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Abstract

We consider second-price and first-price auctions in the symmetric inde-

pendent private values framework. We modify the standard model by the

assumption that the bidders have reference-based utility, where a publicly

announced reserve price has some influence on the reference point. It turns

out that the seller’s optimal reserve price is increasing in the number of

bidders. Also in contrast to the standard model, we find that secret reserve

prices can outperform public reserve prices, and that setting the optimal

reserve price can be more valuable for the seller than attracting additional

bidders.
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1 Introduction

In recent years, theorists have begun to use the standard tools of microeco-

nomics to explore the implications of assumptions on human behavior based

on insights imported from psychology.1 One of the most prominent depar-

tures from the standard economic paradigm is the assumption that people

have reference-based utility; i.e., they assess utilities in comparison with ref-

erence points (see Kahneman and Tversky, 1979; Tversky and Kahneman,

1991). In this paper, we investigate how the analysis of the standard model

of second-price and first-price auctions changes if the reserve price (i.e., min-

imum bid) announced by the seller has some (possibly very small) influence

on what the potential buyers perceive as a reference point. It turns out that

our model has interesting implications that may help to explain features

of real auctions (e.g., secret reserve prices) that have escaped the standard

analysis.

We consider the well-known symmetric independent private values model

with risk-neutral agents, which is the simplest framework in which auctions

have been analyzed. We assume that if a bidder wins the object and has

to make a payment t, then his utility is given by v − t − ε[t − ρ], where v

is the bidder’s intrinsic valuation, ρ is the reference point, and ε is a small

positive number. The case ε = 0 corresponds to the standard model in the

auction literature. We are interested in the implications of the case ε > 0,

which captures the disutility (or utility) that a buyer perceives if he has to

pay more (or less) than the reference point. The reference point can de-

pend on various exogenous parameters such as selling prices in auctions of

related items, estimates delivered by auction house experts, etc. Yet, if the

seller publicly announces a reserve price, it is plausible to assume that this

announcement also has some influence on the reference point. Empirically,

the fact that reserve prices in auctions are indeed perceived by bidders as

reference points has recently been shown in field studies as well as in lab-

oratory experiments (see Häubl and Popkowski Leszczyc, 2003; Ariely and

1In a recent survey article, Rabin (2002) has called this new movement “second-wave

behavioral economics,” because it goes beyond simply pointing out problems with standard

economic assumptions.

2



Simonson, 2003; Kamins, Drèze, and Folkes, 2004).2 Hence, we model the

reference point as a convex combination of an exogenous parameter x and

the reserve price r, where the weight that is associated with the reserve price

is positive but maybe very small.

It turns out that in our setting with publicly announced reserve prices,

first-price and second-price auctions are revenue-equivalent, which is in ac-

cordance with the standard model. Yet, a remarkable result of the standard

analysis is that the optimal reserve price does not depend on the number

of bidders (see Myerson, 1981; Riley and Samuelson, 1981). In contrast, we

will show that if there is a reference-point effect, then the optimal reserve

price is increasing in the number of bidders. In our setting, the reserve price

has a positive effect on a bidder’s willingness-to-pay. Of course, making the

reserve price larger always has the disadvantage of increasing the probability

that there will be no trade, but this probability is decreasing in the number

of bidders. Hence, the optimal reserve price will rise if the number of bidders

goes up. This finding is consistent with a recent empirical study conducted

by Reiley (2005), who reports results from a field experiment suggesting

that the optimal reserve price may indeed be increasing in the number of

bidders.3

In practice, reserve prices are often kept secret. In his description of

how real auctions work for wine and art, Ashenfelter (1989) points out that

auction houses such as Christie’s and Sotheby’s usually do not reveal reserve

prices. In a study of online auctions, Bajari and Hortaçsu (2003) find that

secret reserve prices may lead to larger revenues than public minimum bids

set at the same level.4 These observations are a puzzle from the perspective

2 In their field study, Häubl and Popkowski Leszczyc (2003) emphasize that the seller-

specified reserve price remains to be relevant, even if objective reference prices such as

published catalog values are available.
3Reiley (2005) points out that more experiments are needed to provide cleaner tests

of this hypothesis, which we also consider to be very desirable in the light of the novel

theory that we are proposing.
4Also studying online auctions, Katkar and Reiley (2005) find that keeping reserve

prices secret can make sellers worse off. The ambiguity in the empirical results is com-

patible with our theory, since in our model it will depend on the parameter constellation

whether or not secret reserve prices are more profitable than public reserve prices.
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of the standard analysis.5 In a second-price auction, it should not matter

whether or not a reserve price is kept secret (the bidders always have a

dominant strategy to bid their true valuation, see Riley and Samuelson,

1981), while in a first-price auction, the seller’s revenue is in general strictly

larger if the reserve price is made public (see Elyakime et al., 1994).6 In

contrast, in our model the seller’s revenue may well be larger if she keeps the

reserve price secret, both in second-price and first-price auctions. Intuitively,

if the exogenous factors that influence the reference point are relatively large,

then the announcement of a reserve price (which has to be small enough so

that the no-trade outcome is not triggered too often) reduces the reference

point and hence the bidders’ willingness-to-pay.7

Another novel conclusion that can be drawn from our analysis deals with

the relative advantages of auctions and negotiations as discussed by Bulow

and Klemperer (1996). They argue that an auction with no reserve price

and n + 1 bidders is always more profitable than an optimally-structured

negotiation (modelled as an auction with an optimal reserve price) with

n bidders. Hence, standard models cannot explain why negotiations are

sometimes restricted to a few bidders even if this allows the seller to maintain

control of the negotiation process (i.e., to credibly commit to a reserve price).

In other words, even if dealing with more bidders means that the seller loses

her commitment power, in the standard model she is always better off with

at least one additional bidder. We show that this result does no longer

hold in the presence of a reference point effect. Our model has the intuitive

property that an additional bidder can be less valuable for the seller than

her ability to optimally structure the selling mechanism. Thus, in contrast

to the standard theory, our model is consistent with “lock-up” agreements

5See, however, Vincent (1995) and Horstmann and LaCasse (1997), who argue that

under certain circumstances secret reserve prices may be advantageous in common-value

auctions.
6 In a first-price auction, the optimal bids depend on the reserve price. Intuitively, not

making the reserve price public is as if it were chosen simultaneously with the buyers’ bids;

i.e., the seller just does not make use of the fact that she can be a “Stackelberg leader.”
7 In the empirical literature, Kaiser and Kaiser (1999) and Bajari and Hortaçsu (2003)

report that secret reserve prices seem to be more useful to sellers when the goods being

auctioned have higher book values. This empirical regularity is consistent with our theory

when higher book values are reflected in relatively larger values of x.
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that rule out negotiations with additional potential acquirers.8

To the best of our knowledge, this is the first paper in the literature

on auction theory in which the implications of reference-based utility are

explored in a formal model. Our paper makes a contribution to a growing

literature that incorporates behavioral assumptions into standard economic

analysis and studies their consequences. Papers that are thus related in

spirit include the recent work on the implications of inequity aversion, fair-

ness, ethics, and honesty in agency and mechanism design theory (see e.g.

Alger and Ma, 2003; Alger and Renault, 2005; Chen, 2000; Deneckere and

Severinov, 2003; Matsushima, 2002).9

The remainder of the paper is organized as follows. In Section 2, the

model is introduced and the equilibrium strategies in second-price and first-

price auctions are discussed. In Section 3, the seller’s optimal reserve price

is characterized and comparative statics results are provided. Our model is

applied in order to derive novel results regarding secret reserve prices and

the value of additional bidders in Section 4. Concluding remarks follow in

Section 5. Some technical details have been relegated to the Appendix.

2 The model

Consider a monopolistic seller who has a single, indivisible object for sale,

that she cannot use herself. There are n potential buyers. The seller con-

ducts a (second-price or first-price) sealed-bid auction with reserve price r,

which means that a bidder participating in the auction must at least bid r.

If buyer i does not win the auction, his utility is given by zero. If buyer i

wins the object and must pay the price ti according to the rules of the auc-

tion, then his utility is given by vi − ti − ε[ti − ρ], where vi ∈ [0, 1] denotes
his intrinsic valuation. The case ε = 0 is the usual case analyzed in the auc-

tion literature. A positive (but possibly very small) ε captures the reference

point effect as discussed in the introduction. Specifically, the reference point

8As Bulow an Klemperer (1996) concede, under dominant U.S. takeover law “lock-up”

provisions are in fact allowed if the board is acting in the shareholders’ interests and the

price attained is high enough.
9For further references on psychology and economics, see also Tirole (2002), Rabin

(2002), Camerer and Loewenstein (2003), and Fehr and Schmidt (2003).
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is given by ρ = λr + (1 − λ)x, where x ∈ [0, 1] is an exogenous parameter
(e.g., reflecting selling prices in auctions of related items, estimates delivered

by auction house experts, etc.) and λ ∈ [0, 1] denotes the weight attached
to the announced reserve price.

Buyer i’s type vi is the realization of a random variable ṽi. Each ṽi is

independently and identically distributed on the unit interval. The distribu-

tion function F is strictly increasing and the differentiable density function is

denoted by f . Moreover, we make the usual monotone hazard rate assump-

tion, so that 1−F (v)
f(v) is decreasing in v.10 Only buyer i knows his realized

value vi, while the other components of the model are assumed to be com-

mon knowledge. Each agent is interested in maximizing his or her expected

payoff. Hence, our analysis is directly comparable with the standard model

of the independent private values environment with symmetric bidders as

analyzed by Riley and Samuelson (1981).11

Second-price auction. In a second-price auction in which at least two

bidders participate, the buyer submitting the highest bid wins the object,

but he has to pay only the second-highest bid.12 If only one bidder partic-

ipates, he wins and has to pay the reserve price r. It is well known that in

the standard case (ε = 0), each buyer i with vi ≥ r will participate in the
auction and bid his type vi. In the present framework with ε ≥ 0, this result
can be generalized as follows.

Proposition 1 In a second-price auction, it is a weakly dominant strategy

for a buyer of type v to bid bS(v) = v+ερ
1+ε if v ≥ v̄(r) = (1 + ε)r − ερ, and

not to participate otherwise.

Proof. Since the price for the object will at least be r, it cannot be profitable

for buyer i to participate if vi − r − ε[r − ρ] < 0. Thus, consider a buyer

10Hence, we are in Myerson’s (1981) “regular case,” i.e. the “virtual valuation” v− [1−
F (v)]/f(v) is increasing.
11This model has been referred to as the “benchmark model” of auction theory in the

survey article of McAfee and McMillan (1987). See also Matthews (1995), Krishna (2002),

and Menezes and Monteiro (2005).
12For completeness, if there is more than one bidder with the highest bid, let the object

go to each of them with equal probability. The same assumption can be made in the

first-price auction. In any case, the probability of a tie will be zero.
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i with vi ≥ v̄(r). If buyer i bids bS(vi), he wins if bS(vi) > ti, where ti

is the maximum of the other bids if there are any, and ti = r otherwise.

Consider a downward deviation to some b̃ < bS(vi). If ti < b̃ < bS(vi),

he still wins and pays ti. If b̃ < bS(vi) ≤ ti, his payoff is still zero. If

b̃ < ti < bS(vi), he now loses and gets zero, while he would have made

a profit vi − ti − ε[ti − ρ] by bidding bS(vi). This profit would have been

positive, since ti < bS(vi) = (vi + ερ)/(1 + ε).13 Finally, a similar argument

shows that an upward deviation b̃ > bS(vi) cannot be profitable.

Note that v̄(r) = r+ ε(1−λ)(r−x), so that increasing the reserve price
can only reduce participation. The reference point effect implies that a par-

ticipating buyer of type v will bid less than his valuation v (the equilibrium

bid in the standard model, where ε = 0) whenever ρ < v. In particular, this

must be the case if the reference point is solely determined by the reserve

price (λ = 1). Otherwise, the bids can be larger than in the standard model.

Now consider a buyer of type v ≥ v̄(r). Let G(v) = F (v)n−1 denote

the probability that the values of all other buyers are smaller than v. The

expected payment of the buyer can then be written as14

TS(v) = rG(v̄(r)) +

Z v

v̄(r)

w + ερ

1 + ε
dG(w).

In order to see this, note that he will only win if he has the highest value.

He then must pay r if all other buyers have types smaller than v̄(r), and

he must pay bS(w) = w+ερ
1+ε if w ∈ (v̄(r), v) is the highest value of the other

n− 1 buyers.

First-price auction. In a first-price auction, the bidder with the high-

est bid wins and has to pay what he has bid. As is well known, the bidders

do not have dominant strategies in a first-price auction. In the standard

model (ε = 0), there is a symmetric equilibrium in which each bidder bids

less than his true type. In the present framework, this result can be gener-

alized, so that a bidder who participates in a first price auction bids bF (v),

which is less than bS(v). More precisely, we get the following result.

13Given the tie-breaking rule of the previous footnote, if b̃ = ti < b
S(vi), he now loses

this positive profit with probability 1/2.
14Note that v̄(r) can be negative, while the types are always non-negative. Formally,

F (w) and thus G(w) are identical to zero for all w ≤ 0.
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Proposition 2 In a first-price auction, only buyers of type v ≥ v̄(r) will
participate. Their symmetric equilibrium bidding strategies are given by

bF (v) =
1

1 + ε

Ã
v + ερ−

Z v

v̄(r)

G(w)

G(v)
dw

!
.

Proof. It is obvious that buyer i cannot benefit from participating if vi −
r − ε[r − ρ] < 0. Thus, consider a buyer i with vi ≥ v̄(r). Assume that all
other buyers follow the strategy given in the proposition. Note that bF (v) is

increasing. As a consequence, it is never profitable for buyer i to bid more

than bF (1), because then he would win for sure and could increase his payoff

by slightly reducing his bid. Buyer i thus considers to bid b ∈ [r, bF (1)]. Note
that there exists a value z ∈ [v̄(r), 1] such that bF (z) = b. Hence, buyer i’s
expected payoff from bidding b, which is given by vi− b− ε[b− ρ] times the

probability that no other buyer bids more than b, can be written as follows:³
vi − bF (z)− ε[bF (z)− ρ]

´
G(z)

= (vi + ερ)G(z)− (z + ερ)G(z) +

Z z

v̄(r)
G(w)dw

= (vi − z)G(z) +
Z z

v̄(r)
G(w)dw

If buyer i bids bF (vi), his expected payoff thus is
R vi
v̄(r)G(w)dw. Since

(vi − z)G(z) +
Z z

v̄(r)
G(w)dw −

Z vi

v̄(r)
G(w)dw

=

Z z

vi
[G(w)−G(z)] dw ≤ 0,

it cannot be profitable for buyer i to deviate from the strategy given in the

proposition.

Now consider a buyer of type v ≥ v̄(r). He pays bF (v) if all other buyers
have types smaller than v, so his expected payment is

TF (v) = bF (v)G(v) =
1

1 + ε

Ã
(v + ερ)G(v)−

Z v

v̄(r)
G(w)dw

!
.

It is easy to check (with integration by parts) that TF (v) = TS(v), which

is in accordance with the well-known revenue equivalence principle. The

winner only pays the second-highest bid in the second-price auction, but

the equilibrium bids are lower in the first-price auction, so that the expected

payment is the same in both cases.

8



3 The optimal reserve price

In order to characterize the optimal reserve price, let us now consider the

seller’s revenue. Recall that the seller does not know the buyers’ types.

Hence, the seller’s expected revenue Π(r,λ) is simply n times the expected

value of the payment that a buyer makes to the seller (which is TF (v) if

v ≥ v̄(r), and 0 otherwise).15 Clearly, the seller will only consider reserve
prices such that v̄(r) < 1. Then, with integration by parts,

Π(r,λ) =
n

1 + ε

Z 1

v̄(r)

Ã
(v + ερ)G(v)−

Z v

v̄(r)
G(w)dw

!
dF (v)

=
n

1 + ε

Z 1

v̄(r)

µ
v − 1− F (v)

f(v)
+ ερ

¶
F (v)n−1dF (v).

Note that if ε = 0, then the seller’s expected revenue is obviously max-

imized by r = r0, where r0 − 1−F (r0)
f(r0)

= 0, so that the integrand is positive

whenever v ≥ r0. The following proposition characterizes the optimal re-
serve price for ε > 0.

Proposition 3 The optimal reserve price r∗ is given by

r∗ =
v∗ + ε(1− λ)x

1 + ε(1− λ)
,

where v∗ is uniquely characterized by α(v∗) = β(v∗, n, ε) with

α(v) = v − 1− F (v)
f(v)

β(v, n, ε) = ε

µ
λ

1− F (v)n
nF (v)n−1f(v)

+ (1− λ)

·
1− F (v)
f(v)

− (1 + ε)x

¸
− v

¶
if λ > 0 or if λ = 0 and εx ≤ 1/f(0). If λ = 0 and εx > 1/f(0), then

v∗ = 0.

Proof. The first derivative of the seller’s expected profit with respect to r

is

dΠ(r,λ)

dr
=

1

1 + ε

µ
ελ(1− F (v̄(r))n)−

µ
v̄(r)− 1− F (v̄(r))

f(v̄(r))
+ ερ

¶
·nF (v̄(r))n−1f(v̄(r))[1 + ε(1− λ)]

´
.

15We highlight in our notation the dependence of Π on λ for later purposes (see Section

4 below).
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The first-order condition can thus be written as

v̄(r)− 1− F (v̄(r))
f(v̄(r))

= ελ
1− F (v̄(r))n

nF (v̄(r))n−1f(v̄(r))
+ ε(1− λ)

1− F (v̄(r))
f(v̄(r))

−v̄(r)ε(1− λ)− ερ[1 + ε(1− λ)].

The left-hand side is equal to α(v̄(r)), while the right-hand side can be

rewritten as β(v̄(r), n, ε).

Consider the case λ > 0. Note that given the monotone hazard rate as-

sumption, there always exists a unique v∗ > 0 as defined in the proposition,

because when v moves from zero to one, α(v) strictly increases from − 1
f(0)

to 1, while β(v, n, ε) strictly decreases from +∞ to −(1−λ)(1+ε)xε−ε < 0
(the fact that β is decreasing in v follows from the monotone hazard rate

property and Lemma 1 in the Appendix). Due to continuity, a straightfor-

ward intermediate value argument can thus be applied. The optimal reserve

price must be such that v̄(r) < 1 and such that v̄(r) > 0 (note that dΠ(r,λ)dr is

strictly positive if r ≤ ε(1−λ)x
1+ε(1−λ)). Since v

∗ (and thus r∗, which is implicitly

given by v̄(r∗) = v∗) is unique and since there must be an interior solution,

Π(r,λ) must attain its maximum at r = r∗. Finally, if λ = 0, it is straight-

forward to see that there can be a corner solution at v∗ = 0, which happens

if εx > 1/f(0).

We can now analyze the comparative statics properties of our model. In

particular, it turns out that the optimal reserve price r∗ is increasing in the

number of bidders, provided that the reserve price has at least some influence

on the reference point. This result is in stark contrast to the standard result,

which says that the optimal reserve price r0 is independent of the number

of bidders.16 In the standard model (ε = 0), the reserve price has only

an indirect effect on the seller’s expected profit Π(r,λ), because it merely

changes the critical valuation below which a buyer does not participate. In

contrast, in our model the reserve price also has a direct positive effect on

Π(r,λ) through the reference point ρ. The more bidders there are, the higher

is the expected value of the highest type. Hence, a given reserve price will

16Notice that our model could be re-interpreted as a modification of the standard model,

where the winner must pay ti + ε[ti − ρ] instead of ti. If the payment ε[ti − ρ] accrued

to the seller, revenue equivalence between our modified auction and the standard auction

would imply that r∗ is independent of n. However, in our framework ε[ti − ρ] is not paid

to the seller, so that her incentives are different.
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less likely lead to the no-trade outcome if the number of bidders is increased,

so that increasing the reserve price due to the direct reference point effect

becomes relatively more attractive.

Proposition 4 The optimal reserve price r∗ is increasing in the number of

bidders for all λ > 0. The optimal reserve price is independent of n if λ = 0.

Proof. From the implicit definition of v∗ in Proposition 3 it follows that
dv∗
dn = βn(v

∗,n,ε)
αv(v∗)−βv(v∗,n,ε) > 0, where subscripts denote partial derivatives.17

The denominator is positive, since the monotone hazard rate assumption

implies αv > 0, and we already know that βv < 0 (see Lemma 1 in the

Appendix). Moreover, it is straightforward to check that if λ > 0, then

βn(v
∗, n, ε) = −ελ1− F (v

∗)n + n lnF (v∗)
n2F (v∗)n−1f(v∗)

> 0,

where the inequality follows from the fact that 1− ξ+ln ξ < 0 for ξ ∈ (0, 1).
Hence, if λ > 0, then v∗ is increasing in n and as a consequence, dr

∗
dn =

1
1+ε(1−λ)

dv∗
dn > 0. If λ = 0, then βn(v

∗, n, ε) = 0 and thus r∗ is independent

of n.

Next, what is the impact of the exogenous reference price x and the

weight λ that is associated with the reserve price? An increase in x unam-

biguously increases a bidder’s willingness-to-pay, so that the seller will raise

the reserve price, since a larger willingness-to-pay means that the danger of

the no-trade outcome is mitigated. An increase in λ can have ambiguous

consequences. If x is relatively small, more weight on r means that it be-

comes more attractive for the seller to increase r∗ due to the reference point

effect. If x is relatively large and x becomes a less important determinant of

the reference point, it may be profitable to reduce r, because ceteris paribus

the willingness-to-pay of a buyer with a given type will now be smaller, so

that the danger of the no-trade outcome becomes more relevant.

Proposition 5 The optimal reserve price r∗ is always increasing in x, but

need not be monotone in λ. A sufficient condition for r∗ to be increasing in

λ is x ≤ v∗.
17While the number of bidders is discrete, for simplicity we formally treat n as a con-

tinuous variable.
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Proof. Consider first the impact of the exogenous reference price x. From

the definition of v∗, it follows that dv
∗

dx = − ε(1−λ)(1+ε)
αv(v∗)−βv(v∗,n,ε) ≤ 0 (because we

already know that the denominator is positive). Since dr∗
dx =

dv∗/dx+ε(1−λ)
1+ε(1−λ) ,

the optimal reserve price is increasing in x if αv(v∗) − βv(v
∗, n, ε) > 1 + ε,

which is always the case because αv(v) − βv(v, n, ε) is equal to 1 + ε −
d
dv

h
(1 + (1− λ)ε)1−F (v)f(v) + ελ 1−F (v)n

nF (v)n−1f(v)

i
, where the derivative of the term

in square brackets is negative.

Next, consider the impact of λ. From the definition of v∗, it follows that

dv∗

dλ
= ε

1−F (v)n
nF (v)n−1f(v) − 1−F (v)

f(v) + (1 + ε)x

αv(v∗)− βv(v
∗, n, ε)

> 0,

where the inequality holds because 1−F (v)n
nF (v)n−1f(v) is increasing in n. Moreover,

dr∗
dλ =

1
1+ε(1−λ)

dv∗
dλ + ε v∗−x

[1+ε(1−λ)]2 , which must be positive if x ≤ v∗.
It is also interesting to analyze whether the introduction of a small refer-

ence point effect (i.e., a small ε > 0) into the standard model (where ε = 0)

reduces or increases the optimal reserve price r∗. In general, r∗ will not

be monotone in ε.18 If the reference point is almost entirely determined

by the reserve price (i.e., if λ is close to 1), then making ε slightly positive

will lead to r∗ being larger than r0, because of the positive reference point

effect. Yet, if λ is close to 0 and x is small, r∗ will be smaller than r0,

because the seller predominantly wants to reduce the danger of the no-trade

outcome when the preferences become reference-dependent and the (almost

exogenous) reference point is low.

Proposition 6 The introduction of a small reference point effect increases

the optimal reserve price (i.e., dr∗
dε |ε=0 > 0) if λ is sufficiently large and

n ≥ 2, while it reduces r∗ if λ is sufficiently small and x < r0.

Proof. From the implicit definition of v∗ in Proposition 3, it follows

that dv∗
dε = βε(v

∗,n,ε)
αv(v∗)−βv(v∗,n,ε) . We already know that the denominator is

positive. At ε = 0, using the definition of r0, we obtain βε(r0, n, 0) =

λ
h

1−F (r0)n
nF (r0)n−1f(r0) − r0

i
− (1−λ)x. The term in square brackets is positive for

18Yet, one can show that the optimal reserve price is monotonically increasing in ε if

λ = 1. To see this, note that in the proof of Proposition 6 we then have βε(v, n, ε) =

[1− F (v)n]/[nF (v)n−1f(v)]− v, which is positive for v ≤ r0.
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n ≥ 2 (because it is equal to zero for n = 1 and increasing in n).19 Hence,
for any given value of x we must have βε > 0 if λ is sufficiently close to 1.

Similarly, βε < 0 for a given x > 0 if λ is sufficiently close to 0. From Propo-

sition 3, it also follows that dr
∗

dε |ε=0 = dv∗
dε |ε=0 +(1−λ)(x− r0). Hence, the

introduction of a small reference point effect into the standard model will

increase the optimal reserve price if λ is sufficiently close to 1, while it will

decrease the optimal reserve price if λ is sufficiently close to 0 and x < r0.

Even though we think that small values of ε are most plausible, in order

to better understand the model it is interesting to note what happens if

ε becomes large. Suppose that λ < 1. When ε goes to infinity, r∗ must

converge to x, because in the limit the buyers are basically unwilling to pay

more than ρ (which rules out a minimum bid r larger than ρ) and the seller

can increase her profit by increasing r if it is smaller than ρ. If λ = 1, in the

limit a buyer will never be willing to pay more than r, so the optimal reserve

price converges to the price posted by a profit-maximizing seller who can

only use a fixed-price mechanism. Such a seller will set a price p in order

to maximize her expected profit p[1 − F (p)n], which is the price times the
probability that there is at least one buyer willing to pay the price. The

first-order condition is 1−F (p∗)n− p∗nF (p∗)n−1f(p∗) = 0. Formally, when
ε goes to infinity, inspection of Proposition 3 immediately reveals that v∗

must converge to zero (so that r∗ converges to x) if λ < 1, and v∗ = r∗

converges to p∗ if λ = 1.

Remark 1 It should be emphasized that even if ε is very small, the impact

of the reference point effect on the optimal reserve price r∗ can be significant

if the number of potential buyers is sufficiently large. For example, consider

the uniform distribution, so that r0 = 0.5. Assume that ε = 0.01; i.e., the

reference point effect is quite small. If λ = 1, the optimal reserve price

for n = 3 is only slightly increased to r∗ ≈ 0. 503, but for n = 30 it is

significantly increased to r∗ ≈ 0. 774.

Finally, note that our results are relevant even if the reserve price has

19Note that in the special case n = 1 and λ = 1, the optimal reserve price does not

depend on ε. In this case, ρ = r and the bidder has to pay r if he gets the object, so that

we are back in the standard model regardless of ε.

13



only a very small influence on what the buyers perceive as a reference point.

As an illustration, let λ = 0.01 in the example mentioned in Remark 1. The

optimal reserve price in the case of thirty bidders is now between r∗ ≈ 0. 665
(if x = 0) and r∗ ≈ 0. 674 (if x = 1), which is still quite different from the

standard result r0.

4 Applications

4.1 Secret reserve prices

In the previous section we have characterized the optimal reserve price r∗

under the assumption that the seller publicly announces the reserve price.

Now consider what happens if the seller keeps the reserve price secret. In

this case, it can no longer influence the bidders’ reference point, which is

now entirely determined by the exogenous reference price x. Note that in

a second-price auction, it is still a dominant strategy for a buyer of type v

to bid bS(v) = v+εx
1+ε , so that the seller’s expected revenue is now given by

Π(r, 0). Hence, the optimal reserve price can be derived as in the previous

section. In stark contrast to the standard model (see Riley and Samuelson,

1981), it turns out that the seller’s expected revenue may well be larger if

she keeps the reserve price secret. In order to see this, note that due to the

envelope theorem

dΠ(r∗,λ)
dλ

=
n

1 + ε

"Z 1

v̄(r∗)
ε(r∗ − x)F (v)n−1dF (v) +

µ
v̄(r∗)− 1− F (v̄(r

∗))
f(v̄(r∗))

+ε[λr∗ + (1− λ)x])F (v̄(r∗))n−1f(v̄(r∗))ε(r∗ − x)
i

=
ε(r∗ − x)
1 + ε

·
1− F (v∗)n +

µ
v∗ − 1− F (v

∗)
f(v∗)

+ε[λr∗ + (1− λ)x])nF (v∗)n−1f(v∗)
i
.

Hence, Π(r∗,λ) is decreasing in λ whenever20

(r∗ − x)
·

1− F (v∗)n
nF (v∗)n−1f(v∗)

− 1− F (v
∗)

f(v∗)
+ v∗ + ε[λr∗ + (1− λ)x]

¸
< 0,

which is the case whenever x > r∗, or equivalently x > v∗. If Π(r∗,λ) is

decreasing in λ, the seller’s expected profit attains its maximum at λ = 0

20Note that the expression in square brackets is positive, because (1 −
F (v∗)n)/(nF (v∗)n−1f(v∗)) is increasing in n (see the proof of Proposition 4).
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(which corresponds to the case of a secret reserve price). Thus, if this

condition is satisfied,21 then the seller is strictly better off if she keeps the

reserve price secret, regardless of the weight λ > 0 with which a publicly

announced reserve price enters the bidders’ reference point.

If the reserve price is kept secret, first-price auctions and second-price

auctions are no longer revenue-equivalent. Note that in a first-price auc-

tion the bids depend on the reserve price (see Proposition 2). Consider

now the case of a secret reserve price, so that the reference point is en-

tirely determined by x. If a bidder of type v believes that the seller has

set the reserve price r̂, then in a first-price auction he now bids b̂F (v) =
1
1+ε

³
v + εx− R vv̄(r̂) G(w)G(v) dw

´
. Consider a bidder of type v whose bid lies

above r. From the seller’s point of view, the expected payment of the bid-

der is T̂F (v) = b̂F (v)G(v), which (in contrast to TS(v), the payment she

would expect from the bidder in a second-price auction) does not depend on

the level of r actually set by the seller. Let v̂(r) be such that b̂F (v̂(r)) = r.

The seller’s expected profit then is n
R 1
v̂(r) b̂

F (v)G(v)dF (v), which is obvi-

ously maximized if v̂(r) = 0. In equilibrium the condition r̂ = r must be

satisfied, so the seller’s expected profit in a first-price auction with a secret

reserve price is given by Π( εx
1+ε , 0). Since in general the reserve price thus is

not the one that maximizes Π(r, 0), it follows that with secret reserve prices

the expected revenue in a first-price auction is smaller than in a second-price

auction.22

Moreover, even in a first-price auction it is possible that the seller’s

expected revenue with a secret reserve price is larger than the one she could

attain by publicly announcing r∗. Even though it is no longer sufficient that

Π(r∗,λ) is decreasing in λ, the positive impact of the larger weight on x

can overcompensate the negative impact of the suboptimal secret reserve

price, if the exogenous reference price x is large. As an illustration, Figure

21Since v∗ is increasing in λ (see the proof of Proposition 5), a sufficient condition for

x > v∗ is that x is larger than v∗ at λ = 1. For example, in the case of the uniform

distribution and n = 2, this condition reads x >
¡
1 +

√
1 + 4ε+ 3ε2

¢
/(4 + 3ε), which is

always the case if x >
√
3/3.

22 If εx < 1/f(0), the expected revenue in a first-price auction is strictly smaller. Oth-

erwise, the expected revenues in first-price and second-price auctions are identical (cf.

Proposition 3).
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1 shows the seller’s expected profits with public and secret reserve prices as

functions of x if the valuations are uniformly distributed, n = 2, ε = 0.3,

and λ = 0.5.

10.80.60.40.20

0.5

0.45

0.4

0.35

0.3

expected
revenue

x

secret reserve price,
first-price auction

public reserve
price

secret reserve price,
second-price auction

Figure 1. Secret reserve prices.

4.2 The value of additional bidders

In the standard auction model with ε = 0, Bulow and Klemperer (1996) have

shown that the expected profit of a seller who sets an optimal reserve price

in the presence of n potential buyers is smaller than the expected profit of a

seller who cannot set a reserve price when there are n+ 1 potential buyers.

Hence, even if n is large, the marginal value of one additional bidder is

greater than the benefit of setting an optimal reserve price. This striking

result is no longer true if there is a reference point effect (ε > 0), given that

the number of bidders is sufficiently large. In order to see this, note that the

seller’s profit in the absence of a reserve price (i.e., if ρ is entirely determined

by x) can be written as (with integration by parts)

Π(0, 0) =
n

1 + ε

Z 1

0

µ
v − 1− F (v)

f(v)
+ εx

¶
F (v)n−1dF (v)

=
n

1 + ε

Z 1

0
(vf(v)− [1− F (v)] + εxf(v))F (v)n−1dv

=
n

1 + ε

Z 1

0
(v + εx) [1− F (v)] (n− 1)F (v)n−2f(v)dv

=
1

1 + ε

³
E
h
ṽ(2)

i
+ εx

´
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where ṽ(2) is the second highest element of {ṽ1, ..., ṽn}.23 Notice that Π(0, 0)
is increasing in n and it converges to 1+εx

1+ε < 1 if n goes to infinity, for

any given ε > 0 and x < 1. It is straightforward to see that Π(r∗,λ) must

increase in n and converge to 1 (this would even be the case if the seller

could only post a fixed price). Hence, if n is sufficiently large and x < 1, the

value of an additional buyer will be smaller than the benefit from setting

the optimal reserve price. In contrast to the standard model, the present

analysis can thus explain why restricting the number of bidders (when this

makes commitment to a reserve price more credible, as has been supposed

by Bulow and Klemperer, 1996) can indeed be profitable for the seller.24

5 Concluding remarks

We have shown that prominent results of the by now standard private in-

dependent values model of auctions with symmetric bidders are not robust

when the bidders’ utilities are influenced by a (possibly very small) refer-

ence point effect. Optimal reserve prices may be quite different from what

standard theory prescribes,25 they may well be increasing in the number of

bidders, and keeping them secret can be profitable. The value of additional

bidders might be smaller than has previously been thought.

It could be an interesting avenue for future research to analyze other

selling mechanisms when utilities are reference-dependent. In the standard

model, the revelation principle allows us to maximize over the (infinitely

large) class of all conceivable mechanisms, because every mechanism is equiv-

alent to a suitably chosen direct revelation mechanism. Hence, optimal

mechanisms can be characterized that cannot be improved upon. It is ques-

23Thus, the distribution function of ṽ(2) is Pr{ṽ(2) ≤ v} = F (v)n+nF (v)n−1(1−F (v)),
and the density function is n(n− 1)F (v)n−2f(v)(1− F (v)).
24Of course, the finding of Bulow and Klemperer (1996) is valid if the number of potential

buyers and the reference point effect are sufficiently small. For example, let v be uniformly

distributed, x = 0.1, and λ = 0.9. Then the expected profit with the optimal reserve price

and n = 2 is smaller than the expected profit with no reserve price and n = 3 if ε < ε̂,

with ε̂ ≈ 0.35.
25Note that increasing reserve prices over and above the usually prescribed levels has

also been suggested in the literature on bidding rings, see Graham and Marshall (1987)

and Mailath and Zemsky (1991).

17



tionable whether this approach is convincing from a behavioral economics

perspective.26 In particular, we think that in our context the relevant ref-

erence point in general cannot be independent of the auction format. For

example, while in the standard model an optimal reserve price is equivalent

to an optimal entry fee, this does not need to be the case in our model. Fu-

ture experimental studies might help to find out how the weights attached to

reserve prices and entry fees differ. Similarly, the starting price of a Dutch

auction might influence the reference point. In particular, the reference

point might be adapted during the oral bidding process in an open auction

format, which may well help to explain the phenomenon known as bidding

fever, which is a puzzle for the standard analysis. Moreover, in sequential

auctions it might be a good idea to start with more expensive goods, because

the price obtained in period t might influence the reference point in period

t+ 1.

It could also be an interesting topic for future research to incorporate

other insights from behavioral economics into auction theory. For example,

the endowment effect, according to which ownership of an object appears

to increase one’s valuation, might have an interesting impact on auction

models with resale opportunities.27 In our view, exploring the implications

of departures from standard economic paradigms seems to be an exciting

and promising task for auction theorists.

26 Indeed, many experiments have shown that framing effects are highly important.

Hence, what is equivalent in traditional economic theory does not need to be equivalent in

the view of real people. See Tversky and Kahneman (1981) and Kahneman and Tversky

(1984) with regard to framing and cf. also Masatlioglu and Uler (2004), who show a related

point in an auction experiment.
27For instance, Zheng (2002) has shown that the optimal allocation derived by Myerson

(1981) can under certain circumstances also be achieved when the bidders cannot commit

not to resell. Yet, this requires resale to take place, which is less probable to happen if

there is an endowment effect. But if the endowment effect is sufficiently strong, we are

again in the world of Myerson (1981). Hence, small endowment effects might be the most

damaging ones from the seller’s viewpoint.
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Appendix

Lemma 1 The term 1−F (v)n
nF (v)n−1f(v) is strictly decreasing in v for all v ∈ (0, 1).

Proof. We want to show that

d

dv

µ
1− F (v)n
F (v)n−1f(v)

¶
=

1

[F (v)n−1f(v)]2
h
−nF (v)2n−2f(v)2

−(1− F (v)n)((n− 1)F (v)n−2f(v)2 + F (v)n−1f 0(v))
i

is negative. In order to see that this is indeed the case, multiply with

[F (v)n−1f(v)]2
1− F (v)

[1− F (v)n]F (v)n−1 > 0,

so that we must showÃ
−nF (v)

n−1(1− F (v))
1− F (v)n − (n− 1)1− F (v)

F (v)

!
f(v)2 − (1− F (v))f 0(v) < 0.

Since f(v)2+(1−F (v))f 0(v) > 0 due to the monotone hazard rate assump-
tion, the left-hand side is smaller thanÃ

−nF (v)
n−1(1− F (v))
1− F (v)n − (n− 1)1− F (v)

F (v)
+ 1

!
f(v)2

=
(1− F (v)) (−nF (v)n − (n− 1)(1− F (v)n)) + (1− F (v)n)F (v)

(1− F (v)n)F (v) f(v)2

= [1− F (v)n − n(1− F (v))] f(v)2

(1− F (v)n)F (v) ≤ 0,

where the inequality follows from the fact that the term in square brackets is

(increasing in v and thus) always smaller than 1−F (1)n−n(1−F (1)) = 0.
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