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IMPROVED MODELING OF DOUBLE DEFAULT EFFECTS IN

BASEL II - AN ENDOGENOUS ASSET DROP MODEL

WITHOUT ADDITIONAL CORRELATION

SEBASTIAN EBERT AND EVA LÜTKEBOHMERT

Abstract. In 2005 the Internal Ratings Based (IRB) approach of ‘Basel II’

was enhanced by a ‘treatment of double default effects’ to account for credit

risk mitigation techniques such as ordinary guarantees or credit derivatives.

This paper reveals several severe problems of this approach and presents a

new method to account for double default effects. This new asset drop tech-

nique can be applied within any structural model of portfolio credit risk. When

formulated within the IRB approach of Basel II, it is very well suited for prac-

tical application as it does not pose extensive data requirements and economic

capital can still be computed analytically.

Key words: Basel II, double default, IRB approach, regulatory capital, structural

credit portfolio models

JEL Codes: G31, G28

1. Introduction

In 2005 the Basel Committee of Banking Supervision (BCBS) made an amend-

ment (BCBS, 2005) to the original New Basel Accord of 2003 (BCBS, 2003) that

deals with the treatment of hedged exposures in credit portfolios.1 In the original

New Basel Accord of 2003, banks are allowed to adopt a so-called substitution ap-

proach to hedged exposures. Roughly speaking, under this approach a bank can

compute the risk-weighted assets for a hedged position as if the credit exposure was

a direct exposure to the obligor’s guarantor. Therefore, the bank may have only a

small or even no benefit in terms of capital requirements from obtaining the pro-

tection. Since the 2005 amendment, for each hedged exposure the bank can choose

Date: February 18, 2010. First Version: October 30, 2009.
The authors are particularly grateful to John O’Keefe who discussed the paper at the 22nd Aus-
tralasian Banking and Finance Conference. His suggestions significantly helped to improve the
paper. Both authors acknowledge the financial support from the Bonn Graduate School of Eco-

nomics.
1Meanwhile the amendment also has been incorporated in a revised version of the 2003 New Basel
Accord, BCBS (2006). If not noted otherwise, this is the version we refer to with “Basel II”.
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between the substitution approach and the so-called double default treatment. The

latter, inspired by Heitfield and Barger (2003), takes into account that the default

of a hedged exposure only occurs if both the obligor and the guarantor default

(“double default”) and thus seems to be more sophisticated and realistic than the

substitution approach.

The recent global financial crisis drastically demonstrated the importance of how

to treat hedged exposures in credit portfolios. However, the literature on the treat-

ment of double default effects within the computation of economic capital is scarce.

This is particularly true for the literature on the computation of regulatory capital

under Basel II. Given that the former model sets a benchmark for the quantifica-

tion of minimal capital requirements for hedged exposures of banks in the European

Union, this seems to be unjustified.

There is no doubt that hedging exposures is rather a natural act than a rare excep-

tion. For example, granting loans and transferring the risk afterwards is a typical

business for a bank. This can be done by use of numerous instruments (referred

to as credit risk mitigation (CRM) techniques in Basel II) such as ordinary guar-

antees, collateral securitization and credit derivatives (in particular credit default

swaps and bundled credit packages such as credit loan obligations), to name a few.2

This is also why CRM techniques were discussed extensively in Basel II in the first

place and why the Basel Committee chose to improve on the earlier version by

introducing the treatment of double default effects in 2005. After all, through the

regulatory treatment of double default effects, the BCBS sets incentives for banks

to obtain credit protection. In the aftermath of the global financial crisis, the BCBS

again is largely concerned with making improvements to the treatment of counter-

party risk in Basel II in general (see BCBS, 2009). In this paper we propose a new

methodology to treat double default effects in any structural credit risk models. In

particular, we are concerned with the computation of regulatory capital in the IRB

approach of Basel II.

2The market for credit derivatives has grown rapidly in the years preceding the crisis. According
to a survey of the International Swaps and Derivatives Association published on April 22, 2009,
the notional of outstanding CDSs was US$39 trillion as of December 2008.
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To motivate our new method, we first review the Internal Ratings Based (IRB)

treatment of double default effects and reveal several severe problems of the ap-

proach. Most importantly, we argue that imposing additional correlation between

obligors and guarantors is unsuitable to capture their essentially asymmetric rela-

tionship appropriately. We also show that this approach, in general, violates some

of the assumptions of the Asymptotic Single Risk Factor (ASRF) model (see Gordy,

2003) which represents the mathematical basis of the IRB approach. Furthermore,

it is implicitly assumed within the IRB treatment of double defaults that guarantors

are external. That is, it is assumed that there is no direct exposure to guarantors.

It is also assumed that every loan in the portfolio is hedged by a different guarantor.

This leads to an underestimation of the associated concentration risk.

The major contribution of this paper is a new method to account for double default

effects in the computation of economic capital. It can be used within all structural

models of credit risk and, in particular, in the IRB approach of Basel II. The model

does not exhibit any of the deficiencies we point out for the IRB treatment of double

defaults. Instead of modeling the relationship between an obligor and its guaran-

tor through a dependency on an additional stochastic risk factor, we adjust the

guarantor’s default probability appropriately if the hedged obligor defaults. The

model is endogenous as it actually quantifies the increase of the guarantor’s default

probability instead of exogenously imposing a numerical value as it is done in the

IRB treatment of double default effects for the additional correlation parameters.

The idea behind the model is to quantify the size of the downward jump of the

guarantor’s firm value process in case of the obligor’s default which triggers the

guarantee payment. We therefore call this approach an asset drop model. Practi-

cal application of the model is straightforward since it does not require extensive

data. Moreover, due to its simple analytic representation, economic capital can be

computed almost instantaneously.

Structural models with (downward) jumps have been considered previously in

the literature, e.g. in case of the jump diffusion model of Zhou (2001b). Bivariate

versions of the latter were introduced in Zhou (2001a) and Hull and White (2001).
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These approaches have also been used to model default dependencies in the coun-

terparty risk literature, in particular for evaluating the credit value adjustment

(CVA) for credit default swaps (CDSs). See, for example, Lipton and Sepp (2009)

and Brigo and Chourdakis (forthcoming), and references therein. In these mod-

els jumps occur randomly rather than being triggered by a specific event as in our

model. That is, we provide an explanation for the jump time as well as for the jump

size. Moreover, in contrast to our approach the above mentioned literature models

dependencies symmetrically by correlating the asset processes. Most importantly,

none of the papers deals with the computation of regulatory capital.

Parts of the CVA literature (e.g. Pykhtin and Zhu, 2007, Gregory, 2009 and

Pykhtin, 2010) explicitly focus on the estimation of exposure at default (EAD),

i.e. on estimating the loss in market value when the contract terminates. Similarly,

Taplin et al. (2007) and Valvonis (2008) investigate the credit conversion factor

used to account for possible (retail) overdrafts. This literature can be understood

as being complementary to our work, also in order to consider the price, value and

market risk of a guarantee. Similarly, one could calculate the refinancing costs that

occur if a guarantor defaults and the guarantee should be reestablished. If a collat-

eral serves as a guarantee, the jump size could be taken as its exposure at default.

Closer to our model is the contagion model of Leung and Kwok (2005). There,

upward jumps in the default intensity of an entity occur whenever another entity

defaults. This allows for an asymmetric dependency structure between obligor and

guarantor, which has to be specified exogenously.

While the mentioned literature focuses on the proper pricing of guarantees like

CDSs by evaluating the CVA, our paper deals with the impact of guarantees on

regulatory capital. That is, once the guarantee has been obtained (no matter what

its price, CVA or current market value is), by how much should credit risk sensi-

tive regulatory capital be reduced? Although the IRB treatment of double default

effects is largely applied in practice, this question has not been answered so far. To

the best of our knowledge the only other paper that is directly addressing the IRB

model of double default is Grundke (2008). The latter, however, is not concerned

with the IRB model itself and its assumptions, but rather with the appropriate
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parameter choices within the model of Heitfield and Barger (2003).

The remainder of the paper is structured as follows. In Section 2 we provide

a review of the Internal Ratings Based (IRB) treatment of double default effects

and we reveal several severe problems of the approach. Section 3 contains our new

asset drop model to account for double default effects which can be used in all

structural models of credit risk and, in particular, in the IRB approach of Basel II.

We also implement our method within some examples and compare the results to

the current IRB treatment of double default effects. The discussion and conclusions

of the paper are given in Section 4.

2. Review and Discussion of the IRB Treatment of Double Defaults

Within the IRB approach of Pillar 1 in Basel II banks may choose between

the simple substitution approach outlined in the Introduction and a double default

approach where risk-weighted assets for exposures subject to double default are cal-

culated as follows.3 Assume the exposure to obligor n is hedged by guarantor gn.

Within the double default treatment in the IRB approach one first computes the

unexpected loss (UL) capital requirement Kn for the hedged obligor n in the same

way as the one for an unhedged exposure4 with LGDn replaced by the loss given

default LGDgn
of the guarantor. In the computation of the maturity adjustment

the default probability is chosen as the minimum of the obligor’s default prob-

ability PDn and the guarantor’s default probability PDgn
. Then the UL capital

requirement KDD
n for the hedged exposure is calculated by multiplying Kn by an

adjustment factor depending on the PD of the guarantor, namely

(1) KDD
n = Kn · (0.15 + 160 · PDgn

).

Finally, the risk-weighted asset amount for the hedged exposure is computed in the

same way as for unhedged exposures. Note that the multiplier (0.15 + 160 · PDgn
)

is derived as a linear approximation to the UL capital requirement for hedged ex-

posures. For the computation of the latter, i.e. to derive the exact conditional

expected loss function for a hedged exposure, the ASRF framework, which also

3Compare BCBS (2006), paragraph 284.
4The latter is defined in paragraphs 272 and 273 of BCBS (2006).
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presents the basis for the computation of the risk weighted assets in the IRB ap-

proach, is used in an extended version. Specifically, it is assumed that the asset

returns rn (resp. rgn
) of an obligor and its guarantor are no longer conditionally

independent given the systematic risk factor X but also depend on an additional

risk factor Zn,gn
which only affects the obligor and its guarantor. More precisely,

(2) rn =
√
ρnX +

√
1 − ρn

(√
ψn,gn

Zn,gn
+
√

1 − ψn,gn
ǫn

)
,

where ρn is the asset correlation of obligor n, ψn,gn
is a factor specifying the sen-

sitivity of obligor n to the factor Zn,gn
and ǫn is the idiosyncratic risk factor of

obligor n. By implicitly assuming that all hedges are perfect full hedges, guarantors

are themselves not obligors in the portfolio and different obligors are hedged by

different guarantors, the joint default probability of the obligor and its guarantor

can be computed explicitly as5

(3)
P ({default of obligor n} ∩ {default of guarantor gn})

= Φ2

(
Φ−1(PDn),Φ−1(PDgn

); ρn,gn

)
,

where ρn,gn
is the correlation between obligor n and its guarantor gn and Φ2(·, ·; ρ)

denotes the cumulative distribution function of the bivariate standard normal dis-

tribution with correlation ρ. Therefore, the conditional expected loss function for a

hedged exposure is given by

(4)

E
[
1l{rn≤cn}1l{rgn≤cgn} LGDn LGDgn

|X
]

= LGDn LGDgn
·

·Φ2

(
Φ−1(PDn) −√

ρnX√
1 − ρn

,
Φ−1(PDgn

) −√
ρgn

X√
1 − ρgn

;
ρn,gn

−√
ρnρgn√

(1 − ρn)(1 − ρgn
)

)

for default thresholds cn and cgn
for obligor n and its guarantor gn, respectively.

One obtains the IRB risk weight function for a hedged exposure with effective

maturity of one year by inserting Φ−1(0.001) for X, subtracting the expected loss

(5) Φ2(Φ
−1(PDn),Φ−1(PDgn

); ρn,gn
) · LGDn LGDgn

and multiplying with 12.5 and 1.06. Since the expected loss should in general be

rather small, in BCBS (2005) this term is set equal to zero. Moreover, it is assumed

5For more details on the derivation see for example Grundke (2008), pp. 40-41.
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that there are no double recovery effects and thus LGDn = 1. Within the IRB treat-

ment of double default effects, however, the linear approximation (1) of the exact

conditional expected loss function (4) is used which holds for the parameter values

specified before.6

Let us now discuss the assumptions underlying this approach in more detail.

First let us investigate how well correlation in general suits to model the depen-

dency between a guarantor and an obligor. Positive correlation implies that the

default of the obligor makes the default of the guarantor more likely. This seems

very reasonable as the guarantor suffers from the guarantee payment, and if it is

large it might even drag him into default. Vice versa, however, it seems neither

theoretically nor empirically justified that the default of the guarantor implies a

similar pain to the hedged obligor.7 Note that the obligor in general will not even

know whether the bank that granted the loan obtained credit protection at all.

And if so, the obligor will not know the name of the guarantor. Essentially, for the

hedged obligor the pain from the default of the guarantor should be not larger than

the pain from the default of any other firm in the economy. It will influence the

default probability of the obligor only through shifts in the state of the systematic

risk factor. As correlation necessarily introduces a symmetric dependency between

two random variables, it can never capture appropriately the asymmetric relation-

ship that holds between a guarantor and an obligor.

Before we continue, let us first consider a case where modeling the dependency

between a guarantor and an obligor symmetrically could be justified. Suppose,

first, there is no direct exposure to guarantors and, second, every guarantor hedges

exactly one position in the portfolio. In this case one is interested in the double

default but otherwise not in the default of the guarantor. The unconditional de-

pendence of the guarantor with the rest of the portfolio is ignored, but this can be

6Grundke (2008) explains this approximation in more detail and illustrates its accuracy. For a
comprehensive and more detailed overview of the double default treatment we refer to his paper
and the original paper by Heitfield and Barger (2003).
7For a discussion of wrong-way risk and the market risk of guarantees see Remark 2 at the end of
this section.
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compensated perfectly by choosing the additional correlation sufficiently high. Es-

sentially, in this case the obligor and its guarantor (that interacts with the obligor

and nobody else) constitute a conditionally independent unit in the portfolio. Then

correlation can be used reasonably to model the default dependency between the

obligor and its guarantor and the default event of obligor 1 can be simply replaced

with the less likely double default event.

The IRB treatment of double default effects simply makes no distinction, whether

or not a guarantor is itself an obligor in the portfolio or if it guarantees for several

obligors. The implicit approach undertaken in the IRB model for any hedging con-

stellation is the one just explained.

If one of the two assumptions above is violated, an application of the IRB treatment

of double default effects is no more rigorous. When applying the IRB treatment of

double defaults, the interactions of each guarantor with the rest of the portfolio are

ignored. To be more precise, if the guarantor itself is in the portfolio, it would be

treated as any other obligor in the portfolio, in particular conditionally independent

from the obligor it guarantees for. Its expected loss is computed as if it was not

involved in a hedging relationship, i.e. with an unchanged default probability and

a correlation parameter as used for obligors rather than guarantors. If a guarantor

hedges several positions this problem becomes even more severe. Moreover, this

implies that overly excessive contracting of the same guarantor is not reflected in

the computation of economic capital.

Further note that the IRB treatment of double default effects is generally unsuited

to deal with the above situations because of the additional correlation assumption.

If the guarantor is itself in the portfolio, its default will significantly increase the

default probability of the obligor, what, as mentioned before, is an unappreciated

consequence. If on the other hand the guarantor hedges more than one obligor, say

3 hedges 1 and 2, then the default of 1 increases the guarantor’s default probability

which itself increases the default probability of 2. That is, 1 and 2 are no more

conditionally independent because they share the same ‘contagious’ guarantor. In

general, this seems to be very unreasonable as there need not be any business re-

lationship between 1 and 2 or there even might be a negative relationship between

them such that the default of 1 should actually decrease the default probability of
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obligor 2.8 Thus we conclude that the IRB treatment of double default effects can

only be used reasonably if every obligor in the portfolio has a different guarantor

and if there is no direct exposure to any of those guarantors.

Remark 1. (Consistency with the ASRF model.) From a theoretical or mathemat-
ical point of view introducing additional correlation within the IRB approach leads
to some problems as a main assumption underlying this framework is violated.
Suppose that a guarantor hedges several obligors or that a guarantor is internal
in the sense that there is also direct exposure to the guarantor. In this case the
additional correlation violates the conditional independence assumption, on which
the ASRF model is based. Conditional independence between the obligor loss vari-
ables, however, is required as the ASRF model relies on a law of large numbers.
Let us mention here, however, that the violation of the conditional independence
assumption underlying the ASRF model will essentially occur in any approach that
correctly accounts for the interactions resulting from double default effects. The as-
ymptotic result used in the approximation of the value-at-risk αq(L) of the portfolio
loss by the expected portfolio loss E[L|αq(X)] conditional on the quantile αq(X)
of the systematic risk factor in this situation only holds when the hedged exposure
shares and the direct exposure shares to guarantors are sufficiently small.

Finally, let us also mention another deficiency of the IRB treatment of dou-

ble default effects which is highly relevant for practical applications. It concerns

the parameter choice of the conditional correlation parameters. While not ques-

tioning the assumption of imposing additional correlation between an obligor and

its guarantor in general, in a recent and long overdue empirical study, Grundke

(2008) investigates the numerical values of the correlation parameters ρgn
= 0.7

and ρn,gn
= 0.5 set by the BCBS. To this purpose, he reviews empirical studies on

default correlation and further initiates new simulation studies, which yield rather

different results. While the empirical studies he considers imply that the param-

eters are chosen overly conservative, the simulation experiments “show that the

assumed values are not unrealistic for capturing the intended effects”.9 He also

notes that the appropriateness of the parameter choice actually depends, for ex-

ample, on the size of the guarantor and the amount guaranteed. Within the IRB

treatment of double default effects the correlation parameters are independent of

these quantities. Implicitly this means, for instance, that a small bank and a large

insurance company would suffer equally from any guarantee payment.

8Similarly to the argument before, also note that 1 and 2 will not know wether there is a guarantor.

And if so, they will not know who it is.
9See p. 58 of Grundke (2008).
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Remark 2. (Wrong-way risk.) It might be argued that not the obligor, but the bank

whose regulatory capital we aim to compute will be affected by the guarantor’s
default. This phenomenon, sometimes referred to as ‘wrong-way risk’, might be
due to a loss in market value of the defaulted hedging product. For example, if the
bank decides to obtain a new guarantee, this loss in market value had to be realized
immediately as replacement costs. It should be clear, however, that this effect will
not justify a symmetric dependency structure.10 Moreover, we propose not to dilute
this effect with the Pillar 1 capital requirements. Also in the current treatment
of double default effects within the IRB approach the price or market value of
guarantees is not reflected, and this seems well justified. Given the existence of the
guarantee, the bank should benefit from smaller capital requirements (depending
on the quality of the guarantee). If there is no guarantee (or of it has defaulted),
it should not. Price, market value or possible replacement costs of the guarantee
should be reflected on the market risk side. The CVA literature mentioned in the
introduction offers appropriate tools for its risk assessment.

3. The Asset Drop Technique as an Alternative Approach

In this section we will present an alternative method to account for double de-

fault effects in credit portfolios that does not rely on additional correlation between

obligor and guarantor. It does capture their asymmetric relationship, i.e. that the

guarantor should suffer much more from the obligor’s default (triggering the guar-

antee payment) than vice versa. Further, our method distinguishes the case where

there is direct exposure to the guarantor from the case where it is external to the

portfolio. Furthermore, we properly treat the situation where a guarantor hedges

several obligors.

Instead of modeling the relationship between guarantor and obligor through a de-

pendency on an additional stochastic risk factor, we adjust the guarantor’s default

probability appropriately if the obligor defaults. Our model is endogenous as it

actually quantifies the increase of the guarantor’s default probability instead of

exogenously imposing numerical values as it is done in case of the additional corre-

lation parameters ρn,gn
in the IRB treatment of double default effects. The increase

in the guarantor’s default probability in our new approach depends on the size of

the guarantee payment as well as on the size of the guarantor measured in terms of

its asset value. The method is very well suited for practical applications as it does

not pose any extensive data requirements. Moreover, due to its simple analytic

10Within the model we will propose it is straightforward to incorporate such a reverse feedback
effect while still having some asymmetry. This can be achieved e.g. by introducing an additional
drop in the asset value of the obligor by the market value of the hedging product.
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representation of economic capital when incorporated in the IRB model, it can be

computed almost instantaneously.

3.1. Methodology. Within a structural model of default, the guarantee payment

that occurs to the guarantor corresponds to a downward jump in its firm value

process or, equivalently, in the firm’s asset return. This causes the unconditional

default probability to increase by a growth factor (1 + λn,gn
). This qualitative ob-

servation can be found in Grundke (2008), p. 53.11 To illustrate the idea of the

approach, let us first consider the simple case where obligor 1 is hedged by a guar-

antor, g1, which is external to the portfolio. That is, the guarantor is itself not

an obligor in the portfolio. We want to quantify the impact of obligor 1’s default

on the guarantor’s unconditional default probability. In the current situation the

default of the guarantor is only of interest if obligor 1 defaults as well. If solely the

guarantor defaults there is no loss as there is no direct exposure to the guarantor.

Thus, our objective is to compute the guarantor’s (increased) default probability

when the hedged obligor already has defaulted such that the guarantee payment has

been triggered. The loss due to the guarantee payment may cause the guarantor’s

default or may make it more likely. For simplicity and for consistency with the

IRB approach we illustrate the method within an extension of the model of Mer-

ton (1974). However, in principle our new approach can also be applied in more

sophisticated structural credit risk models which are e.g. driven by Lévy processes.

In the IRB approach we consider a two-period model with a 1-year horizon where

time t is today and T refers to one year in the future. Our input parameters are

the initial firm value Vg1
(t) of the guarantor g1, i.e. the firm’s value at time t taken

e.g. from the balance sheet or inferred from the current stock price, as well as an

estimate of its volatility σg1
. We further need the (non-portfolio specific) default

probability PDg1
, that could be obtained from a rating agency, and the risk-free

interest rate r. In Merton’s model it is assumed that the asset value process of

11In order to assess the conservativeness of the parameter choices for the additional correlation
in the treatment of double default effects in the IRB approach, Grundke (2008) shows that the
additional correlation approximately translates into an increase of 100% in the guarantor’s uncon-
ditional PD . In principle, one could use Grundke’s calculation to (numerically) obtain individual
additional correlation parameters from our estimate of λn,gn .
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guarantor g1 follows a geometric Brownian motion of the form

(6) Vg1
(T ) = Vg1

(t) · e(µg1
− 1

2
σ2

g1
)(T−t)+σg1

WT−t

where WT−t is a standard Brownian motion and Bg1
is the guarantor’s debt value.

Under the risk-neutral measure, one then obtains the unconditional default proba-

bility of guarantor g1 as

(7) PDg1
= P(Vg1

(T ) < Bg1
) = 1 − Φ

(
ln (Vg1

(t)/Bg1
) + (r − 1

2σ
2
g1

)(T − t)

σg1

√
T − t

)
.

From this one can compute the default threshold Bg1
of guarantor g1 implied by

Merton’s model as

(8) Bg1
= Vg1

(t) · exp

(
−Φ−1(1 − PDg1

) · σg1

√
Tt +

(
r − 1

2
σ2

g1

)
(t− t)

)
.

Figure 1 illustrates the mechanism of the Merton model.

Figure 1. Probability of default in the Merton model

E [ln VT]

 ln Vt ln [B]

Default 

Probability  

ln Vt 

t T time 

 

The asset value process Vt follows a geometric Brownian motion such that the log asset-returns

are normally distributed with mean E[ln VT ] at maturity T. If the asset value at maturity falls

below the value of the firm’s liabilities B, the firm will default.

Our asset drop model represents an extension of Merton’s model. If obligor 1

defaults, this corresponds to a drop in the asset value Vg1
of the guarantor by the
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nominal Ê1,g1
that g1 guarantees for obligor 1.12 Hence we model the asset value

process of the guarantor g1 as

(9) Vg1
(T ) = Vg1

(t) · e(µg1
− 1

2
σ2

g1
)(T−t)+σg1

WT−t − Ê1,g1
· 1l{V1(T )≤B1}.

Thus our model represents a jump-diffusion model in the sense that the jump time

is determined by the stopping time 1l{V1(T )≤B1} i.e. by the default time of obligor 1

triggering the guarantee payment. Moreover, the jump size is deterministic and

given by the nominal Ê1,g1
that g1 guarantees for obligor 1. We refer to this type of

model as a Bernoulli mixture model.13 The guarantor defaults with the increased

probability PD′
g1

when the guarantee payment has been triggered, i.e. under the

risk-neutral measure the increased default probability of g1 is given by

(10)

PD′
g1

= P (Vg1
(T ) ≤ Bg1

|V1(T ) ≤ B1)

= P

(
Vg1

(t) · e(r− 1

2
σ2

g1
)(T−t)+σg1

WT−t − Ê1,g1

)

= 1 − Φ




ln
(

Vg1
(t)

Bg1
+Ê1,g1

)
+
(
r − 1

2σ
2
g1

)
(T − t)

σg1

√
T − t


 .

Similarly the guarantor defaults with the probability PDg1
if obligor 1 survives, i.e.

(11)

PDg1
= P (Vg1

(T ) ≤ Bg1
|V1(T ) ≥ B1)

= P

(
Vg1

(t) · e(r− 1

2
σ2

g1
)(T−t)+σg1

WT−t

)

= 1 − Φ

(
ln (Vg1

(t)/Bg1
) +

(
r − 1

2σ
2
g1

)
(T − t)

σg1

√
T − t

)
.

Figure 2 illustrates the functioning of our new asset drop approach. In particular,

it shows how the guarantor PD increases when the guarantee payment has been

triggered.

12Note that at this point it can be seen that the model is, in principle, capable to capture also
other dependencies such as business-to-business relationships. For example, if it is known that
the guarantor also has a direct claim of E1,g1

to obligor 1, it might be reasonable to continue

the computation with the higher asset drop Ê1,g1
+E1,g1

. To appropriately treat risky collaterals

Ê1,g1
could be taken as expected exposure at default.

13Note that a classical jump diffusion model as e.g. in Zhou (2001b) is not suitable to model
double default effects for the following reason. In the jump-diffusion model of Zhou (2001b) the
jumps are driven by a Poisson process with intensity λ and the jump amplitude is stochastic as
well. The main idea of our double default model is that we model explicitly the time when the
asset value drops (resp. jumps) by considering the default time of the obligor that is hedged.
This then leads to a Bernoulli-mixture model as stated above. Moreover in our setting the jump
amplitude is deterministic as the amount that is guaranteed should be known in advance.
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Figure 2. Probability of default in the asset drop model
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The asset value process Vt follows a Bernoulli mixture model of the form (9) such that the

asset value of the guarantor drops by the guarantee’s nominal Ê1,g1
in case the hedged obligor

defaults. Otherwise the asset value of the guarantor is log-normally distributed with mean

E[ln VT ] at maturity T. If the hedged obligor has defaulted and if the asset value of the

guarantor at maturity falls below the value of the firm’s liabilities B plus the guarantee’s

nominal Ê1,g1
, the guarantor will default as well. Hence the default of the hedged obligor

leads to an increase in the guarantor’s default probability.

Note that Bg1
is the default threshold of guarantor g1 in case the hedged obligor 1

has not defaulted. Thus Bg1
can be computed from the guarantor’s observed rating

according to the classical Merton model by equation (8). Thus, we can compute

the increased PD′
g1

of the guarantor due to the obligor’s default using equations

(8) and (10). This then provides an analytic formula for the unconditional default

growth rate λ1,g1
, i.e. the relative increase of the guarantor’s default probability

due to the hedged obligor’s default. It is defined as

(12) λ1,g1
=

PD′
g1
−PDg1

PDg1
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such that

(13) PD′
g1

= PDg1
· (1 + λ1,g1

).

We now illustrate how this approach can be incorporated in the IRB model for

the computation of economic capital. The probability distribution of the loss vari-

able L1 of obligor 1 is in our setting given by

(14) P(L1 = l) =





PD′
g1

PD1 for l = s1 LGDg1

(1 − PD′
g1

) PD1 +(1 − PD1) for l = 0.

Note that to respect double recovery effects LGDg1
could be multiplied by LGD1 .

However, for several reasons double recovery is not reflected in the current Basel II

framework. Thus in the above and in the following we always set LGD1 = 1 such

that only recovery of the guarantor is accounted for. Then the expected loss for

obligor 1 is E[L1] = s1 LGDg1
PD1 PD′

g1
and the expected loss conditional on a

realization xq of the systematic risk factor X is

E[L1|xq] = s1 LGDg1
PD1(xq) PD′

g1
(xq)

where the conditional PDs are computed as in the IRB approach by

PD1(X) = Φ

(
Φ−1(PD1) −

√
ρ1X√

1 − ρ1

)

and respectively for PD′
g1
. Hence the unexpected loss capital requirement K1 for

the hedged exposure s1 is14

K1 = LGDg1
(PD1(xq) PD′

g1
(xq) − PD1 PD′

g1
).

Hence, to compute the IRB capital charges for the hedged exposure to obligor 1,

one simply inserts the double default probability PD′
g1

PD1 instead of PD1 in the

formula for the IRB risk weight functions.

Remark 3. (Convexity of effective guarantor PD) By taking derivatives in equa-
tions (8) and (10) it can be shown that PD′

g is convex in the guarantee nominal.
This convexity sets an incentive for banks to use several distinct guarantors for
various loans. If, for example, there are two identical loans and two guarantors
with exactly the same characteristics, the overall increase in default probability is
smaller if each guarantor is contracted for one of the loans compared to when one

14The Basel II economic capital for the hedged exposure 1 is obtained by multiplying K1 with
the scaling factor 1.06 and the maturity adjustment MA1, where we insert PD1 PD′

g1
instead of

PD1 .
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guarantor is chosen to guarantee both loans. Thus also the bank’s economic capital
will be smaller if it diversifies its guarantor risk. In particular, as will be shown
explicitly in Example 1, overly excessive contracting of the same guarantor will sig-
nificantly increase economic capital. This definitely is an appreciated consequence
from a regulatory point of view. However, the effect is not reflected in the current
treatment of double default effects within the IRB approach. Under this approach
economic capital does not depend on whether a hundred loans are hedged by one
single guarantor or whether every loan is hedged by one out of a hundred different
guarantors.

Figure 3. Effective PD computed with the asset drop technique
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Figure 3 shows the effective guarantor default probability PD′

gn
= PDgn (1 + λn,gn ) for two

banks as a function of the expected guarantee payment Ên,gn . For a large bank (diamond

line) the graph is moderately increasing and a guarantee payment of 1600 million Euros would

roughly double its initial default probability. For a smaller bank (square line) the initial default

probability already doubles when it has to make a payment of 275 million Euros. From this

graph we also see the convexity of the relationship. This implies higher capital requirements

if the same guarantor is used for several transactions.

Example 1 (Computation of effective PD with the asset drop technique). Consider
two medium-sized banks, g1 and g2, which according to their balance sheets have
total asset values of Vg1

(t) = 50 and Vg2
(t) = 10 billion Euros, respectively. Both

firm value volatilities are estimated to be σ2
g1

= σ2
g2

= 30%. Assume both to
have the same rating which translates into an unconditional default probability
of PDg1

= PDg2
= 0.5%. The market’s risk free interest rate is r = 0.02%. Assume

a 1-year time horizon. Using formula (8) we can compute the implicit default
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threshold for the larger bank in the Merton model and obtain Bg1
= 22.517.068

billion Euros. Likewise, for the smaller bank we obtain Bg2
= 4.502.414 billion

Euros. Figure 3 shows the effective default probabilities PD′
g1

and PD′
g2

of the two

banks as a function of the expected guarantee payment Ê1,g1
≡ Ê1,g2

. This has
been computed with the asset drop technique according to equation (10). When
the expected guarantee payment is e.g. 400 million Euros, the effective default
probability of the smaller bank would be PD′

g2
= 1.09%, which corresponds to

an increase by a factor (1 + λ1,g2
) = 2.19, i.e. λ1,g2

= 1.19. This means, that a
financial institution which has no direct exposure to g2 and which buys protection
from the latter for its 400 million exposure to obligor 1, will use this increased
default probability when computing its economic capital due to obligor 1. This is
intuitive as g2’s default is only of interest when obligor 1 already has defaulted. For
the larger bank the guarantee payment corresponds to a less significant loss. Its
effective PD would only increase by a factor (1 + λ1,g1

) = 1.18 to PD′
g1

= 0.59%.
Note also that the relationship is convex as already mentioned in Remark 3. Also
note from equations (8) and (10) that the increase in PD is scale invariant with
respect to the firm size and the loan nominal. Thus, for example, a true global player
with 100 times the firm size of the large bank considered here could guarantee 100
times as much as the large bank while suffering from the same increase in PD .

3.2. Generalizations. Let us now consider the more complicated case where there

is direct exposure to the guarantor. Denote the exposure share of obligor 1 by s1

and assume that it is fully hedged by guarantor g1. Denote the direct exposure

share to the guarantor by sg1
. In this case we also have to focus on the default

of the guarantor itself, i.e. a loss also occurs if the guarantor defaults and the

hedged obligor survives. In this situation, in a sense, there are two appropriate

default probabilities of the guarantor. If obligor 1 already has defaulted, the default

probability of the guarantor is given by PD′
g1
. Otherwise it is given by PDg1

.

To compute the contribution to economic capital of the hedged obligor and its

guarantor within in the IRB approach we have to compute the conditional expected

loss of both. As we do not want to reflect double recovery effects (similarly to the

treatment in Basel II) we set LGD1 = 1 for a hedged exposure. The probability

distribution of the joint loss variable L1,g1
of obligor 1 and its guarantor g1, is then

(15)

P(L1,g1
= l) =





PD′
g1

PD1 for l = s1 LGDg1

+sg1
LGDg1

PDg1
(1 − PD1) for l = sg1

LGDg1

(1 − PD′
g1

) PD1 +(1 − PDg1
)(1 − PD1) for l = 0.
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Note that the increased unconditional default probability PD′
g1

occurs together

with PD1 (i.e. with the probability that obligor 1 defaults), as in these situations

the guarantee payment is triggered. The first case corresponds to the situation

where both the obligor and the guarantor default (i.e. to the double default case).

In the second case only the guarantor defaults such that only the direct exposure to

g1 is lost. The third case comprises the hedging case, i.e. the obligor defaults and

the guarantor succeeds in delivering the guarantee payment (although its default

probability has increased) and the case where both the guarantor and the obligor

survive. Thus in this case no loss occurs. The expected loss can be computed as

E[L1,g1
] = PD′

g1
PD1(sg1

LGDg1
+s1 LGDg1

)

+ PDg1
(1 − PD1)sg1

LGDg1

= sg1
LGDg1

(
PDg1

+ PD1 ·(PD′
g1
−PDg1

)
)

+s1 LGDg1
PD′

g1
PD1

This can be reformulated as

(16) E[L1,g1
] = sg1

LGDg1
PDg1

(1 + λ1,g1
PD1) + s1 LGDg1

PD′
g1

PD1 .

Note that probability that the exposure sg1
in the first term is lost, is the expected

default probability of the guarantor whereas the probability that the hedged ex-

posure s1 in the second term is lost, is the default probability of the guarantor

conditional on obligor 1’s default. The second term in equation (16) is the ex-

pected loss due to obligor 1 that only occurs in the situation of double default.

This term is the same as in the case where the guarantor is external. The first term

in equation (16) is the expected loss due to obligor 2 whose default probability

increases if it has to exercise its guarantee payment. That is, the expected loss due

to an obligor increases if it is involved in a hedging activity because its expected

PD increases. This fact is ignored in the treatment of double default effects in the

IRB approach since guarantors are implicitly treated as external.15

The derivation of economic capital for the hedged exposure and its guarantor is

obtained as follows. The conditional expected loss can be obtained as in the model

15Note, again, that under the IRB approach it would not be reasonable to take into account direct
exposure to a guarantor as the additional correlation would induce an unrealistic dependency
between obligor and guarantor.
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underlying the IRB treatment of double default effects when there is no additional

correlation. Denote by rn resp. rgn
the log asset return of obligor n resp. of its

guarantor gn. Let the conditional default probabilities be defined as in the IRB

model by

(17) PDn(X) = Φ

(
Φ−1(PDn) −√

ρnX√
1 − ρn

)

for n = 1 or g1 and analogously for PD′
g1

(X). Then in our setting we have

(18)

E[L1,g1
|X] = s1 LGDg1

E[1l{r1<c1}1l{rg1
<c′g1

}|X]

+sg1
LGDg1

E[1l{rg1
<cg1

}1l{r1≥c1} + 1l{rg1
<c′g1

}1l{r1<c1}|X]

= s1 LGDg1
PD1(X) PD′

g1
(X)

+sg1
LGDg1

(
PDg1

(X)(1 − PD1(X)) + PD′
g1

(X) PD1(X)
)

where we again neglected double recovery effects. Note that the loss variables for s1

and sg1
in the above equation are stochastically dependent conditional on X. Thus,

approximating the value-at-risk αq(L) by the conditional expected portfolio loss as

it is done in the IRB approach only makes sense within a double default treatment

when the hedged exposure shares and the direct exposure shares to guarantors are

sufficiently small (compare Remark 1 for more details).

Partial hedging and the case where a guarantor hedges multiple obligors in a port-

folio can be approached with the same technique just presented and the results are

straightforward. See also Ebert and Lütkebohmert (2009) for a detailed treatment

of these situations under Pillar 2 of Basel II.

Example 2. (Comparison of EC computed with the IRB double default treatment
and with the asset drop technique.) Consider a portfolio with N = 110 obligors.
The first n = 1, . . . , 10 loans in the portfolio are hedged by guarantors 101, . . . , 110,
who also act as obligors in the portfolio. Assume the exposures to equal EADn = 1
for all n = 1, . . . , 110. The PDs are assumed to be 1% for n = 1, . . . , 100 and 0.1%
for the guarantors n = 101, . . . , 110. As in the IRB approach, let LGDs be 45%
for all unhedged obligors n = 11, . . . , 110. Hedged exposures are assigned an LGD
of 100% to neglect double recovery effects, i.e. LGDn = 100% for n = 1, . . . , 10.
We assume an effective maturity of M = 1 year for all obligors and guarantors
in the portfolio. Value-at-risk is computed at the 99.9% percentile level. The
IRB treatment of double default effects yields an economic capital of 5.40% of
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total exposure.16 This is lower than the value obtained when neglecting double
default effects entirely which equals 5.79%. Denoting by xq the qth percentile of
the systematic risk factor X, we calculated the IRB capital with the asset drop
technique as

(19)

10∑

n=1

sn LGDgn

[
PDn(xq)P̃D

′

gn
(xq)) − PDn PDgn

(1 + λn,gn
)
]

+

100∑

n=11

sn LGDn (PDn(xq) − PDn)

+

110∑

n=101

sgn
LGDgn

[
PDgn

(xq) · (1 − PDn(xq)) + PD′
gn

(xq) PDn(xq)

−PDgn
(1 + PDn ·λn,gn

)
]
.

In the above equation P̃D
′

gn
(xq) denotes the conditional increased default probabil-

ity for the guarantor computed via equation (17) with PD equal to PDgn
(1+λn,gn

)
and asset correlation parameter ρ set to 0.7. The latter value is the increased cor-
relation parameter chosen in the IRB treatment for exposures subject to double
default. Although the choice of this parameter might be questionable we use it
here for reasons of better comparability of our model with the IRB treatment of
double defaults.

Figure 4. Influence of increased guarantor PD on EC
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Figure 4 shows the influence of the parameter λ through the increased guarantor default

probability PD′

gn
= PDgn (1 + λn,gn ) on regulatory capital computed within the asset drop

model. λ increases from 0.0 to 5.0 leading to an increase in EC from 5.34% to 5.61% of total

portfolio exposure. For λ = 0.7 (PD′

gn
= 0.17%) the asset drop model leads to the same

EC = 5.40% as the IRB treatment of double defaults.

16This computation is based on the approximation in equation (1) as this is the one applied in
practice.
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Figure 4 shows the influence of the parameter λ through the increased default
probability PD′

gn
= PDgn

(1 + λ) of the guarantor on the IRB capital computed
within the asset drop approach. Here we chose a constant level of λ for all hedged
obligors in the portfolio. With increasing λ the IRB capital also increases. This is
very intuitive as higher values of λ mean that the expected default probabilities of
the guarantors increase. This obviously results in higher capital requirements. For
λ = 0.7 (PD′

gn
= 0.17%) our new asset drop method leads to the same economic

capital as the one computed within the IRB treatment of double defaults, i.e.
EC = 5.40% of total portfolio exposure.

4. Conclusion

In this paper we pointed out several severe problems of the treatment of double

default effects applied under Pillar 1 in the IRB approach of Basel II. Our main crit-

icism is that it relies on the assumption of additional correlation between obligors

and guarantors. Thus, it fails to model their asymmetric dependence structure ap-

propriately, that is, that the guarantor should suffer much more from the obligor’s

default triggering the guarantee payment than vice versa. The particular choice for

the additional correlation parameter is the same for all obligors and guarantors and

it remains entirely unclear how specific guarantor and obligor characteristics could

be reflected in this parameter. Further, all guarantors are treated as distinct for

different obligors and are assumed to be external to the portfolio. Thus, if there is

direct exposure to guarantors or if several obligors have the same guarantor, then

the additional dependencies and concentrations in the credit portfolio are ignored.

Hence, also overly excessive contracting of the same guarantor is not reflected in

the computation of economic capital.

To overcome these deficiencies, we proposed a new approach to account for double

default effects that can be applied in any model of portfolio credit risk and, in

particular, under the IRB approach of Basel II. It is easily applicable in terms of

data requirements and computational time. Specifically, compared to the model

of Heitfield and Barger (2003) underlying the IRB treatment of double defaults

we need in addition the total values of the firms’ assets. These, however, can be

directly inferred from the balance sheets and hence it should not be too much of a

burden for any bank. Moreover, it should be obvious that theses quantities should

be reflected in any good model for double default effects.

Despite of its simplicity our new approach does not show any of the above mentioned
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shortcomings and thus better reflects the risk associated with double defaults. The

model endogenously quantifies the impact of the guarantee payment on the guaran-

tor’s unconditional default probability. Within a structural model of portfolio credit

risk the guarantor’s loss due to the guarantee payment corresponds to a downward

jump in its firm value process. The jump size is determined endogenously through

the underlying credit risk model assumed. This new asset drop technique could

also be applied to model other dependencies within a conditional independence

framework, as for example default contagion effects through business-to-business

dependencies.
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