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Abstract

We consider the problem of mechanism design by a principal who
has private information. We point out a simple condition under which
the privacy of the principal’s information is irrelevant in the sense
that the mechanism implemented by the principal coincides with the
mechanism that would be optimal if the principal’s information were
publicly known. This condition is then used to show that the privacy
of the principal’s information is irrelevant in many environments with
private values and quasi-linear preferences, including the Myerson’s
classical auction environments in which the seller is privately informed
about her cost of selling. Our approach unifies results by Maskin and
Tirole, Tan, Yilankaya, Skreta, and Balestrieri. We also provide an
example of a classical principal-agent environment with private values
and quasi-linear preferences where a privately informed principal can
do better than when her information is public.
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1 Introduction

The optimal design of mechanisms in the presence of privately informed
market participants is central to economics. Under the assumption that
all participants have quasi-linear preferences over market outcomes, a rich
theory has emerged (see, e.g., the books by Krishna (2002) and Milgrom
(2004)). A caveat in much of this theory is that the mechanism proposer
(the principal) is assumed to have no private information although, in many
applications, she is one of the market participants and, as such, should have
private information. For example, often the designer of an auction is in
fact the seller of the auctioned good and is privately informed about her
opportunity cost of selling.1

Private information held by the principal changes her mechanism de-
sign problem into an “informed-principal problem.” On the one hand, she
may gain by withholding her private information at the mechanism proposal
stage.2 On the other hand, the privacy of the principal’s information may
harm her because she faces incentive constraints.3 In this paper, we point
out a simple condition (*), described below, which guarantees that the pri-
vacy of the principal’s information is irrelevant, in the sense that a privately
informed principal offers the same mechanism as when her information is
public.

We show that condition (*) is satisfied in many quasi-linear environments.
In particular, condition (*) is satisfied in Myerson’s (1981) classical auction
environments in which the seller is privately informed about her opportu-
nity cost of selling, implying that the seller’s optimal auction mechanism
is the same as when her cost is publicly known;4 this result holds even if
Myerson’s regularity condition (1981, p. 66) is not satisfied. Condition (*)

1Other examples abound. For instance, in settings of mechanism design with collusion
(e.g., Laffont and Martimort (1997), p. 7, footnote 8, Che and Kim (2006), p. 1093,
Quesada (2004), and Mookherjee and Tsumagari (2004), footnote 7, p. 1186) the proposer
of a collusive side contract may act as an informed principal.

2Maskin and Tirole (1990) demonstrate this for a class of environments with non-quasi-
linear preferences.

3To see this, consider Akerlof’s (1970) lemons market with the seller being the principal.
If the seller’s quality type is public, then she can extract all rents, but this is not incentive
compatible for low-quality types if the seller’s type is her private information.

4This result can be used to justify a posteriori corresponding assumptions in a number
of models of auctions with resale; see, e.g., Zheng (2002), p. 2201, Haile (2003), footnote
19, p. 13, Garratt et al. (2008), Hafalir and Krishna (2008).
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is also satisfied in the classical principal-agent environments of Guesnerie
and Laffont (1984) under a certain regularity assumption. Versions of con-
dition (*) underly a number of earlier results involving informed principals
(cf. Maskin and Tirole (1990, Proposition 11), Tan (1996), Yilankaya (1999),
and Balestrieri (2008)).

To state condition (*), we need three standard concepts. A full-inform-
ation-optimal allocation rule5 (mechanism) is the collection of the allocation
rules that are optimal for each (information) type of the principal when her
type is publicly known. An allocation rule is ex-ante optimal if it maximizes
the principal’s ex-ante expected payoff (before she observes her own type).
An environment has private values if the principal’s type does not enter the
payoff functions of the other players (the agents).6

The privacy of the principal’s information is irrelevant under the following
simple condition7

(*): The environment has private values, and there exists a full-
information-optimal allocation rule that is ex-ante optimal.

The crucial implication of condition (*) is that there exists a full-information
optimal allocation rule that is a strong solution in the sense of Myerson
(1983). If an allocation rule is a strong solution, then it should be considered
a solution of the informed-principal problem; in particular, a strong solution
is a perfect Bayesian equilibrium outcome of a non-cooperative mechanism-
proposal game.8 9 Furthermore, if there are multiple strong solutions, they
yield the same payoffs to the principal.

5This term was coined by Maskin and Tirole (1990).
6Our definition of “private values” allows that the agents’ types enter the principal’s

payoff function, and that the agents’ payoff functions are interdependent.
7Condition (*) does not cover environments with non-private (“common”) values. In

common-value environments, full-information-optimal allocation rules are typically not
incentive compatible for the principal. Maskin and Tirole (1992) compute perfect Bayesian
equilibria of informed-principal games in various common-value environments.

8For environments where no strong solution exists, Myerson (1983) proposes a concept
neutral optimum as a solution to the informed-principal problem. A neutral optimum
exists in any environment with finite type spaces and a finite outcome space, and is a
perfect Bayesian equilibrium outcome. (Note that, in contrast to an apparently widespread
misunderstanding, strong solution and neutral optimum are not concepts of cooperative
game theory. Rather, they are based on axioms that serve as a device for selecting among
the non-cooperative equilibrium outcomes.)

9In the terminology employed by Maskin and Tirole (1992) for their treatment of
common-value environments, a strong solution is an interim efficient Rothschild-Stiglitz-
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The fact that condition (*) is satisfied in many environments with inde-
pendent private values and quasi-linear preferences may lead to the conjec-
ture that (*) is always satisfied in such environments. We provide a coun-
terexample, using a principal-agent environment that belongs to the class
of Guesnerie and Laffont (1984); in the example, “bunching” occurs in the
full-information optimal allocation rule, but not in the ex-ante optimal allo-
cation rule.10 A failure of condition (*) can also occur if an agent is budget
constrained: we provide an example where the principal extracts the entire
surplus in the ex-ante optimal allocation rule, but not in the full-information
optimal allocation rule.

Maskin and Tirole (1990, Proposition 11) were the first to point out
that the privacy of the principal’s private information is irrelevant in some
quasi-linear environments with independent private values.11 This result has
also been obtained in a number of other quasi-linear environments: a pro-
curement environment in which the buyer has private information about his
marginal valuation (Tan 1996), the Myerson-Satterthwaite bargaining envi-
ronment (Yilankaya 1999), an auction environment in which the auctioneer
has private information about the bidders’ valuations (Skreta 2008), and a
procurement environment in which the buyer’s private information is his com-
patibility with the suppliers’ inputs (Balestrieri 2008). A version of condition
(*) is satisfied in all of these environments and is explicit in the arguments
in Tan (1996) and Yilankaya (1999).

The remainder of the paper is organized as follows. In Section 2 we present
the model and condition (*). Applications of condition (*) are treated in
Section 3. Section 4 contains (counter-)examples.

Wilson allocation rule. Lemma 6.3 in Tirole (2006) provides sufficient conditions for
existence of a strong solution in such environments.

10The example also shows that Maskin and Tirole’s (1990, Proposition 11) result does
not generalize beyond the case of two agent types without further regularity assumptions.

11Maskin and Tirole allow for one agent and two types and impose conditions that
restrict the set of relevant incentive and participation constraints. Their techniques are
very different from ours. In particular, Maskin and Tirole refer to the shadow values
(Lagrange multipliers) of the agent’s incentive and participation constraints. Extending
their approach to environments with continuous type spaces such as those commonly used
in auction theory appears difficult.

3



2 Model

We consider the interaction of a principal (player 0) and n agents (players
i ∈ N = {1, . . . , n}). The players must collectively choose an outcome from
a set

Z = A× [−x̂, x̂]n,

where [−x̂, x̂]n represents the set of feasible vectors of monetary transfers
from the agents to the principal,12 and the compact metric space A represents
a set of verifiable collective actions.13 For example, A = {0, 1, . . . , n} may
represent an environment where the collective action is the allocation of a
single unit of a private good among the principal and the agents.

Every player i = 0, . . . , n has a type ti that belongs to a compact type space
Ti ⊆ IR.14 The product of agents’ type spaces is denoted T = T1 × · · · × Tn.
Player i’s payoff function is denoted

ui : Z × T0 ×T→ IR,

We restrict attention to quasi-linear payoff functions: for all i ∈ N , a ∈ A,
x ∈ [−x̂, x̂]n, t0 ∈ T0, and t ∈ T,

ui(a,x, t0, t) = vi(a, t0, t)− xi, (1)

u0(a,x, t0, t) = v0(a, t0, t) + x1 + · · ·+ xn, (2)

for some values functions v0, . . . , vn. We assume that, for all i = 0, . . . , n,
the family of functions (vi(a, ·) : T0 × T → IR)a∈A is equi-continuous, that
vi(·, t0, t) : A → IR is measurable for all t0 ∈ T0 and t ∈ T, and that vi is a
bounded function.

An environment has private values if the agents’ payoff functions are
independent of the principal’s type, that is, if

∀i ∈ N, a ∈ A, t0, t′0 ∈ T0, t ∈ T : vi(a, t0, t) = vi(a, t
′
0, t).

12The assumption that transfers are bounded by some (arbitrarily large) number x̂
guarantees that stochastical expectations are finite throughout the analysis.

13For treatments of the informed-principal problem in settings with non-verifiable ac-
tions (that is, in moral-hazard settings), see Beaudry (1994), Bond and Gresik (1997),
Chade and Silvers (2002), Jost (1996), and Mezzetti and Tsoulouhas (2000).

14One-dimensional type spaces are sufficient for all our applications. The results of
Section 2 carry over to multi-dimensional type spaces.
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According to this definition, in a private-value environment it is still possi-
ble that the agents’ payoff functions are interdependent, and the principal’s
payoff function may depend on the agents’ types.

We assume that the types t0, . . . , tn are realizations of stochastically in-
dependent15 random variables with cumulative probability distribution func-
tions F0, . . . , Fn, where the support of Fi equals Ti. We call Fi the prior
distribution for player i’s type. The joint distribution of agents’ types (ex-
cluding the principal) is denoted F. We will use the notation t−i for the
vector of types of the agents other than i (also excluding the principal), use
T−i for the respective product of type spaces, and use F−i for the respective
product of c.d.f.s.

The interaction leads to a probability distribution over outcomes. Any
probability distribution over transfer vectors leads to a vector of expected
transfers. Hence, if we identify any payoff-equivalent distributions, the set of
probability distributions over outcomes is given by

Z = A× [−x̂, x̂]n,

where A denotes the set of probability measures on A; any element of A
is also called a collective action.16 We identify any a ∈ A with the point
distribution that puts probability 1 on the point a; hence, A ⊆ A.17 We

15If types are correlated, a rather different analysis is required: typically, a privately
informed principal will be strictly better off than if her information is public; see Cella
(forthcoming) and Severinov (2008).

16We endow A with the smallest σ-algebra such that, for every measurable set B ⊆
A, the mapping mB : A → [0, 1], α 7→ α(B) is measurable. Given this σ-algebra,
any uncertainty about outcomes in A can be equivalently described as uncertainty about
outcomes in A. Formally, any probability measure P on A can be identified with a
probability measure αP on A, via the definition

αP (B) =
∫
A
α(B)P (dα) for every measurable B ⊆ A.

17Observe that, if M is an arbitrary measurable space and if a mapping f :M→ Z is
measurable with respect to the σ-algebra on A, then f is also measurable when viewed as
a mapping into A (the reason is that the composite mapping mBf is measurable for every
measurable B ⊆ A.
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extend the definition of vi via the statistical expectation: for all α ∈ A,18

vi(α, t0, t) =

∫
vi(a, t0, t) α(da) (i ∈ N),

v0(α, t0, t) =

∫
v0(a, t0, t) α(da).

Fixing some collective action a0 ∈ A, we normalize vi(a0, t0, t) = 0 for all
i ∈ I, t0 ∈ T0, and t ∈ T. We call z0 = (a0, 0, . . . , 0) the disagreement
outcome.

The interaction is described by the following informed-principal game.
First, each player privately observes her type ti. Second, the principal offers
a mechanism M (chosen from some set of feasible game forms). Third, the
agents decide simultaneously whether or not to accept M . If M is accepted
unanimously, each player chooses a message in M , and the outcome specified
by M is implemented. If at least one agent rejects M , the disagreement
outcome z0 is implemented.

An allocation rule is any measurable function

ρ : T0 ×T→ Z, (t0, t) 7→ ρ(t0, t)

that assigns an outcome ρ(t0, t) to every type profile (t0, t). Thus, an allo-
cation rule describes the outcome of the players’ interaction as a function of
the type profile. Alternatively, an allocation rule ρ can be interpreted as a
direct mechanism, where the players i = 0, . . . , n simultaneously announce
types t̂i ∈ Ti and the outcome ρ(t̂0, . . . , t̂n) is implemented.

Strong solution

Myerson (1983) argues that a particular allocation rule, called strong solution,
should be considered a solution of the informed-principal game whenever a
strong solution exists. Myerson introduces the concept of a strong solution
for environments with finite type spaces and finite outcome spaces, and shows
that a strong solution always is a perfect Bayesian equilibrium outcome of
an informed-principal game. We extend the concept of a strong solution to
non-finite environments.

18Observe that the extended mapping vi : A × T0 × T → IR inherits the following
properties: the family of functions (vi(α, ·) : T0 × T → IR)α∈A is equi-continuous, the
function vi(·, t0, t) : A → IR is measurable for all t0 ∈ T0 and t ∈ T, and vi is bounded.
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A direct mechanism is called safe for the principal if no type of any player
has an incentive to deviate from announcing her true type or can gain from
refusing to participate, and if this would remain so even if all agents knew
the principal’s true type. To state this formally, define the agents’ payoffs

Uρ
i (t̂i, ti, t0) =

∫
T−i

ui(ρ(t0, t̂i, t−i), t0, (ti, t−i)) F−i(dt−i)

(i ∈ N, t̂i, ti ∈ Ti, t0 ∈ T0)

and the principal’s payoff

Uρ
0 (t̂0, t0) =

∫
T

u0(ρ(t̂0, t), t0, t) F(dt) (t̂0, t0 ∈ T0).

A direct mechanism ρ is safe if

∀i ∈ N, ti, t̂i ∈ Ti : Uρ
i (ti, ti, t0) ≥ Uρ

i (t̂i, ti, t0), (3)

∀i ∈ N, ti ∈ Ti : Uρ
i (ti, ti, t0) ≥ 0, (4)

∀t0, t̂0 ∈ T0 : Uρ
0 (t0, t0) ≥ Uρ

0 (t̂0, t0). (5)

A direct mechanism is called incentive feasible if no type of any player has an
incentive to deviate from announcing her true type or can gain from refusing
to participate, given the prior type distributions. To state this formally,
define the agents’ payoffs

Uρ
i (t̂i, ti) =

∫
T0

Uρ
i (t̂i, ti, t0) F0(dt0) (i ∈ N, t̂i, ti ∈ Ti).

A direct mechanism ρ is called incentive feasible if it satisfies the condition
(5) and the conditions

∀i ∈ N, ti, t̂i ∈ Ti : Uρ
i (ti, ti) ≥ Uρ

i (t′i, ti), (6)

∀i ∈ N, ti ∈ Ti : Uρ
i (ti, ti) ≥ 0. (7)

An incentive feasible direct mechanism ρ is called dominated if there exists an
incentive feasible direct mechanism ρ′ such that all types of the principal are
at least as well off in ρ′ as in ρ, and a positive mass of types of the principal
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is strictly better off in ρ′.19 A safe direct mechanism that is not dominated
is called a strong solution.

Strong solutions yield a unique payoff prediction for the principal: if
there are multiple strong solutions, each type of the principal obtains the
same payoff in any of these.20

Perfect Bayesian Equilibrium

Myerson (1983, Theorem 2) proves that in any environment with finite type
spaces and a finite outcome space, a strong solution is a perfect Bayesian equi-
librium outcome of an informed-principal game where any finite simultaneous-
move game form is a feasible mechanism. As for extending the definition of
the informed-principal game to environments with infinite type spaces, it is
not obvious which game forms should be considered feasible mechanisms;
note that a direct mechanism is not a finite game form.

Here we sketch a proof that, if all types of the principal offer a given strong
solution as a direct mechanism, then, for any deviating finite (simultaneous-
move or multi-stage) game form, we can construct off-path beliefs about the
principal’s type such that no type of the principal has an incentive to deviate
by offering this game form as a mechanism. Formally, we compute perfect
Bayesian equilibria under the assumption that the set of feasible mechanisms
equals the set of finite game forms together with the set of direct mechanisms
that are strong solutions.21

Let M denote any strong solution. The idea for constructing a perfect
Bayesian equilibrium with outcome M is as follows. All types of the prin-
cipal propose M as a direct mechanism; agents’ retain their prior beliefs,

19The seemingly weaker alternative requirement that “a single type of the principal is
strictly better off in ρ′” is in fact not weaker. Using the equi-continuity assumption and
(6), it can be shown that the function t0 7→ Uρ0 (t0, t0) is continuous. Hence, if some type
t∗ is strictly better off in ρ′, then all types in some open neighborhood N of t∗ are strictly
better off in ρ′. Because the support of F0 equals T0, the F0-probability of the set T0 \N
is less than 1.

20For any two strong solutions ρ1 and ρ2, one can construct a third strong solution ρ3

by choosing for each type of the principal the better of the two allocation rules (because ρ1

and ρ2 are safe, ρ3 is safe as well). If there was a type t∗ that is better off in ρ3 compared
to ρ1 or ρ2, then ρ3 would dominate ρ1 or ρ2, a contradiction.

21Allowing a larger set of feasible mechanisms may be desirable, but such an extension
is beyond us: There are many general Bayesian Nash equilibrium existence results for
non-finite incomplete-information games (see, e.g., Reny (2008)), but to the best of our
knowledge virtually none about existence of perfect Bayesian equilibria.
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accept M , and everybody reveals their true type. It remains to define the
agents’ beliefs about the principal’s type, and everybody’s actions, when the
principal deviates by proposing any mechanism Md 6= M .22

Consider an auxiliary game G(Md) where the principal chooses between
either directly obtaining her strong-solution payoff and the game ends, or
offering the mechanism Md which may be accepted or rejected and is played
if unanimously accepted. Because Md is a finite game form, it can be shown
that a perfect Bayesian equilibrium exists in the game G(Md).23 We can
construct actions and beliefs such that a deviation to Md is not profitable.
Simply define the beliefs and subsequent actions in the informed-principal
game when Md is proposed to be identical to the beliefs and subsequent
actions when Md is proposed in the equilibrium of G(Md).

To show that the described strategies and beliefs form an equilibrium
of the informed-principal game, let T (Md) denote the set of types of the
principal that by proposing Md obtain a higher payoff than their strong-
solution payoff. We have to show that T (Md) = ∅.

Extend the perfect Bayesian equilibrium in G(Md) to a strategy pro-
file in a restricted informed-principal game where the only feasible mech-
anisms are M and Md, as follows. Every type of the principal proposes
M in the restricted informed-principal game if and only if she chooses the
strong-solution payoff in the equilibrium of the game G(Md), all types of
all agents accept M if it is offered, and everybody reveals their true types
in M . The so-constructed strategy profile is a perfect Bayesian equilibrium
in the restricted informed-principal game because M is safe. The allocation
rule implemented by this perfect Bayesian equilibrium would dominate M if
T (Md) were non-empty. Because M is a strong solution, T (Md) = ∅.

Next we introduce two definitions that are needed to state condition (*).

22In general, equilibrium requires that the agents switch away from prior beliefs when
Md is proposed. Yilankaya (1999) provides an insightful example involving the bilateral
trade environment of Myerson and Satterthwaite (1983), with the seller being the principal.
The strong solution is constructed from optimal take-it-or-leave-it offers by all types of
the seller. If prior beliefs about the seller are retained, some seller types may have an
incentive to deviate by proposing a double auction mechanism.

23In environments with finite type spaces, G(Md) is a finite game, so that equilibrium
existence is well known. This fact is utilized in Myerson’s (1983, Theorem 2) proof.
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Full-information optimality

Consider the hypothetical environment where the principal’s type is com-
monly known. If each type of the principal uses a payoff-maximizing mech-
anism, we obtain a full-information optimal allocation rule,24 that is, an
allocation rule that solves problem P (t0) for all t0 ∈ T0,

P (t0) : max
ρ
Uρ

0 (t0, t0)

s.t. (3), (4).

Ex-ante optimality

An allocation rule is ex-ante optimal if it maximizes the principal’s expected
payoff in the hypothetical environment where the players do not yet know
her own type. Formally, ρ is called ex-ante optimal if it solves problem

E : max
ρ

∫
T0

Uρ
0 (t0, t0) F0(dt0)

s.t. (5), (6), (7).

We now state condition

(*): The environment has private values, and there exists a full-
information-optimal allocation rule that is ex-ante optimal.

To understand the significance of condition (*) for the informed-principal
problem, observe that, firstly, an ex-ante optimal rule cannot be dominated,
and, secondly, in private-value environments, any full-information optimal
allocation rule is incentive feasible and, in fact, safe. Hence:25

Lemma 1. If (*) is satisfied, then there exists a full-information-optimal
allocation rule that is a strong solution.

In Section 3 we provide applications of this lemma. In Section 4, we
provide an example of a private-value environment where (*) is violated;
in the example, the ex-ante optimal allocation rule is a perfect Bayesian
equilibrium outcome that dominates any full-information-optimal allocation
rule, and no strong solution exists.

24The terminology follows Maskin and Tirole ((1990), Section 2.C)). Clippel and Minelli
(2004) use the term “best safe.”

25Lemma 1 extends straightforwardly to environments with arbitrary non-quasi-linear
payoff functions, but in this paper we consider only quasi-linear applications.
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3 Applications

In this section, we present two applications of Lemma 1. First, we consider an
extension of Myerson’s (1981) auction environments in which the auctioneer
(seller) has private information. A single unit of a good is to be allocated
among the players, A = {0, . . . , n}. Initially, the good is owned by the
principal, a0 = 0. Hence, the principal is the “seller” and the agents are
“buyers.” Any distribution over A can be described by a vector listing the
probability that each buyer gets the good; i.e.,

A = {(q1, . . . , qn) | qi ≥ 0 ∀i,
∑
j∈N

qj ≤ 1}.

Each buyer i ∈ N has an interval type space Ti = [ti, ti] (the seller’s type
space is arbitrary). The distributions Fi are continuously differentiable with
strictly positive density fi on Ti. Define f and f−i analogously to F and F−i.
Defining payoff functions as in (1) and (2), the value function of any player
i = 0, . . . , n is given by

vi(a, t0, t) =

{
ti +

∑
j∈N\{i} ej(tj) if a = i,

0 otherwise,

where e1, . . . , en are called “revision effect functions” (cf. 1981, p. 60).
Observe that this definition yields private-value environments, so that we

can use the shorter notation vi(a, t) for all agents i ∈ N . Still, the buyers’
valuations of the good can be interdependent, and the seller’s valuation can
depend on the buyers’ types.

Myerson (1981, p. 68) defines functions ci : Ti → IR (i ∈ N). Analogously
to Myerson (1981, p. 68), but making the dependence on the principal’s type
explicit, we define a set

M(t0, t) = {i ∈ N | t0 ≤ ci(ti), i ∈ arg max
j∈N

cj(tj)}.

From Myerson (1981, p. 69), a full-information optimal allocation rule
(p, x) = ((p1, . . . , pn), (x1, . . . , xn)) is given by

pi(t0, t) =

{
1/|M(t0, t)| if i ∈M(t0, t),
0 otherwise.

and

xi(t0, t) = pi(t0, t)vi(t)−
∫ ti

ti

pi(t0, t−i, si)dsi. (8)
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Proposition 1. In Myerson’s auction environments, the full-information
optimal allocation rule (p, x) is ex-ante optimal and is a strong solution.

The proof relies on Lemma 2, which is an ex-ante version of Myerson’s
Lemma 3 (1981, p. 64). For any i ∈ N , ti ∈ Ti, and p = (p1, . . . , pn), define

Qp
i (ti) =

∫
T0

∫
T−i

pi(t0, t)f−i(t−i)dt−i dF0(t0).

Define functions ci : Ti → IR (i ∈ N) as in Myerson (1981, p. 66).

Lemma 2. Suppose that p solves

max
p:T0×T→A

∫
T0

∫
T

∑
i∈N

(ci(ti)− t0)pi(t0, t)f(t)dtdF0(t0)

s.t. ti 7→ Qp
i (ti) is weakly increasing on Ti. (9)

Suppose also that (p, x) satisfies (8) with (p, x) replaced by (p, x), and that
ρ = (p, x) satisfies (5). Then (p, x) is ex-ante optimal.

Proof. Using an ex-ante version of Lemma 2 in Myerson (1981), one
argues analogously to the proof of Myerson (1981, Lemma 3). The seller’s
objective in problem E can be rewritten as∫

T0

∫
T

∑
i∈N

(ci(ti)− t0)pi(t0, t)f(t)dtdF0(t0)

+

∫
T0

∫
T

∑
i∈N

v0(t0, t)f(t)dtdF0(t0) −
∑
i∈N

U
(p,x)
i (ti, ti).

The constraints (6) and (7) can be rewritten as (9) and∫
T0

∫
T

(
vi(t)pi(t0, t)−

∫ ti

ti

pi(t0, si, t−i)dsi − xi(t0, t)

)
f−i(t−i)dtdF0(t0)

= U
(p,x)
i (ti, ti) ≥ 0. (10)

Given any p, if we choose x such that (p, x) satisfies (8) with (p, x) replaced

by (p, x), then U
(p,x)
i (ti, ti) = 0, which is the best the principal can achieve,

and (10) is also satisfied. Hence, choosing p as described in the statement of
the lemma corresponds to a relaxed version of problem E, without constraint
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(5). If the solution to the relaxed problem happens to satisfy (5), then (p, x)
solves E. QED

Proof of Proposition 1. Because (p, x) is full-information optimal and the
environment has private values, constraint (5) is satisfied. It remains to show
that p solves the program in Lemma 2.

Define functions Hi, Gi (i ∈ N) as in Myerson (1981, p. 68). Analogous
to an argument by Myerson (1981, (6.10)), the objective in Lemma 2 can be
rewritten as ∫

T0

∫
T

∑
i∈N

(ci(ti)− t0)pi(t0, t)f(t)dtdF0(t0)

−
∑
i∈N

∫
Ti

(Hi(Fi(ti))−Gi(Fi(ti)))dQ
p
i (ti)︸ ︷︷ ︸

=:∆p(ti)

. (11)

Analogously to Myerson (1981, p. 69-70), one argues that the constraint (9)
implies ∆p(ti) ≥ 0. Moreover, ∆p(ti) = 0 and p = p is such that

∑
i∈N(ci(ti)−

t0)pi(t0, t) is maximal for each type profile (t0, t). Hence, (11) is maximized
at p = p, subject to the constraint (9). QED

Proposition 1 does not claim that the perfect Bayesian equilibrium out-
come is unique. But the principal’s payoff is uniquely determined if there is
only one agent.

Remark 1. Consider Myerson’s auction environments with a single agent,
|N | = 1. Then in any equilibrium of an informed-principal game where any
fixed-price offer is a feasible mechanism, each type of the principal obtains
the same expected payoff as in (p, x).

Proof. As shown by Myerson (1981, p. 70), each type of the principal
can obtain her full-information-optimum payoff by making an optimal fixed-
price offer; hereby the agent’s belief about the principal’s type is irrelevant.
Because the principal is free to deviate to any fixed-price offer, this yields a
lower bound for her payoff in any equilibrium. There cannot be an equilib-
rium where some type of the principal obtains more, because the allocation
rule induced by this equilibrium would dominate (p, x), contradicting the
fact that (p, x) is a strong solution. QED

13



In the proof of Remark 1 we use the fact that the continuation game
following the proposal of a fixed-price mechanism has a unique equilibrium
independently of the agent’s belief about the principal’s type. With multiple
agents, such uniqueness cannot be obtained, so that we cannot prove a result
parallel to Remark 1.

As a second application, we consider Guesnerie and Laffont’s (1984, case
B) quasi-linear principal-agent environments (with the planner’s shadow cost
parameters being equal to 1).26 We extend their model by allowing for a pri-
vately informed principal. In addition, we allow for multiple agents. For
example, the principal may be a multi-product price-discriminating monop-
olist who is privately informed about the cost of production, while the agents
are consumers who are privately informed about their preferences over the
products.

We have a, possibly multi-dimensional, set of collective actions, A ⊆ IRL

(L ≥ 1) (for instance, a set of multi-product quantity vectors). We assume
that A is a rectangle with non-empty interior. Agents’ type spaces and beliefs
are as in Myerson’s (1981) model; in addition, we assume that Fi (i ∈ N) is
twice differentiable and the hazard rate

fi
1− Fi

is weakly increasing. (12)

We assume private values; accordingly, defining payoff functions as in (1) and
(2), we drop the argument t0 from the agents’ value functions v1, . . . , vn. We
assume the players’ value functions are once continuously differentiable in the
action, twice continuously differentiable in the type vector, and supermodular
(in the negatives of the actions): for all t0 ∈ T0, t ∈ T, (a1, . . . , aL) ∈ A,
k = 1, . . . , L, i ∈ N , and j ∈ N ∪ {0},

∂2vj
∂ak∂ti

≤ 0. (13)

Our application of condition (*) in Proposition 2 relies on a third-derivative
condition (cf. Fudenberg and Tirole, 1991, p. 263, l.h.s. in A8) that, in

26Our exposition is based on Fudenberg and Tirole (1991, Ch. 7) . In contrast to
Fudenberg and Tirole, we apply monotone comparative statics (Milgrom and Shannon,
1994), which makes some of Fudenberg and Tirole’s assumptions (1991, p. 263, A6, A9,
r.h.s. in A8) obsolete.
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particular, requires agents’ marginal values to be concave in own types: for
all t ∈ T, (a1, . . . , aL) ∈ A, k = 1, . . . , L, and i, j ∈ N ,

∂3vi
∂ak∂ti∂tj

≥ 0. (14)

Without (14), condition (*) can fail (Proposition 3).
Finally, in order to be able to apply condition (*) in environments with

multi-dimensional actions (L > 1), we need action cross-derivative condi-
tions: for all t0 ∈ T0, t ∈ T, (a1, . . . , aL) ∈ A, k 6= l, and i ∈ N ∪ {0},

∂2vi
∂ak∂al

≥ 0, (15)

and, if i ∈ N ,

∂3vi
∂ak∂al∂ti

≤ 0. (16)

(Note that conditions (15) and (16) are empty if L = 1.)
To square the current model with our extension of Myerson, suppose

for simplicity that there is only one agent (n = 1). Then the Myerson
value functions can be equivalently written as v0(a, t0, t1) = a(t0 + e1(t1))
and v1(a, t1) = (1 − a)t1, where the collective action a ∈ A = [0, 1] is the
probability that the seller keeps the good. Because (12) and (13) may be
violated in our extension of Myerson, Proposition 1 is not a special case of
Proposition 2 below.

Of importance for the analysis is the derivative of the value function of
any agent i ∈ N with respect to her own type,

Dvi(a, t) :=
∂vi
∂ti

(a, t) (a ∈ A, t ∈ T).

It is useful to write any allocation rule ρ as a pair consisting of an action
allocation rule µ : T0×T→ A and a transfer allocation rule τ = (τ1, . . . , τn) :
T0 ×T→ [−x̂, x̂]n; that is, ρ = (µ, τ).

For all a ∈ A, t0 ∈ T0, and t ∈ T, define the virtual surplus function

V (a, t0, t) = v0(a, t0, t) +
n∑
i=1

(
vi(a, t)− 1− Fi(ti)

fi(ti)
Dvi(a, t)

)
.
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Define an action allocation rule µ∗ via

µ∗(t0, t) ∈ arg max
a∈A

V (a, t0, t), (17)

and a transfer allocation rule τ ∗ = (τ ∗1 , . . . , τ
∗
n) via

τ ∗i (t0, t) = vi(µ
∗(t0, t), t)−

∫ ti

ti

Dvi(µ
∗(t0, s, t−i), (s, t−i))ds (i ∈ I).

(18)

We have the following result.

Proposition 2. Suppose that the conditions (12)–(16) are satisfied. Then
there exists (µ∗, τ ∗) satisfying (17) and (18) that is full-information optimal
and ex-ante optimal. Hence, (µ∗, τ ∗) is a strong solution.

For the proof, additional notation is needed. Let t̃0, . . . , t̃n denote stochas-
tically independent random variables with c.d.f.s. F0, . . . , Fn. Let t̃ = (t̃i)i∈N
and t̃−i = (t̃j)j∈N\{i}. For all i ∈ N , ti, t

′
i ∈ Ti, action allocation rules µ, and

t0 ∈ T0, let

vµi (t′i, ti, t0) = E[vi(µ(t0, t
′
i, t̃−i), (ti, t̃−i))]

and

Dvµi (t′i, ti, t0) = E[Dvi(µ(t0, t
′
i, t̃−i), (ti, t̃−i))].

Because Dvi is bounded, Lebesgue’s monotone convergence theorem implies

Dvµi (t′i, ti, t0) =
∂

∂ti
vµi (t′i, ti, t0). (19)

Given any action allocation rule µ, we can ask whether µ satisfies the t0-
monotonicity constraints∫ ti

t′i

(Dvµi (s, s, t0)−Dvµi (t′i, s, t0)) ds ≥ 0 (t′i ≤ ti), (20)∫ t′i

ti

(Dvµi (s, s, t0)−Dvµi (t′i, s, t0)) ds ≤ 0 (t′i ≥ ti). (21)
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Defining Dvµi (t′i, s) = E[Dvµi (t′i, s, t̃0)], we can also ask whether the fol-
lowing average monotonicity constraints are satisfied:∫ ti

t′i

(Dvµi (s, s)−Dvµi (t′i, s)) ds ≥ 0 (t′i ≤ ti), (22)∫ t′i

ti

(Dvµi (s, s)−Dvµi (t′i, s)) ds ≤ 0 (t′i ≥ ti). (23)

Lemma 3 below gives a sufficient condition for ex-ante optimality of an allo-
cation rule. The condition requires that the action allocation rule maximizes
the expected virtual surplus under the average monotonicity constraints.
Choosing a transfer allocation rule such that the agents’ incentive compati-
bility constraints are satisfied, we require that the principal’s incentive con-
straints (5) are satisfied as well.

Lemma 3. Suppose that µ solves

U ′ max
µ

E
[
V (µ(t̃0, t̃), t̃0, t̃)

]
s.t. (22), (23),

formula (18) is satisfied with (µ∗, τ ∗) replaced by (µ, τ), and ρ = (µ, τ) sat-
isfies (5).

Then (µ, τ) is ex-ante optimal. Moreover, the solution value of U ′ equals
the solution value of problem E.

Proof. Step 1. Under the constraints of the ex-ante optimality problem
E, its objective Uρ

0 = E[Uρ
0 (t̃0, t̃0)] can be written as

Uρ
0 = E

[
V (µ(t̃0, t̃), t̃0, t̃)

]
−

n∑
i=1

Uρ
i (ti, ti).

To see this, let ρ = (µ, τ) and write

Uρ
0 = E

[
v0(µ(t̃0, t̃), t̃0, t̃) +

n∑
i=1

(
vi(µ(t̃0, t̃), t̃)− Uρ

i (t̃i, t̃i)
)]
. (24)

Because of (6) and (19), the envelope theorem in integral form implies

Uρ
i (ti, ti) = Uρ

i (ti, ti) +

∫ ti

ti

Dvµi (s, s)ds. (ti ∈ Ti) (25)
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Using integration by parts, (25) implies

E[Uρ
i (t̃i, t̃i)] = Uρ

i (ti, ti) + E[
1− Fi(t̃i)
fi(t̃i)

Dvµi (t̃i, t̃i)]

= Uρ
i (ti, ti) + E[

1− Fi(t̃i)
fi(t̃i)

Dvi(µ(t̃0, t̃), t̃)]. (26)

From (24) and (26),

Uρ
0 = E

[
v0(µ(t̃0, t̃), t̃0, t̃)+

n∑
i=1

+
n∑
i=1

(
vi(µ(t̃0, t̃), t̃)− 1− Fi(t̃i)

fi(t̃i)
Dvi(µ(t̃0, t̃), t̃)

)]

−
n∑
i=1

Uρ
i (ti, ti).

Step 2. The constraint (6) implies (22) and (23).
By (6), for all i ∈ N and ti, t

′
i ∈ Ti,

Uρ
i (ti, ti)− Uρ

i (t′i, t
′
i) + Uρ

i (t′i, t
′
i)− U

ρ
i (t′i, ti) ≥ 0.

Hence, using (25), if t′i ≤ ti,∫ ti

t′i

Dvµi (s, s)ds + vi(µ(t̃0, t
′
i, t̃−i), t

′
i)− vi(µ(t̃0, t

′
i, t̃−i), ti) ≥ 0.

Hence, (22) is satisfied. The proof that the monotonicity constraint (23) is
satisfied is analogous.

Step 3. If (18) is satisfied with (µ∗, τ ∗) replaced by (µ, τ), then Uρ
i (ti, ti) =

0 for all i ∈ N , and (6) and (7) are satisfied.
Verifying this is straightforward.
By Step 1 and Step 2, if we choose (µ, τ) such that µ solves U ′ and such

that Uρ
i (ti, ti) = 0 for all i ∈ N , then we obtain an upper bound for the

solution value of the ex-ante optimality problem. By Step 3, this upper
bound is obtained. QED

Because Lemma 3 holds in particular if F0 puts probability 1 on one point
t0, we have an analogous result concerning full-information optimal allocation
rules.
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Lemma 4. Suppose that, for all t0 ∈ T0, µ solves

P (t0)′ max
µ

E
[
V (µ(t0, t̃), t0, t̃)

]
s.t. (20), (21),

and (18) is satisfied with (µ∗, τ ∗) replaced by (µ, τ).
Then (µ, τ) is full-information optimal. Moreover, the solution value of

problem P (t0)′ equals the solution value of problem P (t0).

Proof of Proposition 2. We show that (µ, τ) = (µ∗, τ ∗) satisfies the con-
ditions in Lemma 3 and in Lemma 4. Hence, condition (*) is satisfied and
Lemma 1 applies.

By construction (17), µ = µ∗ maximizes the objective in U ′ and the
objective in P (t0)′ for all t0 ∈ T0. It remains to show that µ∗ satisfies (20)
and (21) for all t0 ∈ T0 (then constraints (22) and (23) are satisfied as well,
and (5) is satisfied because (µ∗, τ ∗) is full-information optimal).

A sufficient condition for (20) and (21) is that Dvµ
∗

i is weakly increasing in
its first argument. Because, from (13), Dvi(a, t) is weakly decreasing in every
component of a, it is sufficient to show that every component of µ∗(t0, ti, t−i)
is weakly decreasing in ti. From Milgrom and Shannon (1994, Theorem 5,
Theorem 6) , a sufficient condition for this is that, for all k and l 6= k,

∂2V

∂ti∂ak
≤ 0,

∂2V

∂ak∂al
≥ 0.

The left inequality follows from a straightforward computation using (12),
(13), and (14). To see the right inequality, use (15) and (16). QED

4 Examples

In this section, we present two examples of quasi-linear environments in which
condition (*) is violated. Consider the principal-agent environments of Gues-
nerie and Laffont (Guesnerie and Laffont 1984) as defined above. The third-
derivative condition (14) of Guesnerie and Laffont, which is used for the main
result, Proposition 2, appears strong. We show by example that it cannot
be dropped. In the example, (14) is violated and no full-information optimal
allocation rule is ex-ante optimal.27

27The example also satisfies the assumptions of Maskin and Tirole (1990, Proposition
11), except that there are more than two types of the agent. Hence, the example qualifies
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Without condition (14), ex-ante optimal allocation rules and full-inform-
ation optimal allocation rules can still be computed using Lemma 3 and
Lemma 4. But the point-wise maximizer (17) may violate one of the mono-
tonicity constraints (20)–(23), so that “bunching” becomes optimal.

In the example, there is a unique point-wise maximizer (17) of the vir-
tual surplus function. This maximizer satisfies the average monotonicity
constraints (22) and (23), but violates (20) for some type of the principal.
Hence, the solution value of problem U ′ is strictly larger than the ex-ante
expectation of the solution value of problem P (t0)′. Moreover, it can be
checked that (µ∗, τ ∗) satisfies (5). Hence, by Lemma 3 and Lemma 4, in the
ex-ante optimum some type of the principal is strictly better off than in the
full-information optimum.

The example is as follows. Suppose that the support of F0 is T0 = {9, 49}.
We denote the probability of the point 9 by π = F0(9). There is a single
agent, n = 1, and F1 is the uniform distribution on T1 = [0, 1]. Observe that
F1 satisfies (12). The action space is A = [0, 3], with disagreement action
a0 = 0. The example features private values:

v0(a, t0) = −t0a2 + 400a, (a ∈ A, t0 ∈ T0),

v1(a, t1) = −350a− a2 − at1 + γ(a)t21, (a ∈ A, t1 ∈ T1),

where we use the auxiliary function

γ(a) =


0 if a ∈ [0, 1],
2a− a2 − 1 if a ∈ [1, 2],
3− 2a if a ∈ [2, 3].

Observe that γ is continuously differentiable, weakly decreasing, and weakly
concave.

It is straightforward to check that (13) is satisfied. As additional regu-
larity properties, the principal’s value function is strictly increasing in the
action, and the agent’s value function is strictly decreasing in the action.
Moreover, each player’s value function is strictly concave in the action.

Proposition 3. Consider the environment described above. Suppose that

5

2
π <

1

50
(1− π). (27)

a claim by Maskin and Tirole (1990, p. 384) that the “restriction of the agent’s parameter
to two values is not essential.”
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Then the allocation rule (µ∗, τ ∗) defined in (17)–(18) is ex-ante optimal, and
type t0 = 9 obtains a higher payoff than in any full-information optimal
allocation rule.

Proof. Observe that

Dv1(a, t1) = −a+ γ(a)(2t1) > 0. (28)

The virtual surplus function is given by

V (a, t0, t1) = −(t0 + 1)a2 + 50a− at1 + γ(a)t21
−(1− t1)(−a+ γ(a)(2t1)).

Using the formula

∂V

∂a
= −(t0 + 1)(2a) + 50 + 1− 2t1 + γ′(a) · (3t21 − 2t1),

one can verify that ∂V /∂a is strictly decreasing in a. Hence, V is strictly
concave in a. Using the first-order condition ∂V /∂a = 0 to maximize V , we
find

µ∗(t0, t1) =
50 + 1− 2t1 + γ′(µ∗(t0, t1))(3t21 − 2t1)

2(t0 + 1)
. (29)

Observe that this is an implicit equation because γ′ is evaluated at the point
µ∗(t0, t1). However, using the fact that γ′(a) ∈ [0,−2] for all a ∈ A, it is
straightforward to check that (29) implies

µ∗(49, t1) ∈ (0, 1), (30)

µ∗(9, t1) ∈ (2, 3). (31)

Hence,

γ′(µ∗(49, t1)) = 0, (32)

γ′(µ∗(9, t1)) = −2. (33)

Using (32) and (33) in (29), we find

µ∗(49, t1) =
51− 2t1

100
, (34)

µ∗(9, t1) =
51 + 2t1 − 6t21

20
. (35)
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Using (28) and (31), for all s, t′1 ∈ [0, 1],

Dv1(µ∗(9, t′1), s) = 24s− µ∗(9, t′1)(1 + 4s). (36)

Hence,

Dv1(µ∗(9, s), s)−Dv1(µ∗(9, t′1), s) = −(µ∗(9, s)− µ∗(9, t′1))(1 + 4s)

(35)
= −1 + 4s

10
(s− t′1)(1− 3(s+ t′1)).

(37)

For later use, observe that

| Dv1(µ∗(9, s), s)−Dv1(µ∗(9, t′1), s) | ≤ 5

2
| s− t′1 | . (38)

If 1/6 ≥ s > t′1 ≥ 0, then (37) implies

Dv1(µ∗(9, s), s)−Dv1(µ∗(9, t′1), s) < 0,

implying that the t0-monotonicity constraint (20) is violated at t0 = 9, t1 =
1/6, and t′1 < 1/6.

This shows that, at t0 = 9, the solution value of problem P (t0)′ must
be strictly smaller than the value obtained from µ = µ∗. Hence, in the full-
information optimal allocation rule, type t0 = 9 is strictly worse off than
with µ∗.

Analogously to (37), we find, for all s, t′1 ∈ [0, 1],

Dv1(µ∗(49, s), s)−Dv1(µ∗(49, t′1), s) =
s− t′1

50
. (39)

Now we turn to the average monotonicity constraints (22) and (23). For all
s, t′1 ∈ [0, 1], we have

Dvµ
∗

1 (t′1, s) = πDv1(µ∗(9, t′1), s) + (1− π)Dv1(µ∗(49, t′1), s).

Therefore, if s > t′1,

Dvµ
∗

1 (s, s)−Dvµ
∗

1 (t′1, s)

= π(Dv1(µ∗(9, s), s)−Dv1(µ∗(9, t′1), s))

+(1− π)(Dv1(µ∗(49, s), s)−Dv1(µ∗(49, t′1), s))
(38),(39)

≥ −5

2
π(s− t′1) +

1

50
(1− π)(s− t′1),
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which is greater than 0 because π satisfies (27). Hence, the average mono-
tonicity condition (22) is satisfied. The proof that (23) is satisfied is analo-
gous.

It follows that µ∗ solves problem U ′. Moreover, it can be verified that
ρ = (µ∗, τ ∗) satisfies (5): Uρ

0 (49, 49) = 7501/600 < −37523/200 = Uρ
0 (9, 49)

and Uρ
0 (9, 9) = 37523/600 > 22503/1000 = Uρ

0 (49, 9). Hence, (µ∗, τ ∗) is
ex-ante optimal by Lemma 3. QED

The allocation rule (µ∗, τ ∗) is not a strong solution (because the agent’s
incentive constraints are violated if she believes to face type t0 = 9 with
a sufficiently high probability). Nevertheless, (µ∗, τ ∗) is a perfect Bayesian
equilibrium outcome of an informed principal game: extending Maskin and
Tirole’s (1990) concept of a Strong Unconstrained Pareto Optimum (SUPO)
to the environment of the current example, it can be shown that any SUPO is
a perfect Bayesian equilibrium outcome of an informed-principal game (with
an appropriately restricted set of feasible mechanisms). By observing that
(µ∗, τ ∗) is an SUPO, we obtain the following result.

Remark 2. Suppose that (27) is satisfied. Then (µ∗, τ ∗) is a perfect Bayesian
equilibrium outcome of an informed-principal game.

Sketch of Proof. We want to show that (µ∗, τ ∗) is an SUPO. Suppose not.
Then there exists a belief F ′0 about the principal’s type, and an allocation
rule ρ that satisfies the agent’s constraints (6) and (7) with F0 replaced by
F ′0, such that ρ leaves all types of the principal at least as well off as (µ∗, τ ∗),
and some types are strictly better off in ρ.

Hence, if ρ is used, then the principal’s F ′0-ex-ante expected payoff is
larger than if (µ∗, τ ∗) is used. But µ∗ is a point-wise maximizer of the virtual
surplus function, and, by Lemma 3, yields an upper bound for the principal’s
F ′0-ex-ante expected payoff, a contradiction to the definition of SUPO. QED

The general principle at work in the example above is that the ex-ante
optimal allocation rule satisfies certain constraints (here, the monotonicity
constraints) on average over the principal’s types, but not for each type
separately. Hence, in the full-information-optimal allocation rule some type
of the principal is necessarily worse off.

The same principle is sometimes at work when the agent is budget-
constrained. What follows is an example where the principal extracts the
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entire surplus in the ex-ante optimal allocation rule, but not in the full-
information-optimal allocation rule.28 There is a seller (principal) and a
buyer (agent), who may trade up to three units of some good. The marginal
valuation is 1 for the buyer and 0 for the seller. The buyer has x̂ = 2 units of
money. The seller has one of two equally likely types: he owns either t0 = 1
units of the good or t0 = 3 units of the good (formally, A = {1, 3}, and the
seller’s payoff is v0 = −∞ if she hands out more than what she has). In this
example, the full-information-optimal allocation rule consists of allocating
the entire available amount of the good, a ∈ {1, 3}, to the buyer, and the
payment from the buyer to the seller is equal to min{a, 2}. In the ex-ante
optimal allocation rule, the buyer obtains the entire available amount of the
good for a payment of 2 units of money.

From Maskin and Tirole’s (1990) analysis it is clear that the techniques
used in this paper do not work beyond the class of quasi-linear environ-
ments. Maskin and Tirole present a class of environments with private val-
ues where (*) is violated; for generic non-quasi-linear payoff functions the
full-information optimal allocation rule is not a perfect Bayesian equilibrium
outcome of a suitably defined informed-principal game.
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