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Abstract

In practice, two types of tournaments can be distinguished − U-type

and J-type tournaments. In U-type tournaments, workers receive prizes that

have been fixed in advance. In J-type tournaments, the employer fixes an

aggregate wage bill in advance, which is then shared among the workers

according to their relative performance. The results of the paper show that

the outcomes of the two tournament types substantially differ. Especially, an

employer will prefer J-type to U-type tournaments if the number of workers

is large, whereas the opposite holds for small numbers of workers.
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1 Introduction

Workers’ outputs and human capital investments often cannot be verified by

a third party (e.g., a court) in practice. These outputs or human capital

investments are called unverifiable or non-contractible, because explicit la-

bor contracts cannot be made contingent on them. For this reason, labor

contracts are often incomplete leaving room for opportunistic behavior. For

example, an employer can promise a worker to pay high bonuses for high

outputs. But if these outputs are unverifiable, a rational employer will save

labor costs by claiming that the worker’s output was low in case of a high

output. Anticipating the employer’s opportunistic behavior the worker will

have no incentives to exert any effort.

Malcomson (1984, 1986) offers a practical solution to this unverifiability

problem. He shows that tournament compensation schemes will be con-

tractible, even if the workers’ outputs are unverifiable.1In tournaments work-

ers are compensated according to the ordinal ranks of their realized outputs.

The tournament prizes are fixed in advance, before the tournament starts.

Since the fixed tournament prizes are verifiable by court, the employer can-

not save labor costs by understating the workers’ realized outputs (i.e., if the

employer does not declare the worker with the highest output the winner of

the tournament, the winner prize will be given to another worker). Thus,
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the employer will correctly allocate the workers to their ranks. By antici-

pating this, workers will have strong incentives for exerting effort to attain

the winner prize in the tournament. There are a lot of examples for this

tournament solution in practice, e.g. job promotion tournaments within a

corporate hierarchy or tournaments between salesmen.

Kanemoto and MacLeod (1989, 1992) argue that in the evolutionary pro-

cess of labor market institutions two different types of tournaments have

evolved as alternative solutions to the unverifiability problem. The first type

is a kind of job promotion tournament and can be observed in U.S. firms

(see, e.g., Baker, Gibbs, and Holmström 1994a, 1994b). Here, the tourna-

ment prizes are wages that are attached to jobs along a firm’s hierarchy.

The wages rise with increasing hierarchy level. On each level of the hierar-

chy, workers compete in tournaments against each other to win a promotion

to the next level. As the hierarchical wage structure of a firm is verifiable,

this type of tournament prevents employers from opportunistic behavior and,

therefore, gives effort incentives to workers. Such job promotion tournaments

can be called (U.S. or) U-type tournaments.

The second type of tournament can be found in Japanese firms and will be

called J-type tournaments.2Here, the employer agrees on an aggregate wage

bill for his workers that is specified by an explicit contract between the firm

and the local union. For example, this wage bill can be the amount of bonuses
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which are biannually payed by large Japanese firms to their workers.3When

the employer has signed the collective agreement, he can no longer save labor

costs by opportunistically rating his workers’ outputs, because the aggregate

wage bill is verifiable. By using a tournament the wage bill is then shared

among the workers.4For this purpose, each worker takes place in a rating or

assessment process (”satei”), in which the workers are subjectively evaluated

by their supervisors (e.g., Itoh 1991; Endo 1994). This assessment process

can be called a tournament, because the more merit points a worker has

made the larger is his individual share in the aggregate wage bill compared

to the other workers. If, for example, in a firm with two workers A and B

the supervisor claims that A’s unverifiable output has been three times as

high as B’s, then A will receive 75% of the wage bill and B only 25%.

This paper will discuss the questions, whether U-type and J-type tourna-

ments substantially differ, and which tournament type is preferable from an

employer’s viewpoint. I will focus on the central issue that tournaments will

lead to contractible incentive schemes even if workers’ outputs are unverifi-

able. For this purpose, incentive problems due to hidden action are neglected.

Therefore, this paper assumes a deterministic production technology for the

workers (i.e., the output only depends on a worker’s effort and not on an ad-

ditional noise term or exogenous random variable). Hence, the model refers

to situations where output is mainly determined by a worker’s behavior and
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where the monitoring precision of supervisors is high.5Such situations can be

often found in industrial production where the technical context and produc-

tion breakdowns are usually observed by the employer. The model fits less

well with the situation of salespersons, whose results are also determined by

exogenous market conditions (especially, the customers). The results of the

model will show that the two tournament types clearly differ. Especially, we

will see that from an employer’s viewpoint J-type tournaments have compar-

ative advantages when discussing horizontal collusion between the workers,

human capital investments in a previous stage prior to the tournament, and

tournaments with many workers.

In Section 2, the basic model is introduced. Section 3 compares the

outcomes of U-type and J-type tournaments. Section 4 concludes.

2 The Basic Model

A (U-type or J-type) firm is considered which employs two risk neutral work-

ers A and B. Each worker has the same production function qi = ei where ei

denotes worker i’s (i = A, B) observable but unverifiable effort.6Effort entails

costs to a worker, which are described by c(ei) with c(0) = 0, c′(ei) > 0, and

c′′ (ei) > 0. Output and costs are both measured in monetary terms. The

reservation utility of each worker is given by ū ≥ 0. Both workers want to
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maximize their expected net income, i.e. their expected wages net off the ex-

pected costs. It is assumed that the workers are not able to pay up-front fees

because of restricted wealth. The employer is assumed to be risk neutral,

too. He wants to maximize expected profits, i.e. expected outputs minus

wages.

In a U-type tournament the employer specifies a winner prize w1 and a

loser prize w2 (with 0 ≤ w2 < w1) to induce work incentives and to make the

two workers participate in the tournament. Let ∆w = w1 − w2 be the prize

spread. Worker i will win the tournament if qi > qj (i, j = A, B; i 6= j). In

the case of qi < qj worker i loses. If qi = qj the employer will determine the

winner by flipping a fair coin so that each worker’s probability of winning is

1/2.

In a J-type tournament the employer chooses an aggregate wage bill w

before the tournament starts. Worker i gets the fraction qi/ (qi + qj) of the

wage bill w given that at least one worker exerts positive effort (i, j = A, B;

i 6= j). If qi = qj = 0, each worker will receive the wage w/2. The timing

structure is identical in both tournaments. On the first stage, the employer

chooses (w1, w2) in the U-type tournament and w in the J-type tournament.

On the second stage, given that the two workers A and B decide to participate

in the tournament they simultaneously choose their efforts eA and eB.

In the following section, the U-type and the J-type tournament are com-

6



pared. First, the basic model is considered. Then, this model will be ex-

tended to discuss the possibility of collusions, relative deprivation, human

capital investments, and tournaments between more than two workers.

3 Results

3.1 Comparison with the First-Best Solution

As the employer and the two workers are all risk neutral it makes sense to

compare the outcomes of the U-type and the J-type tournament to the first-

best outcome as a reference solution. Under first-best conditions there are

no observability and contracting problems. Therefore, the employer would

choose the effort level that maximizes ei− c (ei) for each worker i (i = A, B)

and would pay each worker a wage that just compensates him for the costs

c (ei) and the reservation utility ū. This leads to the following definition:

Definition The outcome where each worker exerts effort eFB = c
′−1 (1)

and the total welfare of the employer and the two workers amounts to 2eFB−

2c
(
eFB

)
will be called first-best solution.7

Deriving the subgame perfect equilibrium of the U-type and the J-type

tournament we obtain the following result:

Proposition 1 Neither the U-type nor the J-type tournament yields the

7



first-best solution.

Proof. See the Appendix.

The proof of Proposition 1 shows that in both tournament types the em-

ployer is able to implement first-best efforts (on average), but not at first-best

costs. In the J-type tournament, the employer does not want to implement

first-best efforts, because eFB would imply negative profits. The result con-

cerning the U-type tournament seems to be even more surprising. The sem-

inal article by Lazear and Rosen (1981) has already shown that the U-type

tournament with two homogeneous and risk neutral workers and stochas-

tic production generates the first-best solution. The intuition for this result

is clear: Since both workers are risk neutral there is no trade-off between

incentives and risk sharing. Thus, the employer is able to induce optimal in-

centives without risk premia. In this paper, production is deterministic. At

first sight, we might suppose that this would make things even better. But

the proof of Proposition 1 shows that the opposite is true. Because of deter-

ministic production there only exists a Nash equilibrium in mixed strategies

on the tournament stage of the game. Theoretically, the employer may be

able to choose the tournament prizes w1 and w2 so that a worker’s expected

effort equals eFB.8Nevertheless, the first-best solution cannot be obtained,

because the corresponding expected costs are higher than c
(
eFB

)
due to the

convexity of c (·) and Jensen’s inequality.
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This surprising result has a direct implication for the design of U-type

tournaments in practice. In the model of Lazear and Rosen (1981) stochastic

outputs are described by qi = ei + εi (i = A, B) where the noise terms εA

and εB are identically and independently distributed. These noise terms

can be interpreted as measurement errors due to imperfect monitoring. In

analogy, we can argue that the deterministic production function qi = ei is

achieved by perfect monitoring. But then Proposition 1 makes clear that

imperfect monitoring is strictly better, since it leads to first-best efforts and

a reduction of monitoring costs. According to Proposition 1, the employer

would even prefer the existence of measurement errors to perfect monitoring

if monitoring costs were zero.

Unfortunately, the general form of the cost function c (ei) does not allow

a direct comparison between the efforts and the employer’s expected profits

in the U-type and the J-type tournament. Both tournament types have sym-

metric subgame perfect equilibria. Let E
[
eU
]

denote a worker’s expected

equilibrium effort in a U-type tournament and eJ the equilibrium effort of

a worker in the J-type tournament. Furthermore, let EΠU (EΠJ) be the

employer’s expected profits per worker in a U-type tournament (J-type tour-

nament) and EΠFB the expected profits per worker with first-best effort.

Using a quadratic cost function the following result can be obtained:

Corollary 1 If c (ei) = (k/2) · e2
i with k > 0 and ū = 0, then eFB >
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E
[
eU
]

> eJ and EΠFB > EΠU > EΠJ .

Proof. See the Appendix.

The proof of the corollary shows that the participation constraint is bind-

ing in the U-type tournament, whereas workers receive more than their reser-

vation utilities in the J-type tournament. But, more importantly, workers

exert less effort in the J-type than in the U-type tournament on average. In

addition, the employer’s expected profits per worker are larger in the U-type

than in the J-type tournament. Thus, the corollary indicates that the U-type

tournament seems to dominate the J-type tournament from the employer’s

viewpoint. The following results will show that this conclusion does not hold.

3.2 Collusion between the Workers

In the literature also some problems of tournaments have been mentioned.

Many authors suppose that collusion between the workers will be one of the

major problems of tournaments.9Obviously, collusion in which all workers

agree to exert zero effort will be Pareto efficient from the workers’ viewpoint.

Consider, for example, the above two-person U-type or J-type tournament.

In both cases, there exists a unique Nash equilibrium on the tournament

stage which is symmetric and in which the workers exert positive efforts.

Thus, the two workers are strictly better off by both choosing zero effort.
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Their expected wages are still (w1 + w2) /2 or w/2, respectively, but the

workers will save their (expected) effort costs. Therefore, collusion would

lead to a Pareto improvement for the workers. But since there is a unique

equilibrium in each type of tournament, a collusive agreement cannot be

stable in a one-shot game.10If the tournament between the same two workers

is repeated several times, a collusive agreement may become self-enforcing.

A finitely repeated tournament cannot lead to stable collusion because of the

backward-induction argument. But as we know from the Folk Theorem, a

collusion equilibrium can be achieved in a tournament supergame with an

infinite number of repetitions (or with an unknown endgame, respectively).

Let δ = 1/ (1 + r) be the workers’ discount factor for future payoffs with r as

interest rate. In addition, assume that both workers use the grim strategy to

enforce their collusive agreement.11Then, the following result can be derived:

Proposition 2 There exist lower bounds δU and δJ for U-type and J-type

tournament supergames so that collusion will be stable if δ ≥ δUand δ ≥ δJ ,

respectively, with δJ ≥ δU .

Proof. See the Appendix.

The proposition states that in a tournament supergame stable collusion

may be possible in U-type as well as in J-type tournaments. But as δJ ≥

δU hold for the two threshold levels, stable collusion is more likely in U-

type than in J-type tournaments. Thus, concerning possible collusion an
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employer prefers J-type to U-type tournaments. The intuition for the result

of Proposition 2 is based on two facts: First, if a worker deviates from the

collusive agreement in the J-type tournament by choosing an arbitrarily small

but positive effort he will receive the total aggregate wage bill. If a worker

deviates from collusion in the U-type tournament he will only get the winner

prize whereas the other worker receives the loser prize. Altogether, incentives

for deviating should be greater in the J-type than in the U-type tournament.

Second, note that the participation constraint of the one-shot game is al-

ways binding in U-type tournaments (i.e., each worker receives his reservation

utility ū), whereas this is not clear for J-type tournaments. Especially, the

proof of Corollary 1 shows that participants of J-type tournaments get more

than ū. The proof of Proposition 1 shows that in U-type tournaments there is

always complete rent dissipation on the tournament stage, i.e. each worker’s

expected utility will always equal the loser prize w2, no matter whether w2

is high or low. Hence, the best the employer can do is to choose w1 = ū

to minimize labor costs, which makes the participation constraint binding.

Therefore, workers’ incentives to deviate from a collusive agreement will be

greater in J-type than in U-type tournaments: When cooperation breaks

down and the workers play their one-shot Nash equilibrium strategies, work-

ers’ expected utilities are larger in J-type tournaments in each round. Hence,

the favourable property of a U-type tournament − a binding participation
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constraint − becomes an unfavourable one in a dynamic context from the

employer’s viewpoint.

Besides, the proof of Proposition 2 shows that, contrary to J-type tour-

naments, the condition for a collusive equilibrium in U-type tournaments

(i.e., δ ≥ δU) is independent of the tournament prizes w1 and w2. Thus,

the employer cannot adjust the two prizes to make collusion in the U-type

tournament supergame more difficult.

3.3 Relative Deprivation

In practice, people sometimes do not only care for their absolute but also for

their relative incomes, compared to a certain reference group. Such prefer-

ences are described by the concept of relative deprivation (RD).12A person

will be relatively deprived, if his income is lower than the income of a chosen

reference group. The larger this income difference and the group size are, the

larger is the individual’s RD. Combining RD with tournaments makes some

sense, because the participants of a tournament naturally compare them-

selves to each other, and the losers may feel relatively deprived compared to

the winners of the tournament. The workers who compete against each other

in the tournament will exert effort to minimize their (expected) RD.13Let

E
[
eU

RD

]
and eJ

RD denote the workers’ (expected) efforts in the U-type or J-
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type tournament with RD workers, respectively, and EΠU
RD and EΠJ

RD the

corresponding values for the employer’s expected profits per worker. Then

we have the following results:

Proposition 3 In U-type and J-type tournaments with RD workers

(i) E
[
eU

RD

]
> E

[
eU
]

for a given prize spread ∆w, and eJ
RD > eJ for a given

aggregate wage bill w,

(ii) EΠU
RD > EΠU > EΠJ

RD > EΠJ when costs are quadratic,

(iii) in neither type of tournament there is profitable collusion.

Proof. See the Appendix.

Result (i) is similar to the results for tournaments with noise (see Kräkel

2000). Minimizing the relative income difference instead of maximizing ab-

solute income leads to higher efforts for given wages. Here, the competition

between only two workers suffices to generate this effort effect. Result (ii) de-

scribes a ranking for the employer’s expected profits per worker. Given RD

workers the employer again prefers the U-type to the J-type tournament.

The result also shows that the employer prefers organizing a tournament be-

tween RD workers to a competition between non-RD workers for each type

of tournament (i.e., EΠi
RD > EΠi with i = U, J). This is not surprising,

because RD workers weight their income differences with the relative size of

the reference group, and because the employer need not compensate the RD

workers for their absolute effort costs. Result (iii) becomes clear by the fact
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that in either type of tournament there is a symmetric equilibrium. Since

workers only care about the relative income difference which is zero in a

symmetric equilibrium, they cannot profitably deviate from this equilibrium

by both exerting zero effort. The only way to gain by a collusive agreement

would be to choose a slightly higher effort than the other worker, but this

worker would never agree to such collusion.

3.4 Human Capital Investment

Often workers do not only compete against each other by exerting effort,

but also by accumulating human capital. Therefore, the basic model will

be extended by introducing human capital investment of the workers before

the tournament starts. Now, it is assumed that each type of tournament

consists of three stages. On the first stage, the employer chooses (w1,w2)

or w, respectively. On the second stage, each worker makes an investment

in his human capital. He chooses an ability parameter ai (i = A, B) with

ai ∈ {0, 1}.14This means that a worker can either agree (ai = 1) or disagree

(ai = 0) to take part in training activities. The low ability level ai = 0

entails zero costs to the worker. The high ability level ai = 1 leads to

costs c > 0 which are sufficiently small so that human capital investment

may be rational. On the the third stage, the two workers know aA and aB,
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and choose their effort levels to become the winner of a U-type or a J-type

tournament, respectively. The production function of worker i (i = A, B) is

now characterized by qi = aiei. This means that if worker i has dropped out

of the competition on the previous stage by choosing ai = 0, he would now

rationally choose ei = 0 to minimize his costs c (ei). If worker i has chosen

ai = 1, he would have the same production function qi = ei as described in

Section 2. For this modified game the following results can be derived:

Proposition 4a In the three-stage U-type tournament there are two sub-

game perfect equilibria: (i): w∗
1 = w∗

2 = 0, and the workers do not participate.

(ii): On the first stage, w∗
2 = ū and

w∗
1 = argmax

w1

{
(∆w − c̄)2

∆w2

(
c−1(∆w)−

∫ c−1(∆w)

0

c (x)

∆w
dx

)
− w1 + ū

2

}

subject to ∆w ≥ c̄ with ∆w = w1 − ū. On the second stage, worker

i (i = A, B) chooses a∗i = 0 with probability c̄/∆w, and a∗i = 1 with probabil-

ity (∆w − c̄) /∆w. On the third stage, worker i (i = A, B) will choose

e∗i =


0, if a∗i = 0

ε, if a∗i = 1 and a∗j = 0

x, if a∗i = a∗j = 1,

where x is a random variable with cdf G (x) = c (x) /∆w over the interval

[0, c−1(∆w)], and ε being an arbitrarily small but positive number.15

Proof. See the Appendix.
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The results of Proposition 4a indicate that U-type tournaments become

highly problematic when workers should invest in human capital prior to the

tournament. In equilibrium (i) the employer decides to shut down produc-

tion. The proof of Proposition 4a shows that otherwise the employer would

make negative profits, because on the second stage one of the workers would

drop out of the tournament (i.e., he chooses ai = 0) which would imply zero

incentives for both workers on the third stage.

Equilibrium (ii) has also some disadvantages from the employer’s view-

point compared to the results for the basic model without human capital

investment. In equilibrium (ii), the collective output of the two workers is

only strictly positive with probability (∆w − c̄)2 /∆w2. Then, both workers

realize a∗i = a∗j = 1 on the second stage and choose mixed strategies accord-

ing to G (x) on the third stage, which lead to the same expected efforts as in

the basic model (see the proof of Proposition 1). Of course, the employer can

raise the probability (∆w − c̄)2 /∆w2 by increasing w1,
16but this would lead

to high labor costs and, therefore, to low profits. Thus, we have an additional

trade-off which becomes clear by looking at the employer’s objective function

on the first stage. In addition, the part
(
c−1 (∆w)−

∫ c−1(∆w)

0
c(x)
∆w

dx
)
− w1+ū

2

of the employer’s objective function is identical with the objective function

in the basic model.17Hence, the employer’s expected profits are strictly less

in the case with human capital investment because of the multiplication with
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the joint probability (∆w − c̄)2 /∆w2.

At last, we can speculate which of the two subgame perfect equilibria

is the most plausible one. There are good reasons why the equilibrium (ii)

should be expected as outcome of the three-stage game. We see that the two

workers receive their reservation utility in each of the two equilibria,18but the

employer’s expected profits are only positive in equilibrium (ii). Thus, Pareto

efficiency (or, alternatively, coalition proofness in the sense of Bernheim,

Peleg, and Whinston 1987) would lead to equilibrium (ii) as the outcome of

the game.

Proposition 4b In the three-stage J-type tournament there exists the fol-

lowing subgame perfect equilibrium: On the first stage, w∗ = argmax
w

{
e− w

2

}
subject to w

4e
= c′ (e) and w

2
− c (e) − c̄ ≥ ū. On the second stage, a∗i = 1

(i = A, B). On the third stage, each worker chooses e∗i with w∗

4e∗i
= c′ (e∗i )

(i = A, B).

Proof. See the Appendix.

Proposition 4b shows that the results for the J-type tournament are nearly

identical to the results in the basic model without human capital investment.

This becomes obvious by comparing Proposition 4b with the proofs of Propo-

sition 1 and Corollary 1. The only difference is that now the employer has to

compensate the two workers for their human capital investment. Therefore,

we have the same optimization problem for the employer with the exception
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that the workers’ adjusted reservation utility in the participation constraint

is now ū + c̄.

The analysis of human capital investment prior to the tournament has

been very specific, because there are only two possible investment levels. In

general, we have more than two levels. This yields the following result:

Corollary 2 If there are more than two − discrete or continuous −

investment levels, the two workers will choose mixed strategies on each of the

last two stages in the U-type tournament.

Proof. See the Appendix.

The corollary claims that in general the two workers will randomize on

both stages in the U-type tournament. But the more investment levels exist

the higher is the probability that the workers have different levels of human

capital when the tournament starts.19However, such tournaments with het-

erogeneous workers are not desirable from the employer’s viewpoint. The

worker with more human capital is always able to win the tournament with

certainty, which would completely discourage the other worker. In equilib-

rium, both workers still choose mixed strategies over the interval [0, c−1(∆w)]

on the third stage of game, but the worker with less human capital will drop

out of the tournament with a certain probability. This drop-out probability

raises in the difference of the human capital investment of the two workers.

This has also important implications for situations in practice where workers
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do not simultaneously choose their human capital investment on the second

stage of the game. Then, each worker may have an incentive to realize a

first-mover advantage by choosing a high amount of human capital before

the investment decision of the other worker to discourage this worker. On

the other hand, regardless whether the workers choose their human capital

investment simultaneously or sequentially, the employer will have some in-

terest in concealing the information about the realized investment levels so

that the workers do not know who is the stronger player.

3.5 n-Person Tournaments

All previous results deal with the case of a two-person tournament. Now, it

will be discussed whether the major findings also hold for tournaments with

n > 2 workers.20Since in the standard U-type tournament there is only one

vacant job for which the workers compete, we have one winner prize w1 and

n− 1 loser prizes w2. Let E[eU
n ] denote a worker’s expected effort. Then we

get the following proposition:

Proposition 5a In the U-type tournament with n > 2 workers there

exists a symmetric subgame perfect equilibrium where the employer chooses

w∗
2 = ū and

w∗
1 = arg max

w1

{
c−1 (∆w)−

∫ c−1(∆w)

0

(
c (x)

∆w

) 1
n−1

dx− w1 + (n− 1)ū

n

}
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with ∆w = w1 − ū on the first stage, and the workers choose an effort x

according to the cdf

G (x) =

(
c (x)

∆w

) 1
n−1

over the interval [0, c−1 (∆w)] on the second stage. In equilibrium dw∗
1/dn >

0, whereas the sign of dE[eU
n ]/dn is ambiguous. Furthermore, there exists a

continuum of asymmetric equilibria.

Proof. See the Appendix.

The result of Proposition 5a is similar to the results for rent-seeking con-

tests (see Baye, Kovenock and de Vries 1996, p. 293). The existence of

asymmetric equilibria is also intuitively plausible. In the symmetric equi-

librium, each worker’s expected utility equals the loser prize w2 (i.e., there

is complete rent dissipation among the workers). Thus, a worker will be

indifferent between choosing an effort level according to G (x) or dropping

out of the tournament by choosing zero effort and getting w2 with certainty.

Therefore, n − 1 workers competing actively with cdf G (x) and one worker

dropping out will also be an equilibrium. Especially, there is an equilibrium

where n − 2 workers drop out and only two workers remain active. This

equilibrium is the least preferred one by the employer, because he pays each

of the n−2 passive workers w2 = ū for doing nothing so that expected profits

may become negative.
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Comparative statics for the symmetric equilibrium show that the winner

prize w∗
1 and, therefore, the prize spread ∆w raise with increasing n. Thus,

an increase in worker competition will result in a higher hierarchical wage

differential. However, the effect of n on a worker’s expected effort is am-

biguous. Whether increased competition encourages or discourages a worker

depends on the tournament size n and the shape of the cost function c(ei).

Proposition 5b In the J-type tournament with n > 2 workers there ex-

ists a unique and symmetric subgame perfect equilibrium where the employer

chooses w∗ = argmax
w

{
e− w

n

}
subject to w = n2

n−1
ec′ (e) and w

n
− c (e) ≥ ū

on the first stage, and the workers choose eJ
n < eFB with eJ

nc′
(
eJ

n

)
= w∗ n−1

n2

on the second stage, where deJ
n/dn > 0.

Proof. See the Appendix.

Proposition 5b about J-type tournaments is surprising. Although there

are many workers in the tournament with many possible effort combinations

there only exists a unique and symmetric equilibrium. The workers’ equilib-

rium efforts will always be smaller than the first-best effort regardless whether

n is small or large. In contrast to U-type tournaments, comparative statics

show that in J-type tournaments increased competition unambiguously leads

to higher equilibrium efforts.

Proposition 6 There exist lower bounds δU
n and δJ

n for U-type and J-

type tournament supergames with n workers using the grim strategy so that
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collusion will be stable, if δ ≥ δU
n and δ ≥ δJ

n, respectively, with δJ
n ≥

δU
n . Moreover, δU

n is independent of w1 and w2, whereas δJ
n depends on w;

whether an increase of w raises or lessens the possibility of stable collusion

crucially depends on the shape of c (ei). In the U-type tournament collusion

becomes less stable with increasing n, whereas this is not clear for the J-type

tournament.

Proof. See the Appendix.

The result of Proposition 6 shows that concerning possible collusion the

major findings for two-person tournaments also hold for n-person tourna-

ments: The possibility of stable collusion is higher in U-type than in J-type

tournaments. Again, the employer cannot influence this possibility by suit-

ably choosing w1 and w2 in the U-type tournament, whereas the possibility

of stable collusion in J-type tournaments depends on the aggregate wage bill

w. Stability of collusion in U-type tournaments decreases in n. This finding

is very plausible. In practice, collusion typically emerges in small groups

between persons that trust each other. In this context, the result is caused

by the fact that each worker’s expected utility from colluding decreases in

n and the expected utility from deviating from the collusion is independent

of n.21There is no clear result for the J-type tournament, because here both

expected utilities depend on n.

At last, we can examine which tournament type is more profitable from
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the employer’s viewpoint. Let EΠU
n

(
EΠU

n,RD

)
denote the employer’s ex-

pected profits per worker from a n-person U-type tournament (with RD

workers), and EΠJ
n

(
EΠJ

n,RD

)
the expected profits per worker from a n-

person J-type tournament (with RD workers). In addition, let eJ
n,RD be a

worker’s equilibrium effort in a J-type tournament between n RD workers.

Then we can derive the following results:

Proposition 7 Comparing the symmetric equilibria of the two tourna-

ment types yields:

(i) EΠU
n < EΠJ

n and EΠU
n,RD < EΠJ

n,RD as n becomes sufficiently large,

(ii) eJ
n,RD and EΠJ

n,RD are independent of n.

Proof. See the Appendix.

The results of Proposition 7 are restricted to symmetric equilibria to

make the outcomes of the two tournament types comparable. Moreover, the

asymmetric equilibria in the U-type tournament between non-RD workers are

strictly worse than the symmetric one from the employer’s viewpoint (e.g.,

the discussion of Proposition 5a has shown that in U-type tournaments there

exists an asymmetric equilibrium where n− 2 workers choose zero effort). In

addition, symmetric equilibria seem to be more plausible than asymmetric

equilibria in this context, since all workers are homogeneous. Result (i)

shows that the employer’s expected profits per worker will be higher in J-

type than in U-type tournaments if the number of workers is large. This
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result holds for non-RD as well as for RD workers. Thus, the special result

of Corollary 1 with two workers and quadratic costs cannot be generalized.

On the contrary, an employer should organize a tournament between a large

number of workers as a J-type tournament. The intuition for this result will

be discussed below in connection with Corollary 3. Result (ii) shows that the

workers’ equilibrium efforts and the employer’s expected profits per worker

in a J-type tournament with RD workers do not change with the tournament

size. The proof of Proposition 7 makes clear that this result arises because the

workers weight their income differences with the relative size of the reference

group, 1/n, so that n cancels out in the employer’s objective function when

substituting for the workers’ reaction function.

The intuition for the profitableness of J-type tournaments becomes clearer

when considering the special case of quadratic costs c (ei) = k
2
e2

i with k > 0.

Let E
[
eU

n,RD

]
be a worker’s expected effort in a U-type tournament with n

RD workers:

Corollary 3 In the symmetric equilibria of the n-person tournaments

(i) given quadratic costs and ū = 0 there exists a n̄ so that E
[
eU

n

]
≷ eJ

n and

EΠU
n ≷ EΠJ

n for n ≶ n̄; furthermore dE
[
eU

n

]
/dn < 0 and deJ

n/dn > 0,

(ii) given quadratic costs and met participation constraints there exists a n̂

so that E
[
eU

n,RD

]
≷ eJ

n,RD and EΠU
n,RD ≷ EΠJ

n,RD for n ≶ n̂ where n̂ > n̄;

moreover dE
[
eU

n,RD

]
/dn < 0 and deJ

n,RD/dn = 0.

25



Proof. See the Appendix.

The results of Corollary 3 show that the (expected) effort and the em-

ployer’s expected profits per worker are only for small tournaments greater

in U-type than in J-type tournaments, whereas J-type tournaments are pre-

ferred by the employer when the tournament size surpasses a critical value.

The intuition for this becomes clear by the derivatives of the (expected)

equilibrium efforts with respect to the tournament size: Increased competi-

tion lowers incentives in U-type tournaments for non-RD as well as for RD

workers. But the same does not hold for J-type tournaments: RD workers’

equilibrium efforts are independent of the tournament size, and the efforts of

non-RD workers even raise with increased competition. In addition, we can

compare the two critical values of the tournament size for non-RD and RD

workers. Since n̂ > n̄ there exist tournament sizes for which the employer

prefers the U-type tournament when the workers are RD workers, whereas

he prefers the J-type tournament when the workers only care for absolute

incomes.

4 Conclusions

In this paper, the characteristics of U-type and J-type tournaments are com-

pared and discussed from an employer’s viewpoint. The major findings can
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be summarized as follows: (1) Neither U-type nor J-type tournaments yield

the first-best solution although the workers are risk neutral. (2) Stable collu-

sion is more likely in U-type than in J-type tournaments. (3) When workers

have to invest in their human capital prior to the tournament, U-type tour-

naments are more problematic than J-type tournaments because of possible

heterogeneity among the workers. If, for example, the workers choose differ-

ent investment levels, all incentives in the subsequent tournament may break

down. (4) When the tournament size becomes large, the employer’s expected

profits are higher in J-type than in U-type tournaments. This result will also

hold qualitatively if workers feel relative deprivation.
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Appendix

Proof of Proposition1:

First, the U-type tournament is considered, which is similar to (rent-

seeking) contests (see, e.g., Hillman and Riley 1989; Hillman 1989, pp. 62-

67; Hirshleifer and Riley 1992, pp. 369-404).22In analogy to these contests,

there do not exist equilibria in pure strategies on the tournament stage: Let

pi (ei, ej) be worker i’s winning probability (i, j = A, B; i 6= j) so that his

expected utility can be written as

EUi (ei) = w2 + ∆w · pi (ei, ej)− c (ei) . (1)

Worker i (i = A, B) at most exerts effort ē with ∆w = c (ē) ⇔ ē = c−1 (∆w),

because higher efforts would result in EUi (ei) < w2 in case of winning the

tournament. This outcome cannot be rational, since worker i can achieve

EUi (ei) = w2 with ei = 0. We can distinguish three cases: ei > ej

(i, j = A, B; i 6= j) cannot be an equilibrium, because worker i can reduce ei

and will still win the tournament. ei = ej < ē cannot be an equilibrium, too,

since i can win with certainty by marginally increasing ei. ei = ej = ē cannot

be an equilibrium, because i would prefer to choose ei = 0. Thus, there can

only exist equilibria in mixed strategies. From the literature on rent-seeking

contests it is also known that competition will result in complete rent dissi-

pation (see, e.g., Hillman 1989, p. 59; Baye, Kovenock and de Vries 1996, p.
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293). In this context, it means that EUi (ei) = w2 (i = A, B) in equilibrium.

Let Gj (ei) (i, j = A, B; i 6= j) be the probability that j chooses ei or less

effort. Then, (1) can be rewritten as EUi (ei) = w2 + ∆wGj (ei) − c (ei).

The equilibrium condition EUi (ei) = w2 results in Gj (ei) = c (ei) /∆w.

Hence, on the tournament stage each worker chooses his effort according to

the cumulative distribution function (cdf) G (x) = c (x) /∆w over the inter-

val [0, c−1 (∆w)]. On the first stage, the employer has to choose w1 and w2.

Since incentives only depend on the prize spread ∆w and not on the absolute

prizes and since EUi (ei) = w2, the participation constraint EUi (ei) ≥ ū will

always be binding, i.e. the employer minimizes labor costs and optimally

chooses w∗
2 = ū. The incentive compatibility constraint is given by G (x).

As both workers behave symmetrically, the employer can consider one of the

workers for his objective function. Thus, the employer wants to maximize

E [qi]− w1+w2

2
= E [x]− w1+ū

2
and chooses

w∗
1 = argmax

w1

{∫ c−1(∆w)

0

x · c
′
(x)

∆w
dx− w1 + ū

2

}
(2)

Integrating by parts gives

w∗
1 = argmax

w1

{
c−1 (∆w)−

∫ c−1(∆w)

0

c (x)

∆w
dx− w1 + ū

2

}
. (3)

Applying Leibniz’ rule yields the following first-order condition:

∫ c−1(w∗
1−ū)

0

c (x)

(w∗
1 − ū)2dx− 1

2
= 0. (4)
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From Eq. (2) it becomes clear that theoretically the employer can choose w1

so that the expected effort E [ei] =
∫ c−1(∆w)

0
x · c

′
(x)

∆w
dx equals first-best effort

eFB and that, in addition, this w1 may solve the first-order condition (4). But

in this case expected costs would be E [c (ei)] = c (E [ei]) + γ = c
(
eFB

)
+ γ

with γ > 0 according to Jensen’s inequality. Expected costs can be written

as

E [c (ei)] =

∫ c−1(∆w)

0

c (x) · c
′ (x)

∆w
dx =

∆w

2
, (5)

where the last equality follows from integrating by parts. Thus, in the case

E [ei] = eFB the employer’s welfare would be 2eFB − ∆w − 2w2 = 2eFB −

2E [c (ei)]−2ū = 2eFB−2c
(
eFB

)
−2γ−2ū and the welfare of the two workers

would be 2ū so that total welfare would amount to 2eFB − 2c
(
eFB

)
− 2γ,

which is smaller than first-best welfare.

Next, the J-type tournament is considered.23Worker i’s expected utility

is described by

EUi (ei) =
ei

ei + ej

w − c (ei) , i, j = A, B; i 6= j. (6)

From the workers’ first-order conditions we obtain24

w

(ei + ej)
2 =

c′ (ei)

ej

=
c′ (ej)

ei

⇒ eic
′ (ei) = ejc

′ (ej) . (7)

Since c (·) is monotonely increasing, we have ei = ej. Substituting into the

first-order condition yields

w

4ei

= c′ (ei) . (8)
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The employer’s objective function is given by his profits 2ei −w. Substituting

for w according to (8) leads to 2ei − 4eic
′ (ei). If the employer wants to

implement first-best effort eFB, which is defined by c′
(
eFB

)
= 1, then his

profits will be 2eFB − 4eFB < 0. But this cannot be optimal from the

employer’s viewpoint, because he can ensure himself zero profits by choosing

w = 0.

Proof of Corollary 1:

In the U-type tournament with quadratic costs c (ei) = (k/2) e2
i the first-

order condition (4) gives∫ √ 2∆w
k

0

kx2

2∆w2
dx =

1

2
⇒ ∆w =

8

9k
, (9)

which results in E
[
eU
]

= 8/ (9k). In addition, we have EΠU = E
[
eU
]
−

(w∗
1 + w∗

2)/2 = 4/(9k), because w∗
2 = ū = 0 and w∗

1 = ∆w = 8/(9k). In

the J-type tournament the two workers behave identically so that it suffices

to consider one of the workers. The employer wants to maximize ei − w/2

subject to the incentive compatibility constraint (8) and the participation

constraint w/2 − c (ei) ≥ ū = 0 ⇔ w/2 − (k/2) e2
i ≥ 0

(8)⇔ w/2 − w/8 ≥ 0.

Hence, the participation constraint is non-binding. The incentive compatibil-

ity constraint (8) leads to ei =
√

w
4k

. Substituting in the employer’s objective

function and differentiating with respect to w yields the first-order condition

1/
(
4
√

kw
)
− 1

2
= 0 ⇒ w = 1/(4k). We obtain eJ = 1/ (4k) < E

[
eU
]

<
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1/k = eFB and EΠJ = eJ − w/2 = 1/(8k) < EΠU < EΠFB = 1/(2k).

Proof of Propositon 2:

If the two workers collude in the U-type tournament supergame, they will

choose eA = eB = 0 and receive the expected utility

EUi (ei = 0) =
w1 + w2

2
δ +

w1 + w2

2
δ2 +

w1 + w2

2
δ3 + · · ·

=
w1 + w2

2
· δ

1− δ
, i = A, B, (10)

with δ as discount factor. If worker i deviates from the collusive agreement,

he will exert an arbitrarily small effort ε. In this period he wins w1 with

certainty. But then because of the grim strategy cooperation breaks down

and the two workers will choose their mixed strategies G (x) and get an

expected utility w2 (see the proof of Proposition 1) in each of the subsequent

periods. Thus, worker i’s expected utility from deviating is approximately

EUi (ei = ε) = w1δ + w2δ
2 + w2δ

3 + · · ·

= w1δ + w2
δ2

1− δ
. (11)

The collusive agreement will be stable, if EUi (ei = 0) ≥ EUi (ei = ε) ⇔

∆w
(
δ − 2δ2

)
≤ 0 ⇒ δ ≥ 1

2
= δU .

Collusion in the J-type tournament yields the expected utility

EUi (ei = 0) =
w

2
δ +

w

2
δ2 + · · · = w

2

δ

1− δ
. (12)

32



Deviating from the collusive agreement by choosing ei = ε gives

EUi (ei = ε) = wδ +
(w

2
− c (e∗)

)
δ2 +

(w

2
− c (e∗)

)
δ3 + · · ·

= wδ +
(w

2
− c (e∗)

) δ2

1− δ
, (13)

where e∗ denotes the workers’ one-shot Nash equilibrium strategy charac-

terized by (8). The collusion will be stable, if EUi (ei = 0) ≥ EUi (ei = ε),

which can be rearranged to

w

2
− δ

[w
2

+ c (e∗)
]
≤ 0. (14)

The participation constraint w/2−c (e∗) ≥ ū ≥ 0 implies c (e∗) ≤ w/2. Thus,[
w
2

+ c (e∗)
]
≤ w and the lower bound for the discount factor that meets (14)

is given by δJ ≥ 1
2

= δU .
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Proof of Proposition 3:

Let wi denote worker i’s wage (i = A, B). Then i’s relative deprivation

can be written as

Ri = ([wj − c (ej)]− [wi − c (ei)]) ·
1

2
→ min

ei

(15)

(i, j = A, B; i 6= j). Thus, i wants to minimize the net income difference to

the other worker weighted with the relative size of the reference group.25In

the U-type tournament, i’s expected RD is described by

ERi (ei) = (∆w · prob {ei < ej} − c (ej)−∆w · prob {ej < ei}+ c (ei)) ·
1

2

=
∆w

2
−∆w ·Gj (ei)−

c (ej)

2
+

c (ei)

2
, (16)

where Gj (ei) denotes the probability that j exerts ei or smaller effort. In

analogy to the proof of Proposition 1, it can easily be checked that there does

not exist an equilibrium in pure strategies on the second stage: To see this we

can distinguish the same three cases with a new upper bound ē = c−1 (2∆w).

From Eq. (16) i’s first-order condition yields −∆wG′
j (ei) + c′ (ei) /2 = 0 ⇒

Gj (ei) = c (ei) / (2∆w) + α with α being a constant. Since Gj (0) = 0 and

Gj (c−1 (2∆w)) = 1, each worker’s mixed strategy in equilibrium is charac-

terized by the cdf G (x) = c (x) / (2∆w) over the interval [0, c−1 (2∆w)].

In the J-type tournament, worker i wants to minimize

Ri (ei) =

(
wej

ei + ej

− c (ej)−
wei

ei + ej

+ c (ei)

)
· 1

2
. (17)
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The first-order conditions imply that eA = eB = eJ
RD with

w

2eJ
RD

= c′
(
eJ

RD

)
. (18)

Result (i) can be proved as follows. eJ
RD > eJ for a given w is obvious by

comparing Eqs. (18) and (8). E
[
eU

RD

]
> E

[
eU
]

means that∫ c−1(2∆w)

0

x
c′ (x)

2∆w
dx >

∫ c−1(∆w)

0

x
c′ (x)

∆w
dx ⇔∫ c−1(2∆w)

c−1(∆w)

x
c′ (x)

2∆w
dx >

∫ c−1(∆w)

0

x
c′ (x)

2∆w
dx (19)

which holds, because xc′ (x) is monotonely increasing and c−1 (2∆w) > 2c−1 (∆w)

due to the convexity of the cost function (i.e., the range of the interval on

the left-hand side of (19) is greater than the one on the right-hand side).

For result (ii) first note that in both types of tournaments there is a

symmetric equilibrium. Thus, (expected) RD of each worker is always zero

in both tournaments. So we can neglect the participation constraint for both

tournaments or assume a reservation value R̄ ≥ 0 so that the constraint

always holds. The employer’s expected profits per worker in the U-type

tournament is given by

EΠU
RD =

∫ c−1(2∆w)

0

x
c′ (x)

2∆w
dx− w1 + w2

2
=

2

3

√
4∆w

k
− w1 + w2

2
(20)

using the assumption of quadratic costs c (ei) = k
2
e2

i . The employer optimally

chooses w∗
2 = 0 because incentives only depend on ∆w, and w∗

1 = 16/ (9k)

to maximize (20). Therefore, E
[
eU

RD

]
= 16/(9k) and EΠU

RD = 8/(9k).
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In the J-type tournament, the employer wants to maximize

EΠJ
RD = eJ

RD −
w

2
(21)

subject to Eq. (18). Using the quadratic cost function we obtain w = eJ
RD =

1/(2k) and EΠJ
RD = 1/(4k).

The proof of result (iii) is already sketched in the text and therefore

obmitted here.

Proof of Proposition 4a and Corollary 2:

Let the starting point be the scenario of Corollary 2 where aA and aB

can be chosen out of a wide range of possible values. Furthermore, let

aA > 0 and aB > 0 for a moment. Two cases have to be distinguished for

the third stage. If aA = aB, then prob
{

aAeA T aBeB

}
≡ prob

{
eA T eB

}
and we obtain the symmetric solution with mixed strategies described in

the proof of Proposition 1. If aA 6= aB, this symmetric solution will no

longer hold. Let ai < aj (i, j = A, B; i 6= j). Again, no equilibria in pure

strategies are possible for the third stage because of the arguments given in

the proof of Proposition 1 which, in analogy, hold for the asymmetric case,

too. The maximum effort worker i is willing to choose is characterized by

∆w = c (ēi) ⇔ ēi = c−1 (∆w) . Worker j’s maximum effort ēj is lower and

meets aj ēj = aiēi ⇔ ēj = ai

aj
ēi = ai

aj
c−1 (∆w). Any effort higher than ēj

would only increase j’s costs c (ej) without raising j’s winning probability,
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because prob {aiei ≤ aj ēj} = 1 given the workers’ continuous mixed strate-

gies. It is obvious that worker j could always win with certainty by exerting

effort ej = ēi + ε with ε → 0. But this cannot be an equilibrium, since i’s

best response would be ei = 0 which would then imply ej = ε with ε → 0 as

j’s best response and so on. In equilibrium, j’s expected utility will meet

w2 + ∆w prob {aiei ≤ ajej} − c (ej) = w2 + ∆w − c

(
ai

aj

ēi

)
⇔

∆wGY (ej)− c (ej) = ∆w − c

(
ai

aj

ēi

)
⇔

GY (ej) = 1−
c
(

ai

aj
ēi

)
∆w

+
c (ej)

∆w
(22)

with Y = ai

aj
ei being distributed over the interval

[
0, ai

aj
ēi

]
with cdf GY (·).

Eq. (22) describes the cdf according to which worker i chooses ai

aj
ei in equi-

librium. Hence, i’s mixed strategy for his effort is characterized by the cdf

Gi (x) = 1−
c
(

ai

aj
ēi

)
∆w

+
c
(

ai

aj
x
)

∆w
(23)

with xε [0, ēi]. On the other hand, in equilibrium the expected utility of

worker i has to be w2 for the same argument given above concerning worker

j. Thus

w2 + ∆w prob {ajej ≤ aiei} − c (ei) = w2 ⇔ GZ (ei) =
c (ei)

∆w
(24)

with Z =
aj

ai
ej ∈ [0, ēi] and GZ (·) as the cdf of Z. Worker j’s mixed strategy

for his effort is therefore described by the cdf

Gj (x) =
c
(

aj

ai
x
)

∆w
with x ∈

[
0,

ai

aj

ēi

]
. (25)
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Let c̃ (ai) and c̃ (aj) be the costs for the workers’ human capital investments

ai and aj on the second stage. Then their total expected utilities for the

symmetric (aA = aB) and the asymmetric case (ai < aj; i, j = A, B; i 6= j)

can be calculated as follows: If aA = aB, then

EUA = EUB = w2 − c̃ (ai) = w2 − c̃ (aj) . (26)

If ai < aj, then

EUi = w2 +

∫ ēi

0

[∆wGZ (ei)− c (ei)] G
′
i (ei) dei − c̃ (ai) = w2 − c̃ (ai) (27)

and EUj = w2 +

∫ ai
aj

ēi

0

[∆wGY (ej)− c (ej)] G
′
j (ej) dej − c̃ (aj)

= w2 + ∆w − c

(
ai

aj

ēi

)
− c̃ (aj) . (28)

Note that ∆w − c
(

ai

aj
ēi

)
> 0, because ai

aj
< 1 and therefore c

(
ai

aj
ēi

)
<

c (ēi) = ∆w.

Now, Proposition 4a can be proved as follows: On the second stage, the

workers have to choose aA , aB ∈ {0, 1} at costs c̃ (0) = 0 and c̃ (1) = c̄. Given

that worker i chooses ai = 0, worker j yields EUj = w2 with aj = 0 according

to (26) and EUj = w1− c̄ with aj = 1 according to (28) (i, j = A, B; i 6= j).

Given that worker i chooses ai = 1, worker j obtains EUj = w2 with aj = 0

according to (27) and EUj = w2 − c̄ with aj = 1 according to (26). Hence,

if ∆w ≥ c̄ the subgame consisting of the second and the third stage will
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have two equilibria (I) and (II): The workers choose a∗i = 0 and a∗j = 1

(i, j = A, B; i 6= j) on the second stage, and e∗i = 0 and e∗j = ε with ε → 0

on the third stage. On the first stage, the employer chooses w∗
1 = w∗

2 = 0

to avoid negative profits. Thus, the two cases (I) and (II) coincide to the

subgame perfect equilibrium (i) where the employer makes the two workers

not to participate in the tournament.

It can easily be seen that there is a second subgame perfect equilibrium

(ii) where the two workers randomize between the two cases (I) and (II)

considered above. Let pi0 be the probability with which worker i chooses

ai = 0 and 1− pi0 the probability for choosing ai = 1. Define pj0 and 1− pj0

analogously for worker j. Then i’s and j’s expected utilities on the second

stage can be written as

EUi = pi0w2 + (1− pi0) pj0 (w1 − c̄) + (1− pi0) (1− pj0) (w2 − c̄) (29)

EUj = pj0w2 + (1− pj0) pi0 (w1 − c̄) + (1− pj0) (1− pi0) (w2 − c̄) .(30)

Therefore, the optimal mixed strategies for the two workers on the second

stage are

pi0 = pj0 =
c̄

∆w
; 1− pi0 = 1− pj0 =

∆w − c̄

∆w
. (31)

On the third stage, the workers’ choices depend on the realizations of the

mixed strategies: e∗i = 0 if a∗i = 0, and e∗i = ε if a∗i = 1 and a∗j = 0
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(i, j = A, B; i 6= j), which directly follows from the two asymmetric cases (I)

and (II). If, however, a∗i = a∗j = 1 have been realized, then we will have the

symmetric solution of the basic model without human capital investment (see

the proof of Proposition1): Both workers choose their efforts randomly out of

the interval [0, c−1 (∆w)] according to the cdf G (x) = c (x) /∆w. On the first

stage, the employer has to choose w1 and w2. Irrespective of the realizations

of the workers’ mixed strategies, at most one of the workers will have the

expected utility EUi = w2 ≥ ū. Since incentives are only created by ∆w

and not by the absolute value of w2, the employer optimally chooses w∗
2 = ū.

Furthermore, he knows that the two workers will only realize strictly positive

expected efforts with joint probability (∆w − c̄)2 /∆w2. In this state, we have

the symmetric case of the basic model without human capital investment and

the employer chooses w1 to maximize (∆w − c̄)2 /∆w2 times the expression

given by (3) (see the proof of Proposition 1) subject to ∆w ≥ c̄ which ensures

that ai = aj = 1 is rational from the workers’ viewpoint.

Corollary 2 can be proved as follows: Let ai and aj be continuous variables

or discrete with more than two realizations. Then there cannot exist an

equilibrium in pure strategies on the second stage of the U-type tournament

game. To see this, Eq. (28) has to be considered: We can start, for example,

with ai = 0. j’s best response to this would be aj = ε with ε → 0. Then i’s
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best response would be âi with

âi > ε and âi = argmax
ai

{
∆w − c

(
ε

ai

c−1 (∆w)

)
− c̃ (ai)

}
. (32)

But then j’s best response would be âj with

âj > âi and âj = argmax
aj

{
∆w − c

(
âi

aj

c−1 (∆w)

)
− c̃ (aj)

}
(33)

and so on. Thus, each of the two workers wants to be the stronger player

with the higher amount of human capital to get EUj according to Eq. (28)

instead of EUi according to Eq. (27). But since c̃ (ai) and c̃ (aj) increase in

ai and aj, respectively, there will exist some level of human capital investment

so that overbidding is not optimal for the other worker any longer, who

therefore chooses a zero investment level as his best response. But then the

first worker would choose ε as a best response and so on. Altogether, both

workers will choose âi and âj as mixed strategies over the interval from zero

to a certain upper bound which is identical for both workers. Note, that

even in the case of continuous variables âi and âj the two workers would not

marginally increase their investment levels but would choose discrete jumps.

This becomes clear from Eq. (28): If âi and âj only marginally differ from

each other, then the worker with the higher investment level − for example

worker j − will approximately obtain EUj = w2 + ∆w − c (ēi) − c̃ (aj) =

w2 − c̃ (aj), which is less than the expected utility w2 when dropping out of

the tournament at the beginning.
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Proof of Proposition 4b:

The proposition states that in the J-type tournament there exists a sym-

metric equilibrium in pure strategies. The workers’ first-order conditions for

their optimal strategies on the third stage yield

waiaj

(aiei + ajej)
2 =

c′ (ei)

ej

=
c′ (ej)

ei

. (34)

In analogy to the proof of Proposition 1, we get ei = ej = e∗ which will be

characterized by

waiaj

(ai + aj)
2 e∗

= c′ (e∗) , (35)

if ai and aj are both different from zero. Now, the subgame consisting of

the last two stages is considerd. We have to distinguish four cases: (a) If

ai = aj = 0, then qi = qj = 0 and EUi = w
2
− c (ei) and EUi = w

2
− c (ej). On

the third stage, the two workers choose e∗i = e∗j = 0 and get EUi = EUj = w
2
.

(b), (c) If ai = 0 and aj = 1 (or, in analogy, ai = 1 and aj = 0), then

qi = 0 and qj = ej. On the second stage, the workers’ expected utilities

are EUi = −c (ei) and EUj = w − c (ej) − c̄. Given that w > c̄, on the

third stage the workers choose e∗i = 0 and e∗j = ε with ε → 0 and receive

EUi = 0 and EUj = w− c̄.26(d) If ai = aj = 1, then we have the basic model

of Proposition 1 and (8) and (35) are identical: w/ (4e∗) = c′ (e∗). Both

workers receive EUi = EUj = w
2
− c (e∗)− c̄. On the first stage, the employer

anticipates the four cases (a)-(d) and wants to implement (d), which is the
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only case where the workers exert strictly positive efforts. Therefore, the

employer chooses w to maximize e − w/2 subject to w/ (4e) = c′ (e) and

w/2− c (e)− c̄ ≥ ū.

Proof of Proposition 5a:

The symmetric equilibrium can be proved in analogy to the proof of

Proposition 1 (see especially Eq. (3)) and by using the general result from

rent seeking contests that there is complete rent dissipation. In this context,

it means that each worker’s mixed strategy is given by G (x) over the interval

[0, c−1 (∆w)] with w2+∆wGn−1 (x)−c (x) = w2. For the claim of a continuum

of asymmetric equilibria see, in analogy, Baye, Kovenock and de Vries (1996),

p. 293. An intuition is sketched in the text.

Comparative statics for the symmetric equilibrium can be derived from

the first-order condition for w∗
1, which − in analogy to Eq. (4) − gives:

FU(w∗
1, n) :=

∫ c−1(w∗
1−ū)

0

1

n− 1

c (x)
1

n−1

(w∗
1 − ū)

n
n−1

dx− 1

n
= 0. (36)

Thus, dw∗
1/dn = −[∂FU/∂n]/[∂FU/∂w∗

1] by the implicit-function rule, where

∂FU/∂w∗
1 < 0 must hold as second-order condition. After some calculations

we get

− ∆w−1

(n− 1)2

∫ c−1(∆w)

0

(
c (x)

∆w

) 1
n−1

[
1 + ln

[(
c (x)

∆w

) 1
n−1

]]
dx +

1

n2
> 0

with ∆w = w∗
1 − ū. The integral is negative, because the logarithm of the

cdf, ln[(c (x) /∆w)
1

n−1 ], takes only negative values. Altogether, we obtain
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dw∗
1/dn > 0. The second comparative static result deals with E[eU

n ] with

E[eU
n ] = c−1 (∆w)−

∫ c−1(∆w)

0

(
c (x)

∆w

) 1
n−1

dx, (37)

where ∆w = w∗
1(n)− ū with dw∗

1/dn > 0. Applying Leibniz’ rule the deriva-

tive of E[eU
n ] with respect to n yields∫ c−1(∆w)

0

[
1

n− 1

(
c (x)

∆w

) 1
n−1

][
1

∆w

dw∗
1

dn
+ ln

[(
c (x)

∆w

) 1
n−1

]]
dx.

The sign of this expression is ambiguous because of the second term in brack-

ets which contains the logarithm of the cdf, and crucially depends on n and

the shape of the cost function c (ei) which both determine ∆w and dw∗
1/dn

in equilibrium.

Proof of Proposition 5b:

In the J-type tournament, each worker i (i = 1, ...., n) wants to maximize

(wei) /
(∑n

j=1 ej

)
− c (ei) on the second stage. The first-order conditions

yield

w(
n∑

j=1

ej

)2 =
c′ (ei)∑
j 6=i

ej

=
c′ (ek)∑
j 6=k

ej

= · · · . (38)

Let, for example, i = 1 and k = 2 so that Eq. (38) implies

c′ (e1) (e1 + e3 + e4 + · · ·+ en) = c′ (e2) (e2 + e3 + e4 + · · ·+ en) . (39)

Since c′ (·) is monotonely increasing, it must hold that e1 = e2. This can be

done in analogy with any pair {i, k} (i, k = 1, · · · , n; i 6= k) so that we have
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e1 = e2 = · · · = eJ
n and Eq. (38) can be rewritten as

w
n− 1

n2
= eJ

nc′
(
eJ

n

)
. (40)

The employer’s optimization problem on the first stage is then similar to

the one in Proposition 4b. The claim that eJ
n < eFB is obtained from the

employer’s objective function eJ
n − w

n
= eJ

n − n
n−1

eJ
nc′
(
eJ

n

)
. If the employer

wants to implement first-best effort eFB with c′
(
eFB

)
= 1, his objective

function will become eFB − n
n−1

eFB < 0. Thus, since c′ (·) is monotonely

increasing, the employer always wants to implement an eJ
n < eFB.

For the comparative static result we have to consider the employer’s ob-

jective function mentioned in the last paragraph. The first-order condition

with respect to eJ
n gives

F J(eJ
n, n) := 1− n

n− 1
c′
(
eJ

n

)
− n

n− 1
eJ

nc′′
(
eJ

n

)
= 0.

From the implicit function rule we obtain

deJ
n

dn
= −

1
(n−1)2

[
c′
(
eJ

n

)
+ eJ

nc′′
(
eJ

n

)]
∂F J/∂eJ

n

> 0.

Note that the denominator has to be negative as second-order condition for

eJ
n.

Proof of Proposition 6:

Proposition 6 can be proved in analogy to Proposition 2. In the U-type

tournament a worker’s expected utility will be [w1 + (n− 1) w2] /n·δ/ (1− δ)
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if keeping the collusive agreement, and w1δ+(w2δ
2)/ (1− δ) if deviating from

collusion. Thus, collusion will be stable if δ ≥ (n− 1) /n = δU
n . In the J-type

tournament, a worker’s expected utility will be w/n · δ/ (1− δ) if keeping

the collusive agreement and wδ +
[
w/n− c

(
eJ

n

)]
· δ2/ (1− δ) if breaking it.

Hence, stable collusion requires

δ ≥ w

w + n
n−1

c (eJ
n)

(41)

to hold. Since the participation constraint ensures c
(
eJ

n

)
≤ w/n the lower

bound δJ
n meets δJ

n ≥ δU
n . The claim about the connection of the influence of

w and the shape of the cost function can be shown as follows: Differentiating

the right-hand side of (41) with respect to w and substituting for w according

to (40) yields
n

n−1

D2

(
c
(
eJ

n

)
− n2

n− 1
eJ

n

[
c′
(
eJ

n

)]2 deJ
n

dw

)
, (42)

where D denotes the denominator of the right-hand side of (41). By implicitly

differentiating (40) we get deJ
n/dw = [(n− 1) /n2] /

[
c′
(
eJ

n

)
+ eJ

nc′′
(
eJ

n

)]
> 0

so that (42) can be rewritten as

n
n−1

D2

(
c
(
eJ

n

)
−

eJ
n

[
c′
(
eJ

n

)]2
c′ (eJ

n) + eJ
nc′′ (eJ

n)

)
. (43)

Proof of Proposition 7 :
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First, non-RD workers are considered. As we know from Proposition

5a expected profits per worker in the U-type tournament can be written as

EΠU
n (w∗

1(n), n) = E[eU
n ] − [w∗

1 + (n − 1)ū]/n. According to the Envelope

Theorem, dEΠU
n /dn = dEΠU

n /dw∗
1 · dw∗

1/dn + ∂EΠU
n /∂n = ∂EΠU

n /∂n with

(using (37))

∂EΠU
n

∂n
=

∂

∂n

{
c−1 (∆w)−

∫ c−1(∆w)

0

(
c (x)

∆w

) 1
n−1

dx

}
+

∆w

n2

=

∫ c−1(∆w)

0

1

n− 1

(
c (x)

∆w

) 1
n−1

ln

[(
c (x)

∆w

) 1
n−1

]
dx +

∆w

n2
(44)

with ∆w = w∗
1(n)− ū. The first-order condition (36) can be rearranged to

∆w

n2
=

∫ c−1(∆w)

0

1

n

1

n− 1

(
c (x)

∆w

) 1
n−1

dx. (45)

Substituting for ∆w/n2 in (44) gives

∂EΠU
n

∂n
=

∫ c−1(∆w)

0

1

n− 1

(
c (x)

∆w

) 1
n−1

[
1

n
+ ln

[(
c (x)

∆w

) 1
n−1

]]
dx. (46)

Since 1/n decreases in n and the logarithm of the cdf, ln[(c (x) /∆w)
1

n−1 ],

takes only negative values, EΠU
n is a decreasing function of n for sufficiently

large n. From the proof of Proposition 5b we know that in J-type tourna-

ments EΠJ
n(eJ

n(n), n) = eJ
n − n

n−1
eJ

nc′
(
eJ

n

)
. Applying the Envelope Theorem

again yields dEΠJ
n/dn = ∂EΠJ

n/∂n = 1
(n−1)2

eJ
nc′
(
eJ

n

)
> 0. Thus, for suffi-

ciently large n we have EΠU
n < EΠJ

n.

Second, n-person tournaments with RD workers are considered. In the
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U-type tournament, expected RD of worker i will be in analogy to Eq. (16)

ERi (ei) =
∆w

n
− 2∆w

n
Gn−1

j (ei)−
c (e∗)

n
+

c (ei)

n
(47)

where e∗ denotes the effort of one of the other workers who − according to the

symmetry assumption − behave identically. Then, in analogy to Proposition

3 we get the result that each worker’s mixed strategy is described by the cdf

G (x) = (c(x)/[2∆w])
1

n−1 over the interval [0, c−1 (2∆w)]. In analogy to the

case of non-RD workers, we have

EΠU
n,RD = c−1 (2∆w)−

∫ c−1(2∆w)

0

(
c (x)

2∆w

) 1
n−1

dx− w∗
1 + (n− 1)w̄2

n
, (48)

where w̄2 is the lowest possible loser prize satisfying the participation con-

straint. According to the Envelope Theorem dEΠU
n,RD/dn =

∂EΠU
n,RD

∂n
=

∫ c−1(2∆w)

0

1

n− 1

(
c (x)

2∆w

) 1
n−1

ln

[(
c (x)

2∆w

) 1
n−1

]
dx +

∆w

n2
. (49)

Using Leibniz’ rule and deriving the first-order condition for w∗
1 from Eq.

(48) gives

∆w

n2
=

∫ c−1(2∆w)

0

1

n− 1

(
c (x)

2∆w

) 1
n−1 1

n
dx (50)

after rearranging. By substituting into Eq. (49) we obtain

∂EΠU
n,RD

∂n
=

∫ c−1(2∆w)

0

1

n− 1

(
c (x)

2∆w

) 1
n−1

[
1

n
+ ln

[(
c (x)

2∆w

) 1
n−1

]]
dx (51)

which becomes negative for large n. In the J-type tournament, worker i

48



wants to minimize

Ri (ei) =

w
e∗ − ei∑

j

ej

− c (e∗) + c (ei)

 · 1

n
. (52)

Differentiating with respect to ei and using the symmetry assumption e1 =

· · · = en = eJ
n,RD the first-order conditions yield

w = nc′
(
eJ

n,RD

)
eJ

n,RD. (53)

Substituting into EΠJ
n,RD = eJ

n,RD − w
n

yields

EΠJ
n,RD = eJ

n,RD − c′
(
eJ

n,RD

)
eJ

n,RD. (54)

Hence, dEΠJ
n,RD/dn = 0 and deJ

n,RD/dn = 0 in equilibrium, which completes

the proof of Proposition 7(i)-(ii).

Proof of Corollary 3:

Result (i) can easily be proved by explicitly calculating the subgame per-

fect equilibria for the U-type and the J-type tournament using quadratic

costs c (ei) = k
2
e2

i . We obtain w∗
1 = [2/k] · [n2/ (n + 1)2] and E

[
eU

n

]
=

[4n]/
[
k (n + 1)2] and EΠU

n = [2n]/
[
k (n + 1)2] for the U-type tournament,

and w∗ = (n− 1) /(4k) and eJ
n = (n− 1) / (2kn) and EΠJ

n = (n− 1) / (4kn)

for the J-type tournament. The claims of result (i) immediately follow from

these expressions.

Result (ii) deals with tournaments between n RD workers. With quadratic

costs we obtain the following outcomes for the symmetric equilibria: w∗
1 =
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(4n2) /
[
k (n + 1)2] and E

[
eU

n,RD

]
= (8n) /

[
k (n + 1)2] and EΠU

n,RD = (4n) /[
k (n + 1)2] in the U-type tournament, and w∗ = n/ (4k) and eJ

n,RD = 1/ (2k)

and EΠJ
n,RD = 1/ (4k) in the J-type tournament. The claims of Corollary

3(ii) directly follow from these expressions.27

50



Notes

1. The following arguments also hold for human capital investments, but

for brevity only unverifiable outputs are considered here.

2. The labels ”U-type” and ”J-type” are used here, because the two types

of tournaments can also be found in other countries, and because the

following analysis does not offer a complete comparison of typical U.S.

and Japanese incentive systems.

3. Such bonuses can make up 18-30% of a worker’s yearly income; see

Itoh (1991, pp. 348-350), Kanemoto and MacLeod (1992, p. 145), Ito

(1992, pp. 231-239).

4. In the traditional Japanese firm, there are no definite demarcation lines

between ”jobs”. Thus, the U-type solution by attaching wages to jobs

cannot be used here.

5. Of course, assuming deterministic production describes a highly styl-

ized situation. But this simplification is comparable to the assumption

of a risk neutral principal instead of a less risk averse principal (com-

pared to the agent) in principal agent models. Technically, the mixed

strategy equilibria in the U-type tournament sketch the situation of

Lazear-Rosen tournaments with too less noise so that the second-order
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condition for a pure strategy equilibrium does not hold. In the J-type

tournament below, ei/(ei + ej) = qi/(qi + qj) is a good approximation

when there is low noise (see Theorem 4 in Mood, Graybill and Boes

1974, p. 181), since the error terms are usually i.i.d. in tournaments.

6. Tournament models often use linear production functions; see, e.g., the

seminal paper of Lazear and Rosen (1981). Here, I will focus on the

unverifiability problem and do not add an exogenous noise component

to ei.

7. c
′−1(·) denotes the inverse of the workers’ marginal cost function.

8. But even in this case there is a welfare loss, because realized effort will

usually differ from eFB.

9. See, e.g., Dye (1984), p. 148; McLaughlin (1988), p. 248; Milgrom and

Roberts (1992), p. 369.

10. Since collusion is illegal, such an agreement cannot be enforced by

contract, but has to be self-enforcing.

11. Using the grim strategy (or trigger strategy) worker i begins playing his

collusive effort ei = 0. Worker i remains playing ei = 0 as long as the

other worker j has chosen zero effort in the last round. But if the other

worker j chooses an effort different from zero, worker i will switch to

52



his Nash equilibrium strategy of the one-shot tournament and will keep

on playing it in each of the subsequent rounds. Of course, according to

the Folk Theorem there may be a wide range of equilibria which lead

to stable collusions. But for simplicity, the analysis is restricted to pos-

sible equilibria in grim strategies. Moreover, grim strategies have the

desirable property that they can result in subgame perfect equilibria.

12. Stark (1987, 1990) introduces the RD concept in the discussion of tour-

naments. For a modelling of tournarments with RD based on net in-

come see Kräkel (2000).

13. For a formal description of the workers’ objective functions see Eq. (15)

in the Appendix.

14. The following results will qualitatively hold, if we assume ai ∈ {aL, aH}

with aL < aH and costs cL for aL and cH for aH .

15. Since ε → 0, the terms with ε and c (ε) have been neglected for sim-

plicity when deriving the optimal strategies for the first and the second

stage.

16. Note that ∆w cannot be increased by lowering w2, as w∗
2 = ū is fixed.

17. See Eq. (3) in the Appendix.
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18. This is obvious for (i). For (ii) see the proof of Proposition 4a in the

Appendix.

19. For the following considerations see the proofs of Proposition 4a and

Corollary 2. Especially, note that for aj > ai worker i’s mixed strategy

on the third stage is described by the cdf Gi (x) = 1− c
(

ai

aj
ēi

)
/∆w +

c( ai

aj
x)/∆w over the interval [0, ēi] with ēi = c−1 (∆w). Thus, worker

i’s drop-out probability mentioned below (i.e., Gi (0)) tends to 1 for

aj →∞ or ai → 0.

20. The three-stage tournament with human capital investment will not

be discussed for n > 2 workers, because there will not be new insights

from this modeling. For example, in the U-type tournament with many

investment levels we will have competition between n heterogeneous

workers. In analogy to the contest literature, we should then expect

an asymmetric equilibrium, where the two strongest players compete

against each other and the n−2 other workers drop out (see, e.g., Baye,

Kovenock and de Vries 1996, p. 297).

21. Of course, the expected utilities depend on w1 and w2 which may de-

pend on n, but the condition for stable collusion is independent of

w1 and w2.
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22. The main differences to rent-seeking contests are that in tournaments

workers have convex cost functions and the prizes are optimally chosen

by an employer.

23. J-type tournaments are similar to logit-form contests (see, e.g., Dixit

1987, p. 893). The major differences are the convex cost function and

the endogeneous wage bill w.

24. The second-order conditions always hold in the J-type tournament.

25. Note that this formulation of RD is more general than the definition

in Kräkel (2000), where a worker only feels relatively deprived when

becoming a loser in the tournament.

26. c (ε) is neglected because of c (ε) → 0.

27. Note that again w∗
2 = 0 in the U-type tournament.
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