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Abstract This work deals with a generalization of the Total Least Squares

method in the context of the functional linear model. We first propose a

smoothing splines estimator of the functional coefficient of the model with-

out noise in the covariates and we obtain an asymptotic result for this esti-

mator. Then, we adapt this estimator to the case where the covariates are

noisy and we also derive an upper bound for the convergence speed. Our

estimation procedure is evaluated by means of simulations.

Key words Functional Linear Model, Smoothing Splines, Penalization,

Errors-in-Variables, Total Least Squares.

1 Introduction

A very common problem in statistics is to explain the effects of a covariate

X on a random variable Y (variable of interest), defined on a probability

space (Ω,A, P ). We consider here a real variable Y , while X is supposed to

belong to some separable Hilbert space H, endowed with an inner product

noted 〈., .〉. The model we consider here is a linear model in the sense that

we write

Y = 〈α,X〉 + ε, (1)

where α ∈ H is unknown and ε is a real random variable satisfying E(ε) = 0

and E(ε2) = σ2
ε . Considering data (Xi, Yi)i=1,...,n, the goal is then to estimate
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α ∈ H. Let us notice here that there can be different ways to generate the

curves Xi. One possibility is a fixed design, that is, X1, . . . , Xn are fixed,

non-random functions. Examples are experiments in chemical or engineering

applications, where Xi corresponds to functional responses obtained under

various, predetermined experimental conditions (see for instance [6]). In

other applications one may assume a random design, where X1, . . . , Xn are

an i.i.d. sample of H. In any case, Y1, . . . , Yn are independent and the

expectations above always refer to the probability distribution induced by

the random variable ε, only. In the case of random design, they thus formally

have to be interpreted as conditional expectation given X1, . . . , Xn.

However, if we have a closer look at this model (1), we can remark that

there is the underlying assumption that X is observed without error, and

all the errors are confined to the variable Y by the way of ε. Unfortunately,

this assumption does not seem to be very realistic in practice, and many

errors (modeling errors, instrument errors, human errors, . . . ) prevent to

know X1, . . . , Xn exactly. That is why we naturally consider the fact that

X is not directly observed, but the available variable is actually

W = X + δ, (2)

where δ is a noise random variable. This problem of the Errors-in-Variables

linear model has already been studied in many ways in the case where H is R

or R
p, that is to say when X is an univariate or a multivariate predictor. For

instance, the maximum likelihood method has been applied to this context

(see [11]), and asymptotic results have been obtained (see for example [14]).

Because this problem is strongly linked to the problem of solving linear

systems

Ax ≈ b,

where x ∈ R
p is unknown, b ∈ R

n and A is a matrix of size n × p, some

numerical approaches have also been proposed. One of the most famous is

the Total Least Squares (TLS) method (see for example [16] or [26]).

In many applications (for instance in climatology, teledetection, linguis-

tics, . . . ), the data come from the observation of continuous phenomenons of

time or space. Due to important performances of measurement instruments,

the collected data can be seen as curves or surfaces, and cannot be consid-

ered anymore as variables taking values in R
p. They are variables taking

values in some functional Hilbert space H. These so-called functional data

have been studied a lot these last years (to get a theoretical and practical

overview on functional data, we refer to the books [1], [21], [22] and [10]).
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In this paper, our goal is to study a way to deal with the Errors-in-

Variables linear model in the context where the covariate X is of functional

nature. In what follows, we consider that H is the space L2(I) of functions

f : I −→ R defined on an interval I of R such that
∫
I f(t)2dt is finite.

This space is endowed with its usual inner product 〈., .〉 defined by 〈f, g〉 =∫
I f(t)g(t)dt for f, g ∈ L2(I), and the associated norm is noted ‖.‖L2 . In

order to simplify expressions, we take I = [0, 1] all along the paper. Now,

in this context, the model (1) can be written as in [20]

Y =

∫

I
α(t)X(t)dt + ε, (3)

where α ∈ L2(I) is unknown and has to be estimated using the sample

(Wi, Yi)i=1,...,n with W1, . . . ,Wn noisy observations of X1, . . . , Xn. In prac-

tice, the whole curves are not available, so we suppose in the following that

the curves are observed in p discretization points t1 < . . . < tp belonging to

I, that we will take equispaced in order to simplify, such that tj − tj−1 = 1
p

for all j = 2, . . . , p. The discretized version of the inner product 〈., .〉 will be

denoted by 〈., .〉p and defined for f, g ∈ L2(I) by

〈f, g〉p =
1

p

p∑

j=1

f(tj)g(tj).

This approximation of 〈., .〉 by 〈., .〉p is valid only if p is large enough, so we

assume this from now on. In this context of discretized curves, relations (2)

and (3) then write

Y =
1

p

p∑

j=1

α(tj)X(tj) + ε, (4)

and, for j = 1, . . . , p

W (tj) = X(tj) + δ(tj), (5)

where (δ(tj))j=1,...,p is a sequence of independent real random variables, such

that, for all j = 1, . . . , p

E(δ(tj)) = 0,

and

E(δ(tj)
2) = σ2

δ .
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It is worth noting that, when there is no error on the variable X, many

practical and theoretical works have been performed concerning the estima-

tion of the functional coefficient α using a sample (Xi, Yi)i=1,...,n (see for

instance [6] in the case of a functional response, and also [3], [4] and refer-

ences therein for the case of a random covariate X). We choose here another

way to estimate α, using an approach derived from smoothing splines (see

[9] for an overview on smoothing splines).

The paper is organized as follows. In section 2, we present the smoothing

splines estimation procedure and the convergence result for this estimator

in the case where the covariate X is non-noisy. In section 3, we present the

generalization of the TLS method to the case where X is a functional ran-

dom variable and we give a convergence result for the estimator introduced

in section 2. We make some comments about these results in section 4.

Section 5 is devoted to some numerical simulations presenting an evaluation

of our estimation procedure. Finally, in section 6, we give the proof of our

results.

2 Estimation of α in the non-noisy case

From now on, we adopt the following matrix notations: Y = (Y1, . . . , Yn)τ ,

Xi = (Xi(t1), . . . , Xi(tp))
τ for all i = 1, . . . , n, α = (α(t1), . . . , α(tp))

τ and

ε = (ε1, . . . , εn)τ . Moreover, we denote by X the n× p matrix with general

term Xi(tj) for all i = 1, . . . , n and for all j = 1, . . . , p. Using these notations,

the model (4) then writes

Y =
1

p
Xα + ε. (6)

We want to estimate α as the values of a smooth function at the measure-

ment points, so we assume that α is m times differentiable (with m ∈ N).

Our estimation procedure is motivated by the usual smoothing splines

approach in nonparametric regression. For some noisy observations zi of

a smooth function f(ti) at design points t1, . . . , tp, an estimate f̂ is ob-

tained by minimizing 1
p

∑
i(zi − v(ti))

2 + ρ
∫
I v(m)(t)2dt for some smoothing

parameter ρ > 0. Minimization takes place over all functions v in an m-

th order Sobolev space, that is Dmv ∈ L2(I). It can be shown (for an

overview of results in spline theory, consider [7] and [9]) that the solution f̂

is in the space NSm(t1, . . . , tp) of natural splines of order 2m with knots at

t1, . . . , tp. This is a p-dimensional linear functions space with Dmv ∈ L2(I)

for any v ∈ NSm(t1, . . . , tp), and there exist basis functions b1, . . . , bp such

that NSm(t1, . . . , tp) =
{∑

j θjbj | θ1, . . . , θp ∈ R

}
. Different possible basis
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functions proposed by various authors are discussed in [9]. For any vector

w = (w1, . . . , wp)
τ ∈ R

p, there exists a unique natural spline interpolant

sw with sw(tj) = wj, j = 1, . . . , p. With b(t) = (b1(t), . . . , bp(t))
τ and B

denoting the p× p matrix with elements bi(tj), sw is given by

sw(t) = b(t)τ (BτB)−1 Bτw. (7)

The important property of such a spline interpolant is the fact that

∫

I
s
(m)
w (t)2dt ≤

∫

I
f (m)(t)2dt for any other function f

with f (m) ∈ L2(I) and f(tj) = wj, j = 1, . . . , p. (8)

When considering the above minimization problem, (8) implies that the

solution f̂ is given by f̂ = sŵ, where ŵ is obtained by minimizing 1
p

∑
i(zi−

wi)
2 + ρ

∫
I s

(m)
w (t)2dt over all vectors w ∈ R

p.

These ideas readily generalize to the problem of estimating α in (6). An

estimator α̂∗FLS,X may be obtained by solving the minimization problem

min
a∈Rp

{
1

n

∥∥∥∥Y − 1

p
Xa

∥∥∥∥
2

+ ρ

∫

I
s
(m)
a (t)2dt

}
, (9)

where ‖.‖ stands for the usual Euclidean norm, and ρ > 0 is a smooth-

ing parameter allowing a trade-off between the goodness-of-fit to the data

and the smoothness of the fit. Then, α̂ = sα̂
∗

FLS,X
provides a correspond-

ing estimate of the function α. By (7), we have
∫
I s

(m)
a (t)2dt = aτA∗

ma,

where A∗
m = B (BτB)−1 [

∫
I b(m)(t)b(m)(t)τdt] (BτB)−1 Bτ is a p × p ma-

trix. Therefore, (9) can be reformulated in the form

min
a∈Rp

{
1

n

∥∥∥∥Y − 1

p
Xa

∥∥∥∥
2

+ ρaτA∗
ma

}
, (10)

leading to the solution

α̂∗FLS,X =
1

np

(
1

np2
XτX + ρA∗

m

)−1

XτY =
1

n

(
1

np
XτX + ρpA∗

m

)−1

XτY.

However, there is a problem with this estimator which is due to the

structure of the eigenvalues of pA∗
m. These eigenvalues have been studied

by many authors, a discussion of general results is given by [9]. The most

precise results in our context are presented in [25]. It is shown that this
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matrix has exactly m zero eigenvalues µ1,p = . . . = µm,p = 0, while as

p →∞,

p∑

j=m+1

1

µj,p
−→

∞∑

j=m+1

(πj)−2m, (11)

where 0 < µm+1,p < . . . < µp,p denote the p − m non-zero eigenvalues of

pA∗
m. The series given in (11) converges for m 6= 0, so we assume this in

the following.

Due to the m zero eigenvalues, existence of α̂∗FLS,X can only be guaranteed

by introducing constraints on the structure of X. This can, however, be

avoided by introducing a minor modification of this estimator. The m-

dimensional eigenspace corresponding to µ1,p = . . . = µm,p = 0 is the linear

vector space generated by all (discretized) polynomials of degree m, that is,

Em consists of all vectors w ∈ R
p with wi = θ1 +

∑m
j=1 θj+1t

j
i , i = 1, . . . , p,

for some coefficients θ1, . . . , θm+1. Let Pm denote the p×p projection matrix

projecting into the space Em, and set Am = Pm +pA∗
m. Our final estimator

α̂FLS,X is then defined by

α̂FLS,X =
1

np

(
1

np2
XτX +

ρ

p
Am

)−1

XτY =
1

n

(
1

np
XτX + ρAm

)−1

XτY.

(12)

It is immediately verified that α̂FLS,X is solution of the modified minimiza-

tion problem

min
a∈Rp

{
1

n

∥∥∥∥Y − 1

p
Xa

∥∥∥∥
2

+
ρ

p
aτAma

}
.

By definition, the matrix Am possesses m eigenvalues equal to 1, while the

remaining p −m eigenvalues coincide with the eigenvalues µm+1,p < . . . <

µp,p of pA∗
m. Thus, by (11), we obtain Tr

(
A−1

m

)
−→∑∞

j=m+1(πj)−2m+m =:

C0 as p →∞. It follows that for any constant C1 > C0 there exists a p0 ∈ N

such that

Tr
(
A−1

m

)
≤ C1, (13)

for all p ≥ p0.

We will now study the behavior of our estimator for large values of n

and p. In addition to the usual Euclidean norm bias of our estimator will

be evaluated with respect to the semi-norm

‖u‖2Γ =
1

p
uτ

(
1

np
XτX

)
u.
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It is well-known that functional linear regression belongs to the class of ill-

posed problems. The above semi-norm may be seen as a discretized version

of L2 semi-norms which are usually applied in this context. It is not possible

to derive any bound for the bias by using the Euclidean norm. Suppose, for

example, that all functions Xi lie in a low dimensional linear function space

X . Then any structure of α which is orthogonal to X cannot be identified

from the data.

We will need in the following the additional assumption:

(H.1) α is m times differentiable and α(m) belongs to L2(I).

Then, let C2 =
∫
I α(m)(t)2dt and C∗

3 =
∫
I α(t)2dt. By construction of Pm,

Pma provides the best approximation (in a least squares sense) of a by

(discretized) polynomials of degree m, and 1
paτPma ≤ 1

paτAma −→ C∗
3 as

p → ∞. Let C3 denote an arbitrary constant with C∗
3 < C3 < ∞. There

then exists a p1 ∈ N with p1 ≥ p0 such that 1
paτPma ≤ C3 for all p ≥ p1.

As noticed before, X1, . . . , Xn can be either fixed, non-random functions

or an i.i.d. sample of random functions. In any case, expected values and

variance of α̂FLS,X as stated in the theorem will refer to the probability

distribution induced by the random variable ε. In the case of random design,

they stand for conditional expectation given X1, . . . , Xn.

Theorem 1 Under hypothesis (H.1) and the above definitions of C1, C2,

C3, p1, we obtain for all n ∈ N, all p ≥ p1 and every matrix X ∈ R
n × R

p

‖E(α̂FLS,X)−α‖2
Γ ≤ ρ

(
1

p
aτPma + C2

)
≤ ρ (C3 + C2) , (14)

as well as

1

p
E
(
‖α̂FLS,X − E(α̂FLS,X) ‖2

)
≤ σ2

ε

nρ
C1. (15)

Remark

When adding some additional constraint like

(H.2) supi supj |Xi(tj)| ≤ C4 < +∞ (or P (supi supj |Xi(tj)| ≤ C4) = 1 in

the case of a random design) for all n, p,

then the variance can also bound the above semi-norm,

‖α̂FLS,X − E(α̂FLS,X) ‖2Γ ≤
C4

p
E
(
‖α̂FLS,X − E(α̂FLS,X) ‖2

)
,

and the theorem implies that

‖α̂FLS,X −α‖2Γ = OP

(
n−1/2

)
,
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if ρ ∼ n−1/2 as n →∞. This rate obviously compares favorably to existing

rates in the literature.

3 Total Least Squares method for functional co-

variates

In this section, we present the TLS method when the noisy covariate X is

of functional nature. At first, let us describe how things work in the case

of a covariate X belonging to R or R
p. In that case, considering a sample,

equations (1) and (2) then write, for i = 1, . . . , n

Yi = Xτ
i α + εi,

with α and X1, . . . ,Xn belonging to R
p, and

Wi = Xi + δi,

with Wi = (Wi1, . . . ,Wip)
τ and δi belonging to R

p for all i = 1, . . . , n. This

leads us (see for example [26]) to determine simultaneously α and Xi by

considering the minimization problem

min
a∈Rp,Xi∈Rp

{
1

n

n∑

i=1

[
(Yi −Xτ

i a)2 + (Xi −Wi)
τ (Xi −Wi)

]}
. (16)

The TLS algorithm solving (16) is given in [26]. In some cases, the singular

values of the matrix W can quickly decrease to zero, and the minimization

problem (16) is then ill-conditioned. A possible way to circumvent this prob-

lem is to introduce a regularization in (16), and the minimization problem

we consider is then (see [15])

min
a∈Rp,Xi∈Rp

{
1

n

n∑

i=1

[
(Yi −Xτ

i a)2 + (Xi −Wi)(Xi −Wi)
τ
]

+ρaτLτLa

}
, (17)

where L is a p × p matrix and ρ is a regularization parameter allowing to

deal with the ill-conditioning of the design matrix WτW. Indeed, the TLS

solution to the minimization problem (17) is given by

α̂TLS =
(
WτW + ρLτL− σ2

kIp

)−1
WτY, (18)
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where σk is the smallest non-zero singular value of the matrix (W,Y) and

Ip is the p× p identity matrix.

In our functional situation, considering a sample and using the same

matricial notations as in section 2, the model considered then writes

Y =
1

p
Xα + ε,

and

W = X + δ,

where W and δ are the n× p matrices with respective general terms Wi(tj)

and δi(tj). So, the minimization problem that we consider now is the fol-

lowing one: we are looking for an estimation α̂FTLS of α, solution of the

minimization problem

min
a∈Rp,Xi∈Rp

{
1

n

n∑

i=1

[(
Yi −

1

p
Xτ

i a

)2

+
1

p
‖Xi −Wi‖2

]
+

ρ

p
aτAma

}
, (19)

where the matrix Am is the one introduced in section 2. Now, with these

notations, we have the following result.

Proposition 1 The solution of the minimization problem (19) is given by

α̂FTLS =
1

np

(
1

np2
WτW +

ρ

p
Am − σ2

kIp

)−1

WτY, (20)

where σ2
k is the smallest non-zero eigenvalue of the matrix

1

n

(
W

p
,Y

)τ (W

p
,Y

)
+

ρ

p

(
Am 0

0 0

)
.

In equation (20), computational problems can appear due to the value of

σ2
k. Indeed, the eigenvalues of 1

n

(
W

p ,Y
)τ (

W

p ,Y
)

are known to decrease

rapidly to zero, and this can of course cause numerical problems with the

computation of σ2
k. Nevertheless, we can circumvent this problem using the

following result.

Proposition 2 Let us consider the following hypothesis:

(H.3) There exists a constant C5 > 0 such that

sup
r,s=1,...,p

E
(
δi(tr)

2δi(ts)
2
)
≤ C5.
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Then, under (H.2) and (H.3), we have

1

np2
WτW =

1

np2
XτX +

σ2
δ

p2
Ip + R, (21)

where R is a matrix such that ‖R‖ = OP

(
1

n1/2p

)
, ‖.‖ being the usual norm

of a matrix.

The last problem is that σ2
δ is not always known. There are several ways to

estimate it. We choose to use the estimator presented in [13] and given by

(as we are in the case of equispaced measurement points)

σ̂2
δ =

1

n

n∑

i=1

1

6(p− 2)

p−1∑

j=2

[Wi(tj−1)−Wi(tj) + Wi(tj+1)−Wi(tj)]
2 . (22)

This leads us to change the former estimator of α given by (20) and to take

instead

α̂FTLS =
1

np

(
1

np2
WτW +

ρ

p
Am − σ̂2

δ

p2
Ip

)−1

WτY. (23)

The asymptotic behavior of this estimator is given by the following theorem.

Theorem 2 Under hypotheses (H.1) - (H.3), if we also assume that Yi⊥⊥δi

for all i = 1, . . . , n and that E
(
Y 2

i

)
< +∞, then we have

‖α̂FTLS − α̂FLS,X‖ = OP

(
σδ

n1/2p1/2ρ

)
. (24)

4 Some comments

(i) In the expression (23) of the estimator of α, the term − σ̂2

δ
p2 Ip acts as a

deregularization term. It allows us to deal with the bias introduced by the

fact that we only know the matrix W instead of the “true” one X.

(ii) In theorem 2, the order σδ/(n
1/2p1/2ρ) given by relation (24) is a result

in accordance with the intuition. The estimation will be improved for a high

number p of discretization points and will collapse (at least in practice, see

the simulations in section 5) if σδ becomes too high.

(iii) An immediate corollary of theorems 1 and 2 is

‖α̂FTLS −α‖2Γ = OP

(
1

nρ
+ ρ +

σ2
δ

npρ2

)
.
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If we compare these three terms, we can see that, for p large enough (more

precisely for p such that ρp goes to infinity as n goes to infinity), it remains

‖α̂FTLS −α‖2Γ = OP

(
1

nρ
+ ρ

)
,

and then, for ρ ∼ n−1/2,

‖α̂FTLS −α‖2Γ = OP

(
n−1/2

)
.

This means that, if the number of discretization points is large enough,

we obtain the same upper bound for the convergence speed of the FTLS

estimator as the FLS estimator using the true curves X1, . . . , Xn. On the

other hand, when p goes slowly to infinity (more precisely if 1/p goes to

zero slower than ρ), then the contribution of the term σ2
δ/(npρ2) may not

be negligible anymore. In that case, if we still take ρ ∼ n−1/2, then we will

have ‖α̂FTLS −α‖2
Γ = OP (1/p) = OP (n−γ) with 0 < γ < 1/2.

(iv) Let us see what happens for the FLS estimator using the noisy curves

W1, . . . ,Wn. The estimator of α is then given by

α̂FLS,W =
1

np

(
1

np2
WτW +

ρ

p
Am

)−1

WτY. (25)

If p is large enough, a calculus analogous to the one used in the proof of

theorem 2 leads us to

‖α̂FLS,W − α̂FLS,X‖ = OP

(
σδ

n1/2p1/2ρ

)
,

that is to say we have the same upper bound of convergence speed for

α̂FLS,W and α̂FTLS. However, if p is not large enough (more precisely

if p is negligible compared with n1/2 and if pρ goes to zero as n goes to

infinity), then we obtain

‖α̂FLS,W − α̂FLS,X‖ = OP

(
σδ

n1/2p3/2ρ2

)
,

which is then an upper bound bigger than the previous one. However,

these results are upper bounds and we do not know if we can do better.

Nevertheless, the results obtained in the simulations (see section 5) allow us

to think that we improve the estimation (see last remark) using the FTLS

estimator instead of the FLS estimator with the noisy curves W1, . . . ,Wn.

(v) Using some heuristic arguments to expand the mean quadratic error

of estimation of α (similarly to what is done in [2]), we can see that it is
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generally better to consider the FTLS estimator compared to the FLS one

with the variable W . More precisely, using the same notations as before, let

us denote

α̂(λ) =
1

np

(
1

np2
WτW +

ρ

p
Am − λIp

)−1

WτY,

where λ is a positive real number such that the matrix 1
np2 W

τW+ ρ
pAm−λIp

is positive definite. Then we have the following result, which proof is given

in section 6.

Proposition 3 Let MISE(λ) = E [(α̂(λ)−α)τ (α̂(λ)−α)]. If we assume

that (WτW)−1 exists and if ρ ‖Am‖ is negligible compared to
∥∥∥ 1

npW
τW

∥∥∥,
then we have

∂

∂λ
MISE(λ)|λ=0 < 0.

In other words, this result means that it is advantageous to put a deregular-

ization term −λIp (with a small positive λ) in order to improve the quality

of the estimation relatively to the MISE criterion.

5 A simulation study

5.1 Presentation of the simulation

The aim of this simulation is to evaluate the performances of our estima-

tor α̂FTLS, and to compare it with α̂FLS,W . We also compare α̂FTLS to

α̂
FLS,W̃

, which is given by the same formula (25) except the fact that the

curve W is replaced by a smoothed version W̃ . We can think that the

smoothing has a correcting effect on the noisy curve W , then this smoothed

curve W̃ can be expected to be closer than W from the unknown “true”

curve X. This gives us the intuition that the estimator α̂
FLS,W̃

should be

better than α̂FLS,W . To obtain a smoothed version W̃ of W , we choose

to use the Nadaraya-Watson kernel estimator (see for example [18] or [23]).

In the simulations, the kernel will be the standard normal kernel and the

bandwidth will be chosen by cross validation (see [18]). In order to syn-

thesize results, we only give the simulation results when X is non-random

(when X is random, the simulation we have done lead to the same kind of

conclusions). We have simulated N = 100 samples, each being composed of

n = 200 observations (Wi, Yi)i=1,...,n from the model given by (3) and (5),

where the fixed design curves X1, . . . , Xn are defined on I = [0, 1] by
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Xi(t) =

{
10 sin (2πit) if i is even,

10 cos (2πit) if i is odd,

similarly to what is used for the simulation in [6]. Each sample is ramdomly

split into a learning sample of length nl = 100 (this sample is used to

build the estimator) and a test sample of length nt = 100 (this sample is

used to see the quality of the estimator by the way of computation of error

terms). We make the simulations for different numbers of discretization

points, p = 50, p = 100 and p = 200. Two functions α are considered,

either α(t) = 10 sin (2πt) or α(t) = 10 sin3
(
2πt3

)
. Finally, the error terms

are chosen as follows: ε ∼ N (0, σ2
ε ) with σε = 0.2 and δ(tj) ∼ N (0, σ2

δ ) for

all j = 1, . . . , p with either σδ = 0.1, σδ = 0.2 or σδ = 0.5. Concerning

the parameters of the spline functions, the order of differentiation in the

penalization is fixed to the value m = 2. The most important parameter to

choose is the smoothing one ρ (see [19]). We present in the next subsection

a criterion allowing to make that choice, and we check the reliability of this

criterion in the simulations.

5.2 Generalized Cross Validation criteria

In the Functional Least Squares estimation, ρ can be fixed by Generalized

Cross Validation (GCV ) as described in [27]. More precisely, we consider

the GCV criterion defined by

GCVFLS,W (ρ) =

1

n

n∑

i=1

(Yi − Ŷi)
2

(
1− 1

n
Tr(HFLS,W (ρ))

)2 , (26)

where HFLS,W (ρ) is the “hat matrix” given by

HFLS,W (ρ) =
1

np
W

(
1

np2
WτW +

ρ

p
Am

)−1

Wτ ,

and Ŷ = HFLS,W (ρ)Y. Then, we select the optimal parameter ρGCV as the

one that minimizes the GCV criterion (26).

Concerning the Functional Total Least Squares estimation, although

Cross Validation has already been studied in [24], what we want to propose

here is a generalization of the GCV criterion (26) above, in the following

way. The prediction of Yi for i = 1, . . . , n is slightly different in the context

of TLS. The estimation of the unknown Xi, noted X̂i, is given by
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X̂i = Wi +
Yi − 1

pα̂τWi

1 + 1
p ‖α̂‖

2 α̂, (27)

obtained as in [12] by differentiating equation (19) with respect to Xi. Then,

we take Ŷi = 〈α̂, X̂i〉p as the prediction of Yi. Then, the suggested GCV

criterion is given by

GCVFTLS(ρ) =

1

n

n∑

i=1

(Yi − 〈α̂FTLS, X̂i〉p)2

(
1− 1

n
Tr(HFTLS(ρ))

)2 , (28)

where HFTLS(ρ) is the “hat matrix” given by

HFTLS(ρ) =
1

np
W

(
1

np2
WτW +

ρ

p
Am − σ̂2

δ

p2
Ip

)−1

Wτ

Then, we select the optimal parameters ρGCV as the one that minimize the

GCV criterion (28). In practice, these GCV criteria have been computed

for ρ taking its values among 10−2, 10−3, . . . , 10−8.

5.3 Results of the simulation

We use two error criteria to see the quality of the prediction. The first one

is the relative mean square error of the estimator of α, given by

E1 =

∑p
j=1 [α̂(tj)−α(tj)]

2

∑p
j=1 α(tj)2

, (29)

and the second one is the mean square error of the prediction of Y, given

by

E2 =
1

n

n∑

i=1

(
Ŷi − Yi

)2
. (30)

We have put in tables 1 and 2 the values of these errors computed on the

N = 100 simulated test samples, for the different values of p and the different

functions α. We have computed the FLS estimator of α using the unknown

true curves X (in order to have a reference), the observed curves W and the

smooth version W̃ of the observed curves W .

We can see that the FTLS estimator always improves the prediction

compared to FLS,W , and the improvement is really interesting when p

is small with a relatively important noise level σδ. We can also see that

the estimators FTLS and FLS, W̃ are quite close. FLS, W̃ seems to be
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better when the noise level σδ is small, and FTLS seems to be better when

this noise level becomes high. Nevertheless, it is important to note that the

FTLS estimator is faster to compute compared to the FLS, W̃ one. Indeed,

choosing the parameter h by cross validation implies long computation times,

above all when n is high (we have to compute n cross validation criteria).

Moreover, it has to be noticed that the prediction is also improved when

the number of discretization points increases. We can also see that the error

increases between table 1 and table 2, mainly because of the shape of the

second function α, which is less smooth than the first one.

Table 3 gives the estimated values of σδ using the estimator defined by

(22) and given in [13]. We can see that we get good estimations of σδ, and

increasing with the number of discretization points. It also seems that the

quality of the estimation is not much related to the value of σδ. Finally, we

have plotted on figure 1 an example of the estimation of α in the case where

p = 100 and σδ = 0.5. In order not to have too many curves on a same

graphic, we chose to plot only the estimators FTLS, FLS,X and FLS,W ,

the estimator FLS, W̃ being quite “close” from FTLS. This graphic tends

to confirm the values given in tables 1 and 2. In the case where the function

α to predict is smooth (case α(t) = 10 sin (2πt)), we can see on the graphic

that there is a really slight difference between the three different estimators

(FTLS, FLS,X and FLS,W ).

Table 1 to be put here

Table 2 to be put here

Table 3 to be put here

Figure 1 to be put here
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6 Proof of the results

6.1 Proof of theorem 1

First consider relation (14), and note that

E (α̂FLS,X) =
1

np2

(
1

np2
XτX +

ρ

p
Am

)−1

XτXα,

It follows that E (α̂FLS,X) is solution of the minimization problem

min
a∈Rp

{
1

n

∥∥∥∥
1

p
Xα− 1

p
Xa

∥∥∥∥
2

+
ρ

p
aτAma

}
.

This implies

1

n

∥∥∥∥
1

p
Xα− 1

p
XE (α̂FLS,X)

∥∥∥∥
2

+
ρ

p
E (α̂FLS,X)τ AmE (α̂FLS,X) ≤ ρ

p
ατAmα.

But definition of Am and as well (8) lead to

1

p
ατAmα =

1

p
ατPmα +

∫

I
s
(m)
α (t)2dt ≤ 1

p
ατPmα +

∫

I
α(m)(t)2dt,

and (14) is an immediate consequence.

Relation (15) follows from

1

p
E
([

α̂τ
FLS,X − E

(
α̂τ

FLS,X

)]
[α̂FLS,X − E (α̂FLS,X)]

)

=
1

p
E

(
1

n2p2
ετX

(
1

np2
XτX +

ρ

p
Am

)−2

Xτε

)

=
σ2

ε

n
Tr

[(
1

np
XτX + ρAm

)−2 1

np
XτX

]

≤ σ2
ε

n
Tr

[(
1

np
XτX + ρAm

)−1
]
≤ σ2

ε

n
Tr
[
(ρAm)−1

]
≤ σ2

ε

nρ
C1.

This completes the proof of Theorem 1.

6.2 Proof of proposition 1

The model writes matricially
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{
Y = 1

pXα + ε

W = X + δ,
(31)

hence we obtain

((
W

p
,Y

)
−
(

δ

p
, ε

))(
α

−1

)
= 0, (32)

which allows us now to write the minimisation problem (19) as follows

min((
W

p
,Y
)
−
(

δ

p
,ε
))

( a

−1
)=0

{
1

n

∥∥∥∥
(

δ√
p
, ε

)∥∥∥∥
2

F

+
ρ

p
aτAma

}
,

where the notation ‖.‖F stands for the usual Frobenius norm, more precisely

‖A‖2
F = Tr (AτA) for every matrix A. Then, we are led to consider the

minimization problem

min
Cx=Ex

{
1

n

∥∥∥∥
(

δ√
p
, ε

)∥∥∥∥
2

F

+
ρ

p
xτBmx

}
, (33)

with C =
(

W

p ,Y
)
, E =

(
δ

p , ε
)
, x =

(
a

−1

)
and Bm =

(
Am 0

0 0

)
. If we denote

γ the (p + 1)× (p + 1) matrix defined by

γ =

(
diag(1/

√
p, . . . , 1/

√
p) 0

0 0

)
,

we have

1

n
xτγτ

(
δ√
p
, ε

)τ (
δ√
p
, ε

)
γx =

1

n
xτEτEx =

1

n
xτCτCx

=
1

n
xτγτ

(
W√

p
,Y

)τ (W√
p
,Y

)
γx,

and then we can see that the quantity

1

n
xτγτ

(
W√

p
,Y

)τ (W√
p
,Y

)
γx +

ρ

p
xτBmx

=
1

n
xτγτ

(
W√

p
,Y

)τ (W√
p
,Y

)
γx + xτγτ (ρBm)γx

is minimized for x eigenvector of the matrix
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1

n
γτ

(
W√

p
,Y

)τ (W√
p
,Y

)
γ + γτ (ρBm)γ

=
1

n

(
W

p
,Y

)τ (W

p
,Y

)
+

ρ

p
Bm,

corresponding to the smallest non-zero eigenvalue, which is denoted σ2
k. Us-

ing the definition of this eigenvalue, we deduce that

(
1

n

(
W

p
,Y

)τ (W

p
,Y

)
+

ρ

p
Bm

)
x̂ = σ2

kx̂.

This gives, keeping the p first rows,

α̂ =
1

np

(
1

np2
WτW +

ρ

p
Am − σ2

kIp

)−1

WτY,

and the proof of the proposition 1 is now complete.

6.3 Proof of proposition 2

Using the fact that Wi(tj) = Xi(tj) + δi(tj) for all i = 1, . . . , n and j =

1, . . . , p, we can write

1

n
WτW =

1

n
XτX +

(
1

n

n∑

i=1

Mirs

)

r,s=1,...,p

where Mirs = Xi(tr)δi(ts)+δi(tr)Xi(ts)+δi(tr)δi(ts). Let us now study this

random variable Mirs. First, we have

E (Mirs) = Xi(tr)E (δi(ts)) + E (δi(tr)) Xi(ts) + E (δi(tr)δi(ts))

=

{
σ2

δ if r = s,

0 otherwise.

On the other hand, we have with hypotheses (H.2) and (H.3)

sup
r,s=1,...,p

E
(
M2

irs

)

= sup
r,s=1,...,p

{
Xi(tr)

2
E
(
δi(ts)

2
)

+ E
(
δi(tr)

2
)
Xi(ts)

2

+E
(
δi(tr)

2δi(ts)
2
)

+ 2Xi(tr)Xi(ts)E (δi(tr)δi(ts))
}

= O(σ2
δ ),
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hence we deduce

sup
r,s=1,...,p

(
1

n

n∑

i=1

Mirs

)
=





σ2
δ + OP

(
σδ

n1/2

)
if r = s,

OP

(
σδ

n1/2

)
otherwise.

We can now conclude the proof of proposition 2. If we define R such that

(
1

np2

n∑

i=1

Mirs

)

r,s=1,...,p

=
σ2

δ

p2
Ip + R,

then supr,s=1,...,p |Rrs| = OP

(
σδ

n1/2p2

)
and we get (see theorem 1.19 in [5])

‖R‖ = OP

(
σδ

n1/2p

)
.

6.4 Proof of theorem 2

Let us consider the random variable Zij = δi(tj)Yi. Using the independence

between Yi and δi, we get E (Zij) = 0 and

sup
j=1,...,p

E
(
Z2

ij

)
= sup

j=1,...,p
E
(
δi(tj)

2
)

E
(
Y 2

i

)
= O(σ2

δ ),

from what we deduce that

sup
i=1,...,n

sup
j=1,...,p

|Zij | = OP (σδ) .

Now we see that

sup
j=1,...,p

∣∣∣∣∣
1

n

n∑

i=1

Zij

∣∣∣∣∣ = OP

( σδ

n1/2

)
,

and then

‖V‖2 :=

∥∥∥∥
1

np
WτY − 1

np
XτY

∥∥∥∥
2

=

p∑

j=1

(
1

np

n∑

i=1

Zij

)2

= OP

(
σ2

δ

np

)
. (34)

Noticing now the convergence result given in [13] of the estimator σ̂2
δ of

σ2
δ , defined by (22), we have

σ̂2
δ = σ2

δ + OP

(
1

n1/2p

)
. (35)

Then, using this and the result (21) of the proposition 2, we can write
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(
1

np2
WτW +

ρ

p
Am − σ̂2

δ

p2
Ip

)−1

=

(
1

np2
XτX +

ρ

p
Am + R− σ̂2

δ − σ2
δ

p2
Ip

)−1

.

Now, let T be the p × p matrix defined by T = R − σ̂2

δ−σ2

δ
p2 Ip. Using the

result (35) and the fact that the norm of Ip is 1, we deduce

∥∥∥∥
σ̂2

δ − σ2
δ

p2
Ip

∥∥∥∥ = OP

(
1

n1/2p3

)
.

If we recall the order of ‖R‖ given in proposition 2, we finally obtain

(
1

np2
WτW +

ρ

p
Am − σ̂2

δ

p2
Ip

)−1

=

(
1

np2
XτX +

ρ

p
Am + T

)−1

, (36)

with

‖T‖ = OP

(
σδ

n1/2p

)
. (37)

Now, determining the norm of the matrix
(

1
np2 X

τX + ρ
pAm

)−1
, we get

∥∥∥∥∥

(
1

np2
XτX +

ρ

p
Am

)−1
∥∥∥∥∥ = OP

(
1

ρ

)
. (38)

Using the first inequality given in [8], we can write (with C strictly positive

constant)

∥∥∥∥∥

(
1

np2
XτX +

ρ

p
Am + T

)−1

−
(

1

np2
XτX +

ρ

p
Am

)−1
∥∥∥∥∥

≤ C

∥∥∥∥∥

(
1

np2
XτX +

ρ

p
Am

)−1
∥∥∥∥∥

2

‖T‖ .

Then, using relations (37) and (38), we obtain

∥∥∥∥∥

(
1

np2
XτX +

ρ

p
Am + T

)−1

−
(

1

np2
XτX +

ρ

p
Am

)−1
∥∥∥∥∥

= OP

(
σδ

n1/2pρ2

)
. (39)

Finally, if we set
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S =

(
1

np2
XτX +

ρ

p
Am + T

)−1

−
(

1

np2
XτX +

ρ

p
Am

)−1

,

then we have (with relations (36) and (39))

(
1

np2 W
τW + ρ

pAm − σ̂2

δ
p2 Ip

)−1
=
(

1
np2 X

τX + ρ
pAm

)−1
+ S,

(40)

with ‖S‖ = OP

(
σδ

n1/2pρ2

)
.

Let us now write

‖α̂FTLS − α̂FLS,X‖

=

∥∥∥∥∥

[(
1

np2
XτX +

ρ

p
Am

)−1

+ S

][
1

np
XτY + V

]

− 1

np

(
1

np2
XτX +

ρ

p
Am

)−1

XτY

∥∥∥∥∥

≤
∥∥∥∥∥

(
1

np2
XτX +

ρ

p
Am

)−1
∥∥∥∥∥ ‖V‖+ ‖S‖

∥∥∥∥
1

np
XτY

∥∥∥∥+ ‖S‖ ‖V‖ . (41)

The last thing to compute here is
∥∥∥ 1

npX
τY
∥∥∥. In the same way as we have

done to obtain (34), we write

∥∥∥∥
1

np
XτY

∥∥∥∥
2

=

p∑

j=1

(
1

np

n∑

i=1

Xi(tj)Yi

)2

.

Then, using the fact that supj=1,...,p E (Xi(tj)Yi) = O (1) and the fact that

supj=1,...,p E
(
Xi(tj)

2Y 2
i

)
= O (1), we obtain

sup
i=1,...,n

sup
j=1,...,p

|Xi(tj)Yi| = OP (1) ,

and then

∥∥∥∥
1

np
XτY

∥∥∥∥
2

= OP

(
1

np

)
. (42)

Now, coming back to the inequality (41), using the results (34) and (40) as

well as relations (38) and (42), we get

‖α̂FTLS − α̂FLS,X‖ = OP

(
σδ

n1/2p1/2ρ

)
+ OP

(
σδ

np3/2ρ2

)
.
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Since limn→+∞
1

n1/2pρ
= 0, we get ‖α̂FTLS − α̂FLS,X‖ = OP

(
σδ

n1/2p1/2ρ

)
and

the proof of theorem 2 is complete.

6.5 Proof of proposition 3

Let us expand the MISE(λ),

MISE(λ) = E (α̂(λ)τ α̂(λ))− 2ατ
E (α̂(λ)) + ατα,

to deduce, using the matricial expression of α̂(λ)

∂

∂λ
MISE(λ)|λ=0 = 2E

[
1

n2p2
YτW

(
1

np2
WτW +

ρ

p
Am

)−3

WτY

− 1

np
ατ

(
1

np2
WτW +

ρ

p
Am

)−2

WτY

]
. (43)

Now, using the fact that Y = 1
pWα− 1

pδα + ε

1

np
YτW

(
1

np2
WτW +

ρ

p
Am

)−1

−ατ

=
1

np
YτW

(
1

np2
WτW +

ρ

p
Am

)−1

− 1

np2
ατWτW

(
1

np2
WτW

)−1

=
1

np

[
1

p
ατWτW

(
1

np2
WτW +

ρ

p
Am

)−1

−1

p
ατδτW

(
1

np2
WτW +

ρ

p
Am

)−1

+ ετW

(
1

np2
WτW +

ρ

p
Am

)−1
]

− 1

np

[
1

p
ατWτW

(
1

np2
WτW

)−1
]

.

Considering the quantity
(

1
np2 W

τW + ρ
pAm

)−1
−
(

1
np2 W

τW
)−1

, if we

make an approximation at first order, we get

(
1

np2
WτW +

ρ

p
Am

)−1

−
(

1

np2
WτW

)−1

≈ −
(

1

np2
WτW

)−1(ρ

p
Am

)(
1

np2
WτW

)−1

,

what gives us, coming back to relation (43)
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∂

∂λ
MISE(λ)|λ=0

≈ 2E

[
− 1

n2p3
ατWτW

((
1

np2
WτW

)−1 ρ

p
Am

(
1

np2
WτW

)−1
)

×
(

1

np2
WτW +

ρ

p
Am

)−2

WτY

]

+2E

[
− 1

n2p3
ατδτW

(
1

np2
WτW +

ρ

p
Am

)−3

WτY

]

+2E

[
1

n2p2
ετW

(
1

np2
WτW +

ρ

p
Am

)−3

WτY

]
. (44)

Using the fact that δ and ε are both independent from W and Y , the last

two terms in relation (44) are zero, and we obtain finally

∂

∂λ
MISE(λ)|λ=0

≈ 2E

[
− 1

n2p4
ατWτW

((
1

np2
WτW

)−1 ρ

p
Am

(
1

np2
WτW

)−1
)

×
(

1

np2
WτW +

ρ

p
Am

)−2

WτWα

]
.

This last quantity is negative, what achieves the proof of proposition 3.
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E1 E2

σδ = 0.1 σδ = 0.2 σδ = 0.5 σδ = 0.1 σδ = 0.2 σδ = 0.5

p = 50 0.00015 0.00014 0.00013 0.0031 0.0032 0.0032

FLS, X p = 100 0.00009 0.00010 0.00009 0.0027 0.0026 0.0027

p = 200 0.00005 0.00006 0.00004 0.0024 0.0026 0.0025

p = 50 0.00018 0.00061 0.00232 0.0044 0.0067 0.0180

FTLS p = 100 0.00013 0.00065 0.00219 0.0040 0.0063 0.0139

p = 200 0.00009 0.00057 0.00204 0.0035 0.0056 0.0091

p = 50 0.00017 0.00080 0.00245 0.0040 0.0065 0.0209

FLS, W̃ p = 100 0.00011 0.00063 0.00226 0.0036 0.0062 0.0154

p = 200 0.00006 0.00056 0.00210 0.0029 0.0056 0.0112

p = 50 0.00020 0.00098 0.00366 0.0050 0.0081 0.0305

FLS, W p = 100 0.00015 0.00079 0.00344 0.0045 0.0072 0.0245

p = 200 0.00011 0.00063 0.00329 0.0039 0.0067 0.0124

Table 1: Error E1 on α given by α(t) = 10 sin (2πt) and error E2 of predic-

tion.

E1 E2

σδ = 0.1 σδ = 0.2 σδ = 0.5 σδ = 0.1 σδ = 0.2 σδ = 0.5

p = 50 0.0508 0.0509 0.0510 0.0427 0.0426 0.0426

FLS, X p = 100 0.0504 0.0504 0.0503 0.0422 0.0423 0.0424

p = 200 0.0503 0.0502 0.0502 0.0414 0.0414 0.0416

p = 50 0.0513 0.0526 0.0630 0.0439 0.0491 0.0830

FTLS p = 100 0.0509 0.0522 0.0618 0.0434 0.0476 0.0762

p = 200 0.0506 0.0517 0.0607 0.0429 0.0460 0.0735

p = 50 0.0510 0.0525 0.0645 0.0435 0.0490 0.0851

FLS, W̃ p = 100 0.0507 0.0520 0.0627 0.0429 0.0475 0.0790

p = 200 0.0504 0.0516 0.0614 0.0422 0.0458 0.0763

p = 50 0.0516 0.0530 0.0850 0.0447 0.0504 0.0960

FLS, W p = 100 0.0512 0.0527 0.0822 0.0442 0.0496 0.0889

p = 200 0.0508 0.0521 0.0799 0.0438 0.0488 0.0834

Table 2: Error E1 on α given by α(t) = 10 sin3
(
2πt3

)
and error E2 of

prediction.
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σδ = 0.1 σδ = 0.2 σδ = 0.5

p = 50 0.1141 0.2075 0.5034

p = 100 0.1011 0.2005 0.5005

p = 200 0.0999 0.1999 0.4999

Table 3: Estimated values of σδ according to the different values of σδ and

the different values of p.
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Figure 1: Estimation of α (solid line) with functional least squares using

X (dashed line), functional least squares using W (dashed and dotted line)

and functional total least squares (dotted line) in cases α(t) = 10 sin (2πt)

and α(t) = 10 sin3
(
2πt3

)
.
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