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1 Introduction

For each positive integer n, each integer b > 1 and each real number r ≥ 0,
let D(b)

n (r) denote the nth digit (base b) of r; that is,

r =
∞∑

n=−∞

b−nD(b)
n (r), where D(b)

n (r) ∈ {0, 1, . . . , b − 1},

and if r has two b-adic expansions, then the terminating one, i.e., the one with
lim

n→∞
D(b)

n (r) = 0, is chosen. (For example, if b = 10 and r = .02 = .019999 · · · ,

then D
(10)
2 (r) = 2 and D(10)

n (r) = 0 for all n 6= 2.)

Similarly, for each n ∈ N, b ∈ N\{1} and r > 0, S(b)
n (r) will denote the nth

significant digit (base b) of r, that is,

S(b)
n (X) = D

(b)
n+m−1(X) for all n ∈ N on the set {b−m ≤ X < b−m+1}. (1.1)

(So, e.g., S
(10)
1 (π/100) = S

(10)
1 (π/10) = 3, and S

(10)
1 (.01999) = S

(10)
1 (.02) =

D
(10)
2 (.02) = 2.) Also, for convenience of notation, set S(b)

n (0) = 0 for all n, b.

The main goal of this article is to study the limiting behavior of the n-th digits
and n-th significant digits, that is, the behavior of the trailing or least signif-
icant digits, for various classes of random variables. Non-leading significant
digits play an important role in the analysis of roundoff errors in numeri-
cal algorithms using floating-point arithmetic (cf. [6]), and in statistical tests
for fraud or human error in numerical data (e.g., [13], [14]). “Digit-regular”
and “significant-digit-regular” random variables are defined and basic rela-
tionships are established between digit-regularity and various related classical
notions including normal numbers, convergence of Fourier coefficients, and
convergence in distribution.

The organization is as follows: §2 defines digit-regular random variables, and es-
tablishes necessary and sufficient conditions for a random variable to be digit-
regular in terms of convergence of Fourier coefficients and in terms of conver-
gence in distribution; §3 is the analog for significant-digit-regular random vari-
ables, with examples to show that neither digit-regularity nor significant-digit-
regularity imply the other; and §4 defines strongly digit-regular distributions,
establishes basic properties including equivalence of strong digit-regularity and
strong significant-digit-regularity, and derives rates of convergence for digit-
regularity of absolutely continuous distributions.

2



2 Digit-regular Random Variables

In the sequel, X will denote a nonnegative random variable defined on some
probability space (Ω,F , P ).

Definition 2.1 X is digit-regular (d.r.) base b if

P (D
(b)
n+j(X) = dj, 1 ≤ j ≤ k) → b−k as n → ∞ for all k ∈ N

and all dj ∈ {0, 1, . . . , b − 1};

and is digit regular if it is d.r. base b for all integers b > 1.

In particular, a random variable is digit-regular base 2 if, in the binary expan-
sion of X, the probability that the n-th digit of X is 0 approaches 1/2 as n goes
to infinity, and, more generally, the probability that any given string of k con-
secutive digits starting at the n-th place in the binary expansion approaches
2−k as n goes to infinity.

Proposition 2.2 If X is d.r. base b for some integer b > 1, then X is con-
tinuous, i.e., P (X = r) = 0 for all r ≥ 0.

Proof. Suppose, by way of contradiction, that P (X = x∗) > 0 for some
x∗ ≥ 0, and let cn = D(b)

n (x∗), n ∈ N. Fix m ∈ N such that P (X = x∗) > b−m.
It is clear that there exist digits dj ∈ {0, 1, . . . , b− 1}, j = 1, . . . ,m, such that
(cn+1, . . . , cn+m) = (d1, . . . , dm) for infinitely many n ∈ N. Then

lim sup
n→∞

P (D
(b)
n+j(X) = dj, 1 ≤ j ≤ m) ≥ P (X = x∗) > b−m,

a contradiction.

The next example shows that a random variable X may be continuous and
a.s. completely normal, but not digit-regular. (Recall that a real number x
is normal base b if the limiting frequency of the occurrence of every k-tuple
of {0, 1, . . . , b − 1} in the b-adic expansion of x is b−k, and x is (completely)
normal if it is normal base b for all b [1,12].)

Example 2.3 Let x∗ ∈ (0, 1) be completely normal, with binary expansion

x∗ =
∑∞

k=1 D
(2)
k (x∗)2−k. Define X, via its binary expansion, by D(2)

n (X) ≡

D(2)
n (x∗) if n 6= kk for any k ∈ N, and let {D

(2)

kk (X)} be i.i.d uniform on {0, 1}.
Clearly X is continuous, and it is easy to see that since x∗ is completely
normal, for every base b and every j ∈ {0, 1, . . . , b − 1},

lim
n→∞

#{i ≤ n : D
(b)
i (X) = j}

n
= lim

n→∞

#{i ≤ n : D
(b)
i (x∗) = j}

n
= b−1.
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The argument for longer blocks is similar, which shows that X(ω) is completely
normal for all ω. Clearly X is not d.r. base 2.

Conversely, digit-regularity base b does not imply almost sure normality.

Example 2.4 Let {Xn} be i.i.d. Bernoulli random variables with P (Xn =
0) = P (Xn = 1) = 1/2, and let {Zn} be independent Bernoulli random
variables, independent of the {Xn}, with P (Zn = 1) = 1−P (Zn = 0) = 1− 1

n
.

Define the random variable X, via its binary representation, as follows: for
any m ∈ N, let

D(2)
n (X) = ZmXn for all n ∈ Bm := {mm,mm + 1, . . . , (m + 1)m+1 − 1}.

To see that X is d.r. base 2, let k ∈ N and (d1, . . . , dk) ∈ {0, 1, . . . , b − 1}k.
Fix n > k; then {n + 1, . . . , n + k} ⊂ Bm ∪ Bm+1 for some m = m(n, k). By
definition of X, {Xn}, {Zn} and m,

P
(
D

(2)
n+j(X) = dj, 1 ≤ j ≤ k

)
=

P
(
D

(2)
n+j(X) = dj, 1 ≤ j ≤ k and Zm = Zm+1 = 1

)

+ P
(
D

(2)
n+j(X) = dj, 1 ≤ j ≤ k and ZmZm+1 = 0

)

= 2−k

(
1 −

1

m

)(
1 −

1

m + 1

)

+ P
(
D

(2)
n+j(X) = dj, 1 ≤ j ≤ k and ZmZm+1 = 0

)
.

Since m → ∞ as n → ∞, limn→∞ P
(
D

(2)
n+j(X) = dj, 1 ≤ j ≤ k

)
= 2−k.

To see that X is not normal base 2, note that by the Borel-Cantelli Lemma,
P (Zn = 0 infinitely often) = 1, so P -almost surely there are infinitely many
blocks Bm where D(2)

n (X) = 0 for all n ∈ Bm. But this implies that

lim supn→∞
1
n
#{i ≤ n : D

(2)
i (X) = 0} = 1, so X is a.s. not normal base 2,

(and hence not normal).

For each real Borel probability measure µ, and each integer n, let φµ(n) denote
the nth Fourier coefficient of µ, that is

φµ(n) = E(exp(2πinX)), where X is a random variable with law L(X) = µ.

Theorem 2.5 Let X be a nonnegative random variable with distribution µ.
Then for each integer b > 1, the following are equivalent:

(i) X is d.r. base b;

(ii) X(b)
n := bnX(mod 1) converges in distribution as n → ∞ to the uniform

distribution on [0, 1);
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(iii)φµ(mbn) → 0 as n → ∞ for each integer m 6= 0.

Proof. Fix b ∈ N\{1}. For integers m ≥ 1 and di ∈ {0, 1, . . . , b − 1},
i = 1, . . . ,m, let

A(b)(d1, . . . , dm) = {r ∈ [0, 1) : D
(b)
i (r) = di, 1 ≤ i ≤ m}.

Since only terminating expansions are considered,

A(b)(d1, . . . , dm) =

[
m∑

i=1

dib
−i,

m∑

i=1

dib
−i + b−m

)
, (2.1)

and for any digits (d1, . . . , dm) 6= (0, . . . , 0),

⋃
{

A(b)(d̃1, . . . , d̃m) : 0 ≤ d̃i ≤ b − 1, i = 1, . . . ,m;

m∑

i=1

d̃ib
−i ≤

m∑

i=1

dib
−i − b−m

}
=

[
0,

m∑

i=1

dib
−i

)
. (2.2)

Note that

P
(
X(b)

n ∈ A(b)(d1, . . . , dm)
)

= P
(
D

(b)
n+i(X) = di, 1 ≤ i ≤ m

)
. (2.3)

“(i) ⇒ (ii)” If X is d.r. base b, it follows from (2.1)–(2.3) that

P

(
X(b)

n <
m∑

i=1

dib
−i

)
→

m∑

i=1

dib
−i as n → ∞,

for every integer m ≥ 1 and digits 0 ≤ di ≤ b − 1, which implies (ii) since the
set {

∑m
i=1 dib

−i : m ≥ 1, di ∈ {0, 1, . . . , b − 1}} is dense in [0, 1].

“(ii) ⇒ (i)” If (ii) holds, then by (2.2) and (2.3),

P
(
X(b)

n ∈ A(b)(d1, . . . , dm)
)
→ b−m as n → ∞.

By the definition of d.r., this implies (i).

“(ii) ⇔ (iii)” Let λ denote Lebesgue measure on [0, 1], and for each n ∈ N,
let µn = L(X(b)

n ). For each n ∈ N, the Fourier coefficients {φµn(m)}∞m=−∞

uniquely determine µn [1, p. 361], and for each integer m 6= 0, φλ(m) = 0 [1,
Ex. 26.3]. Hence, by Lévy’s Continuity Theorem [1, Th. 26.3]

X(b)
n

D
−→ U(0, 1) ⇔ φµn(m) → 0 for all integers m 6= 0. (2.4)

Fix an integer m 6= 0, and note that

φµn(m) = E[exp(2πimbnX(mod1))] = E[exp(2πimbnX)] = φµ(mbn),

5



where the first equality follows by the definition of X (b)
n , the second since

m 6= 0, b > 1 and n ≥ 1 are integers, and the last by definition of φµ. With
(2.4), this completes the proof.

Corollary 2.6 If X is a random variable with distribution µ, and if φµ(n) →
0 as |n| → ∞, then X is digit-regular.

Proof. Immediate, since φµ(n) → 0 as |n| → ∞ implies φµ(mbn) → 0 as
n → ∞, since b > 1 and m 6= 0 are integers.

The next proposition shows that a random variable which is continuous and
digit-regular base b need not be digit-regular for other bases, nor be almost
surely normal.

Proposition 2.7 Let X have the classical middle-thirds Cantor-Lebesgue dis-
tribution on (0, 1), that is, letting {Xk}

∞
k=1 be i.i.d. with P (X1 = 0) = P (X1 =

2) = 1/2,

X =
∞∑

k=1

Xk3
−k.

Then X is digit-regular and normal base 2, but is neither digit-regular nor
normal base 3.

Proof. Since the ternary expansion of X contains no 1’s, clearly X is neither
d.r. nor normal base 3.

By a theorem of Feldman and Smorodinsky [5, p. 707] (see also [11]), since
log 2/ log 3 is irrational, and the ternary digit process for X is non-degenerate
and i.i.d., X is a.s. normal base 2.

To see that X is d.r. base 2, let ν denote the distribution of Y = 1
2
X, so Y

has the “right-thirds” Cantor-Lebesgue distribution on (0, 1). The measure ν
satisfies the hypotheses of Theorem 5 of [9] with p = 3, q = 2 and µ = ν
since: 2 and 3 are multiplicatively independent; ν is continuous; ν is invariant
under the map T3(x) = 3x(mod 1); ν is T3-exact (i.e., satisfies (6) of [8]),
since ν is a Bernoulli convolution [8, (12)] with g.c.d. {i0 : pi0 > 0} = 1 [8,
p. 602]; ν satisfies (5) of [8], since ν is a Bernoulli convolution [8, p. 602]; and
µ is trivially absolutely continuous with respect to some measure of the form
δ(t) ∗ Trν, since taking t = 0 and r = 1 yields ν. Thus by [9, Theorem 5],
2nX(mod 1) converges in distribution to the uniform distribution on (0, 1),
so by Theorem 2.5, Y is d.r. base 2. But X = 2Y is d.r. base 2 if and only if
Y is d.r. base 2 by definition of digit-regularity, since D(2)

n (X) = D(2)
n (2Y ) =

D
(2)
n+1(Y ).

The converse of Corollary 2.6 is false, as the next proposition shows. By
Proposition 2.2, digit-regularity implies continuity of a distribution, so by the
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Riemann-Lebesgue Lemma [1, Theorem 26.1], the next proposition will also
show that digit-regularity does not imply absolute continuity of the distribu-
tion. In order to establish the existence of a d.r. random variable whose Fourier
coefficients do not vanish at infinity, the following number-theoretic lemma is
needed. Recall that a subset S of N has density zero in N if limn→∞

1
n

#{k ≤
n : k ∈ S} = 0.

Lemma 2.8 The set S := {mbn : m, b, n ∈ N,m ≥ 1, b ≥ 2, n ≥ 2, bn > m}
has density zero in N.

Proof. It suffices to show that
∑

s∈S
1
s

< ∞. Note that

∑

n≥2

∑

m≥1

1

m

∑

b>m1/n

1

bn
=
∑

n≥2

∑

b≥2

1

bn

∑

1≤m≤bn−1

1

m

≤
∑

n≥2

∑

b≥2

1

bn

(
1 +

∫ bn

1

dx

x

)
≤
∑

n≥2

∑

b≥2

1

bn
(1 + ln bn)

≤ 2 ln b
∑

n≥2

∑

b≥2

n

bn
= 2 ln b


∑

n≥2

n

2n
+
∑

n≥2

∑

b≥3

n

bn




≤ 2 ln b


∑

n≥2

n

2n
+
∑

n≥2

∫ ∞

2

n

xn
dx




= 2 ln b


∑

n≥2

n

2n
+
∑

n≥2

n

n − 1

1

2n−1


 < ∞.

Proposition 2.9 There exist random variables which are digit-regular whose
Fourier coefficients do not vanish at infinity.

Proof. Let n1, n2 . . . be a strictly increasing sequence of positive integers
such that there is no solution to mbn = (ni1 + · · · + nik) − (nj1 + · · · + nj

k̂
)

for any integers m, b, n with m ≥ 1, b ≥ 2, n ≥ 2 and bn > m, where the
k + k̂ summands are all distinct. Also, assume that the ni’s are such that
0 cannot be so represented. Such a sequence is easy to construct since by
Lemma 2.8 the powers {mbn : b ∈ N\{1}, n ∈ N, bn > m} have density zero
in N, so there exist positive integers y1 < y2 < · · · such that the interval
[yi − i, yi + i] contains no members of S. Define {ni} inductively by n1 = y1,
and nk+1 = yn1+···+nk

. If mbn = nk+1 +
∑

1≤i≤k δini, where δi ∈ {0,±1}, then
mbn ∈ [nk+1 − (n1 + · · · + nk), nk+1 + (n1 + · · · + nk)], which contradicts the
definition of the {yk}.

Next, define the Riesz products (cf. [15, §V.7])

pk(t) =
k∏

j=1

(1 + cos 2πnjt), k = 1, 2, . . . , t ∈ [0, 1].
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It is easy to check that the mbn-th Fourier coefficients of pk(t) are all 0 if
n ≥ 2, m ≥ 1, and bn > m. For example, if k = 2,

p2(t) =
(
1 + (exp(2πin1t) + exp(−2πin1t))/2

)(
1 + (exp(2πin2t) + exp(−2πin2t))/2

)

= 1 + (exp(2πin1t))/2 + (exp(2πin2t))/2 + · · · + (exp 2πi((n1 + n2)t))/4.

(There are 9 terms in all.) None of these terms can be of the form c·exp(2πimbkt)
unless c = 0, or k = 0 or 1, since mbk cannot be a sum or difference of 0, n1, n2.
Thus, the mbn-th Fourier coefficients, n ≥ 2, bn > m, are all 0. Note that
pk(t) ≥ 0 for all t ∈ [0, 1], and that

∫ 1
0 pk(t)dt = 1, since the constant term in

the Fourier expansion of pk(t) is always 1, which follows from the assumption
that 0 cannot be represented as 0 =

∑k
i=1 δini, where δi ∈ {−1, 1}. Thus for

each k ≥ 2, pk(t) is the density function of a Borel probability Pk on [0, 1].
By Prokhorov’s theorem, there is a subsequence (Pkj

) of (Pk) such that Pkj

converges weakly to a probability measure µ on [0, 1]. Since weak convergence
implies convergence of integrals of bounded continuous functions, and since for
bn > |m|, the mbn-th Fourier coefficients of Pk are 0 for all k, the same is true
for the limiting measure µ. It remains to show that lim supn→∞ φµ(n) > 0. Let
{p̂k(n)} denote the Fourier coefficients of {pk}, so pk(t) =

∑
n∈Z p̂k(n)e2πint.

The key observation is that

p̂k(nm) ≥
1

2
for all k ≥ m ≥ 1. (2.5)

To see(2.5), write

p̂k(nm) =
∫ 1

0
(exp 2πinmt)

k∏

j=1

(
1 +

1

2
exp(2πinjt) +

1

2
exp(−2πinjt)

)
dt.

Since k ≥ m, the product in the last equality is a linear combination of expo-
nential terms, amongst them 1

2
exp(−2πinmt), whose contribution to p̂k(nm)

is 1
2
. Since the contribution of any exponential term is either zero or positive,

this establishes (2.5).

Since Pkj
converges weakly to µ, (2.5) implies that limj→∞ p̂kj

(nm) = φµ(µm) ≥
1
2

for all m ≥ 1, so since nm → ∞ as n → ∞, lim supn→∞ φµ(n) ≥ 1
2
.

(Note that the mbn-th Fourier coefficient of Pk is zero for all n ≥ 2, b ≥ 2
and m 6= 0 such that bn > |m|, which follows from the properties of the (nj).
Hence φµ(mbn) = 0 for all n ≥ 2, b ≥ 2 and m 6= 0 such that bn > |m|.)

Proposition 2.10 Every random variable with a density is digit-regular and
a.s. completely normal.
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Proof. Let X be a random variable with a.c. distribution µ; and, without
loss of generality, 0 ≤ X < 1. By the Riemann-Lebesgue Lemma, φµ(n) → 0
as n → ∞, so X is d.r. by Corollary 2.6. As is well known [2, Prob. 8, p. 107],
every random variable with a.c. distribution is a.s. completely normal.

3 Significant-digit-regular Random Variables

Definition 3.1 X is significant-digit-regular (s.d.r.) base b if

P (S
(b)
n+j(X) = dj, 1 ≤ j ≤ k) → b−k as n → ∞ for all k ∈ N

and all dj ∈ {0, 1, . . . , b − 1};

and is significant-digit-regular if it is s.d.r. base b for all b.

If X is a random variable with values in (0, 1), and X̂ = X +1, then it follows
from (1.1) that

S
(b)
n+1(X̂) = D(b)

n (X) = D(b)
n (X̂) for all b ≥ 2 and n ≥ 1, (3.1)

so X is d.r. base b if and only if X̂ is d.r. base b if and only if X̂ is s.d.r. base
b. Since X̂ is a.s. normal base b if and only if X is a.s. normal base b, and X̂
is absolutely continuous if and only if X is absolutely continuous, the analog
of Example 2.3 obtained by replacing X by X + 1 yields a random variable
which is continuous and a.s. completely normal, but is not s.d.r. Similarly, the
analogs of Example 2.4 and Proposition 2.7, respectively, show that significant-
digit-regularity base 2 does not imply a.s. normality, and that significant-digit-
regularity base 2 does not imply significant-digit-regularity base 3. The analog
of Proposition 2.9, that significant-digit-regularity does not imply absolute
continuity of a random variable, is an immediate consequence of the Riemann-
Lebesgue Lemma and Proposition 4.5 below.

Let IB denote the indicator function of the set B and let bac denote the integer
part of a.

Theorem 3.2 For all nonnegative random variables X and all b ∈ N\{1},
the following are equivalent:

(i) X is s.d.r. base b;

(ii) b−blogb XcX is d.r. base b;

(iii)
∑

j∈Z E
[
I{b−j≤X<b−j+1} exp(2πimbn+jX)

]
→ 0 as n → ∞ for each integer

m 6= 0.
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Proof. Fix b ∈ N\{1}. Then

P
(
S

(b)
n+j(X) = dj, 1 ≤ j ≤ k

)

=
∑

m∈Z

P
(
S

(b)
n+j(X) = dj, 1 ≤ j ≤ k; b−m ≤ X < b−m+1

)

=
∑

m∈Z

P
(
D

(b)
n+j+m−1(X) = dj, 1 ≤ j ≤ k; b−m ≤ X < b−m+1

)

=
∑

m∈Z

P
(
D

(b)
n+j−1(b

mX) = dj, 1 ≤ j ≤ k; b−m ≤ X < b−m+1
)

=
∑

m∈Z

P
(
D

(b)
n+j−1(b

−blogb XcX) = dj, 1 ≤ j ≤ k; b−m ≤ X < b−m+1
)

= P
(
D

(b)
n+j−1(b

−blogb XcX) = dj, 1 ≤ j ≤ k
)
, (3.2)

where the second equality follows from (1.1); the third equality since D
(b)
i (bjr) =

D
(b)
i+j(r) for i, j ∈ Z, r > 0; and the fourth inequality since b−m ≤ X <

b−m+1 ⇔ −m ≤ logb X < −m + 1 ⇔ blogb Xc = −m. This establishes the
equivalence of (i) and (ii).

Let µ denote the distribution of b−blogb XcX. By Theorem 2.5, (ii) is equivalent
to φµ(mbn) → 0 as n → ∞ for each m 6= 0. But φµ(mbn) =
E[exp(2πimbn · b−blogb XcX)], and by dominated convergence, φµ(mbn) =∑

j∈Z E[I{b−j≤X<b−j+1} exp(2πimbn+jX)], which establishes the equivalence of
(ii) and (iii).

The next two results are the s.d.r. analogs of d.r. Proposition 2.2 and Propo-
sition 2.10, respectively.

Proposition 3.3 If X is s.d.r. base b for some integer b > 1, then X is
continuous.

Proof. Analogous to proof of Proposition 2.2.

Proposition 3.4 Every random variable with a density is significant-digit-
regular and a.s. completely normal.

Proof. Let X be any r.v. with density, and fix base b ≥ 2. Let Y = b−blogb XcX
be the r.v. in Theorem 3.2(ii), so Y also has a density, and by Proposition 2.10,
Y is d.r. base b (in fact, for all bases). Theorem 3.2 then implies that X is
s.d.r. base b.

The next two examples show that digit-regularity base b does not imply
significant-digit-regularity base b, nor conversely.

Example 3.5 The special case base b = 2 will be shown; the argument for
general b is analogous. Let {Xn}

∞
n=1 be Bernoulli random variables defined
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as follows: X1 is uniform on {0, 1}, i.e., P (X1 = 0) = P (X2 = 1) = 1/2;
X2 = 1 − X1; X2k = X1 for all k > 1; and {X1, Xn : n 6= 2k for any k} are
i.i.d., uniform on {0, 1}. Let X =

∑∞
n=1 Xn2−n, so D(2)

n (X) = Xn for all n ≥ 1.
Note that for each m ∈ N there exists N = N(m) such that for all n ≥ N ,

D
(2)
n+1(X), . . . , D

(2)
n+m(X) are i.i.d. uniform on {0, 1}, which clearly implies that

X is d.r. (base 2).

To see that X is not s.d.r. (base 2), note that X1 = 0 ⇔ X2 = 1, so on {X1 =

1}, D(2)
n (X) = S(2)

n (X) for all n ≥ 1. Similarly, on {X1 = 0}, D
(2)
n+1(X) =

S(2)
n (X) for all n ≥ 1.

Thus for n = 2k for some k ≥ 2, P (S(2)
n (X) = 1) = P (S(2)

n (X) = 1 | X1 =
1)P (X1 = 1) + P (S(2)

n (X) = 1 | X1 = 0)P (X1 = 0) = P (Xn = 1 | X1 =
1) · 1

2
+ P (Xn+1 = 1 | X1 = 0)1

2
= 3

4
6= 1

2
, so X is not s.d.r. (base 2).

Example 3.6 Let {Xn}
∞
n=1 be as in Example 3.5, and let X =

∑∞
n=1 X̂n2−n,

where {X̂n}
∞
n=1 are Bernoulli random variables defined as follows: on {X1 = 1},

X̂n = Xn for all n ≥ 1; on {X1 = 0} = {X2 = 1}, X̂1 = X̂2 = 0, X̂3 = 1, and
X̂n = Xn−2 for n ≥ 4. Since D(2)

n (X) = X̂n for all n ≥ 1, the definition of X
implies that on {X1 = 1}, S(2)

n (X) = D(2)
n (X) = X̂n = Xn for all n ≥ 1, and

on {X1 = 0} = {X2 = 1}, S(2)
n (X) = D

(2)
n+2(X) = X̂n+2 = Xn for all n ≥ 2.

In particular, S(2)
n (X) = Xn for all n ≥ 2. Since P (S

(2)
n+j(X) = dj, 1 ≤ j ≤

m) = P (Xn+j = dj, 1 ≤ j ≤ m), it follows as in Example 3.5 that for each
m ≥ 1 there exists N = N(m) such that for all n ≥ N , Xn+1, . . . , Xn+m i.i.d.

uniform on {0, 1}, so P (Xn+j = dj, 1 ≤ j ≤ m) =
(

1
2

)m
for all n ≥ N(m),

which shows that X is s.d.r. (base 2).

To see that X is not d.r. (base 2), let n = 2k for some k ≥ 3, so n ≥ 4 and
Xn−2 is independent of X1. Then P (D(2)

n (X) = 1) = P (X̂n = 1) = P (X̂n =
1 | X1 = 1) · 1

2
+P (X̂n = 1 | X1 = 0) · 1

2
= P (Xn = 1 | X1 = 1) · 1

2
+P (Xn−2 =

1 | X1 = 0) · 1
2

= P (X1 = 1 | X1 = 1) · 1
2

+ P (Xn−2 = 1) · 1
2

= 3
4
, so X is not

d.r. base 2.

For any base b > 1 and n ∈ N put

Ib(n) = {(d1, . . . , dn) : 1 ≤ d1 ≤ b − 1; 0 ≤ di ≤ b − 1 for all i = 2, . . . , n}

and
Jb(n) = {(d1, . . . , dn) : 0 ≤ di ≤ b − 1 for all i = 1, . . . , n}.

The following theorem, whose proof uses an elementary argument, shows that
the significant digits of a random variable satisfying Benford’s law converge
to uniformity exponentially fast; the bound improves that in [6, Theorem 4]
which only proves O(b−n).
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Definition 3.7 Let b be any integer > 1. A positive random variable X is
said to satisfy Benford’s law base b (BL(b)) if for all (d1, . . . , dk) ∈ Ib(k)

P (S
(b)
j (X) = dj, 1 ≤ j ≤ k) = logb


1 +

(
k∑

i=1

dib
k−i

)−1

 (3.3)

(see [7]).

Theorem 3.8 Let X satisfy BL(b) for some base b > 1. Then for all k ∈ N,
(d1, . . . , dk) ∈ Jb(k) and n ≥ 2,

∣∣∣∣P
(
S

(b)
n+j(X) = dj, 1 ≤ j ≤ k

)
− b−k

∣∣∣∣ ≤
3

bk+n−1 ln b
. (3.4)

Proof. Denoting the probability in (3.4) by pn(d1, . . . , dk), (3.3) implies that

pn(d1, . . . , dk) =
∑

(d̃1,...,d̃n)∈Ib(n)

P
({

S
(b)
i (X) = d̃i, 1 ≤ i ≤ n

}

∩
{
S

(b)
n+j(X) = dj, 1 ≤ j ≤ k

})

=
bn−1∑

m=bn−1

logb


1 +


bkm +

k∑

j=1

djb
k−j




−1

 .

Let dj ∈ {0, 1, . . . , b − 1}, d̃j ∈ {0, 1, . . . , b − 1} be digits such that

k∑

j=1

d̃jb
k−j = 1 +

k∑

j=1

djb
k−j. (3.5)

Putting am = bkm +
∑k

j=1 djb
k−j it follows that for all n = 2, 3, . . . ,

pn(d1, . . . , dk) − pn(d̃1, . . . , d̃k) =
bn−1∑

m=bn−1

(
logb

[
1 +

1

am

]
− logb

[
1 +

1

1 + am

])

=
bn−1∑

m=bn−1

logb

[
1 +

1

a2
m + 2am

]

≤
1

ln b

bn−1∑

m=bn−1

1

(bkm)2 + 2bkm

≤
1

b2k ln b

∞∑

m=bn−1

1

m2
≤

1

b2k(bn−1 − 1) ln b

≤
2

b2k+n−1 ln b
.

Let pn,1, pn,2, . . . , pn,bk denote the probabilities pn(d1, . . . , dk) in lexicographic
order starting with (0, . . . , 0, 0, 0), (0, . . . , 0, 0, 1), . . . , (0, . . . , 0, 0, b − 1),
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(0, . . . , 0, 1, 0), . . . , (0, . . . , 0, 1, b − 1), . . . and ending with (b − 1, . . . , b − 1).
As shown above

|pn,i − pn,i+1| ≤
2

b2k+n−1 ln b
, 1 ≤ i < bk. (3.6)

Since 1 − bkpn,bk =
∑bk−1

i=1 i(pn,i − pn,i+1), (3.6) implies that

|pn,bk − b−k| ≤
1

bk

bk−1∑

i=1

2i

b2k+n−1 ln b
≤

1

bk+n−1 ln b
.

Using induction and (3.6) yields

|pn,bk−m − b−k| ≤
bk + 2m

b2k+n−1 ln b
, 0 ≤ m ≤ bk − 1.

4 Strongly Digit-Regular Distributions

Definition 4.1 X is called strongly digit-regular (strongly d.r.) base b if for
all Borel sets B ⊂ [0,∞) with P (X ∈ B) > 0, and for all k ∈ N and dj ∈
{0, 1, . . . , b − 1},

P (D
(b)
n+j(X) = dj, 1 ≤ j ≤ k | X ∈ B) → b−k as n → ∞, (4.1)

and is strongly digit-regular if it is strongly d.r. base b for all b.

Similarly, X is strongly significant-digit-regular (strongly s.d.r.) base b if (4.1)

holds with D
(b)
n+j(X) replaced by S

(b)
n+j(X), and is strongly s.d.r. if it is strongly

s.d.r. base b for all b.

In contrast to the fact that neither digit-regularity base b nor significant-digit-
regularity base b imply the other (Examples 3.5 and 3.6), in the context of
conditional regularity (strong d.r. and s.d.r.), these concepts are equivalent.
Note that the basic idea behind Examples 3.5 and 3.6 was exactly that of
constructing digit-regular variables which were not conditionally digit-regular.

Theorem 4.2 Let b ∈ N\{1}. The following are equivalent:

(i) X is strongly d.r. base b;

(ii) X is strongly s.d.r. base b;

(iii)for each bounded Borel measurable function f : [0,∞) → R, and each
integer m 6= 0,

E[f(X) exp(2πimbnX)] → 0 as n → ∞; (4.2)
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(iv)E[I[c,d](X) exp(2πimbnX)] → 0 as n → ∞ for all real numbers 0 ≤ c ≤ d
and integers m 6= 0.

Proof. Fix b ∈ N\{1}.

“(i) ⇔ (ii)” This follows from (1.1) combined with a simple conditioning ar-
gument.

“(i) ⇒ (iii)” Assume X is strongly d.r. base b and let B ⊂ [0,∞) be a Borel set
such that P (X ∈ B) > 0. Applying Theorem 2.5 to the probability measure
P (· | X ∈ B) shows that (4.2) holds for f = IB, the indicator function of B.
Thus, (4.2) holds for all Borel measurable simple functions f : [0,∞) → R. If
f : [0,∞) → R is bounded and Borel measurable, for every ε > 0 there exist a
Borel measurable simple function fε : [0,∞) → R such that |f(t) − fε(t)| ≤ ε
for all t ≥ 0, which proves (iii).

“(iii) ⇒ (i)” is an immediate consequence of Theorem 2.5, (iii) ⇒ (iv) triv-
ially, and (iv) ⇒ (iii) follows from a classical approximation result (see [1,
Theorem 17.1]).

Remarks. Note that (iv) implies that X is continuous. In light of Theo-
rem 4.2, the random variable in Example 3.5 is d.r. but not strongly d.r., and
that in Example 3.6 is s.d.r., but not strongly s.d.r.

By a standard approximation argument it is easy to see that Theorem 4.2(iv)
is equivalent to E[I[c,d[(X) exp(2πimbnX)] → 0 as n → ∞ for all real numbers
0 ≤ c < d and all integers m 6= 0, so letting c = b−j and d = b−j+1 yields

E[I{b−j≤X<b−j+1} exp(2πimbn+jX)] → 0 as n → ∞, for each m 6= 0 and j ∈ Z.

Since X > 0, for each ε > 0 there exists N = N(ε) such that

P
(⋃

|j|>N{b
−j ≤ X < b−j+1}

)
< ε, which implies that the lim sup in Theo-

rem 3.2(iii) is < ε as n → ∞ for all m 6= 0; this yields a direct proof that the
condition in Theorem 4.2(iv) implies that X is s.d.r. base b.

Theorem 4.3 If X has a density, then X is strongly d.r. and strongly s.d.r.

Proof. If g is a density of X and B ⊂ [0,∞) is a Borel set such that
P (X ∈ B) > 0, then 1

P (X∈B)
IBg is a density of X with respect to the con-

ditional probability measure P (· | X ∈ B), and the conclusions follow by
Propositions 2.10 and 3.4.

Certain statistical tests for detection of fraud or human error in numerical data
are based on goodness-of-fit of least significant (or final) digits to uniform, the
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idea being that in true data the least significant digits are uniform, but in
fabricated data, which may reflect individual preferences for particular digits
or strings of digits, the least significant digits are not uniform. In classical
tests of this type, the underlying true distribution of least significant digits of
data is simply assumed to be uniform (e.g., [14, p. 572], [13, p. 66]); the next
corollary gives a theoretical basis for the assumption of uniformity of final
digits in true data.

Corollary 4.4 (Least-significant-digit law) If X has a density, then the
significant digits base b of X, S(b)

n (X), are asymptotically independent and
uniformly distributed on {0, 1, . . . , b − 1} for all integers b > 1.

The next proposition generalizes the conclusion of Proposition 2.9 to strongly
d.r. distributions.

Proposition 4.5 There exist random variables which are strongly digit-regular
(equivalently strongly significant-digit-regular) whose Fourier coefficients do
not vanish at infinity.

Proof. Refine the construction in Proposition 2.9 as follows. Let S be the
set of integers {mbn : m, b, n ∈ N,m ≥ 1, b ≥ 2, n ≥ 2, bn > m} in Lemma 2.8.
First, it will be shown that there exist positive integers 12 ≤ n1 < n2 < · · ·
satisfying

nt − 2(n1 + n2 + · · · + nt−1) ≥ 4t, t ∈ N (4.3a)

and[
nt − 2(n1 + · · · + nt−1), nt + 2(n1 + · · · + nt−1)

]
∩ (S ∪ {0}) = ∅, t ∈ N,

(4.3b)

(where void sums are taken to be zero). To see (4.3a)–(4.3b), first note that
by Lemma 2.8, S has density zero, so for each t ∈ N there exists a sequence
of integers 12 ≤ yt,1 < yt,2 < · · · satisfying

[yt,j − 2t, yt,j + 2t] ∩ (S ∪ {0}) = ∅ for all j ∈ N. (4.4)

Define the sequence (nt) recursively as follows. Let n1 = y1,1, and note that,
by (4.4), (4.3b) holds for t = 1. For each t ∈ N, choose kt ∈ N so large that
nt+1 := yn1+···+nt,kt satisfies

nt+1 ≥ 4nt and nt+1 ≥ 3 · 4t+1.

(Note that n1 ≥ 12.) Then (4.4) implies (4.3b), and for each t ∈ N, nt−2(n1 +

· · · + nt−1) = nt

(
1 − 2

(
n1

nt
+ · · · + nt−1

nt

))
≥ nt

(
1 − 2

((
1
4

)t−1
+ · · · + 1

4

))
≥

nt

(
1 − 2

∑∞
j=1

(
1
4

)j
)

= 1
3
nt ≥ 4t, which proves (4.3a).
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Define the Riesz products (pk) and µ as in Proposition 2.9, with the (nj) as
defined above. Since

∣∣∣∣
∫ d

c
exp(2πiαt)dt

∣∣∣∣ =
∣∣∣∣

1

2πiα
(exp(2πiαd) − exp(2πiαc))

∣∣∣∣

<
1

|α|
for all 0 ≤ c ≤ d, |α| > 0,

it follows from the definition of the (pk) that

∣∣∣∣
∫ d

c
exp(2πimbnt)pk(t)dt

∣∣∣∣ ≤
1

mbn
+

k∑

j=1

(
Σ

(+)
k,j + Σ

(−)
k,j

)
, (4.5)

where Σ
(+)
k,j is a sum of 2j−1

(
k

j

)
terms of the form

1

2j

1

|mbn + nij ± nij−1
± · · · ± ni1 |

and Σ
(−)
k,j is a sum of 2j−1

(
k

j

)
terms of the form

1

2j

1

|mbn − nij ± nij−1
± · · · ± ni1 |

,

where 1 ≤ i1 < i2 < · · · < ij ≤ k. (Note that Σ
(+)
k,j and Σ

(−)
k,j also depend on

m, b, and n.)

For the rest of the proof fix m ≥ 1 and b ≥ 2. Let n ≥ 2 be such that bn > m
and mbn ≥ n2, and let u = u(m, b, n) be given by nu ≤ mbn < nu+1. Since
mbn ∈ S, it follows from (4.3b) that

nu + 2(n1 + · · · + nu−1) < mbn < nu+1 − 2(n1 + · · · + nu). (4.6)

Letting ij = t, it follows that j ≤ t ≤ k, and by (4.3a) and (4.6),

mbn + nij ± nij−1
± · · · ± ni1 ≥ mbn + nt − (n1 + · · · + nt−1)

> nu + 2(n1 + · · · + nu−1) + nt − (n1 + · · · + nt−1)

≥ 4u + 4t.

Therefore,

Σ
(+)
k,j ≤

1

2j

k∑

t=j

(
t − 1

j − 1

)
2j−1

4u + 4t
.

[Note that given ij = t there are
(

t−1
j−1

)
sequences of the form 1 ≤ i1 < i2 <

· · · < ij−1 ≤ t − 1, and each integer ni1 , . . . , nij−1
can have the coefficient ±1
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(2j−1 possibilities).] This implies

k∑

j=1

Σ
(+)
k,j ≤

k∑

j=1

1

2j

k∑

t=j

(
t − 1

j − 1

)
2j−1 1

4u + 4t

=
1

2

k∑

t=1

1

4u + 4t

t∑

j=1

(
t − 1

j − 1

)

which implies
k∑

j=1

Σ
(+)
k,j <

k∑

t=1

2t

4u + 4t
. (4.7)

Furthermore, for 1 ≤ t ≤ u, by (4.6) and (4.3a),

mbn − nij ± nij−1
± · · · ± ni1 ≥ mbn − nt − (n1 + · · · + nt−1)

> nu + 2(n1 + · · · + nu−1) − (n1 + · · · + nt)

≥ n1 + · · · + nu−1 ≥ 4u−1 ≥
1

8
(4u + 4t).

For t = u + 1, (4.6) and (4.3a) imply that

nij ± nij−1
± · · · ± ni1 − mbn ≥ nu+1 − (n1 + · · · + nu) − nu+1 + 2(n1 + · · ·nu)

= n1 + · · · + nu ≥ 4u >
1

8
(4u + 4t).

Finally, for u + 2 ≤ t ≤ k, by (4.6) and (4.3a),

nij ± nij−1
± · · · ± ni1 − mbn ≥ nt − (n1 + · · · + nt−1) − nu+1 + 2(n1 + · · · + nu)

≥ nt − (n1 + · · · + nt−1) − nt−1 > nt − 2(n1 + · · · + nt−1)

≥ 4t >
1

2
(4u + 4t).

This implies, for k ≥ u + 2,

k∑

j=1

Σ
(−)
k,j ≤ 4

k∑

j=1

k∑

t=j

(
t − 1

j − 1

)
1

4u + 4t

= 4
k∑

t=1

1

4u + 4t

t∑

j=1

(
t − 1

j − 1

)
= 4

k∑

t=1

2t−1

4u + 4t

= 2
k∑

t=1

2t

4u + 4t
.

By (4.5) and (4.7) this yields, for 0 ≤ c ≤ d ≤ 1,

∣∣∣∣∣∣

∫ d

c
exp(2πimbns)pk(s)ds

∣∣∣∣∣∣
≤

1

nu

+ 3
k∑

j=1

2j

4u + 4j
, k ≥ u + 2. (4.8)
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By symmetry, (4.8) also holds for integers m ≤ −1, b ≥ 2 and n ≥ 2 such
that bn > |m|, |m|bn ≥ n2 and u ≥ 2 satisfying nu ≤ |m|bn < nu+1. Since
(as shown in the proof of Proposition 2.9) the limiting measure µ satisfies
φµ(mbn) = 0 for m 6= 0, and n ≥ 2 such that bn > |m|, by Theorem 2.5
and Proposition 2.2 this implies that µ is continuous. Letting the random
variable Xk have distribution Pk, and X∞ have distribution µ, since the set of
discontinuities of the function t 7→ I[c,d](t) · exp(2πimbnt) has µ-measure zero
for all 0 ≤ c ≤ d ≤ 1, it follows (cf. [1, Theorem 25.7]) that

I[c,d](Xkj
) exp(2πimbnXkj

) → I[c,d](X∞) exp(2πimbnX∞) weakly as j → ∞.

Since those functions are uniformly bounded, this implies that

E[I[c,d](Xkj
) exp(2πimbnXkj

] → E[I[c,d](X∞) exp(2πimbnX∞)] as j → ∞,

so by (4.8),

∣∣∣∣
∫ 1

0
I[c,d](s) exp(2πimbns)dµ(s)

∣∣∣∣ ≤
1

nu

+ 3
∞∑

j=1

2j

4u + 4j
.

(Note that n → ∞ implies u → ∞.) Therefore
limn→∞

∫ 1
0 I[c,d](s) exp(2πimbns)dµ(s) = 0 for all m 6= 0 and b ≥ 2. Hence a

random variable X∞ with law µ is strongly d.r. (and also strongly s.d.r), but
as in Proposition 2.9, it is easily seen that lim supn→∞ |φµ(n)| ≥ 1

2
.

For fixed integers b > 1, m ≥ 1, and (d1, . . . , dm) ∈ Jb(m), set

〈d1, . . . , dm〉b :=
m∑

k=1

dkb
−k.

Lemma 4.6 Let X be a random variable with density f such that 0 ≤ X < 1.
Then for all b ∈ N, b ≥ 2 and (d1, . . . , dk) ∈ Jb(k),

(i) P (D
(b)
j (X) = dj, 1 ≤ j ≤ k) =

∫ 〈d1,...,dk〉b+b−k

〈d1,...,dk〉b
f(x)dx

and for all n ∈ N,

(ii) P (D
(b)
n+j(X) = dj, 1 ≤ j ≤ k) =

∑
(a1,...,an)∈Jb(n)

∫ 〈a1,...,an,d1,...,dk〉b+b−(n+k)

〈a1,...,an,d1,...,dk〉b
f(x)dx.

Proof. Immediate from the definitions of D(b)
n , 〈d1, . . . , dk〉b, and 〈a1, . . . , an,

d1, . . . , dk〉b.

Theorem 4.7 Let X be a random variable such that 0 ≤ X < 1.

(a) Suppose that X has density f ∈ C1, and |f ′(t)| ≤ L for all t ∈ [0, 1]. Then
for all j, k, b ∈ N, b ≥ 2, n ≥ 0 and all dj, d̃j ∈ {0, 1, . . . , b− 1} satisfying
(3.5),
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(i) |P (D
(b)
n+j(X) = dj, 1 ≤ j ≤ k) − P (D

(b)
n+j(X) = d̃j, 1 ≤ j ≤ k)| ≤

Lb−(n+2k);

(ii) |P (D
(b)
n+j(X) = dj, 1 ≤ j ≤ k) − b−k| ≤ 3L

2
b−(n+k);

and

(iii) |P (D
(b)
k (X) = d1, D

(b)
i (X) = d2) − b−2| ≤ 3L

2
b−(k+1), 1 ≤ k < i.

(b) Conversely, suppose that there exists some base b ≥ 2 and a constant K
such that for all integers j ≥ 1, k ≥ 1 and n ≥ 0,

(iv) |P (D
(b)
n+j(X) = dj, 1 ≤ j ≤ k) − b−k| ≤ Kb−(n+k).

Then X is absolutely continuous with bounded density f .

Proof. (a) “(i)” Note that in case n ∈ N

|P
(
D

(b)
n+j(X) = dj, 1 ≤ j ≤ k

)
− P

(
D

(b)
n+j(X) = d̃j, 1 ≤ j ≤ k

)
|

≤
∑

(a1,...,an)∈Jb(n)

∫ 〈a1,...,an,d1,...,dk〉b+b−(n+k)

〈a1,...,an,d1,...,dk〉b

|f(x) − f(x + b−(n+k))|dx

≤ Lb−(n+2k),

where the first inequality follows from Lemma 4.6(ii), and the second since
|f ′(t)| ≤ L.

“(ii)” Fix any integer n ≥ 0 and let πn,1, . . . , πn,bk denote the probabilities

P (D
(b)
n+j(X) = dj, 1 ≤ j ≤ k) in lexicographic order on (d1, . . . , dk); i.e., πn,1 =

P (D
(b)
n+j(X) = 0, 1 ≤ j ≤ k), πn,2 = P

(
(D

(b)
n+1(X), D

(b)
n+2(X), . . . , D

(b)
n+k(X)) =

(0, . . . , 0, 1)
)
, etc. Then (ii) is equivalent to

|πn,i − b−k| ≤
3L

2
b−(n+k) for all i = 1, . . . , bk.

In fact, starting with the identity

1 − bkπn,bk =
bk−1∑

i=1

i(πn,i − πn,i+1)
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(note that πn,1 + · · · + πn,bk = 1) it follows from (i) that

|b−k − πn,bk | ≤ b−k
bk−1∑

i=1

i|πn,i − πn,i+1|

≤ b−k
bk−1∑

i=1

iLb−(n+2k) =
L

2
b−(n+3k)bk(bk − 1)

=
L

2
(bk − 1)b−(n+2k).

By (i), this implies

|b−k − πn,bk−1| ≤ |b−k − πn,bk | + |πn,bk − πn,bk−1|

≤
L

2
(bk − 1)b−(n+2k) + Lb−(n+2k) =

L

2
b−(n+2k)(bk − 1 + 2),

and it follows by induction that for 0 ≤ j ≤ bk − 1,

|πn,bk−j − b−k| ≤
L

2
(bk − 1 + 2j)b−(n+2k) <

3L

2
b−(n+k).

“(iii)” If i = k+1, (iii) follows immediately from (ii). If i ≥ k+2, then (writing
di−k+1 instead of d2),

|P (D
(b)
k (X) = d1, D

(b)
i (X) = di−k+1) − b−2|

= |
∑

(d2,...,di−k)∈Jb(i−k−1)

P (D
(b)
k (X) = d1, D

(b)
k+1(X) = d2, . . . , D

(b)
i (X) = di−k+1)

− b−2|

≤
∑

(d2,...,di−k)∈Jb(i−k−1)

|P (D
(b)
k (X) = d1, D

(b)
k+1(X) = d2, . . . , D

(b)
i (X) = di−k+1)

− b−(i−k+1)|

≤
3L

2
bi−k−1b−i =

3L

2
b−(k+1). This proves (a).

(b) Fix the base b as in (iv). For n ∈ N, let Pn denote the partition of [0, 1)

consisting of the bn sets {x ∈ [0, 1) : D
(b)
j (x) = dj, 1 ≤ j ≤ n} for all

(d1, . . . , dn) ∈ Jb(n), and let Fn denote the σ-algebra σ(Pn) generated by
Pn. Note that

σ

(
∞⋃

n=1

Fn

)
= B([0, 1)), (4.9)

the σ-algebra of Borel sets on [0, 1). Let µ denote the distribution of X,
and let λ denote Lebesgue measure on [0, 1), so λ(A) = b−n for all A ∈ Pn.
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Let (Yn)n∈N be random variables on [0, 1) defined by

Yn =
∑

A∈Pn

µ(A)

λ(A)
IA

= bn
∑

(d1,...,dn)∈Jb(n)

P (D
(b)
j (X) = dj, 1 ≤ j ≤ n)I

{D
(b)
j =dj ,1≤j≤n}

.

It is easily seen that (Yn) is an (Fn)-martingale satisfying
∫ 1
0 Yndλ = 1 for

all n ∈ N (cf. [4, Chapter V, No. 6]). By (iv), 0 ≤ Yn ≤ K+1 for all n ∈ N,
so the martingale convergence theorem implies the existence of a random
variable Y∞ ∈ L1[0, 1) such that Yn → Y∞ λ-almost surely. Since the (Yn)
are uniformly bounded, the bounded convergence theorem implies that∫

Y∞dλ = 1. Finally, it follows from (4.9) that Y∞ is a bounded density of
X (cf. [4, Chapter V, No. 56]).

For i ∈ N, let Ii = Ii(b, d,X) = I
{D

(b)
i (X)=d}

, and Ĩi = Ii − E(Ii).

Corollary 4.8 Suppose X has density f ∈ C1. If 0 ≤ X < 1 and |f ′(t)| ≤ L
for all t ∈ [0, 1], then for any integer d, 0 ≤ d < b,

(i) |E(Ii) − b−1| ≤ 3L
2

b−i, i ≥ 1;

(ii) |E(IiIj) − b−2| ≤ 3L
2

b−(i+1), 1 ≤ i < j;
and

(iii) |E(ĨiĨj)| ≤
9L(L+2)

4
b−(i+1), 1 ≤ i ≤ j.

Proof. Conclusions (i) and (ii) follow immediately from Theorem 4.7 (ii) and
(iii), respectively. For (iii), note that

|E(ĨiĨj)| = |E(IiIj) − E(Ii)E(Ij)|

≤ |E(IiIj) − b−2| + |b−2 − (E(Ii) − b−1 + b−1)(E(Ij) − b−1 + b−1)|

≤
3L

2
b−(i+1) + |E(Ii) − b−1||E(Ij) − b−1| + b−1|E(Ii) − b−1|

+ b−1|E(Ij) − b−1|

≤
3L

2
b−(i+1) +

3L

2
b−i ·

3L

2
b−j + b−1 3L

2
b−i + b−1 ·

3L

2
b−j

≤

(
3L

2
+

9L2

4
+

3L

2
+

3L

2

)
b−(i+1).

Theorem 4.9 Fix b ∈ N\{1}, and let X be a random variable with 0 ≤ X < 1
such that, for any integer 0 ≤ d < b, E(In) → b−1 as n → ∞, and |E(ĨiĨj)| =
O(b−(i+1)), 1 ≤ i ≤ j. Then X is a.s. simply normal base b.
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Proof. First note that
1

n

n∑

i=1

Ii →
1

b
a.s.

is equivalent to

1

m2

m2∑

i=1

Ii →
1

b
a.s., (4.10)

[since Ii ≥ 0 implies that for m2 ≤ k < (m + 1)2,

m2

(m + 1)2

1

m2

m2∑

i=1

Ii ≤
1

k

k∑

i=1

Ii ≤
(m + 1)2

m2

1

(m + 1)2

(m+1)2∑

i=1

Ii,

and m2

(m+1)2
→ 1, (m+1)2

m2 → 1 as m → ∞].

Since E(In) → b−1, (4.10) is equivalent to

1

n2

n2∑

i=1

Ĩi → 0 a.s. (4.11)

By the Borel-Cantelli Lemma, to show (4.3) it suffices to show that for all
ε > 0,

∞∑

n=1

P


n−2

∣∣∣∣
n2∑

i=1

Ĩi

∣∣∣∣ > ε


 < ∞. (4.12)

By Tschebyschev’s inequality, the left hand side in (4.12) is

∞∑

n=1

P


n−2

∣∣∣∣
n2∑

i=1

Ĩi

∣∣∣∣ > ε


 ≤

∞∑

n=1

ε−2n−4Var




n2∑

i=1

Ĩi


 =

∞∑

n=1

ε−2n−4E




n2∑

i=1

n2∑

j=1

ĨiĨj


 .

Hence, it suffices to show that

∞∑

n=1

n−4




n2∑

i=1

n2∑

j=1

E(ĨiĨj)


 < ∞. (4.13)

Since |Ĩi| = |Ii − E(Ii)| ≤ 2,

∞∑

n=1

n−4
n2∑

i=1

E(Ĩ2
i ) ≤

∞∑

n=1

4n2n−4 < ∞.

But

∑

1≤i<j≤n2

|E(ĨiĨj)| =
n2−1∑

i=1

n2∑

j=i+1

|E(ĨiĨj)|

≤
n2−1∑

i=1

c(n2 − i)b−(i+1) ≤ cn2
∞∑

i=1

b−(i+1)

= cn2b−2(1 − b−1)−1 = cn2b−1(b − 1)−1 ≤ cn2
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for some c > 0, where the first inequality follows by the hypothesis that
|E(ĨiĨj)| = O(b−(i+1)). This establishes (4.11).

Remark. It follows from Corollary 4.8 and Theorem 4.9 that if 0 ≤ X < 1
has density f ∈ C1, then X is a.s. simply normal base b for all b > 1; this is
a very special case of the fact [2] that every random variable with density is
a.s. normal.
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