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Abstract

We propose two simple diagnostic tests for spatial error autocorrelation and spatial lag
dependence. The idea is to reformulate the testing problem such that the test statistics
are asymptotically equivalent to the familiar LM test statistics. Specifically, our version
of the test is based on a simple auxiliary regression and an ordinary regression t-statistic
can be used to test for spatial autocorrelation and lag dependence. We also propose a
variant of the test that is robust to heteroskedasticity. This approach gives practitioners
an easy to implement and robust alternative to existing tests. Monte Carlo studies show
that our variants of the spatial LM tests possess comparable size and power properties
even in small samples.

1 Introduction

Recent years have seen an increasing availability of regional datasets leading to a growing

awareness of spatial dependence (see Anselin 2007), an issue that can render ordinary least

squares (OLS) estimation and inference inefficient or even biased and inconsistent (see Krämer

and Donninger 1987, Anselin 1988b, Krämer 2003). Arguably the most commonly used test

for spatial dependence is Moran’s I (see Moran 1948, Cliff and Ord 1972, Cliff and Ord 1981),

which is based on regression residuals and which has been shown to be best locally invariant

by King (1981). In the maximum likelihood framework, Lagrange Multiplier test statistics

were proposed by Burridge (1980) against a spatial error alternative and Anselin (1988a)

against a spatial lag alternative.

∗We thank Peter Burridge, Raymond Florax, Walter Krämer, and participants at ESEM 2009 and the 3rd
World Conference of Spatial Econometrics for helpful comments. Please address correspondence to bborn@uni-
bonn.de or breitung@uni-bonn.de, University of Bonn, Institute of Econometrics, Adenauerallee 24-42, 53113
Bonn, Germany.
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We show that after a minor reformulation of the model, we can test for spatial dependence

by regressing the OLS residuals on their spatial lags and then testing the significance of the

spatial coefficient by an asymptotic t-test. Our approach allows us to formulate the LM tests

as NR2 expressions based on auxiliary regressions, something that cannot readily be done

with the standard formulation of the LM statistics (see Anselin 2001). This provides us with

an easily implementable test that can be generalized straightforwardly to accommodate het-

eroskedastic and non-normal disturbances. In an alternative approach, Baltagi and Li (2001)

use Davidson and MacKinnon’s (1984, 1988) double length artificial regression approach to

test for spatial error and spatial lag dependence but their approach is computationally more

demanding and not robust to heteroskedasticity.

Monte Carlo simulations demonstrate that under standard assumptions our version of the

test performs similarly to Moran’s I and the LM test. However, if the errors are heteroskedas-

tic the latter tests suffer from size distortions whereas the regression based test (using White’s

(1980) estimator of the standard errors) turns out to be robust against heteroskedastic errors

processes. We can also confirm the results from other simulation experiments (e.g. Anselin

and Florax 1995) showing that in small samples Moran’s I is more powerful than the LM

test. To improve the power of the regression test, we suggest a modification yielding a test

that approaches the power of Moran’s statistic.

The remainder of the paper is organized as follows. Section 2 discusses a t-test against a

spatial error alternative and section 3 focuses on tests against a spatial lag alternative. Size

and power of these tests are compared to Moran’s I and LM tests via Monte Carlo simulations

in section 4. Section 5 concludes.

2 Testing against spatial error alternatives

We consider the linear spatial first order autoregressive model with first order autoregressive

disturbances (see e.g. Anselin 1988b), which is given by

y = φW1y +Xβ + u

u = ρW2u+ ε , (2.1)

where y is an N × 1 vector of observations on a dependent variable, X is an N × k matrix

of exogenous regressors, β is the associated k × 1 parameter vector and φ and ρ are spatial

autoregressive parameters with |ρ| < 1 and |φ| < 1.

Following Kelejian and Prucha (1999, 2001), we make the following assumptions concern-

ing model (2.1):

Assumption 1. (i) The errors ε1, . . . , εN are i.i.d. with zero mean, E(ε2i ) = σ2, and

E(|εi|2+δ) < ∞ for some δ > 0. (ii) The spatial weight matrices W1 and W2 are N × N

matrices of known constants. The elements on the main diagonal of the matrices are zero and
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the matrices (I − ρW2) and (I − φW1) are nonsingular for all |ρ| < 1 and |φ| < 1. The row

and column sums of the matrices W1, W2 are bounded uniformly in absolute value as N → ∞.

(iii) The matrix X has full column rank and is independent of u.

The spatial error model is obtained by setting φ = 0, yielding

y = Xβ + u

u = (IN − ρW )−1ε , (2.2)

where W2 is replaced by W to simplify the notation.

Moran’s I-statistic is defined as

I =
û′Wû

û′û
, (2.3)

where û = y−Xβ̂ is the vector of OLS residuals. Under the null hypothesis, the standardized

version (I − µI)/σI is standard normally distributed, where

µI = tr(MW )/(N − k)

σ2I = [tr(MWMW ′) + tr(MW )2 + (tr(MW ))2]/d− µ2I ,

M = I − X(X ′X)−1X ′, and d = (n − k)(n − k + 2) (see Cliff and Ord (1972, 1981)). For

N → ∞, we have

µI → 0 (2.4)

N−1σ2I → lim
N→∞

N−1 tr(W 2 +W ′W ) . (2.5)

Burridge (1980) showed that the LM statistic results as

LMρ =
(û′Wû)2

σ̂4 tr(W 2 +W ′W )
, (2.6)

where σ̂2 = û′û/N . Using (2.4) and (2.5), it is easy to see that the square of Moran’s I and

the LM statistic are asymptotically equivalent.

To motivate the regression version of the test, assume that β is known and consider the

t-statistic for the null hypothesis ρ = 0 in the regression u = ρWu+ ε which can be written

as

tρ =
u′Wu

σ̂ε
√
u′W ′Wu

, (2.7)

where σ̂2ε is the usual variance estimator of ε. It is easy to see that under the null hypothesis,

tρ is not asymptotically standard normally distributed. Defining z = Wu, for the numerator
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of tρ we obtain

u′z =
(
u1 · · · un

)




0 w1,2 · · · w1,n

w2,1
. . .

...
...

. . . wn−1,n

wn,1 · · · wn,n−1 0







u1
...

un




=
N∑

i=1

∑

j 6=i

wijuiuj

=

N∑

i=2

i−1∑

j=1

(wij + wji)uiuj

=

N∑

i=2

uiξi ,

where

ξi =

i−1∑

j=1

(wij + wji)uj .

Defining ξ = (0, ξ2, . . . , ξN )′, we can re-write the numerator as

u′z = u′(D1 +D2)u = u′ξ ,

where D1 and D2 are lower triangular matrices such that W = D1+D′
2 and ξ = (D1+D2)u.

Note that u′(D1 + D2)u = u′(D1 + D′
2)u = u′z. However, there is an important difference

between the two formulations of the numerator. Whereas ξi is associated with an increasing

σ-field generated by {u1, . . . , ui−1}, this is not the case for zi =
∑

j 6=iwijuj , as this variable

depends on {uj |j 6= i}. This has important consequences for the variance. Specifically, under

the null hypothesis we have

Var(u′ξ) = σ2E(ξ′ξ) but Var(u′z) 6= σ2E(z′z).

If W is symmetric, it is not difficult to show that Var(u′z) = 2σ2E(z′z). The factor 2 results

from the fact that, due to the symmetric nature of the sum, the products uiuj occur two

times for each combination of i and j. We therefore suggest to use ξ instead of z = Wu as

the regressor in the test regression, where D1 results from W by setting all elements above

the main diagonal equal to zero. Analogously, D′
2 is obtained from setting the elements below

the main diagonal equal to zero.

If β is unknown, the errors u are replaced by û = y−Xβ̂ and the regression test for spatial
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error correlation is the t-statistic for the null hypothesis ρ = 0 in the regression

û = ρξ̂ + ε . (2.8)

That is,

t̃ρ =
û′ξ̂

σ̂

√
ξ̂′ξ̂

, (2.9)

where ξ̂ = (D1 +D2)û and σ̂2 is the usual estimator for the variance of the errors ε.

The following proposition considers the asymptotic properties of the test statistic.

Proposition 1. (i) Under the null hypothesis ρ = 0 and N → ∞, we have

t̃ρ
d−→ N (0, 1). (2.10)

(ii) The regression test is asymptotically equivalent to Moran’s I and the LM statistic in the

sense that under the null hypothesis t̃ρ − I
p−→ 0 and t̃ρ

2 − LM
p−→ 0.

A difference between the regression test and the LM test is that the latter estimates the

variance of the numerator by imposing the null hypothesis. To simplify the discussion assume

that β is known. Under the null hypothesis,

Var(u′ξ) = σ2E(ξ′ξ) = σ4tr[(D1 +D2)
′(D1 +D2)] = σ4tr(W 2 +W ′W ) .

Under the alternative, we have

E(ξ′ξ) = σ2tr[(IN − ρW ′)−1(D1 +D2)
′(D1 +D2)(IN − ρW )−1] .

Using the expansion (IN − ρW ′)−1 = IN + ρW + (ρW )2 + (ρW )3 + · · · , it becomes clear

that under the alternative E(ξ′ξ) is larger than σ2tr(W 2 +W ′W ) which is used for the LM

statistic. It follows that under the alternative the regression statistic t̃ρ is usually smaller (in

absolute value) than the LM statistic and, therefore, the power of the regression test tends to

be smaller than the power of the LM statistic. This negative effect on the power of the test

can be avoided by replacing û in the denominator of t̃ρ by the residual ê = û − ρ̂ξ̂, where ρ̂

denotes the OLS estimator from a regression of û on ξ̂. Thus, the modified regression statistic

results as

t̃∗ρ =
û′ξ̂

σ̂
√
ê′(D1 +D2)′(D1 +D2)ê

. (2.11)

Our Monte Carlos simulations presented in Section 4 suggest that this modification indeed

yields a more powerful test statistic.

An important advantage of the regression test is that it can be made robust against

heteroskedasticity by employing White’s (1980) heteroskedasticity consistent covariance esti-
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mator. This yields the heteroskedasticity robust test statistic

t̃ρ =
û′ξ̂√
N∑
i=1

û2i ξ̂
2
i

. (2.12)

Note that we have imposed the null hypothesis ρ = 0 in White’s variance estimator. An

alternative is to replace the residuals ûi in the denominator by the OLS residuals ê of the

auxiliary regression û = ρξ̂ + e. However, Monte Carlo simulations suggest that the former

estimators yields superior size properties of the test.

3 Testing against spatial lag alternatives

Setting ρ = 0, the linear spatial autoregressive model (2.1) with first order autoregressive

disturbances becomes the spatial lag model

y = φWy +Xβ + ε , (3.1)

where again we suppress the index for the weight matrix W1. Anselin (1988a) derives the LM

test statistic for the null hypothesis φ = 0. The one-sided version of the test statistic results

as

LMφ =
y′MWy√

σ̂4tr(W 2 +W ′W ) + σ̂2β̂′X ′W ′MWXβ̂
, (3.2)

where β̂ is the OLS estimator from a regression of y on X and σ̂2 is the usual variance

estimator of the residuals.

The least squares estimator of φ from (3.1) is given by

φ̂ =
y′MWy

y′W ′MWy
. (3.3)

As in the case of the test for spatial autocorrelation, the numerator of this estimator is

identical to the numerator of the LM statistic. This suggests that a regression test can be

constructed that is asymptotically equivalent to the LM statistic (3.2).

To derive this estimator, we employ the same technique as in the previous section. First

note that the numerator of the LM statistic can be re-written as

y′MWy = û′Wû+ û′Wŷ ,

where ŷ = Xβ̂. Using W = D1 +D′
2 and û′(D1 +D′

2)û = û′(D1 +D2)û, we obtain

y′MWy = û′ξ̂∗ ,
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where

ξ̂∗ = (D1 +D2)û+MWŷ .

Note that we do not need to decompose W in the last expression of this equation as X is

assumed to be exogenous.1 In the proof of Proposition 2, it is shown that the asymptotic

properties are not affected by using ŷ = Xβ̂ instead of Xβ.

The regression test for a spatial lag results as the ordinary t-statistic for the hypothesis

φ = 0 in the regression

û = φξ̂∗ + η ,

yielding the test statistic

t̃φ =
û′ξ̂∗

σ̂

√
ξ̂∗′ ξ̂∗

. (3.4)

In the following proposition the limiting distribution of the test statistic is presented.

Proposition 2. Assume that y can be represented as in (3.1). Under H0 : φ = 0 and

Assumption 1 it follows that

t̃φ
d−→ N (0, 1)

and t̃φ − LMφ
p−→ 0 .

4 Monte Carlo Simulations

In our Monte Carlo study the data are generated according to the spatial error model (2.2)

and the spatial lag specification (3.1). The regressor matrix, X, contains two regressors x1

and x2 with corresponding parameters β1 and β2. In both models, x1 is a constant, the

elements of x2 are drawn independently from a standard normal distribution and arranged

in ascending order, and β = (1, 1)′. The disturbance term, ε, is generated as a vector of

normally distributed random variables with E(εε′) = I. We use a ”3 ahead and 3 behind”

spatial weight matrix in our simulations. In this design, the i-th row of the weight matrix,

3 < i < N − 3, has nonzero elements in positions i − 3, i − 2, i − 1, i + 1, i + 2, and i + 3,

directly relating each element of the matrix to the three immediate neighbors ahead and

behind. Adjusting the first and last three rows appropriately creates a circular world (see e.g.

Kelejian and Prucha 1999, Kapoor, Kelejian and Prucha 2007). Following common practice

in empirical applications, we row normalize the spatial weight matrix, yielding nonzero entries

of 1/6 in this weight matrix design. In each experiment, we use 1000 replications.

Kelejian and Robinson (2004) show that Moran’s I and the LM tests remain valid under

heteroskedasticity as long the heteroskedasticity is not itself spatially correlated but, as they

1Note further that we have introduced the matrix M in the last term. Due to the idempotency of M

this matrix does not affect the product y′MWy. However, the matrix M affects the denominator of the test
statistic and is required to derive the results presented in Proposition 2.
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LM Test Regr. Test Mod. Regr. Test Moran’s I

N = 50 0.032 0.065 0.062 0.042
N = 100 0.033 0.059 0.046 0.043
N = 150 0.040 0.048 0.042 0.030
N = 200 0.043 0.051 0.041 0.032
N = 300 0.038 0.053 0.043 0.033
N = 500 0.041 0.041 0.045 0.033
N = 1000 0.044 0.045 0.045 0.032

Table 1: Errortest: Size under homoskedasticity

LM Test Regr. Test

N = 50 0.046 0.074
N = 100 0.044 0.056
N = 150 0.040 0.047
N = 200 0.038 0.046
N = 300 0.042 0.047
N = 500 0.038 0.038
N = 1000 0.047 0.042

Table 2: Lagtest: Size under homoskedasticity

argue, it is reasonable to assume that the heteroskedasticity possesses a spatial pattern. We

therefore introduce a disturbance ψi = εix2i with a “medium” extent of heteroskedasticity

(see Kelejian and Robinson 1998), where the spatial correlation in the heteroskedasticity is

induced by the sorted vector x2.

Table 1 shows the simulation results for the spatial error specification with homoskedastic

errors. All tests have approximately the correct size of 0.05 although the size of Moran’s

I is consistently below those of the other tests. The results of the spatial lag model with

homoskedastic errors are similar. Both LM and regression test attain the correct size (see

table 2).

The results change considerably when we introduce heteroskedasticity. Moran’s I and

LM Test Regr. Test Moran’s I

N = 50 0.088 0.027 0.094
N = 100 0.170 0.045 0.100
N = 150 0.172 0.038 0.111
N = 200 0.197 0.047 0.105
N = 300 0.220 0.046 0.129
N = 500 0.221 0.052 0.129
N = 1000 0.253 0.049 0.140

Table 3: Errortest: Size under heteroskedasticity
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LM Test Regr. Test

N = 50 0.232 0.046
N = 100 0.313 0.032
N = 150 0.305 0.042
N = 200 0.280 0.046
N = 300 0.302 0.052
N = 500 0.331 0.050
N = 1000 0.327 0.048

Table 4: Lagtest: Size under heteroskedasticity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

ρ

P
o
w

e
r

 

 

lm−test

regression test

modified regression test

morans i

(a) N = 50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

ρ

P
o
w

e
r

 

 

lm−test

regression test

modified regression test

morans i

(b) N = 200

Figure 1: Errortest: power under homoskedasticity

the LM tests are now strongly oversized as can be seen in tables 3 and 4. Our regression

test with the proposed White correction on the other hand has a correct size under spatial

heteroskedasticity..

The two panels in figure 1 show that the regression test has slightly lower power than

both the LM test and Moran’s I, but with the modified statistic t̃∗ρ suggested in section 2,

the power approaches that of Moran’s I. We also confirm the results from other simulation

experiments (e.g. Anselin and Florax 1995) that Moran’s I is more powerful than the LM test

in small samples. With increasing sample size, the tests gain considerable power and their

performances become very similar. Again, the results for the spatial lag case are comparable

to those just reported. Here, the power of LM and regression test are very similar even in

samples as small as N = 50.

In Figures 3 and 4, we plot the power of the regression test under spatial heteroskedasticity.
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Figure 2: Lagtest: power under homoskedasticity

Due to the severe size distortions of the other tests ,we do not present their empirical power.

The White correction leads to a loss of power but it is still reasonably powerful and, given

that the other tests have large size distortions, it is clearly the best choice.

5 Conclusion

In this paper, we propose two new test procedures for spatial dependence. A reformulation

of the model allows us to test against a spatial error or spatial lag specification by simply

regressing the ordinary least squares residuals on their spatial lags and testing the significance

of the spatial coefficient by an asymptotic t-test. We show that these tests are asymptotically

equivalent to the existing Moran’s I and LM tests, yet simpler to implement. Furthermore,

using the approach of White (1980) it is straightforward to construct a test that is robust

against heteroskedastic errors.

Monte Carlo simulations suggest that our new tests have good size properties, even under

heteroskedasticity, where Moran’s I and LM tests suffer from size distortions. A modification

of the t-statistic is suggested that improves the size properties of the original test against the

spatial error alternative. In medium and large samples, the performance of all tests becomes

very similar.

Hence, we believe that the proposed tests will give researchers a robust and easily imple-

mentable tool for their applied work.
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Figure 3: Errortest: power under heteroskedasticity
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Figure 4: Lagtest: power under heteroskedasticity
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A Proofs of Results

Proof of Proposition 1: (i) Under the null hypothesis, we have û = ε−X(β̂−β). It follows
that the numerator of t̃ρ can be written as

û′ξ̂ = û′(D1 +D2)û

= ε′(D1 +D2)ε− 2ε′(D1 +D2)
′X(β̂ − β) + (β̂ − β)′X ′(D1 +D2)X(β̂ − β) . (A.1)

Since εi is a martingale difference sequence with respect to ξi, for i = 1, 2, . . ., where E(εi|ξi) =
0 and Var(ξ) <∞ due to assumptions 1(i) and 1(ii), we obtain from the central limit theorem

for martingale difference sequence (see White 2001, Corollary 5.26)

1√
N

n∑

i=1

εiξi
d→ N (0, V1) ,

where

V1 = lim
N→∞

E

(
N−1

N∑

i=1

ε2i ξ
2
i

)

= σ4 lim
N→∞

1

N
tr[(D1 +D2)

′(D1 +D2)] .

Since D1 and D2 are lower triangular matrices with zeros on the leading diagonal, we have

DsDt = 0 for s, t ∈ {1, 2}. Thus,

tr(W 2 +W ′W ) = tr[(D1 +D′
2)(D1 +D′

2) + (D′
1 +D2)(D1 +D′

2)]

= tr(D2
1 +D1D

′
2 +D′

2D1 +D′
2D

′
2

+D′
1D1 +D2D1 +D′

1D
′
2 +D2D

′
2)

= tr(D′
1D1) + tr(D′

2D2) + 2tr(D′
2D1)

= tr[(D1 +D2)
′(D1 +D2)] . (A.2)

From Assumption 1 (ii), it follows that 0 < N−1tr(W ′W ) <∞ and 0 < N−1tr(W 2) <∞ for

all N and, therefore, 0 < V1 <∞.

Since, under Assumption 1, β̂ − β is Op(N
−1/2) and X is independent of u, we obtain for

the other two terms in equation (A.1)

ε′(D1 +D2)
′X(β̂ − β) = Op(N

1/2)Op(N
−1/2) = Op(1)

(β̂ − β)′X ′(D1 +D2)X(β̂ − β) = Op(N
−1/2)Op(N)Op(N

−1/2) = Op(1)

and it follows that
1√
N
û′ξ̂

d−→ N (0, V1) .
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To derive the asymptotic properties of the denominator, we first consider

ξ̂′ξ̂ = ξ′ξ − 2ξ′(D1 +D2)X(β̂ − β) + (β̂ − β)′X ′(D1 +D2)
′(D1 +D2)X(β̂ − β) .

Using the weak law of large numbers, we obtain

1

N

N∑

i=1

ξ2i
p−→ lim

N→∞
E

(
1

N

N∑

i=1

ξ2i

)

= σ2 lim
N→∞

N−1tr[(D1 +D2)
′(D1 +D2)] =

1

σ2
V1 .

Furthermore,

2ξ′(D1 +D2)X(β̂ − β) = Op(1)

(β̂ − β)′X ′(D1 +D2)
′(D1 +D2)X(β̂ − β) = Op(1)

and, hence,
1

N
ξ̂′ξ̂

p−→ 1

σ2
V1 .

In a similar manner it can be shown that σ̂2
p−→ σ2. From these results it follows that t̃ρ has

a standard normal limiting distribution.

(ii) Following Kelejian and Prucha (2001), Moran’s I statistic can be written as

I = N−1/2û′Wû/

√
V̂1 ,

where V̂1 is a consistent estimator of V1. In particular,

V̂1 =
1

N
σ̂4 tr(W 2 +W ′W ) ,

in which case the LM statistic is the square of Moran’s I. Note that the numerators of Moran’s

I and t̃ρ are identical. The only difference is the denominator. However, since V̂1
p→ V1 it

follows that t̃ρ − I
p−→ 0 as N → ∞. Similarly, t̃ρ

2 − LM
p−→ 0. �

Proof of Proposition 2: As shown in the proof of Proposition 1, we have

1√
N
û′Wû =

1√
N
u′Wu+ op(1)

d−→ N (0, V1) .

Furthermore, we obtain

û′MWŷ = û′MWXβ + û′MWX(β̂ − β) . (A.3)
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Using

X ′W ′Mû = X ′W ′Mu

= X ′W ′u−X ′W ′X(X ′X)−1X ′u

= Op(N
1/2)−Op(N)Op(N

−1)Op(N
1/2)

= Op(N
1/2)

and β̂ − β = Op(N
−1/2), we obtain

1√
N
û′MWŷ =

1√
N
u′WXβ +Op(N

−1/2) .

Since X is exogenous, it follows that

E

(
1√
N
û′ξ̂∗

)
→ 0 (A.4)

Var

(
1√
N
û′ξ̂∗

)
→ σ2 lim

N→∞
E
(
N−1ξ∗

′

ξ∗
)
, (A.5)

where ξ∗ = (D1 +D2)u+MWXβ. Since

E(ξ∗
′

ξ∗) = σ2tr[(D1 +D2)
′(D1 +D2)] + β′X ′W ′MWXβ

= σ2tr(W 2 +W ′W ) + β′X ′W ′MWXβ

and σ̂2
p−→ σ2, it follows that

t̃φ =
û′Wû+ û′Wŷ√

σ4tr(W 2 +W ′W ) + σ2β′X ′W ′MWXβ
+ op(1)

and, therefore, t̃φ is asymptotically equivalent to the LMφ statistic and possesses a standard

normal limiting distribution. �
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