to attribute the compar contracts to that
of different information systems using the same type of iamtt While the present
paper focussed on the comparison of specific contracts,rdeeg@ure could also be
applied to more general questions of contract design. Iltiqodatr, it may be used to
identify conditions under which tournaments are optimakagents with regard to a
special class of contracts. One such class could be giveaortisects which distribute a
constant sum of payments among a group of agents. This slagparticular interest
with respect to unverifiable or subjective performance rimiation, as mentioned in
subsection 4.3. Therefore, the furnished results may beieal® prove the optimality

of tournaments as a solution to the so-callederifiability problem
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A Proofs

Proof of proposition 1: Suppose not. Letv = (W},...,w") denote the respective
compensation schedule, witt? > w™" for all j andw! > w™" for at least ong €
{1,...,n—1}. We show that this contract can be improved by one of the tggeribed
in the proposition.

To that purpose, consider the wage structdre (v%,...,v") with
vi=w™ forj=1,...,n—1

and .
A n—1( i Wmin) E[ll’lj(:’?]
=w'+ w! — —

J-Zl E[lr k3]

According to (11), the incentive effects wfare identical to those of:

g WminE [l k é.:| E[l ké] w" n_l( j vain> E[lrll(ﬁ]
= ro 4+ Elry + w! — — .
2 . " 2 ElIrkal

noo
=5 wE[Ira).
=1

The total wage payment, however, is lower under

c Vj = (n_ 1>V\fmn+v\/n+nil(wj _vain) E[lrlj(’r’c:l]
= =i Eflr &3]
H n_l . .
< (- W+ -
=

n .
= z wl,
=1
The inequality follows from the fact that[E'j‘;ﬁ] < E[Ir'r‘]zﬁ] forall j <nby MLRP. O

Proof of proposition 3: Denote byLX2 the distribution function of the likelihood

ratiolr®a, k =1, m. If L' differs fromL™2 by a mean preserving spread, it is said to
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belarger than L™ in the convex ordemhich means that

ELal@ > E ma]@)

for any convex functiomp: R — R, provided the expectation exists The same holds

for the joint distributions
Mlazl, .\ Zn rll_la and Mma |—!Lma

of independent identically distributed random varialdes R which are distributed
according td_[.:1 andL]', respectively. The expectation of any convex functjorR" —

R is higher under distributioM'? (This follows from Theorem 5.A.3. in Shaked &
Shantikumar [22].). The relation also applies to the corfumction Y(zy,...,z,) =

“max z. Thus,
i=1....n
E[Irl:3] = Eyyia { max zi} > Eyma { max z;} = E[Ir™4), (29)
i=1,....n i=1....n
which establishes the proposed relation due to proposttion a

Proof of proposition 4: Consider performance measusgeg [—o, 0] with cumula-
tive distribution functionG(y; | ;) = exp(Xiyi) and probability density functiog(y; |
Xi) = X exp(xy;) parameterized by the outpyt Suppose that the signalsare used
in a U-Type tournament of the form derived in proposition d¢g anly the best per-

forming agent receives a prize. Giver= (xg,...,Xn), agent’s probability of winning

13See Shaked & Shanthikumar [22], p. 55, for a definition of exnerders, and Scarsini [23], p.

357, for the (explicit) relation of convex orders and meagsprving spreads.
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this prize is
0 n
1

x] = /gylx. )76

=

Probly; = max{y;}j-1,..n y[xj)d

—

0
= /x, exp(xy) nexp(ij
- ¥

0 n
= [ xiexp{y) xj |dy
Jres(o3)

—
2i=1%

Taking into account the stochastic nature of the outpytagentj’s (ex ante) expected

utility is given by

EUi:/

X

: n
whing X n f(xi;a)dxe...dx, —d(a).
ST aX ]111 (xj;aj)dx (&)

This is identical to his utility in a J-type tournament in whithe shared bonl¥ is
equal to the winner prize” and the base salany is given byw™". Therefore, a com-
parison of compensation cost in a U-type to that in a J-type@ment is equivalent to
a comparison of the costs in U-type tournaments under pa#oce measures and
Yi-

Given the previous results, however, the latter is stréogivard. Sincey; depends

ona; only viax;, its probability density function, givea, can be written as
oy | &) = [ g 1 (x| a)dx
X

Since the functiomy(y; | x) meets the requirements of a Markov kermxels Blackwell

sufficient fory;. From this, the claim immediately follows by corollary 1. O

Proof of lemma 1 The proof analyzes the possible cases regarding the adi@nts’

bility constraints.
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1. The agents’ liability constraint is not binding undeandw.
In this case, the participation constraints is binding afdwg)| = E[u(v)]. De-
note byF" andFY the cumulative distribution functions of one agent’s tigk
resulting fromw andv in the symmetric equilibrium. From the relation of utility

spreads (21), it follows that

O
£
3
v

u(v") (obvious).
(b) u(wt) < u(v?) (obvious).

(c) The distribution functionfY andF" only cross once, i.eldl such that

<FY(u) V u<a
F*(u)
>FY(u) V u>aqQ,

because the jumps in the cumulative distribution functiarespi; = 1/n

for each rankj.

Since Bu(w)] = E[u(v)], it must hold that

u u
/FW(u)du:/F"(u)du

for all U such that-V(U) = FY(U) = 1. From this and 1a—1c above it follows
that

)

/UFW(u)duz/ V(u)du (30)

[0e]

for all U € R. Therefore,F" andFV differ by a mean preserving spread (cf.
Rothschild and Stiglitz [21], p. 230f.), and the expectatibeach convex func-
tion is lower undeiFY. Since due to the agent’s risk aversion the inverse utility
function is convex, expected compensation of a single ggewltthus total com-

pensation of all agents) is lower under
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2. The agents’ liability constraint is binding under bettandv.

Then,vt = w!. From this and (21), it follows that! > v} V], and therefore
E wl > g Vi,
=1 =1

3. The agents’ liability constraint is binding underand not binding undev.
In this case, the participation constraints will be bindimglerv, but not nec-
essarily undew, and Bu(w)] > E[u(v)]. From 1 above, it immediately follows

n . n .
that y w! > 5 vl
j=1 =1

j:

]

4. The agents’ liability constraint is binding undeand not binding undew.
In this case, the participation constraint is binding undemdw! > v, From

this and (21), it follows that fai(v)] < E[u(w)] = UR, a contradiction. O

Proof of proposition 7 In the symmetric equilibrium oh risk neutral contestants,
each player's compensation is based on his rrz;fﬁke {1,...,n}, and all ranks are
equally likely. In what follows, it is shown that the likeblod ratio distribution function
of rf‘n’k is @ mean preserving spread of thatr@;t(_l, the rank in a contest af — 1
participants. The claim then follows from Kim’s (1995) résun the standard agency
setting.

From (7), the likelihood ratid’% is given by Elr'j‘;ﬁ]. Yet, from a triangle rule
in order statistics (see Arnold et al., Theorem 5.3.1), etqiens of order statistics

are related as follows:

JENCSE ]+ (n— ENrSS = nElirE ). (31)

k

This can be exploited to construct the likelihood ratiomlisttion function ofr;, from

that ofri'fm1 by a sequence of mean preserving spresadg=1,...,n— 1, wheres;
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is defined as follows:
L for ElIrY)
Sj=4 —=1; for E[Irlj‘ﬁ N

1
| "gtp forEir <

Thus,s; distributes the probability masg (in— 1) of E[I in— 1] to E[I ] and E[Ir i n]

It is a spread (which defers probability mass to the tails dfistribution) because

[ ]<E[Irln 1 <Elr JJrln] and it is mean preserving because
1 K, 1 n—j 1 ka
Els] = ———Elr; - 1 [”Jn 1]+_ﬁE[|rjf1:n]
11 K
=~ (JEr§a —nElr§a_ o)+ (n— ENrfA,)) =0

by the triangle rule (31) and the fact tha{IE[IrJ ol 1]} — E[Irka] = 0. The resulting

probabilities

are those in the contest nfagents. a
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