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Abstract

The benefit from using second-order approximations to stochastic dynamic rational expec-
tations models is explained. By example of the neoclassical growth model, this note as-
sesses the accuracy of the obtained approximation. The implications for optimal policy are
discussed.
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1 Introduction

Various authors have pointed to shortcomings in using first order approximations to
dynamic general equilibrium models. Kim and Kim (2003) have shown that such a
method can lead to spurious welfare reversals, i.e. full risk sharing appears inferior
to autarky in a simple two country model. This note assesses the accuracy of the
second-order approximation to the policy function developed by Schmitt-Grohé
and Uribe (2004). Furthermore, it suggests a welfare measure usable for policy
rankings that can be easily constructed and takes account of the effect of variances
on means.

2 Model representation and form of the solution

To fix notation, consider the generic representation for rational expectations models
introduced by Schmitt-Groh́e and Uribe (2004)

Et f(yt+1,yt,xt+1,xt) = 0. (1)

f is a known function describing the equilibrium conditions of the model economy,
yt is a vector of co-state variables andxt a vector of state variables partitioned as
xt = [x1,t;x2,t]. x1,t is a vector of endogenous state variables andx2,t a vector of
state variables following an exogenous stochastic process

x2,t+1 = Lx2,t + Ñσεt. (2)
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L andÑ are known coefficient matrices,εt is a vector of innovations with bounded
support, independently and identically distributed with mean zero and covariance
matrix I. σ is a parameter scaling the standard deviation of the innovations. The
solution to the model described by (1) is of the form

yt = g(xt, σ), (3)

xt+1 =h(xt, σ) + σNεt+1, with: N =
[

0
Ñ

]
. (4)

Schmitt-Groh́e and Uribe (2004) derive the second-order Taylor approximation to
the policy functionsg(·) andh(·) and provide MATLAB codes for the numerical
implementation. The approximate model dynamics obtained from their second-
order approximation can be compactly expressed as

yt =Gxt +
1
2
G∗(xt ⊗ xt) +

1
2
gσ2, (5)

xt+1 =Hxt +
1
2
H∗(xt ⊗ xt) +

1
2
hσ2 + σNεt+1. (6)

Here, the vectorsyt andxt denote deviation or log-deviation from the steady state.
G andH are coefficient matrices representing the linear part of the Taylor ap-
proximation. The matricesG∗ andH∗ form the second-order part jointly with the
vectorsg andh.

3 Accuracy

The neoclassical growth model is employed to assess the accuracy of the second-
order approximation . The model consists of the following equilibrium conditions

c−γ
t =βEtc

−γ
t+1[αAt+1k

α−1
t+1 + (1− δ)], (7)

ct + kt+1 =Atk
α
t + (1− δ)kt, (8)

lnAt+1 = ρlnAt + σεt+1. (9)

3.1 den Haan - Marcetχ2 test

The den Haan and Marcet (1994) test exploits that for an exact solution the pre-
diction error,ut = βct+1(αkα−1

t θt+1 + 1 − δ) − c−γ
t , must be orthogonal to any

function φ(xt) of state variables included in periodt information set. The test
is carried out by constructing a simulated time series of lengthT for the model’s
variables and computing

BT ≡
ΣT

t=1(utφ(xt))
T

. (10)

The choice ofφ(xt) in this analysis is the vector valued function of a constant, cur-
rent period state variables and two lags of the states. den Haan and Marcet (1994)
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show how to construct fromBT a test statistic that hasχ2
qm distribution, where

q is the number of instruments andm the number of Euler equations. Note that
the growth model is solved in log-deviations using the choice of parameters in den
Haan and Marcet (1994), i.e.γ = 0.5 and3.0, α = 0.33, β = 0.99, δ = 0.025, ρ =
0.95, σ = 0.03. The following table shows the percentages of500 repetitions of
the test statistics for sample sizeT = 3, 000 andT = 10, 000 falling into the up-
per or lower5% percentile of theχ2 distribution. A test statistic belonging to this
region is evidence against the accuracy of the solution. Theχ2-test delivers ample

γ = 0.5 γ = 3
T lower 5% upper 5% lower 5% upper 5%

1st order 3, 000 0.0% 52% 0.3% 13.6%
2nd order 3, 000 5.6% 6.4% 5.6% 4.2%
1st order 10, 000 0.0% 98% 0.2% 33.6%
2nd order 10, 000 5% 5.2% 4% 4.2%

Table 1:χ2 accuracy test

evidence for inaccuracy of the log-linear solution method, too much probability
mass is in the upper tail. This is very clear forT = 10, 000. As the sample size in-
creases, the null will be rejected more often for any approximate solution method.
However, even for this large sample size, there is little evidence for inaccuracy of
the second-order approximation.

A more comprehensive way of illustrating the test results is the percentile plot
in Figure 1. This is a plot of the analyticalχ2 - c.d.f . against the simulated
distribution function of the test statistic. Up to sampling variability, if the test
statistic follows theχ2 distribution, the points should lie on the diagonal, which
is plotted as a reference. For the second-order approximation, this is roughly the
case. In contrast, the test statistic from the first order approximation is clearly not
compatible with theχ2 distribution.

However, the relationship between orthogonal prediction errors and deviation
of the approximate policy function from the unknown exact policy function has
not yet been sharply characterized. Therefore it is instructive to consider Euler
equation residuals, which is done in the next subsection.

3.2 Euler equation residuals

Let xt+1 = hs(xt) denote the transition function for the state variables obtained
under solution methods. For notational simplicity, the dependence of this function
onσ andεt+1 is suppressed. The residual arising from the Euler equation is

Rs(xt) = 1−
{
βEt

[
c (hs(xt))

−γ {αAt+1k(xt)α−1 + 1− δ
}]}− 1

γ

c(xt)
. (11)
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Figure 1: Percentile plot for T = 10,000

The Euler equation residual expresses the error from following the approximated
policy rule as a fraction of current period consumption. Clearly, for an exact so-
lution, the error is zero. Under certain conditions the approximation error of the
policy function is of the same order of magnitude as the Euler equation residual as
pointed out by Santos (2000).

Figures 2 and 3 plot the Euler equation residual as a function of the percentage
deviation of capital and technology from the steady state for the calibration of the
previous subsection withγ = 0.5. The Euler equation residuals for the linear solu-
tion method are of the order of magnitude of10−3, an error of $ 1 for every 1,000
dollars spent. However the error does not have mean zero, the residual function is
positive everywhere on its domain.

The second-order approximation yields residuals which are of an order of mag-
nitude smaller than those of the linear approximation. It also seems to center the
residuals better around zero.

4 Welfare evaluation

Given the superior accuracy of the second-order approximation, it remains to be
demonstrated in what way this matters for the economic analysis. This section
shows that the effect of variances on means cannot be captured by a first order
approximation and suggests a simple way to do undertake welfare ranking of alter-
native policies.
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Figure 2: Euler equation error based on linear approximation

4.1 Unconditional welfare

A natural welfare measure for rankings of fiscal or monetary policy that can be
easily constructed from the second-order approximation is the unconditional ex-
pectation of period utility.

The second-order approximation to an arbitrary utility functionu(yt) of co-
statesyt is

u(yt) ≈ u (y) +∇u(y)yt +
1
2
vec

(
∇2u(y)

)′ (yt ⊗ yt), (12)

such that upon taking expectations

E(u(yt)) ≈ u (y) +∇u(y)µy +
1
2
vec

(
∇2u(y)

)′
vec(Σy + µyµ′

y). (13)

Here,µy,Σy denote unconditional mean and covariance matrix ofy, respectively.
To construct first and second moments of the co-state variables assume covariance
stationarity and take expectation of (5) and (6)

µy =Gµx +
1
2
G∗vec(Σx + µxµ′

x) +
1
2
gσ2, (14)

µx =Hµx +
1
2
H∗vec(Σx + µxµ′

x) +
1
2
hσ2. (15)

Note that while under the linear approximation unconditional means do not differ
from the steady state values, the second-order approximation is able to capture
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Figure 3: Euler equation error based on quadratic approximation

the effect of variances on means. Since variances can be computed accurately
up to second-order from the linear part of the policy function, it is sufficient to
approximatevec(Σx + µxµ′

x) ≈ vec(Σx) andvec(Σy + µyµ′
y) ≈ vec(Σy). It

is then possible to construct these using the simple formulas

vec(Σy) = (G⊗G)vec(Σx), (16)

vec(Σx) =σ2(I −H ⊗H)−1(N ⊗N)vec(I). (17)

Given these approximations for the variances, the means can be computed from
(14) and (15). The described welfare measure has the following compact represen-
tation, which can easily be verified by applying the rules of the partitioned inverse.

E(u(yt)) ≈ u (y) +
[
∇u(y) ,

1
2
vec

(
∇2u(y)

)′]×([
G 1

2G∗

0 G⊗G

] [
I −

[
H 1

2H∗

0 H ⊗H

]]−1 [ 1
2h

N ⊗Nvec(I)

]
σ2 +

[
1
2g
0

]
σ2

)
(18)

The task of computing optimal monetary or fiscal policy in dynamic general equi-
librium models then amounts to numerically optimizing this welfare measure through
choice of the coefficients in the policy rules.

If the second-order approximation to the welfare function can be re-written so
as to involve quadratic terms only, then linear and quadratic approximations to the
policy functions employed as suggested here will yield the same level of welfare.
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This is the case for some models of optimal monetary policy, where welfare is
equal to the weighted sum of the variances of inflation and the output gap. Up to
second-order, there is no bias in welfare calculations based on linear policy rules
in such a case.

4.2 Conditional welfare and transitional dynamics

The welfare measure employed so far is unconditional expectation of period utility.
However this measure neglects the effects of transitional dynamics. The following
paragraphs present a straightforward extension to the work of Kim et al. (2003)
who develop a formula for conditional welfare. These authors assume that utility
depends on state variables directly. Here, their approach is adapted to the case
where utility depends on co-states and the second-order approximation is obtained
using the code of Schmitt-Grohé and Uribe (2004).

In line with the approach used so far of evaluating second moments from the
linear part of the policy function only, append to the system recursions for the
variances of the states and co-states computed from the linear part of the policy
function only

(ỹt ⊗ ỹt) = (G⊗G)(x̃t ⊗ x̃t), (19)

(x̃t ⊗ x̃t) = (H ⊗H)(x̃t−1 ⊗ x̃t−1) + σ2(N ⊗N)(εt ⊗ εt). (20)

Rewrite the system in state space form using the above equations[
yt

ỹt ⊗ ỹt

]
=M1

[
xt

x̃t ⊗ x̃t

]
+ K1, (21)[

xt+1

x̃t+1 ⊗ x̃t+1

]
=M2

[
xt

x̃t ⊗ x̃t

]
+ K2 + ut+1. (22)

where

M1 =
[
G 1

2G∗

0 G⊗G

]
, M2 =

[
H 1

2H∗

0 H ⊗H

]
,

K1 =
[

1
2gσ2

0

]
, K2 =

[
1
2hσ2

σ2(N ⊗N)vec(I)

]
,

ut =
[

σNεt

σ2 (N ⊗N (εt ⊗ εt − vec(I)))

]
.

Expected discounted lifetime utility conditional on an initial state vector with mean
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µx and covariance matrixΣx can then be expressed as

U(µ,Σ) ≈ u (y)
1− β

+ E

[ ∞∑
t=0

βt

{
∇u (y) yt +

1
2
vec(∇2u (y))′ (ỹt ⊗ ỹt)

}]

=
u (y)
1− β

+
[
∇u(y) ,

1
2
vec

(
∇2u(y)

)′]×[
M1 [I − βM2]−1

([
µ

vec(Σ + µµ′)

]
+

β

1− β
K2

)
+

β

1− β
K1

]
(23)

The difference to the case considered by Kim et al. (2003) manifests itself in the
matricesM1 andK1.

5 Conclusion

This note has shown that the second-order approximation yields Euler equation
residuals for the simple neoclassical growth model that are of an order of magni-
tude smaller than the residuals from the linear approximation. The den Haan and
Marcet (1994) test confirms the superior accuracy of this solution method. For the
purpose of second-order accurate welfare rankings of policy, a simple way to com-
pute unconditional expectation of period utility is suggested. Such a measure is
essential, whenever the welfare function cannot be re-written in terms of quadratic
terms only.
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