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1 Introduction

For each positive integer n, each integer b > 1 and each real number r» > 0,
let D®)(r) denote the n'™ digit (base b) of r; that is,

r= Y b "DP(r), where D (r) € {0,1,...,b—1},

n=—oo

and if r has two b-adic expansions, then the terminating one, i.e., the one with
lim D®)(r) = 0, is chosen. (For example, if b = 10 and 7 = .02 = .019999 - - -,

n—oo

then D§'”(r) = 2 and D9 (r) = 0 for all n # 2.)

Similarly, for each n € N, b € N\{1} and r > 0, S® (r) will denote the n®
significant digit (base b) of r, that is,

SO(X) = D,(ﬁ)rm,l(X) for all n € N on the set {b™™ < X < b ™1 (1.1)

(So, e.g., S1V(x/100) = 5" (x/10) = 3, and SU"V(.01999) = S\ (.02) =
Dgw)(.02) = 2.) Also, for convenience of notation, set S (0) = 0 for all n, b.

The main goal of this article is to study the limiting behavior of the n-th digits
and n-th significant digits, that is, the behavior of the trailing or least signif-
icant digits, for various classes of random variables. Non-leading significant
digits play an important role in the analysis of roundoff errors in numeri-
cal algorithms using floating-point arithmetic (cf. [6]), and in statistical tests
for fraud or human error in numerical data (e.g., [13], [14]). “Digit-regular”
and “significant-digit-regular” random variables are defined and basic rela-
tionships are established between digit-regularity and various related classical
notions including normal numbers, convergence of Fourier coefficients, and
convergence in distribution.

The organization is as follows: §2 defines digit-reqular random variables, and es-
tablishes necessary and sufficient conditions for a random variable to be digit-
regular in terms of convergence of Fourier coefficients and in terms of conver-
gence in distribution; §3 is the analog for significant-digit-reqular random vari-
ables, with examples to show that neither digit-regularity nor significant-digit-
regularity imply the other; and §4 defines strongly digit-reqular distributions,
establishes basic properties including equivalence of strong digit-regularity and
strong significant-digit-regularity, and derives rates of convergence for digit-
regularity of absolutely continuous distributions.



2 Digit-regular Random Variables

In the sequel, X will denote a nonnegative random variable defined on some
probability space (€2, F, P).

Definition 2.1 X is digit-reqular (d.r.) base b if

P(D(b)-(X):dj, 1§j§k)—>b_kasn—>ooforallk€N
and all d; € {0,1,...,b—1};

and is digit reqular if it is d.r. base b for all integers b > 1.

In particular, a random variable is digit-regular base 2 if, in the binary expan-
sion of X, the probability that the n-th digit of X is 0 approaches 1/2 as n goes
to infinity, and, more generally, the probability that any given string of k con-
secutive digits starting at the n-th place in the binary expansion approaches
27% as n goes to infinity.

Proposition 2.2 If X is d.r. base b for some integer b > 1, then X is con-
tinuous, i.e., P(X =r) =0 for all > 0.

Proof. Suppose, by way of contradiction, that P(X = z*) > 0 for some
r* >0, and let ¢, = D®)(2*), n € N. Fix m € N such that P(X = z*) > b™™.
It is clear that there exist digits d; € {0,1,...,b—1}, j =1,...,m, such that
(Cnsty -y Cnom) = (di, ..., dp,) for infinitely many n € N. Then

limsup P(DY) (X)=d;, 1<j<m)>P(X =z")>b"",

n+j
n—o00

a contradiction. m|

The next example shows that a random variable X may be continuous and
a.s. completely normal, but not digit-regular. (Recall that a real number x
is normal base b if the limiting frequency of the occurrence of every k-tuple
of {0,1,...,b— 1} in the b-adic expansion of z is b=*, and z is (completely)
normal if it is normal base b for all b [1,12].)

Example 2.3 Let 2* € (0,1) be completely normal, with binary expansion
=3, D,(f)(x*)Z*k. Define X, via its binary expansion, by D (X) =
D®) (x*) if n # k* for any k € N, and let {D,(jc)(X)} be i.i.d uniform on {0, 1}.
Clearly X is continuous, and it is easy to see that since x* is completely
normal, for every base b and every j € {0,1,...,b— 1},

i # S 0: DO =5}




The argument for longer blocks is similar, which shows that X (w) is completely
normal for all w. Clearly X is not d.r. base 2.

Conversely, digit-regularity base b does not imply almost sure normality.

Example 2.4 Let {X,} be iid. Bernoulli random variables with P(X,, =
0) = P(X, = 1) = 1/2, and let {Z,} be independent Bernoulli random
variables, independent of the {X,,}, with P(Z, =1) =1—-P(Z, =0) =1—=.
Define the random variable X, via its binary representation, as follows: for
any m € N, let

D (X) = 2, X, for all n € By = {m™ m™ + 1, (m+ )™ 1},

To see that X is d.r. base 2, let k € N and (dy,...,d;) € {0,1,...,b—1}F.
Fix n > k; then {n+1,...,n+ k} C B, U B,,;1 for some m = m(n, k). By
definition of X, {X,}, {Z,} and m,

P(DE(X)=d;1<j<k)=

P (DE(X) = dj1 < j < k and Zyy = Zipsr = 1)

+ P (DE(X) =dj,1 <j <k and ZpZpi1 = 0)

(-3 (L)

+P (Dgg‘(X) =dj, 1 <j<kand ZyZm1 = 0) ‘

. : 2
Since m — 0o as n — o0, lim, o P (ngj

X)=d,1<j<k)=27%
J

To see that X is not normal base 2, note that by the Borel-Cantelli Lemma,
P(Z, = 0 infinitely often) = 1, so P-almost surely there are infinitely many
blocks B,, where D (X) = 0 for all n € B,,. But this implies that

limsup,_.. t+#{i < n: DZ@)(X) = 0} = 1, so X is a.s. not normal base 2,
(and hence not normal).

For each real Borel probability measure 4, and each integer n, let ¢, (n) denote
the n'™ Fourier coefficient of 4, that is

¢u(n) = E(exp(2minX)), where X is a random variable with law £(X) = p.

Theorem 2.5 Let X be a nonnegative random variable with distribution .
Then for each integer b > 1, the following are equivalent:

(i) X is d.r. base b;

(ii) X® := p"X (mod 1) converges in distribution as n — oo to the uniform
distribution on [0, 1);



(iii) ¢, (mb™) — 0 as n — oo for each integer m # 0.

Proof. Fix b € N\{1}. For integers m > 1 and d; € {0,1,...,b — 1},
i1=1,...,m, let

A0y, dy) ={r€[0,1): DP(r) = d;, 1 <i<m)}.

Since only terminating expansions are considered,

A0 (dy,. .. dy,) = [Z dib™ S dib T+ bm> : (2.1)
i=1

i=1

U{Ab)(d}, dy):0<d; <b—1,i=1,...,m;
Dodib™ <Y dib™ — bm} = [0, Zdibi> : (2.2)
=1 =1 =1
Note that
P (Xff’) e AY(d,, ... ,dm)> =P (Dnlﬂ)ri(X) =d;, 1<i< m) ) (2.3)

“(i) = (ii)” If X is d.r. base b, it follows from (2.1)—(2.3) that

P <X7(Lb) < Zdﬂf’) — Zdib_i as n — 00,
i=1

i=1

for every integer m > 1 and digits 0 < d; < b— 1, which implies (ii) since the
set {0, dib™":m>1, d; €{0,1,...,0—1}} is dense in [0, 1].

“(ii) = (i)” If (ii) holds, then by (2.2) and (2.3),
P (XT(L”) e AY(dy, ... ,dm)) —b™ asn— 0.
By the definition of d.r., this implies (i).

“(ii) < (iii)” Let A denote Lebesgue measure on [0,1], and for each n € N,
let p1, = L(X®). For each n € N, the Fourier coefficients {¢,,, (m)}___
uniquely determine g, [1, p. 361], and for each integer m # 0, ¢ (m) = 0 [1,
Ex. 26.3]. Hence, by Lévy’s Continuity Theorem [1, Th. 26.3]

x® 2, 00,1) = ¢, (m) — 0 for all integers m # 0. (2.4)
Fix an integer m # 0, and note that

Gp, (M) = Elexp(2mimb™ X (mod1))] = Elexp(2mimb"X)| = ¢, (mb"),



where the first equality follows by the definition of X (), the second since
m # 0, b>1and n > 1 are integers, and the last by definition of ¢,. With
(2.4), this completes the proof. O

Corollary 2.6 If X is a random variable with distribution p, and if ¢,(n) —
0 as |n| — oo, then X is digit-reqular.

Proof. Immediate, since ¢,(n) — 0 as |n| — oo implies ¢, (mb") — 0 as
n — oo, since b > 1 and m # 0 are integers. O

The next proposition shows that a random variable which is continuous and
digit-regular base b need not be digit-regular for other bases, nor be almost
surely normal.

Proposition 2.7 Let X have the classical middle-thirds Cantor-Lebesque dis-
tribution on (0, 1), that is, letting { Xy }32, be i.i.d. with P(X, =0) = P(X; =
2)=1/2,

X=> X;37"
k=1
Then X s digit-reqular and normal base 2, but is neither digit-reqular nor
normal base 3.

Proof. Since the ternary expansion of X contains no 1’s, clearly X is neither
d.r. nor normal base 3.

By a theorem of Feldman and Smorodinsky [5, p. 707] (see also [11]), since
log 2/ log 3 is irrational, and the ternary digit process for X is non-degenerate
and i.i.d., X is a.s. normal base 2.

To see that X is d.r. base 2, let v denote the distribution of Y = %X ,s0Y
has the “right-thirds” Cantor-Lebesgue distribution on (0, 1). The measure v
satisfies the hypotheses of Theorem 5 of [9] with p = 3, ¢ = 2 and u = v
since: 2 and 3 are multiplicatively independent; v is continuous; v is invariant
under the map T3(z) = 3z(mod 1); v is T3-exact (i.e., satisfies (6) of [8]),
since v is a Bernoulli convolution [8; (12)] with g.c.d. {ig : p;, > 0} = 1 [8,
p. 602]; v satisfies (5) of [8], since v is a Bernoulli convolution [8, p. 602]; and
w is trivially absolutely continuous with respect to some measure of the form
O(t) * T,v, since taking ¢t = 0 and r = 1 yields v. Thus by [9, Theorem 5],
2" X (mod 1) converges in distribution to the uniform distribution on (0, 1),
so by Theorem 2.5, Y is d.r. base 2. But X = 2Y is d.r. base 2 if and only if
Y is d.r. base 2 by definition of digit-regularity, since D®(X) = D@ (2Y) =
DIL(Y). o

The converse of Corollary 2.6 is false, as the next proposition shows. By
Proposition 2.2, digit-regularity implies continuity of a distribution, so by the



Riemann-Lebesgue Lemma [1, Theorem 26.1], the next proposition will also
show that digit-regularity does not imply absolute continuity of the distribu-
tion. In order to establish the existence of a d.r. random variable whose Fourier
coefficients do not vanish at infinity, the following number-theoretic lemma is
needed. Recall that a subset S of N has density zero in N if lim,, ., % #{k <
n:keSt=0.

Lemma 2.8 The set S := {mb™” : m,bn e NNm >1,0>2n > 2,b" > m}
has density zero in N.

Proof. It suffices to show that ZSES% < 00. Note that

XYY =YY Y

n>2m>1 "V o mi/n n>2 b>2 7 1<m<bn_1

1 b" 1
sy S (i [) <X T pa s
n>2 b22b 1T n>2 b22b

S3+Z Ih)

n>2 n>2 b>3

1
m

<2mb Y Zbﬁnzzlnb(

n>2 b>2

n > n
< — _

n>2
n n 1
=2Inb — 4+ < 00. O
(Zz n;n_mm)

Proposition 2.9 There exist random variables which are digit-reqular whose
Fourier coefficients do not vanish at infinity.

Proof. Let ni,ny... be a strictly increasing sequence of positive integers
such that there is no solution to mb™ = (n;, +---+mn;,) — (nj, +--- + njg)
for any integers m,b,n with m > 1, b > 2, n > 2 and b" > m, where the
k + k summands are all distinct. Also, assume that the n;’s are such that
0 cannot be so represented. Such a sequence is easy to construct since by
Lemma 2.8 the powers {mb" : b € N\{1},n € N,b" > m} have density zero
in N, so there exist positive integers y; < y» < --- such that the interval
[y; — i, y; + i] contains no members of S. Define {n;} inductively by n; = y,
and Np41 = Yny ooty -  mb™ = nyyy + X1<i<, 0iny, where 0; € {0, %1}, then
mb"™ € [ng+1 — (N + -+ 4+ ng), ng1 + (ng + -+ - + ng)], which contradicts the
definition of the {y;}.

Next, define the Riesz products (cf. [15, §V.7])

k
pr(t) = JJ (1 + cos2mn;t), k=1,2,..., tel0,1].

J=1



It is easy to check that the mb"-th Fourier coefficients of py(t) are all 0 if
n>2 m>1, and b" > m. For example, if k = 2,

pa(t) =
(1 + (exp(2mingt) + exp(—27m'n1t))/2> (1 + (exp(2mingt) + exp(—?wingt))/Q)
=1+ (exp(2mingt))/2 + (exp(2mingt)) /2 + - - - + (exp 2mwi((ng + no)t)) /4.

(There are 9 terms in all.) None of these terms can be of the form c-exp(2mimb*t)
unless ¢ = 0, or k = 0 or 1, since mb* cannot be a sum or difference of 0, ny, ns.
Thus, the mb™-th Fourier coefficients, n > 2, b™ > m, are all 0. Note that
pr(t) > 0 for all t € [0,1], and that ) p(t)dt = 1, since the constant term in
the Fourier expansion of pg(t) is always 1, which follows from the assumption
that 0 cannot be represented as 0 = Y-, d;n;, where ¢; € {—1,1}. Thus for
each k > 2, pi(t) is the density function of a Borel probability Py on [0, 1].
By Prokhorov’s theorem, there is a subsequence (Py;) of (P) such that P,
converges weakly to a probability measure p on [0, 1]. Since weak convergence
implies convergence of integrals of bounded continuous functions, and since for
b" > |m|, the mb"-th Fourier coefficients of P are 0 for all k, the same is true
for the limiting measure p. It remains to show that limsup,, . ¢,(n) > 0. Let
{pr(n)} denote the Fourier coefficients of {pr}, s0 pr(t) = X ,ez Pr(n)e*™ .
The key observation is that

1
k() > 5 for all k > m > 1. (2.5)
To see(2.5), write
L i 1 1
Pr(nm) = / (exp 2ming,t) [| (1 t3 exp(2min;t) + 2 exp(—27rz'njt)> dt.
0 Jabe

Since k > m, the product in the last equality is a linear combination of expo-
nential terms, amongst them % exp(—2min,,t), whose contribution to p ()
is % Since the contribution of any exponential term is either zero or positive,
this establishes (2.5).

Since Py, converges weakly to j, (2.5) implies that lim;_. Pr; (M) = @pu(fim) >
5 for all m > 1, so since n,,, — 00 as n — oo, limsup,, ., ¢.(n) > 3. |
(Note that the mb"-th Fourier coefficient of Py is zero for all n > 2, b > 2
and m # 0 such that b" > |m/|, which follows from the properties of the (n;).
Hence ¢,(mb™) =0 for all n > 2, b > 2 and m # 0 such that b" > |m]|.)

Proposition 2.10 Fvery random variable with a density is digit-reqular and
a.s. completely normal.



Proof. Let X be a random variable with a.c. distribution p; and, without
loss of generality, 0 < X < 1. By the Riemann-Lebesgue Lemma, ¢,(n) — 0
as n — 00, so X is d.r. by Corollary 2.6. As is well known [2, Prob. 8, p. 107],
every random variable with a.c. distribution is a.s. completely normal. O

3 Significant-digit-regular Random Variables

Definition 3.1 X is significant-digit-reqular (s.d.r.) base b if

P(Sﬂj(X):djalﬁjﬁk)ﬁb_k as n — oo for all k € N
and all d; € {0,1,...,b—1};

and is significant-digit-reqular if it is s.d.r. base b for all b.

If X is a random variable with values in (0, 1), and X = X 41, then it follows
from (1.1) that

SV (X)) =DY(X)=DY(X) forallb>2andn > 1, (3.1)
so X is d.r. base b if and only if X is d.r. base b if and only if X is s.d.r. base
b. Since X is a.s. normal base b if and only if X is a.s. normal base b, and X
is absolutely continuous if and only if X is absolutely continuous, the analog
of Example 2.3 obtained by replacing X by X + 1 yields a random variable
which is continuous and a.s. completely normal, but is not s.d.r. Similarly, the
analogs of Example 2.4 and Proposition 2.7, respectively, show that significant-
digit-regularity base 2 does not imply a.s. normality, and that significant-digit-
regularity base 2 does not imply significant-digit-regularity base 3. The analog
of Proposition 2.9, that significant-digit-regularity does not imply absolute
continuity of a random variable, is an immediate consequence of the Riemann-
Lebesgue Lemma and Proposition 4.5 below.

Let I denote the indicator function of the set B and let |a| denote the integer
part of a.

Theorem 3.2 For all nonnegative random variables X and all b € N\{1},
the following are equivalent:

(i) X is s.d.r. base b;
(ii) b=lees X1 X 4s d.r. base b;

(iii) Y ez E {I{b7j§X<b7j+l} exp(27rimbn+jX)} — 0 as n — oo for each integer
m # 0.



Proof. Fix b € N\{1}. Then

P(SV),(X) =d, 1<j<k;)

-y P X)=d;, 1<j<hk b™"<X<b™)
meZ

=P

n+j

(522
( ntjam-1(X) =dj, 1< <k b_m§X<b—m+1>
(D3

)
meZ
= > P(DY,  (b"X)=d;, 1<j<k b<X<b
meZ
=Y P(DY, (b lemXIX) =d;, 1<j<hk b"<X <bm
meZ
=P (DY), (7w XXy =d;, 1<j<k), (3.2)

where the second equality follows from (1.1); the third equality since DY (bj r) =
Dfﬂ( ) for i,j € Z, r > 0; and the fourth inequality since b= < X <
b & —m <logy X < —m + 1 & |log, X| = —m. This establishes the
equivalence of (i) and (ii).

Let p denote the distribution of b~1°& X)X By Theorem 2.5, (ii) is equivalent
to ¢, (mb") — 0 as n — oo for each m # 0. But ¢, (mb") =

Elexp(2mimb™ - b=l X1 X)] " and by dominated convergence, ¢,,(mb") =

Y ez Ellp-i<x<p-i+1y exp(2mimb™*7 X)], which establishes the equivalence of
(i) and (iii). O

The next two results are the s.d.r. analogs of d.r. Proposition 2.2 and Propo-
sition 2.10, respectively.

Proposition 3.3 If X s s.d.r. base b for some integer b > 1, then X is
continuous.

Proof. Analogous to proof of Proposition 2.2.

Proposition 3.4 Fvery random variable with a density is significant-digit-
reqular and a.s. completely normal.

Proof. Let X be any r.v. with density, and fix base b > 2. Let Y = b~ llege XJ X
be the r.v. in Theorem 3.2(ii), so Y also has a density, and by Proposition 2.10,
Y is d.r. base b (in fact, for all bases). Theorem 3.2 then implies that X is
s.d.r. base b. O

The next two examples show that digit-regularity base b does not imply
significant-digit-regularity base b, nor conversely.

Example 3.5 The special case base b = 2 will be shown; the argument for
general b is analogous. Let {X,,}>2; be Bernoulli random variables defined

10



as follows: X is uniform on {0,1}, i.e., P(X; = 0) = P(Xy, = 1) = 1/2;
Xo=1—X1; Xop = X for all k > 1; and {X1, X,, : n # 2 for any k} are
i.i.d., uniform on {0,1}. Let X = 3°°, X,,27" so D?(X) = X,, for alln > 1.
Note that for each m € N there exists N = N(m) such that for all n > N,
Dfi)l(X), ce fojm(X) are i.i.d. uniform on {0, 1}, which clearly implies that
X is d.r. (base 2).

To see that X is not s.d.r. (base 2), note that X; =0< Xy =1, soon {X; =
1}, D@(X) = S@(X) for all n > 1. Similarly, on {X; = 0}, Dﬁzl(X) =
S (X) for all n > 1.

Thus for n = 2* for some k£ > 2,
DP(X, = 1)+ P(SP(X) = 1

SO0 = 1) = PSPC0 ~ 1] X -
| X0 OPLG = 0) = PG = 1] X% =
=32 #4150 X is not s.d.r. (base 2).

Example 3.6 Let {X,,};2, be as in Example 3.5, and let X = 372 L X2,
where {X 1o are Bernoulh random variables defined as follows: on {X 1= 1}
X, = X, for all n > 1; on{Xl—O}—{Xg—l} X, = X2—0 X3—1 and
X, = X,_5 for n > 4. Since D@ (X) = X for all n > 1, the definition of X
implies that on {X; = 1}, S@(X) = DO(X) = X, = X for all n > 1, and
on {X; =0} = {X, = 1}, SO (X) = D,(QQ(X) = Xpyo = X, for all n > 2.
In particular, S (X) = X,, for all n > 2. Since P(S,(H)J(X) =d;j,1 <j<
m) = P(X,4; = d;,1 < j < m), it follows as in Example 3.5 that for each
m > 1 there exists N = N(m) such that for all n > N, X, 1, ..., X;up 1..d.
uniform on {0,1}, so P(X,4; = d;,;1 < j <m) = (%)m for all n > N(m),
which shows that X is s.d.r. (base 2).

To see that X is not d.r. (base 2), let n = 2 for some k > 3, so n > 4 and
X, _s is independent of X;. Then P(D@(X) =1) = P(X, = 1) = P(X,, =
1 X =1)-24+PX, =1 X, =0 =P(X,=1| X1 =1)- L+ P(X, » =
1| X1=0)-1=PXi=1]|X1=1)- 1+ P(X,5=1)-5 =13, 50 X is not
d.r. base 2.

For any base b > 1 and n € N put

Lin)={(dy,...,dp):1<d; <b—1,0<d; <b—1foralli=2,...,n}

and
Jy(n) ={(dy,...,d,):0<d; <b—1foralli=1,... ,n}

The following theorem, whose proof uses an elementary argument, shows that
the significant digits of a random variable satisfying Benford’s law converge
to uniformity exponentially fast; the bound improves that in [6, Theorem 4]
which only proves O(b™").

11



Definition 3.7 Let b be any integer > 1. A positive random variable X is
said to satisfy Benford’s law base b (BL(b)) if for all (dy,...,dy) € I(k)

P(SP(X) = d;,1 < j < k) = log,

J
=1

1+ (zkj dib’“—i> _1] (3.3)

(see [7]).

Theorem 3.8 Let X satisfy BL(b) for some base b > 1. Then for all k € N,
(dl, . ,dk) S Jb(k‘) and n > 2,

3

(b) _ ; _ -k
‘P<S (X)—dyalﬁjﬁk) b Skarnfllnb'

n+j

(3.4)

Proof. Denoting the probability in (3.4) by pn(dy,...,dx), (3.3) implies that

pald, )= Y P({Si(b)(X): L1<i<n)

b"—1

= Z log,

m=bn—1 j:l

k -1
1+ (bkm +3 djbk—j) ] .

Let d; € {0,1,...,b—1}, ch € {0,1,...,b— 1} be digits such that

k k
St T =14 dbt. (3.5)
j=1

J=1

Putting a,, = b¥m + Z?Zl d;b*=7 it follows that for all n =2,3,. ..,

_ B bn—1 1
pn(dla"'7dk)_pn(dla'”adk) - Z (10gb |:1+CL_:| _1Ogb |:1+

< —
~ Inbd 2 (b*m)2 + 2bFm
1 > 1 1
< — — <
~ bv*Inb m:zb;l m2 — b1 —1)Inb

2
< ——
= p2k+n—1]p p

Let pni1,Pn2, .-, Pnpe denote the probabilities p,,(di, ..., dy) in lexicographic
order starting with (0,...,0,0,0), (0,...,0,0,1),...,(0,...,0,0,b — 1),
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0,...,0,1,0),...,(0,...,0,1,b — 1),... and ending with (b — 1,...,b — 1).
As shown above

2 .
Pni — Pnjit1] < FErE 1<i<d (3.6)

Since 1 — b*p,, o = Zi’i}l i(Pn,i — Pnit+1), (3.6) implies that

10 2 1
bk < = < .
P =7 < 5 ; PFTInb — B Tinb

Using induction and (3.6) yields

b+ 2m
—k k
‘pn,bhm—b ‘SM, 0<m<0° -1 a

4 Strongly Digit-Regular Distributions

Definition 4.1 X is called strongly digit-reqular (strongly d.r.) base b if for
all Borel sets B C [0,00) with P(X € B) > 0, and for all ¥k € N and d; €
(0,1,...,b—1},

P(DY)

n-+j

(X)=dj,1<j<k|X€B)—b" asn— oo, (4.1)

and is strongly digit-regular if it is strongly d.r. base b for all b.

Similarly, X is strongly significant-digit-reqular (strongly s.d.r.) base b if (4.1)

holds with ng(X ) replaced by S,(f:)rj

s.d.r. base b for all b.

(X), and is strongly s.d.r. if it is strongly

In contrast to the fact that neither digit-regularity base b nor significant-digit-
regularity base b imply the other (Examples 3.5 and 3.6), in the context of
conditional regularity (strong d.r. and s.d.r.), these concepts are equivalent.
Note that the basic idea behind Examples 3.5 and 3.6 was exactly that of
constructing digit-regular variables which were not conditionally digit-regular.

Theorem 4.2 Let b € N\{1}. The following are equivalent:
(i) X is strongly d.r. base b;
(ii) X is strongly s.d.r. base b;

(iii) for each bounded Borel measurable function f : [0,00) — R, and each
integer m # 0,

Elf(X)exp2mimb"X)] — 0 asn — oo; (4.2)

13



(iv) B[ ;e.q(X) exp(2mimb" X)| — 0 as n — oo for all real numbers 0 < ¢ < d
and integers m # 0.

Proof. Fix b€ N\{1}.

“(i) < (ii)” This follows from (1.1) combined with a simple conditioning ar-
gument.

“(i) = (iii)” Assume X is strongly d.r. base b and let B C [0, 00) be a Borel set
such that P(X € B) > 0. Applying Theorem 2.5 to the probability measure
P(- | X € B) shows that (4.2) holds for f = Ip, the indicator function of B.
Thus, (4.2) holds for all Borel measurable simple functions f : [0,00) — R. If
f:[0,00) — R is bounded and Borel measurable, for every ¢ > 0 there exist a
Borel measurable simple function f, : [0,00) — R such that |f(t) — fc(t)| < €
for all ¢ > 0, which proves (iii).

“(iil) = (1)” is an immediate consequence of Theorem 2.5, (iii) = (iv) triv-
ially, and (iv) = (iii) follows from a classical approximation result (see [1,
Theorem 17.1)). O

Remarks. Note that (iv) implies that X is continuous. In light of Theo-
rem 4.2, the random variable in Example 3.5 is d.r. but not strongly d.r., and
that in Example 3.6 is s.d.r., but not strongly s.d.r.

By a standard approximation argument it is easy to see that Theorem 4.2(iv)
is equivalent to E[I}. 4(X) exp(2mimb"X )] — 0 as n — oo for all real numbers
0 < ¢ < d and all integers m # 0, so letting ¢ = b=7 and d = b=77! yields

Ellgy-i<x<p-it1 exp(2mimb" ™7 X)] — 0 as n — oo, for each m # 0 and j € Z.

Since X > 0, for each € > 0 there exists NV = N(¢) such that
P (U|j|>N{b*j <X < b*j“}) < €, which implies that the limsup in Theo-
rem 3.2(iil) is < € as n — oo for all m # 0; this yields a direct proof that the
condition in Theorem 4.2(iv) implies that X is s.d.r. base b.

Theorem 4.3 If X has a density, then X is strongly d.r. and strongly s.d.r.

Proof. If g is a density of X and B C [0,00) is a Borel set such that
P(X € B) > 0, then 55 Ig is a density of X with respect to the con-
ditional probability measure P(- | X € B), and the conclusions follow by

Propositions 2.10 and 3.4. O

Certain statistical tests for detection of fraud or human error in numerical data
are based on goodness-of-fit of least significant (or final) digits to uniform, the
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idea being that in true data the least significant digits are uniform, but in
fabricated data, which may reflect individual preferences for particular digits
or strings of digits, the least significant digits are not uniform. In classical
tests of this type, the underlying true distribution of least significant digits of
data is simply assumed to be uniform (e.g., [14, p. 572], [13, p. 66]); the next
corollary gives a theoretical basis for the assumption of uniformity of final
digits in true data.

Corollary 4.4 (Least-significant-digit law) If X has a density, then the
significant digits base b of X, S®(X), are asymptotically independent and
uniformly distributed on {0,1,...,b — 1} for all integers b > 1.

The next proposition generalizes the conclusion of Proposition 2.9 to strongly
d.r. distributions.

Proposition 4.5 There exist random variables which are strongly digit-reqular
(equivalently strongly significant-digit-reqular) whose Fourier coefficients do
not vanish at infinity.

Proof. Refine the construction in Proposition 2.9 as follows. Let S be the
set of integers {mb" : m,b,n € Nym > 1,b > 2,n > 2,b" > m} in Lemma 2.8.
First, it will be shown that there exist positive integers 12 < n; < ng < ---
satisfying

nt—2(n1+n2+"-+nt_1) > 4t, teN (43&)
and
[nt —2(ny + -+ ne1),ng + 2(ng —i—--~—|—nt_1)] NS u{0}) =0, teN,
(4.3b)

(where void sums are taken to be zero). To see (4.3a)—(4.3b), first note that
by Lemma 2.8, S has density zero, so for each ¢ € N there exists a sequence
of integers 12 <y, 1 <y 0 < --- satisfying

[ye; — 2ty +2t]N(SU{0}) =0 for all j € N. (4.4)

Define the sequence (n;) recursively as follows. Let ny = y;1, and note that,
by (4.4), (4.3b) holds for t = 1. For each t € N, choose k; € N so large that
N4l 7= Ynytotne by Satisfies

Nepr > 4ny  and  ngyq >3-4

(Note that ny > 12.) Then (4.4) implies (4.3b), and for each t € N, n; —2(n; +
-1

(2 2 (-2 () ) 2

N (1 —-2¥%, G)]) = +ny > 4%, which proves (4.3a).
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Define the Riesz products (p;) and p as in Proposition 2.9, with the (n;) as
defined above. Since

d
/C exp(QWiat)dt’ = ‘2mo¢ (exp(2miad) — exp(2miac))
1
<W forall0 <ec¢<d, |al >0,
a

it follows from the definition of the (py) that

/cd exp(2mimb"t)py(t )dt‘ < L +> ( )+ Ek] ) (4.5)

mb* 5

where Z,(;;-) is a sum of 2771 (lj) terms of the form

1 1
27 | mb™ + n;;, £ ny,

+ . ny

-1
and Z,E:j) is a sum of 2771 (f) terms of the form

1 1
g[mb"—nijinijflj:---j:nh]’

where 1 < iy < iy < --- < 1i; < k. (Note that Z,(;;-) and E;Tj) also depend on
m, b, and n.)

For the rest of the proof fix m > 1 and b > 2. Let n > 2 be such that 0™ > m

and mb"™ > ngy, and let u = u(m,b,n) be given by n, < mb" < n,y;. Since
mb" € S, it follows from (4.3b) that

Ny +2(ny + -+ nu_1) <mb™ < nyyr —2(ng + -+ ny). (4.6)
Letting i; = ¢, it follows that j <¢ <k, and by (4.3a) and (4.6),

mb" +n, g, E -0y, >mb" +nyg— (ng 4o Fngy)
>ny+ 2+ ) Fne— (o)
> 4" 44

Therefore,

+ 1 & <t—1> 271
2Jt:j j—1)4u 44t

[Note that given i; = ¢ there are (;j) sequences of the form 1 < 17 < ip <

- <ij1 <t—1, and each integer n;,,...,n;,_, can have the coefficient +1
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(277! possibilities).] This implies

Sy L5 (e
el A AV R 4u 4 4t
()
24 +4 U1
which implies
E & 2
jzlz,w. S el (4.7)
Furthermore, for 1 <t < u, by (4.6) and (4.3a),

mb" —ng, £y, E -0y >mb" —ng — (ng A+ )
>Ny + 2N+ Fnyq) — (N1 + -+ ny)

> gty >4 > ;(4“+4t).
For t = u+ 1, (4.6) and (4.3a) imply that
ni; £ g, £ Eny —mb" > nygg — (ny+ - +ny) — N1 +2(ng + -+ ny,)
=ny+-+n, >4" > %(4“+4f).
Finally, for u+ 2 < ¢ < k, by (4.6) and (4.3a),

N, £, £k ng —mb" >0 — (g 1) = g 20 -0 ny)
Znt—(nl—l—”'—l—nt_l)—nt_l>nt—2(n1+'--+nt_1)

1
>4f > 5(4“+4t).

This implies, for k > u + 2,

j=1 j=1t=j j—1
k 1 t (t _ 1) k 2t71
=4 ) =4
t§::1411»+41tjz1 j—1 ;4u+4t
k 2t
=2
t; 4y 4t
By (4.5) and (4.7) this yields, for 0 < ¢ <d <1,
d 1 k 2i
/ exp(2mimb”s)py(s)ds| < — + 3 qu 4 437 k>u+2. (4.8)
c ” j=1
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By symmetry, (4.8) also holds for integers m < —1, b > 2 and n > 2 such
that 0™ > |m/|, |[m|b" > ny and u > 2 satisfying n, < |m|b" < n,q;. Since
(as shown in the proof of Proposition 2.9) the limiting measure p satisfies
¢ (mb*) = 0 for m # 0, and n > 2 such that b" > |m|, by Theorem 2.5
and Proposition 2.2 this implies that p is continuous. Letting the random
variable X}, have distribution Py, and X, have distribution pu, since the set of
discontinuities of the function ¢ +— I g (t) - exp(2mimb™t) has p-measure zero
for all 0 < ¢ <d <1, it follows (cf. [1, Theorem 25.7]) that

Te,q)(Xi,) exp(2mimb" Xy, ) — Ijeq)(Xoo) exp(2mimb" X))  weakly as j — oo.
Since those functions are uniformly bounded, this implies that

Ele.q(Xk,) exp(2mimb" Xy,| — Ellcq(Xo) exp(2mimb"X)]  as j — o0,
so by (4.8),

- j=14u+4j'

1
‘/ Iie.q(s) exp(2mimb™s)du(s)
0

u

(Note that n — oo implies u — 00.) Therefore

limy, oo fy jeq(s) exp(2mimbs)du(s) = 0 for all m # 0 and b > 2. Hence a
random variable X, with law p is strongly d.r. (and also strongly s.d.r), but
as in Proposition 2.9, it is easily seen that limsup,_, [¢.(n)] > 3. |

For fixed integers b > 1, m > 1, and (dy, . ..,d,,) € Jy(m), set
(d, ... dy)y = dpb™".
k=1

Lemma 4.6 Let X be a random variable with density f such that 0 < X < 1.
Then for allb € N, b > 2 and (dy,...,dy) € Jy(k),

.....

. . sy —k
(i) POV(X)=dj,1 <j<k)= [t o™ fa)do
and for all n € N,

(ii) P(DY)

nii(X) =d;, 1 <j<k)= > f<<“1 ~~~~~ an,d1 ooy )b~ (TR f(x)dx.

Alyeeey an,di,..., dk>b

Proof. Immediate from the definitions of D), (dy,...,d.)s, and (ay, ..., an,
d17...,dk>b. O

Theorem 4.7 Let X be a random variable such that 0 < X < 1.

(a) Suppose that X has density f € C*, and |f'(t)| < L for allt € [0,1]. Then

forall j,k,be N, b>2,n>0 and all dj, d; € {0,1,...,b— 1} satisfying
(3.5),
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(i) [P(DY) () = d1 <5 < k) — P(D{(X) = dj,1 < j < k)| <

n+j ntj
L~ (n+2h)
(it) [P(DY);(X) = dj,1 < j < k) — b7F| < 3L p(mth),
and

(iii) [P(DY(X) = di, DP(X) = dy) — 072 < 3o +D) 1 < | <.

(b) Conversely, suppose that there exists some base b > 2 and a constant K
such that for all integers j > 1, k> 1 andn > 0,

iv) |[P(DyL(X)=d;,1<j<k)—0bF* < Kbtk
n—l—j J

Then X is absolutely continuous with bounded density f.

Proof. (a) “(i)” Note that in case n € N

[P(DY);(X) =d;, 1< j <k)—P(DY)(X) =d;,1 <j <k)|

n+yj

(@1,.snydy ondi Yy b= (V)
- 2 /< |f(x) — fz 4 b~ "F0)|da

where the first inequality follows from Lemma 4.6(ii), and the second since

[f'()] < L.

“(ii)” Fix any integer n > 0 and let m,;,..., 7, denote the probabilities

P(foi)H (X) =dj,1 <j <k)in lexicographic order on (ds, ..., d); i.e., mp1 =
b . b b b

P(DY,(X) = 0,1 < j < k), o = P(<D£L+>1<X>,Dfllz<x>7 o DOL(X)) =

(0,...,0, 1)), etc. Then (ii) is equivalent to

3L

[T, — bik\ < - bR for all § = 1,...,b"

In fact, starting with the identity

bk —1

1 — bkﬂ'n’bk = Z 7:<7Tn’2' — 7Tn,i+1)

=1
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(note that 7,1 + -+ - + m, v = 1) it follows from (i) that

bh—1
b~ — Tpk| < b * Z Wi — T i

1=1
bk —1 L

< b*k Z iLb*(n+2k) — 5 b*(n+3k)bk(bk . 1)
=1

L
— 5 (bk . 1)b7(n+2k).

By (i), this implies
|b_k - ﬂ—n,bkfl’ < |b_k - 7Tn,bk| + |7Tn,bk - Wn,bkfl|

< % (B — 1)b (28 4 (k) 5“‘“'“)(1)'“ —1+2),

and it follows by induction that for 0 < j < b* — 1,

3L

L
[Mng = b7 < 5 (0F = 14 27)07 00 < 2,

“(iil)” If ¢ = k+1, (iii) follows immediately from (ii). If i > k42, then (writing
d;_k+1 instead of dy),

|P(DY(X) = di, D" (X) = d;_y41) — b7

b b b
= | 3 P(DY(X) =di, DY) [(X) = do,...,D(X) = dis11)
(d2 ..... di_k)EJb(i—k—l)
_ b_2|
< ) IP(DY(X) = di, DY) (X) = da, ..., DIV (X) = di_g4)
(d2y..oydi— g )ET(i—k—1)
— b—(i—k+1)|
3L 3L

<5 yiklp = > b=+ This proves (a).

(b) Fix the base b as in (iv). For n € N, let P,, denote the partition of [0, 1)
consisting of the " sets {x € [0,1) : Dj(-b)(x) = d;,1 < j < n} for all
(dy,...,dn) € Jp(n), and let F,, denote the o-algebra o(P,) generated by

P,.. Note that
U(U fn) =B([0,1)), (4.9)
n=1
the o-algebra of Borel sets on [0,1). Let u denote the distribution of X,
and let A denote Lebesgue measure on [0, 1), so A\(A) = b~ for all A € P,,.
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Let (Y,)nen be random variables on [0, 1) defined by

y, — mA)

&

=0t 3 PP =d 1< <m0y ey
(d1,...sdn)E Ty (n) !
It is casily seen that (Y},) is an (F,)-martingale satisfying [ Y,d\ = 1 for
all n € N (cf. [4, Chapter V, No. 6]). By (iv),0 <Y, < K+1foralln € N,
so the martingale convergence theorem implies the existence of a random
variable Y., € L'[0,1) such that Y,, — Y., A-almost surely. Since the (Y},)
are uniformly bounded, the bounded convergence theorem implies that
[ YoodA = 1. Finally, it follows from (4.9) that Y, is a bounded density of
X (cf. [4, Chapter V, No. 56]). o

Fori €N, let [; = I;(b,d, X) = I and I; = I — B(I;).

(D" (X)=d}’

Corollary 4.8 Suppose X has density f € C'. If0 < X <1 and |f'(t)] < L
for all t € [0,1], then for any integer d, 0 < d < b,

() () — b1 < b, i > 1

(ii) |[E(L1;) = b72) < 2E b= 0H) 1 <i < j;

and

(i) | B(LL)| < 222 p=(+D) 1 <4 < .

Proof. Conclusions (i) and (ii) follow immediately from Theorem 4.7 (ii) and
(iii), respectively. For (iii), note that

|B(LL)| = |B(L;) — E(L)E(I;)]

< IB(L) — b7+ 67 = (B(E) — b7+ 07 (B() — b7 457
L )

< S0 L B() — 5 (L) b+ b B — b

+07E(L;) — b
3L 3L, 3L 3L 3L

< D Tt Sy p Sy
= 2 3 p VT T 2
3L 91> 3L 3L\,
< | == 2=, 2= b—(z—f—l).
< ( 5 + 1 + 5 + 2) |

Theorem 4.9 Firb € N\{1}, and let X be a random variable with0 < X <1
such that, for any integer 0 < d < b, E(I,) — b~ asn — oo, and |E(L;I;)| =
O(b=+Y) 1 <i<j. Then X is a.s. simply normal base b.

21



Proof. First note that

is equivalent to

1 (m+1)?

2
m
andmﬁ, - — lasm — oof.

Since E(I,) — b~!, (4.10) is equivalent to

1 &
—2ZIi—>O a.s.
N =

%

(4.10)

(4.11)

By the Borel-Cantelli Lemma, to show (4.3) it suffices to show that for all

e >0,
o0 TL2
ZP (n_221~i >(—:) < 00.
n=1 i=1

By Tschebyschev’s inequality, the left hand side in (4.12) is

n2

>

=1

i=1 n=1

o0 o [ TLZ o
P (n2 > e) <> e 2n~*Var ZE] > e nTE
n=1 n=1

Hence, it suffices to show that

S (£ win) <
n=1 i=1 j=1

Since |I;| = |I; — E(I;)| < 2,

n2

donTty E(I?) < > dn*nt < cc.
n=1 ]

=1 n=1
But
n?2—1 n?
>, B = > > |B(LI)
1<i<j<n?2 i=1 j=i+1

S Z C(n2 o i)b*(’H‘l) S CnQZb*(i+1)

i=1

22
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1
21 -0 ) P = (b — 1) < cn?



for some ¢ > 0, where the first inequality follows by the hypothesis that
|E(L;1;)] = O(b~(*D). This establishes (4.11). O

Remark. It follows from Corollary 4.8 and Theorem 4.9 that if 0 < X < 1
has density f € C!, then X is a.s. simply normal base b for all b > 1; this is
a very special case of the fact [2] that every random variable with density is
a.s. normal.
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