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Abstract: Four stationary concepts for completely mixed 2x2 games are experimentally compared: Nash 
equilibrium, quantal response equilibrium, sample-7 equilibrium and impulse balance equilibrium. 
Experiments on 12 games, 6 constant sum games and 6 non-constant sum games were run with 12 
independent subject groups for each constant sum game and 5 independent subject groups for each non-
constant sum game. Each independent subject group consisted of 4 payers 1 and four players 2 interacting 
anonymously over 200 periods with random matching. The games were selected to yield a reasonably wide 
distribution over the parameter space. The comparison of the four theories shows that the order of 
performance from best to worst is as follows: impulse balance equilibrium, sample-7 equilibrium, quantal 
response equilibrium, Nash equilibrium. The new concepts of sample-7 equilibrium and impulse balance 
equilibrium are explained in the text. 
 
 
1. Introduction 
 
Experimental evidence suggests that mixed Nash-equilibrium is not a very good predictor 
of behavior. Thus EREV AND ROTH (1998 p. 853) conclude as their first summary 
observation that “…in some of the games the equilibrium prediction does very badly”. A 
normal form game is called completely mixed, if it has only one equilibrium point in 
which every strategy is used with positive probability. 2x2 games of this kind are of 
special interest. They are the simplest games for which mixed equilibrium is the 
unequivocal game theoretic prediction, if they are played as non-cooperative one-shot 
games.  
 
Mixed equilibrium has several interpretations. One interpretation is that of a rational 
recommendation for a one-shot game. Another interpretation looks at mixed equilibrium 
as a result of evolutionary or learning processes in a situation of frequently repeated play 
with two populations of randomly matched opponents. One may speak of mixed 
equilibrium as a behavioral stationary concept. KEN BINMORE, JOE SWIERZBINSKI and 
CHRIS PROULX (Economic Journal 2001) argue in their paper that mixed Nash-
equilibrium predicts reasonably well for completely mixed constant sum 2x2 games. 
However it is difficult to judge the goodness of fit, if there is no comparison to other 
stationary concepts. 
 
In this paper we will present several alternative stationary concepts for 2x2 games, which 
can be compared with mixed equilibrium and with each other. For this purpose we have 
performed experiments on 12 completely mixed 2x2 games. Six of them are constant-
sum games and the other six are non-constant-sum games. Each of the constant-sum 
games was run with 12 independent subject groups and each of the other games with 6 
independent subject groups. Each independent subject group consisted of four players 1 
and four players 2 interacting in fixed roles over 200 periods with random matching.  
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The stationary concepts compared were: 
 

• Nash Equilibrium 
• Quantal Response Equilibrium 
• Sample-7 Equilibrium 
• Impulse Balance Equilibrium 

 
Quantal response equilibrium (MCKELVEY, PALFREY, THOMAS, 1995) assumes that 
players give quantal best responses to the behavior of the others. In the exponential form 
of quantal response equilibrium, considered here, the probabilities are proportional to an 
exponential with the expected payoff times a parameter in the exponent. 
 
Sample-7 equilibrium is based on the idea that in a stationary situation a player takes a 
sample of 7 observations of the strategies played on the other side, and then optimizes 
against this sample. This yields a mixed strategy depending on the probabilities of 
strategies on the other side. Sample-7 Equilibrium is a mixed strategy combination 
consistent with this picture. The concept has been developed by one of the authors (R. 
SELTEN). As far as we know it cannot be found in the literature. Originally the sample 
size 7 was chosen in view of the famous paper “The Magical Number 7 Give or Take 
Two” by MILLER (1951). Later we found that 7 actually gives a better fit than other 
sample sizes. 
 
Impulse balance equilibrium proposed by one of the authors (R. SELTEN) is based on 
learning direction theory (SELTEN, BUCHTA, 1999). This learning theory is applicable to 
the repeated choice of the same parameter in learning situations in which the decision 
maker receives feedback not only about the payoff for the choice taken, but also for the 
payoffs connected to alternative actions. If a higher parameter would have brought a 
higher payoff we speak of an upward impulse and if a lower parameter would have 
yielded a higher payoff we speak of a downward impulse. The decision maker is assumed 
to have a tendency to move in the direction of the impulse. In (SELTEN, ABBINK and COX, 
2001) impulse balance theory, a semi quantitative version of learning direction theory has 
been proposed. The learning process itself is not modeled, but only the stationary 
distribution. In the stationary distribution expected upward impulses are equal to 
expected downward impulses. As in prospect theory (KAHNEMANN & TVERSKY, 1979) 
losses are counted double in the computation of impulses (formally this involves the 
computation of a loss impulse). 
 
Impulse balance equilibrium applies the idea of impulse balance theory to 2x2 games. 
The probability of choosing one of two strategies say strategy A is looked upon as the 
parameter, which can be adjusted upward or downward. It is assumed that the second 
lowest payoff in the matrix is an aspiration level determining what is perceived as profit 
or loss. In impulse balance equilibrium expected upward and downward impulses are 
equal for each of both players simultaneously. 
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Following a suggestion of one of the authors (R. SELTEN) impulse balance equilibrium 
has been successfully applied to special 2x2 and 2x2x2 games in a paper by AVRAHAMI, 
GÜTH and KAREEV (2001). 
 
Two of the stationary concepts compared in this paper, Nash equilibrium and impulse 
balance equilibrium, are parameter free. Sample-7 equilibrium involves one parameter 
namely the number 7 which however has been chosen in view of admittedly quite weak 
theoretically considerations confirmed by pilot experiments not included into the main 
sample of this paper. In view of this, one also could think of sample-7 equilibrium as 
essentially parameter free. Quantal response equilibrium involves one parameter namely 
the constant multiplier of expected payoff in the exponent. This parameter has to be 
adjusted to the data. There are no theoretical considerations, not even very weak ones, 
which could be used in order to determine this parameter in any other way. 
 
The development of parameter free stationary concepts, which do not require any 
adjustment to the data, seems to be very important for behavioral theory. With the help of 
such concepts theoretically interesting situations can be mathematically explored without 
any adaptation of parameters to experimental or empirical data. Therefore in this paper 
we are mainly interested in parameter free stationary equilibrium concepts.  
 
As we shall see the comparison yields a clear order with respect to the goodness of fit 
from best to worst: Impulse balance equilibrium, sample-7 equilibrium, quantal response 
equilibrium, Nash equilibrium.  
 
In chapter 2 we shall present a more detailed description of the four concepts. Chapter 3 
will explain the experimental setup and section 4 will describe the results. Chapter 5 
concludes with a summary and discussion. 
 

2. The four stationary concepts 
 
2.1. Nash equilibrium  
 
All the experimental 2x2 games in this paper have the structure shown by figure 1. The 
arrows around the matrix show the direction of best replies. The Parameters aL, aR, bU 
and bD are assumed to be non-negative. Games with negative payoffs probably would 
require special behavioral considerations which we want to avoid in this paper. The 
parameters cL and cR are player 1’s payoff differences in favor of U and D, respectively. 
Similarly dU and dD are payoff differences of player 2 for R and L, respectively. All these 
payoff differences are assumed to be positive. It is clear that a game with this structure is 
completely mixed in the sense that it has a uniquely determined completely mixed Nash 
equilibrium. 
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Figure 1: Structure of the experimental 2x2 games. 
 
 
 
Let  

p = (pU,pD) 
 

be the mixed strategy of player 1 and let 
 

q = (qL,qR) 
be the strategy of player 2.  
 
Here pU is player 1’s choice probability for U and qL is player 2’s choice probability for 
strategy L. In Nash equilibrium the choice probabilities are as follows: 
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The choice probabilities of a player in Nash equilibrium are independent of his own 
payoff. They are entirely determined by the payoff differences of the other player. This is 
a well known counterintuitive property of Nash equilibrium. 
 
2.2. Quantal Response Equilibrium  
 
It is assumed that players choose a “quantal best response” to the strategies of the other 
player. They make mistakes, taking the mistakes of the other player into account.  
 
Let EU(q) and ED(q) be player 1’s expected payoff for U and D, resp., against a strategy q 
of player 2. Similarly EL(p) and ER(p) are player 2’s expected payoffs for L and R, resp., 
against a strategy p of player 1.  
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In quantal response equilibrium the choice probabilities are as follows. 
 

)()(

)(

qEqE

qE

U DU

U

ee
ep λλ

λ

+
=   UD pp −=1  

)()(

)(

pEpE

pE

L RL

L

ee
eq λλ

λ

+
=   LR qq −=1  

 
The formulas for the choice probabilities yield a simultaneous equation system, which 
determines the choice probabilities as functions of λ. For our data λ=8.84 is the best 
fitting overall estimate. This value of λ minimizes the sum of squared distances from the 
actually observed relative choice frequencies. This measure of predictive success will be 
explained in section 4.2. 
 
The best reply structure of a 2-person game is a pair of mappings (α,β). The mapping α 
maps the strategies q of player 2 to player 1’s set α(q) of pure replies to q and the 
mapping β maps the mixed strategies p of player 1 to the set β(p) of player 2’s pure best 
replies to p. Nash equilibrium depends only on the best reply structure of the game. 
However, quantal response equilibria with the same parameter λ can be different for two 
games with the same best reply structure. If all payoffs of a 2x2 game are multiplied by 
the same positive factor x the best reply structure remains unchanged, but quantal 
response equilibrium for a fixed parameter λ does change. The multiplication of all 
payoffs by x has the same effect as not changing payoffs and replacing λ by λ’= λx. 
 
Suppose that the payoffs are changed by adding a constant r to all payoffs of player 1 in 
row R of figure 1 and leaving everything else unchanged. Let )(' qEU and )(' qED  be the 
new payoffs for U and D in the new game obtained in this way. We have 
 

rqqEqE RUU += )()('  
rqqEqE RDD += )()('  

 
This means that the equation for pU in the new game can be simplified by dividing 
numerator and denominator by the common factor rqRe . Therefore the equations for pU 
and pD do not really change in the transition to the new game. The same argument can be 
applied to the case that a constant is added to player 1’s payoff in the column L or players 
2’s payoff in one of the two rows. We can conclude that such additive changes do not 
have any effect on the quantal response equilibrium, even if it does not depend on the 
best reply structure alone. 
 
2.3. Sample-7 Equilibrium  
 
In the stationary state described by pU, pD, qL, and qR player 1 takes a sample of 7 choices 
L or R and optimizes against this sample. Player 2 behaves analogously. Sample-7 
equilibrium is a special case of sample-n equilibrium with n = 1,2,.... This concept 
describes a stationary state of two large populations of players 1 and 2. Every member 
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takes a sample of n past decisions of players on the other side and optimizes against it. 
The sample-n equilibrium is a stationary state of this system. Here, too, pU, pD, pL and pR 
are stationary probabilities of U, D, R and L. Consider two specific players 1 and 2 in 
both populations. Let k be the number of L’s in player 1’s sample and let m be the 
number of D’s in player 2’s sample. The following can be said about the best replies of 
the players to their samples  
 

Player 1’s best reply to his sample is U for kcL > (n-k)cR 
Player 2’s best reply to her sample is L for mdD > (n-m)dU 

 
Let k* be the lowest integer k such that U is the best reply to a sample in which L appears 
exactly k times. Similarly let m* be the lowest number for which L is the best reply to a 
sample in which D appears exactly m times. In the following we shall assume that we 
have  
 

RL cknck )((*) ** −≠  
and 

UD dmndm )((**) ** −≠  
 
These special cases cannot arise for n=1,...,10 in the experimental games of this paper. If 
(*) is not satisfied we must have  
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and if (**) does not hold the following must be true 
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In the games considered here cL, cR, dU and dD are positive integers such that cL+cR and 
dU+dD are always equal to 11. Therefore for n=1,…,10 the payoff differences cR and dU 
are relative prime to n. It follows that (*) and (**) are satisfied for n=1,…,10 by our 
experimental games. 
 
Conditions (*) and (**) have the consequence that there is exactly one best reply to every 
sample. In stationary equilibrium the following sample-n equations must be satisfied. 
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It will be shown that a game with the structure shown in figure 1 has exactly one sample-
n equilibrium if (*) and (**) are satisfied.  
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The right hand sides of the sample-n equations can be described as decumulative 
binomial probabilities. Consider a binomial process with probability x for success and 1-x 
for failure. We use the following notation 
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It is clear, that b(j,n,x) is the probability of exactly j successes in a sample of n if x is the 
probability of success. This is also true for x=0 and j=0 or x=1 and j=n if one adopts the 
convention 0°=1 Therefore in this paper the expression 0° is always understood as being 
equal to 1. 
 
B(h,n,x) is the decumulative binomial probability for at least h successes in a sample of n 
if the success probability is x. We also make use of the following notation: 
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In order to derive the uniqueness result about sample-n equilibrium we have to show that 
the following proposition holds 
 
Proposition 1: For n=1,2,… and h=1,…,n the function B(h,n,x) in monotonically 
increasing in x from B(h,n,0)=0 to B(h,n,1)=1. 
 
Proof: We have   
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In view of  
 

nxhxhnhx −=−−− )1)((  
 
this yields  
 

11 )1(][),,( −−− −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= hnh

x xxnxh
h
n

xnhb  

 
 



 8

We can conclude that the following is true 
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At x=0 or x=1 the derivative Bx(h,n,x) maybe zero even if it is positive or negative for 
0<x<1. Nevertheless one can conclude that Bx(h,n,x) is increasing in x for h<nx and 
decreasing in x for h>nx from x=0 to x=1. 
 
In view of the definition of B(h,n,x) we have 
 

),,(),,1(),,1( xnhBxnhbxnhB ++=+  
 

for h=1,…,n-1 
and therefore 
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for h=1,…,n-1 

 
Let h* be the greatest integer h with h ≤ nx*. Obviously the following is true 
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It can be seen easily that we have 
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The first of these four equations follows by the fact that the probability of no success is 
(1-x)n. 
 
For n=1 the right hand side for the equation for B(1,n,x) is x. Therefore the proposition 
holds for n=1. In the following we assume that n is at least 2. 
 
The formula for Bx(1,n,x) shows that this derivative is positive for 0≤x<1. Therefore 
B(1,n,x) is increasing in x from x=0 to x=1. Similarly the equation for Bx(n,n,x) shows, 
that B(n,n,x) is increasing in x from zero to one.  
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The inequality for the difference of Bx(h+1,n,x) and Bx(h,n,x) shows that for given x the 
derivative Bx(h,n,x) is increasing with h for h = 1,…,h*, non-decreasing from h* to h*+1 
and then decreasing with h for h = h*+1,…,n. As we have seen Bx(n,n,x) is still positive 
for 0<x<1 in spite of the negative difference for h=h*+1,…,n. Therefore B(h,n,x) is 
increasing for h = 1,…,n.  
 
It is an immediate consequence of the definition of B(h,n,x) that  
 

0)0,,( =nhB  
and 

1)1,,( =nhB  
 
hold.  
 
If the probability of a success is zero, then the probability of at least h successes is also 0. 
If the probability of success is 1 then the probability of at least h successes is also 1. This 
completes the proof of proposition 1. 
 
Proposition 2 is the uniqueness result for sample-n equilibrium. 
 
Proposition 2: Consider a completely mixed 2x2 game and assume that for each of two 
players the absolute value of a payoff difference divided by the sum of the absolute 

values of both payoff differences is not equal to an integer multiple of 
n
1 . Then for 

n=2,… this 2x2 game has a uniquely determined sample-n equilibrium.  
 
Proof: the conditions on the payoff differences in the assertion are nothing else than 
inequalities (*) and (**). The sample-n equations can be expressed as follows 
 

),,( *
LU qnkBp =  

)1,,( *
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It follows by proposition 1 that in the first sample-n equation pU is a monotonically 
increasing in qL from pU=0 for qL=0 to pU=1 at pL=1. Similarly in the second sample-n 
equation qL is monotonically decreasing at pU from qL=1 for pU=0 to qL=0 at pU=1. It is 
clear that in a (qL, pU)-diagram the two sample-n equations are represented by two curves 
which must intersect in one and only one point. Therefore the assertion holds for games 
with the structure shown in figure 1. 
 
In figure 1 the arrows indicating best replies move in a clockwise direction. Of course 
there are also 2x2-games with the opposite orientation of these arrows. These games can 
be obtained from the ones shown in figure 1 by an interchange of the two rows. It is clear 
that therefore the proposition holds in this case, too. This completes the proof of 
proposition 2. 
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The sample-n equations for pU and qL are determined by the parameters k,* m* and n. The 
parameters k* and m* can have the values k*=1,…,n and m*=1,…,n. The values of k* as 
well as of m* cannot have the value 0, since in this case one of the players would have a 
pure best reply regardless of what the other player does. This cannot be true in a 
completely mixed 2x2-game.  
 
In view of proposition 2 for each pair (k*,m*) the equation system has exactly one 
solution. Therefore, if (*) and (**) are satisfied, there are only n2 possible solutions of the 
equation system independently of the payoff parameters. We shall now explain a 
relationship between the numbers k* and m* and the Nash equilibrium strategies of the 
game.  
 
Let N

Up , N
Dp , N

Lp  and N
Rp  be the choice probabilities in Nash equilibrium for U, D, L, R 

respectively. In Nash equilibrium player 1’s payoffs for U and D are equal. Since the 
payoff components are aL and aR are equal in both rows, this yields  
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The number k* can be described as the smallest integer k with  
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The comparison of this inequality with the last equation shows that k* must be the 
smallest integer k with 
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The number m* is the smallest number m with 
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we can conclude that m* is the smallest number m with 
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The integers k* and m* are determined by the choice probabilities N
Lq  and N

Up  
respectively. Curiously enough the parameters k* and m* which determine the behavior of 
player 1 and player 2, resp., depend on the Nash equilibrium choice probabilities of the 
other player. Nevertheless a relationship between Nash equilibrium and sample-n 
equilibrium is established in this way.  
 
For the special case of sample-7 equilibrium table 1 shows this connection between the 
two stationary concepts. The rows and columns correspond to intervals for the Nash 
equilibrium strategy of player 1 and player 2, respectively. The fields show the values for 
pU (above) and qL (below) in sample-7 equilibrium. The table is based on a clockwise 
orientation of the arrows for the best replies as in figure 1.  
 
Figure 2 conveys the same information as table 1, but in the form of two column 
diagrams. It can be seen that the choice probability pU of the sample-7 equilibrium is not 
at all constant along a line at which N

Up  and therefore vU is constant. Along such a line pU 
is strongly decreasing with increasing Lw . Similarly in the second diagram qL strongly 
increases with vU and N

Up  on a line with constant N
Lq . 

 
A property of sample-n equilibrium connected with these features of figure 2 concerns 
the effect of an increase of one payoff of one player in one of the fields of the bimatrix. 
 

As we have seen k* can be described as the smallest integer k with N
Lq

n
k
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words with: 
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Suppose that player 1’s payoff at (U,L) is increased and all other payoffs remain constant. 
This is equivalent to increasing cL and leaving aL, aR, bU, bD, cR, dU and dD constant. If the 

increase is sufficiently great, then 
)( RL

R

cc
nc
+

 and therefore k* is decreased. This means 

that the curve of the first sample-n equation is shifted upwards (except at qL=0 and qL=1) 
whereas the curve for the second sample-n equation remains unchanged. Therefore at the 
new intersection pU is greater and pL is smaller than before. We can conclude that a 
sufficiently big increase of player 1’s payoff at (U,L) increases pU and decreases qL. 
Unlike Nash equilibrium sample-n equilibrium has the property that a player’s own 
payoffs matter for his choice probability. 
 
It can be seen without difficulty that a ceteris paribus increase of player 1’s payoff at 
(U,R) also increases the sample-7 equilibrium probability pU, if it is on the one hand big 
enough to change the equilibrium at all and on the other hand cR is still positive after the 
change. Such a change increases aR and decreases cR and therefore k* with the same 
consequences as above. 
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An increase of player 1’s payoff at a field of the matrix where he plays U increases player 
1’s sample-n equilibrium probability pU provided that anything is changed at all and the 
new game is still in the class described by figure 1. It can be seen without difficulty that 
this conclusion can be generalized to any ceteris paribus increase of a player i’s payoff at 
a field (x,y) of the bimatrix. Provided that the new game is still in the class described by 
figure 1, the new, sample-n equilibrium, if it is different from the old one, will have a 
higher px if player 1’s payoff is increased and a higher py if player 2’s payoff is increased. 
 
One may say that in sample-n equilibrium players are attracted to strategies with high 
own payoff whereas in Nash equilibrium own payoffs do not have any influence on a 
players behavior. 
 

 
 

Table 1: Connection between the Nash equilibrium and the sample-7 equilibrium. 
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Figure 2: Connection between the Nash equilibrium and the sample-7 equilibrium. The 

left diagram shows pU and the right one qL    
 
 
2.4. Impulse Balance Equilibrium  
 
As has been already explained in the introduction, impulse balance theory is not applied 
to the original game, but to a transformed game, in which losses with respect to a natural 
aspiration level get twice the weight as gains above this level. Figure 1 shows that player 
1 receives at least aR if he chooses U and at least aL if he chooses D. Player 1 can secure 
the higher one of both payoffs aL and aR by choosing one of his pure strategies.  
Therefore the maximum of aR and aL is a natural aspiration level for player 1. Similarly 
the maximum of bU and bD is a natural aspiration level for player 2.  
 
Define  
 

s1 = max (aL, aR) 
s2 = max (bU, bD). 

 
 
We construct the transformed game by leaving player i’s payoff below and at si 
unchanged and by reducing the difference of higher payoffs to si by the factor ½. Figure 2 
shows this impulse balance transformation for the example of the experimental game 3.  
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Figure 2: Impulse Balance Transformation of experimental game 3. 
 
The payoff differences in the transformed game corresponding to cL, cR, dU, dD are 
denoted by *

Lc , *
Rc , *

Ud , *
Dd . If after a play player i could have obtained a higher payoff 

by the choice of his other strategy, he receives an impulse in the direction of his other 
strategy. The size of this impulse is the forgone payoff in the transformed game. If for 
example player 1 chooses U and the other player chooses R, then player 1 receives an 
impulse of *

Rc  = 8.5 in the direction of D. A player receives no impulse if the payoff for 
the strategy he did not choose was lower than the one he obtained. Figure 3 shows the 
impulses obtained to the strategy not chosen, similar to a payoff table. 

 
 

Figure 3: Impulse in the direction of the strategy not chosen. 
 

Impulse balance equilibrium requires that player 1’s expected impulse from U to D is 
equal to his expected impulse from D to U. Similarly player 2’s expected impulse from L 
to R must be equal to her expected impulse from R to L. This yields to following to 
impulse balance equations: 

 
**
LLDRRU cqpcqp =  
**
DRDULU dqpdqp =  

 
The left hand side of the first impulse balance equation is player 1’s expected impulse 
from U to D and the right side is player 1’s expected impulse from D to U. If the left 
hand side is greater than the right hand side then player 1 receives stronger impulses from 
R to D and this will decrease qR and increase qL. This creates a tendency in the direction 
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of impulse balance. An analogues interpretation can be given to the second impulse 
balance equation. Of course this is only a heuristic argument, in this paper we do not 
want to explore the dynamics of impulse balance equilibrium.  
 
The impulse balance equations cannot be satisfied unless p and q are completely mixed. 
This can be seen as follows. Suppose that pU=0 holds, then the first impulse balance 
equation can not be satisfied, unless we have qL=0. However in this case the second 
impulse balance equation is not satisfied since the left side is 0 and the right side is *

dd . 
Similarly pD=0 leads to qR=0 by the fist impulse balance equation. The left side of the 
second impulse balance equation becomes *

Ud  and the right side is 0. We can conclude 
that p must be completely mixed. 
 
Now suppose that qL=0 holds. Since p is completely mixed then the left side of the first 
impulse balance equation is positive and the right side is 0. Since p is completely mixed. 
Similarly if qR=0, the left side of the first impulse balance equation is 0 and the right side 
is positive. It follows that also q is completely mixed. 
 
In order to solve the impulse balance equation system we introduce the following 
definitions: 

D

U

p
pu =   

R

L

q
qv =   *

*

R

L

c
cc =   *

*

D

U

d
dd =  

 
We divide the first impulse balance equation by pD, qL and *

Rc  and the second impulse 
balance equation by pD, qL and *

Dd with the help of the definitions of u, v, c and d impulse 
balance equation can be rewritten as follows: 

 
cvu=  

1=duv  
 

Replacing u by cv in the second equation yields 
 

cd
v 1
=  

With the help of the first equation we obtain 
 

d
cu=  

 
The definition of u together with pD = 1-pU yields  
 

u
upU +

=
1
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In the same way we can conclude that 
 

v
vqL +

=
1

 

 
holds. 
 
Together with the formulas for u and v this leads to the following result: 
 

dc
cpU +

= , 
dc

dpD +
=  

cd
pL +
=

1
1 ,  

cd
cdpR +

=
1

. 

 
It can be seen that the choice probabilities of a player in impulse balance equilibrium are 
not independent of his payoff. Suppose that cL is increased whereas all other parameters 
of the 2x2 game in figure 1 remain constant. Then *

Lc  will also be increased, whereas *
Rc , 

*
Ud  and *

Dd  remain constant. This means that d will remains unchanged and c is 
increased. It can be seen that the increase of c results in an increase of pU and in a 
decrease of qL. This shows that unlike in Nash equilibrium a player’s strategy is 
influenced by his own payoff.  
 
We have seen that an increase of player 1’s payoff for (U,L) increases his choice 
probability of U in impulse balance equilibrium. The same is true, if his payoff for (U,R) 
is increased. In this case cR is decreased and therefore also *

Rc  regardless of whether s1 is 
aL or aR. We can conclude that in impulse balance equilibrium the increase of a payoff of 
player 1 in a row increases his choice probability for this row. Of course an analogues 
statement holds for player 2. 
 
 
3. Experimental Design 
 
3.1. Procedure  
 
The experimental data were obtained in 54 sessions with 16 subjects each and 864 
altogether. The subjects were students of the University of Bonn, mainly majoring in 
economics or law. The experiments were run in the Bonn laboratory of experimental 
economics. The computer program was based on the toolbox RatImage developed by 
Abbink and Sadrieh (1995). Only one game was played in each session. 
 
At the beginning of a session oral and written instructions were given to the subjects. The 
written instructions (in German) are shown in appendix B. The subjects were informed 
about the game matrix including the payoffs of both players. They were told that they 
would interact with randomly changing opponents and always be in the same player role 
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over 200 periods. Actually in each session there were two independent subject groups 
with four participants in the role of player 1 and four participants in the role of player 2. 
The players played against randomly chosen opponents but only within their independent 
group. They were not informed about the fact that there are two groups. We did not lie to 
them but conveyed the impression that they interact with 15 other players.  
 
After the instruction the participants were sitting in separate cubicals and made their 
decisions by mouse click. The decisions in a play were made without any information 
about the choices of the other players. After each of the 200 plays they received feedback 
about the other player’s choice and their payoff, the period number and their cumulative 
payoff. No limit was imposed on the decision time. The subjects were not permitted to 
take notes of any kind about their playing experience. They were also not permitted to 
talk to each other during the experiment and they had no opportunity to see the screens of 
other participants. After each experiment, participants had to fill in a questionnaire, 
shown in appendix C. 
 
Each participants received 5 € and in addition to this a money payoff proportional to their 
game payoff accumulated over the 200 periods. The exchange rate was 1.6 €-Cent per 
payoff point. An experimental session took 1.5 to 2 hours and the average earning of a 
subject was about 24 € including the show up fee. 
 
In some sessions a digit span test DAVIS (1931), DELLA SALA ET AL. (1999) preceded the 
game playing. This test is designed to measure the short time memory size. However we 
shall make no use of the data collected by this test in this paper. Therefore the details of 
the digit span test will not be explained here. 
 
3.2. Experimental Games 
 
Figure 4 shows the twelve games used in our Experiment. The constant sum games are 
shown on the left side of the figure 4 and the non-constant sum games on the right side of 
figure 4. The non-constant sum game right next to a constant sum game in the figure 4 
has the same best reply structure. We say that the two games form a pair. The non-
constant sum game in a pair is derived from the constant sum game in this pair by adding 
the same constant to player 1’s payoff in the column for R and 2’s payoff in the row for 
U. It is clear that this does not change the best reply structure.  
 
Nash equilibrium and sample-7 equilibrium depend only on the best reply structure and 
therefore yield the same predictions for both games in a pair. In section 2.2 it has been 
explained that adding a constant to all payoffs of player 1 in a specific column or to all 
payoffs of player 2 in a row does not change the quantal response equilibrium, even if 
this concept does not depend only on the best reply structure. Therefore quantal response 
equilibrium, too, yields the same prediction for the two games in a pair. 
 
The determination of impulse balance equilibrium involves a transition from the original 
game to the transformed game. The impulse balance equilibrium depends on the best 
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reply structure of the transformed game which is generally different from that of the 
original game. Therefore this concept yields different predictions for the games in a pair. 
 
 

 
 

Figure 4: Experimentally investigated games. 
 
 

In the selection of the experimental games we have been guided by several considerations 
explained in the following. Two pilot experiments were run with the games shown in 
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figure 5. Game A is similar to the game played by OCHS (1995) and also by GOEREE, 
HOLT, CHARLES and PALFREY (2000). In the questionnaires the subjects who had played 
game A often reported attempts to cooperate. 
 

 
 

Figure 5: Structure of the pilot experiments. 
 
Even if these attempts failed they may have had an influence on the observed relative 
frequencies. Therefore we decided to explore constant sum games extensively. Constant 
sum games offer no cooperation opportunities. We wanted to contrast them with similar 
non-constant sum games offering some scope for cooperation. 
 
The concepts of sample-7 equilibrium and impulse balance equilibrium have been 
developed on the basis of the pilot experiments with games A and B. Therefore the 
experimental results obtained with these games are not included in the comparison of the 
four theories. 
 
The selection of the constant sum games was guided by the idea, that on the one hand a 
reasonably wide distribution over the parameter space should be achieved, and on the 
other hand the number of games should be small enough to permit a sufficiently large 
number of independent subject groups in every case. 
 
The games explored here have 8 payoffs but the best reply structure is characterized by 
two parameters. The Nash equilibrium choice probabilities N

Up and N
Lq  will serve as these 

two parameters in the following figures. Figure 6 show the six Nash equilibria for the 
experimental games. 
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Figure 6: Nash equilibria of the games 1-6. 
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In all six cases N
Up is between 0 and .5 and N

Lq  is between .5 and 1. Therefore only this 
part of the parameter space is shown in figure 6. The best reply structure remains 
essentially unchanged if the rows or columns or the role of both players are exchanged. 
Such transformations yield all the points in figure 7.   
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Figure 7: Permutations of rows, columns, or player roles transform the 6 experimental 
games into 44 games with the Nash equilibria shown in the figure. 

 
It can be seen, that the six games together with their automorphic transformations are 
widely distributed over the parameter space. However we intentionally underrepresented 
cases in which one of the choice probabilities was near to .5. In our sample of 6 only 
game 6 has this property. In the middle of the parameter space, where both parameters 
are .5, every reasonable theory predicts equal probabilities for all strategies. The greater 
the distance from the midpoint is, the more the stationary concepts compared in this 
paper differ with respect to their predictions. 
 
Since constant sum games are more basic we have run experiments with 12 independent 
subject groups for each of the 6 constant sum games but only 6 independent subject 
groups for each of the non-constant sum games. 
 
 
4. Experimental Results 
 
4.1. Predicted and Observed Relative Frequencies 
 
We begin our descriptions of the results obtained by a number of figures showing the 
predictions of the four stationary concepts together with the observed overall relative 
frequencies for each of the experimental games. The numerical values are shown in table 2. 
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  Nash 
Equilibrium  

Quantal 
Equilibrium 

Sample-7 
Equilibrium 

Impulse 
Equilibrium 

Observed 
Average 12 

Observations 
U .091 .057 .089 .057 .079 Game 1 
L .909 .664 .650 .664 .690 
U .182 .185 .172 .185 .217 Game 2 
L .727 .619 .491 .619 .527 
U .273 .137 .161 .137 .163 Game 3 
L .909 .753 .765 .753 .793 
U .364 .286 .259 .286 .286 Game 4 
L .818 .679 .710 .679 .736 
U .364 .286 .297 .286 .327 Game 5 
L .727 .679 .628 .679 .664 
U .455 .448 .400 .448 .445 Game 6 
L .636 .613 .600 .613 .596 

  
  

Nash 
Equilibrium  

Quantal 
Equilibrium 

Sample-7 
Equilibrium 

Impulse 
Equilibrium 

Observed 
Average 6 

Observations 
U .091 .057 .104 .057 .141 Game 7 
L .909 .664 .634 .664 .564 
U .182 .185 .258 .185 .250 Game 8 
L .727 .619 .561 .619 .586 
U .273 .137 .188 .137 .254 Game 9 
L .909 .753 .764 .753 .827 
U .364 .286 .304 .286 .366 Game 10 
L .818 .679 .724 .679 .699 
U .364 .286 .354 .286 .331 Game 11 
L .727 .679 .646 .679 .652 
U .455 .448 .496 .448 .439 Game 12 
L .636 .613 .575 .613 .604 

 
Table 2: Four stationary concepts together with the observed relative frequencies for 

each of the experimental games 
 
Figures 8 and 9 show the results for game 1 and game 6 in full parameter space. Figure 8 
shows that for game 1 the predictions of Nash Equilibrium and quantal response 
equilibrium are relatively far from the observed values, whereas the impulse balance 
equilibrium and the sample-7 equilibrium are quite near to them. Figure 9 shows, that in 
game 6 the predictions of all 4 concepts are quiet near to the observations. This is due to 
the fact that game 1 is near to the border of the parameter space, whereas game 6 is near 
to the middle. As we have pointed out before one can expect little differentiation near to 
the middle of the parameter space and a greater discrimination near to the border.  
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Game  1, 12 Observations
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Figure 8: Visualization of the theoretical equilibria and the observed average (Game 1). 

 
Game  6, 12 Observations
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Figure 9: Visualization of the theoretical equilibria and the observed average (Game 6). 

 
In figures 10 and 11 we show cutouts of the whole parameter space with predictions and 
observed averages for all 12 games. Apart from the fact that the Nash equilibrium of 
game 2 is nearer to (.5,.5) than that of game 3, the games 1-6 are the farther from the 
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middle of the parameter space the lower is their order in the numbering. One can see that 
the discrimination between the concepts tends to be worse for games nearer to the middle 
of the parameter space. For games 1 to 5 the impulse balance equilibrium and sample-7 
equilibrium are nearer to the observed values than the other two concepts, but for game 6, 
both concepts have a similar distance to the observed average as Nash equilibrium and 
quantal response equilibrium. Due to the nearness to the middle random fluctuations 
seem to play a greater role for game 6.  
 
The predictions of impulse balance equilibrium and sample-7 equilibrium tend to be near 
to each other. Therefore random fluctuations make the comparisons between these two 
concepts difficult. The cutouts for the games 1 to 6 show that in games 2, 3 and 4 impulse 
balance equilibrium is nearer to the observed values, whereas in games 1, 5 and 6 
sample-7 equilibrium is nearer to them. 
 
The cutouts for games 7 to 12 show a similar picture as those for games 1 to 6 as far as 
the discrimination between the four concepts near the border is concerned, but there are 
differences in other respects. In games 7, 8, 10 and 11 impulse balance equilibrium is 
nearest to the observed values, but surprisingly not only in game 12 but also in game 9 
Nash equilibrium and quantal response equilibrium are nearer to them. 
 
As has been explained in 3.2, impulse balance equilibrium yields different predictions for 
the two games in a pair, since the basic idea of impulse balance is applied to the 
transformed game and not to the original one. The other three concepts yield the same 
predictions for the two games in a pair. 
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Figure 10: Visualization of the theoretical equilibria and the observed average in the 

constant sum games. 
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Figure 11: Visualization of the theoretical equilibria and the observed average in the 
non-constant sum games. 
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4.2. The Measure of Predictive Success 
 
We look at the four theories compared in this paper as predictions of the relative 
frequencies of playing of U and L in an independent subject group playing one of the 
games 1 to 12. We do not want to assert that a player uses the same mixed strategy in all 
200 periods of a session and we also do not assume that all players in the same role 
always behave in the same way. Presumably the players are engaged in complex learning 
processes which differ from person to person. Nevertheless such behaviour may result in 
frequencies of U and L which can be predicted reasonable well by stationary concepts. It 
is important to know how well observed relative frequencies can be explained without 
going into the details of stochastic learning models.  
 
For a theory predicting a point in an Euclidian space the squared distance of theoretical 
and observed values is a reasonable measure of predictive success, in the sense that the 
predicted success is the greater the smaller this distance is. In the following we want to 
explain how this measure is applied to our data. Each Game i with i=1,…,12 has been 
played by s independent subject groups with s=12 for i= 1,…,6 and s=6 for i=7,…,12 
We use the index j with j=1,…,s for the subject groups. Let and fiUj and fiLj be the relative 
frequencies of U and L in the j-th independent subject group playing game i. Consider a 
prediction pU and pL for these relative frequencies then  
 

Qij = (fiUj-pU) 2+(fiLj-pL)2 
 
is the squared distance of the j-th observation for game i from the prediction for game i. 
The mean squared distance for the data of this game i from (pU,pL) is as follows 
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We shall look at the overall predicted success but also at the predicted success of the 
constant sum games 1 to 6 and the non-constant sum games 7 to 12 separately. Define: 
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The indices C and N stand for constant sum and non-constant sum games. The mean 
squared distances QC, QN and Q will be the basis of our comparison of the four theories.  
 
For every game i let fiU and fiL be the mean values of fiUj and fiLj with j=1,…,s: 
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The expression 
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is the sampling variance of game i and  
 

22 )()( LiLUiUi pfpfT −+−=    for i=1,…12 
 
is the theory specific component of the mean squared distance. The mean squared 
distance for a game can be split into these two components: 

 
Qi=Si+Ti  for i=1,…12 

 
Define  
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The mean squared distances QC, QN and Q can also be split into two components 
 

QC=SC+TC,  QN=SN+TN,  Q=S+T 

 
Since the mean sampling variances SC, SN and S do not depend on the theory under 
consideration it does not really matter whether the comparison of theories is based on QC, 
QN and Q or alternatively on TC, TN and T. However, the mean squared distances QC, QN 
and Q are more natural measures of predictive success. A high sampling variance limits 
the accuracy of prediction even if the theory specific component is very small. Therefore 
the mean squared distance of the individual observations from the theory is more 
adequate as a measure of predictive success. 
 
For no theory the mean squared distance Q can be smaller than S. The sampling variance 
S is an unavoidable part of Q. 
 
4.3. Comparison of the Sample Sizes 
 
Originally sample-7 equilibrium had been considered as a theory to be compared with the 
data, since the sample size 7 finds some admittedly weak support in the psychological 
literature (Miller 1951). The sample size 7 seems to be connected to the average capacity 
of short time memory. However, it is not really clear, whether this is relevant for the 
behavior in our experiments. Therefore another sample size could yield a better fit for our 
data. 
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In order to check this we compared the predictive success for sample-n equilibria with 
different sample sizes.  
 
Figure 12 shows the overall mean squared distances Q for the sample-n equilibria with 
n=2,…,10. It can be seen immediately that the average squared distance is smallest for 
n=7. This means that sample-7 equilibrium has the best fit to the data. Therefore we do 
not have to add other sample-n equilibria to the four theories compared in this paper. 
 

 
 

Figure 12: Overall mean squared distances Q for the sample-n equilibria 
 
The figure also shows the mean sampling variance in grey It can be seen that for the 
sample size 7 the mean squared distance Q is much nearer to its unavoidable part S than 
for all other sample sizes. 
 
4.4. Original versus Transformed Games 
 
The basic idea of impulse balance is applied to the transformed game rather than the 
original one. This idea could also be applied directly to the original game. As we shall see 
later, the application to the transformed game yields a better fit to the data. This was 
already true for the pilot study on games A and B. We therefore decided to test impulse 
balance theory in the form described in section 2. However, it is of interest to examine 
the question how the direct application compares to the concept of impulse balance 
equilibrium proposed here. 
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It could be the case that not only the predictive power of impulse balance equilibrium but 
also that of other concepts is increased by applying them to the transformed game rather 
than to the original one.  
 
We shall examine this question for Nash equilibrium and sample-7 equilibrium. Contrary 
to Nash equilibrium and quantal response equilibrium, sample-7 equilibrium fits the data 
quite well. It is therefore of special interest to explore whether a better fit could be 
obtained by applying it to the transformed game rather the original one. If in this way one 
obtained a better fitting version of sample-7 equilibrium, then this version should be 
compared with the other three theories.  
 
We did not examine, what happens, if quantal response equilibrium is applied to the 
transformed game rather the original one. In the cutouts of figures 10 and 11 quantal 
response equilibrium is always very near to Nash equilibrium and it can be expected that 
this would not change in an application to the transformed game. 
 
Figure 13 shows the overall mean squared distances for Nash equilibrium, sample-7 
equilibrium and impulse balance equilibrium applied directly to the original game or to 
the transformed game. It can be seen that only impulse balance theory profits from being 
applied to the transformed game whereas Nash equilibrium and sample-7 equilibrium do 
not gain by being modified in this way.  

 
 

Figure 13: Advantages and disadvantages of applying a concept to the transformed game 
rather the original one. 
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The figure also shows the decomposition of the mean squared distance Q into the 
sampling variance S (grey) and the theory specific component T (black and white resp.). 
The difference between the theory specific components between the applications to the 
original game and the transformed one are even more dramatic in the case of impulse 
balance equilibrium, if one looks at the theory specific components instead of the mean 
squared distance. 
 
In view of figure 6 it seems to be justified not to add the modifications of Nash 
equilibrium and sample-7 to the list of the four theories which are the main focus in this 
paper. 
 
As we shall see in the next section, impulse balance equilibrium is a significantly better 
predictor for our data than the other theories. Figure 14 shows that this success is not 
mainly due to the use of the transformed game. Otherwise the predictive success of other 
concepts should be improved as well if they are applied to the transformed game rather 
than the original one. This is not the case. 
 
 
4.5. Comparison of the Four Theories  
 
Table 3 shows the mean squared distances of the four theories for the twelve games 
separately. It also contains the sampling variance for each game.  
 
 

  Nash 
equilibrium  

Quantal  
response 

equilibrium 

Sample-7 
equilibrium 

Impulse 
balance 

equilibrium 

Sampling 
variance 

Game 1 .0572 .0460 .0103 .0108 .00909 

Game 2 .0483 .0428 .0164 .0102 .00693 

Game 3 .0321 .0250 .0087 .0073 .00523 

Game 4 .0169 .0137 .0072 .0054 .00403 

Game 5 .0149 .0136 .0115 .0117 .00953 

Game 6 .0042 .0039 .0027 .0045 .00246 
       

Game 7 .1237 .1082 .0189 .0081 .00178 

Game 8 .0298 .0269 .0106 .0060 .00531 

Game 9 .0212 .0192 .0332 .0224 .01409 

Game 10 .0208 .0196 .0134 .0111 .00665 

Game 11 .0098 .0084 .0059 .0036 .00307 

Game 12 .0045 .0042 .0033 .0073 .00317 

 
Table 3: Squared distances of the four theories. 
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Figure 14 shows the overall mean squared distances of the four theories compared in this 
paper. It can be seen that there is a clear order of success: Impulse balance equilibrium, 
sample-7 equilibrium, quantal response equilibrium and Nash equilibrium. The figure 
also shows the sampling variance Q in grey and the theory specific components in black. 

 
 

Figure 14: Overall mean squared distances of the four stationary concepts compared to 
the observed average. 

 
4.6. Changes over time  
 
The question arises whether the order of predictive success of the four theories remains 
stable over time. It could be the case that the superiority of impulse balance theory is an 
initial effect which becomes weaker and is finally reversed in the long run. Of course we 
can investigate this question only within the span of the 200 periods played in our 
experiments. For this purpose we compared the first hundred periods with the second 
hundred periods. Figure 15 shows the mean squared distances decomposed into sampling 
variance (grey) and the theory specific components (black and white resp.) for periods 1-
100 (left) and 101-200 (right) for the four theories compared in this paper. It can be seen 
that in the second half of the experiments the order of predictive success is the same one 
as in the first half. Interestingly, for each of the four theories the predictive success in the 
second half of the experiments is better than in the first half. The sampling variance 
however is greater in the second half, than in the first half. 
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A two tailed matched pairs Wilcoxon signed rank test applied to the sampling variances 
for the first half and the second half in the twelve games shows no significant difference. 
Therefore we interpret the difference between the sampling variances in figure 15 as due 
to a random effect. The improvement of all four theories in the second half of the 
experiment indicates a movement of the observed relative frequencies nearer to the 
convex hull of the theoretical probability vectors. The relative frequencies for the first 
and the second half of game 4 are both inside the convex hull but for the other 11 games 
the relative frequencies for the first half are outside the convex hull. In the second half 
they are either inside (4 games) or still outside but nearer to the convex hull (7 games). 
 
It is clear that the order of predictive success of the four theories is not due to 
peculiarities of behavior in early periods. Within the 200 periods one does not observe 
any reversal of this order. The data suggest convergence to a stationary distribution near 
to the impulse balance equilibrium. However this convergence is not due to a decrease of 
the sampling variance which is even slightly higher in the second half, than in the first 
half of the experiments. Of course one cannot assert anything about what will happen in 
the course of, say, 500 periods but our results do not convey the impression that a change 
of the order of the predictive success must be expected. 
  

 
 

Figure 15: Comparison of predictive success in the first half and second half of the 
experiments. 



 33

4.7. Significance of the comparisons of predictive success  
 
In section 4.1. we have pointed out that the discrimination between the four concepts 
tends to be the worse the nearer the games are to the middle of the parameter space. 
Therefore we cannot expect significant results for the twelve or six observations for each 
of the games separately. It is more reasonable to apply a test to all constant sum games 
together and to do the same for all non-constant sum games together. 
 
In order to compare the performance of two theories in the six constant sum games we 
apply the Wilcoxon matched pairs signed rank test to the squared distances of the 
theoretical values from the observed relative frequencies for the 72 independent subject 
groups. 
 
In the application of this test differences of the squared distances are computed for each 
of the 72 observations and then ranked from 1 to 72 according to their absolute value. 
Smaller absolute values receive a lower rank. The test statistic is the sum of the ranks in 
favor of first theory, in the sense that the squared distance for the first theory is lower 
than that for the second theory. This means that higher differences count more than lower 
ones, since they are less likely to be disturbed by random fluctuations. Therefore the fact, 
that games near the middle of the parameter space discriminate less among the theories, 
is automatically taken into account by the Wilcoxon matched pairs signed rank test. 
 
 
Table 4 shows the two tailed significances in favor of the row concept.  
 

 Sample-7 
Equilibrium 

Quantal 
Equilibrium 

Nash 
Equilibrium 

5% 1% 1% Impulse 
Balance 

Equilibrium 10% 1% 1% 

1% 1% Sample-7 
Equilibrium   

1% 1% 

1% Quantal 
Response 

Equilibrium 
    

1% 
Above: games 1-6, constant-sum games (72 observations) 

Below: games 7-12, non-constant sum games (36 observations) 
 

Table 4: Significances of overall comparisons in favor of row concepts, two tailed 
matched pairs Wilcoxon signed rank test. 
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A clear order with respect to the goodness of fit emerges: Impulse balance equilibrium, 
sample-7 equilibrium, quantal response equilibrium and Nash equilibrium. The goodness 
of fit decreases in this order. 
 
Impulse balance equilibrium is significantly more successful than the sample-7 
equilibrium, but the difference is less pronounced than that for the other two stationary 
concepts.  
 
 
5. Summary and Discussion 
 
Four stationary concepts for completely mixed 2x2 games have been compared in this 
paper. For this purpose experiments on 12 games have been run, 6 constant sum games  
with 12 independent subject groups each and 6 non-constant sum games with 6 
independent subject groups each.  
 
The games were selected in such a way, that the constant sum games were reasonably 
well distributed over the parameter space. Each non-constant sum game had the same 
best reply structure as an associated constant sum game. 
 
Each subject group consisted of 8 participants, four playing on one side and four on the 
other. Each subject group played only one game over 200 periods with random matching.  
 
The literature reports about similar experiments with 2x2 games (GOEREE, HOLT, and 
PALFREY (2000); BINMORE, SWIERZBINSKI, AND PROULX. (2001); GOEREE, HOLT and 
PALFREY (2000); OCHS (1995)). Usually the number of periods played is much lower and 
more than one game has been played by the same subjects in one session. Thus in the 
Experiments by GOEREE, HOLT, and PALFREY (2000) the number of periods was 40. 
Several games were played one after the other in the experiments by BINMORE, 
SWIERZBINSKI, AND PROULX. (2001). We wanted a greater number of periods because it is 
doubtful whether a stationary state can be reached within only relatively few periods. 
Play must be long enough to wash out initial effects. If several games are played one after 
the other transfer of experience may occur from earlier to later games. Moreover data 
from different games played by the same subject are not statistically independent from 
each other. In our experiment each subject participated in only one independent subject 
group. This is necessary for an appropriate application of statistical tests.  
 
Our results show that impulse balance theory has a grater predictive success than the 
other three stationary concepts, sample-7 equilibrium, quantal response equilibrium and 
Nash equilibrium. This is true for the constant sum games and the non-constant sum 
games examined separately. 
 
Instead of sample-7 equilibrium one could also consider sample-n equilibria with other 
sample sizes n. The case n=7 is suggested by the finding that 7 seems to be near to the 
average number of items which can be kept in short-term memory (MILLER 1951). It has 
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been shown that sample size 7 fits our data much better than other sample sizes between 
2 and 10.  
 
It is of great importance that even for completely mixed constant sum 2x2 games Nash 
equilibrium fails in comparison to other concepts.  
 
In this paper we concentrated on games played repeatedly with random matching by two 
populations. The literature reports also experiments on 2x2 games played repeatedly by 
the same two opponents. Behavior in such games may very well be different from that in 
games played by populations. If two subjects play the same 2-person zero-sum game 
hundred times against each other, they will be concerned about not being predictable. 
This may drive them nearer to maximin strategies. The experimental investigation by 
O’NEILL (1987) and an empirical paper by WALKER & WOODERS (2005) on “Minimax 
Play at Wimbledon” suggests that this may be the case.  
 
In our experiments quantal response equilibrium performs significantly better than Nash 
equilibrium. Quantal response equilibrium was applied with the same free parameter 
estimated from the data for all games. This parameter was quite high, probably because it 
has to accommodate relatively many games with a diverse structure. This is maybe the 
reason, why the predictions of quantal response equilibrium are on the one hand very 
near to those of Nash equilibrium theory and on the other hand nevertheless significantly 
better. Of course the addition of a parameter which can be adjusted to the data is always 
likely to improve performance.  
 
In the same way as Nash equilibrium and quantal response equilibrium, sample-7 
equilibrium is still a concept based on best replies, even if these are not best replies to the 
equilibrium strategies of the others, but to a random sample of strategies on the other 
side. We have also shown that the sample size 7 fits the data better than other sample 
sizes between 2 and 10. 
 
Impulse balance equilibrium is very different from the three other concepts since it is not 
based on best replies. It cannot be considered to be a modification of Nash equilibrium. 
Impulse balance is different from optimization even in one person decision problems 
(SELTEN, ABBINK AND COX (2001), OCKENFELS AND SELTEN (2005)). Moreover impulse 
balance equilibrium is applied to a transformed game. The transformation is based on the 
idea that losses relative to a natural reference point (the second lowest payoff) count 
double.  
 
Impulse balance theory could also be applied to the original game but the application to 
the transformed game improves its performance. If Nash equilibrium or sample-7 
equilibrium is applied to the transformed game rather the original one, the performance of 
these concepts becomes worse. The transformation is an important part of impulse 
balance theory but it is not the only reason for its success. 
 
It is not easy to understand why the predictions of impulse balance equilibrium and 
sample-7 equilibrium are not very far apart, in spite of the fact, that they are based on 
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very different principles. This is maybe peculiar to our sample. It would be desirable to 
devise experiments which permit a better discrimination between the two theories. 
 
In this paper we look at stationary concepts without any discussion of learning processes. 
The comparison of our data with learning processes will be the subject matter of a later 
paper. As far as movement over time is concerned we looked only at differences between 
periods 1-100 and 101-200. We have seen that the order of predictive success of the four 
theories does not change from the first half to the second half of the experiments. The 
sampling variance is slightly increased but all four theories are more successful in the 
second half than in the first half. The mean frequencies of individual observations seem 
to move nearer to the theoretical predictions, even if within a game the variance of the 
relative frequencies in independent subject groups does not change significantly. One 
cannot know whether the stationary distribution is reached within the 200 periods but the 
evidence conveys the impression that one comes near to it. 
 
Stationary concepts are of great importance especially if they do not depend on 
parameters which have to be adjusted to the data. Impulse balance theory does not 
involve any such parameters and can be used in theoretical investigations just like Nash 
equilibrium. It is possible to generalize impulse balance theory to general games in 
normal form. It would certainly be desirable to gain experiences with games with more 
than two strategies or more than two players. 
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Appendix A 
 

Observation Game 1 Game 2 Game 3 Game 4 Game 5 Game 6 
  U L U L U L U L U L U L 
1 .104 .716 .255 .583 .218 .836 .291 .748 .154 .873 .453 .604
2 .079 .640 .175 .510 .154 .716 .230 .818 .378 .690 .439 .621
3 .091 .794 .156 .431 .210 .778 .320 .714 .358 .676 .430 .591
4 .109 .688 .210 .616 .217 .844 .245 .748 .276 .648 .398 .604
5 .085 .571 .240 .409 .154 .700 .318 .684 .341 .635 .444 .619
6 .059 .730 .151 .601 .232 .785 .360 .718 .320 .659 .389 .654
7 .184 .575 .286 .591 .081 .856 .283 .723 .295 .689 .463 .574
8 .044 .770 .195 .580 .170 .795 .284 .661 .329 .659 .421 .544
9 .048 .750 .225 .563 .093 .723 .371 .750 .353 .561 .438 .626

10 .056 .755 .229 .448 .133 .873 .249 .805 .328 .651 .535 .594
11 .034 .524 .206 .551 .164 .829 .266 .741 .366 .583 .428 .560
12 .056 .768 .275 .441 .130 .778 .213 .720 .431 .640 .505 .566

Agg 12 
Observations .079 .690 .217 .527 .163 .793 .286 .736 .327 .664 .445 .596

             
Observation Game 7 Game 8 Game 9 Game 10 Game 11 Game 12 

  U L U L U L U L U L U L 
1 .151 .531 .199 .571 .164 .744 .451 .745 .274 .645 .441 .653
2 .103 .563 .180 .665 .105 .793 .416 .711 .289 .659 .414 .653
3 .176 .596 .246 .529 .188 .839 .299 .634 .336 .688 .431 .559
4 .178 .575 .341 .610 .299 .869 .365 .729 .410 .631 .463 .568
5 .090 .530 .314 .585 .355 .844 .416 .713 .378 .678 .458 .664
6 .149 .586 .220 .559 .413 .874 .246 .665 .301 .611 .428 .529

Agg 6 
Observations .141 .564 .250 .586 .254 .827 .366 .699 .331 .652 .439 .604
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Appendix B: Written instructions 

Merkblatt zum Matrixexperiment 
 

 
An diesem Experiment nehmen 16 Personen teil. Jeder Teilnehmer ist entweder ein 
Spieler 1 oder ein Spieler 2. Diese Rolle behalten Sie über die ganze Dauer des 
Experimentes bei. 
Das Spiel erstreckt sich über 200 Runden. 
In jeder Runde spielt jeder Spieler 1 mit einem Spieler 2. Die 8 Spielerpaare werden in 
jeder Runde neu zufällig zusammengestellt.  
 
Auf dem Bildschirm sehen sie eine Matrix mit vier Feldern. 
 
In jeder Runde haben sie die Möglichkeit zwischen Zeile A oder Zeile B zu wählen.  
Ihre eigene Auszahlung ist auf dem Bildschirm umrandet dargestellt. Ihre Auszahlung 
hängt von ihrer eigenen Wahl und der Wahl des anderen Spielers ab. Nachdem Sie diese 
Wahl getroffen haben, färbt sich Ihre gewählte Zeile rot. Nach der Wahl des anderen 
färbt sich das Feld gelb, in dem der Betrag steht, der ihnen ausgezahlt wird. 
 

    A    B 
 
 
 

A 
 
 

B 
 
 
Es gibt zwei Gruppen von Spielern. In jeder Gruppe hat jeder Spieler dieselbe Matrix, 
aber die Matrizen sind für beide Gruppen verschieden. Sie spielen immer mit einem 
Spieler aus der anderen Gruppe.  
In jeder Runde werden 8 Spielerpaare zufällig zusammengestellt. Ihnen wird also in jeder 
Runde ein neuer Mitspieler zugelost. Ihre Mitspieler haben immer dieselbe Matrix. 
 
Nach jeder Runde wird Ihnen mitgeteilt welche Auszahlung sie in der letzten Runde 
erhielten. Der Umrechnungskurs für ihre Auszahlung wird Ihnen auf dem Bildschirm 
bekannt gegeben. 

10 
8 

10 

8 
9 

9 

0 
18 
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Appendix C: Questionnaire  
 
 
 

Fragebogen zum Matrixexperiment  
 
Terminalnummer/Kartennummer:     
 
 
Studienfach: .................................................... Semester: ..................... 
 
 
Beruf: ............................................................. 
 
 
Geschlecht:         männlich  weiblich  Alter: .............................. 
 
 
Beschreiben Sie kurz die Gründe für Ihre Entscheidungen: ........................................................ 
...........................................................................................................................................................
. 
...........................................................................................................................................................
...........................................................................................................................................................
.. 
Hat sich Ihr Entscheidungsverhalten im Laufe des Experiments verändert? Wenn ja, wie? 
...........................................................................................................................................................
. 
...........................................................................................................................................................
...........................................................................................................................................................
...........................................................................................................................................................
... 
Kommentar zum Experiment: ...................................................................................................... 
...........................................................................................................................................................
...........................................................................................................................................................
...........................................................................................................................................................
... 
 
Vielen Dank für Ihre Mitarbeit. 
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Appendix D: Screenshot of Game 1 
 

 
 
 
 


