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Abstract

Gregarious behavior of potential prey was explained by Hamilton (1971)
on the basis of risk-sharing: The probability of being picked up by a
predator is small when one makes part of a large aggregate of prey. This
argument holds only if the predator chooses its victims at random. It is
not the case for herds of evasive prey in the open, where prey’s gregari-
ous behavior, favorable for the fast group members, makes it easier for the
predator to home in on the slowest ones. We show conditions under which,
gregarious behavior of the relatively fast prey individuals leaves slowest
prey with no other choice but to join the group.Failing to do so would
signal their vulnerability, making them a preferred target for the preda-
tor. Analysis of an n + 1 player game of a predator and n unequal prey
individuals clarifies conditions for fully gregarious, partially gregarious, or
solitary behavior of the prey.

∗Financial Support by the Deutsche Forschungsgemeinschaft through SFB/TR 15 is grate-
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†Forthcoming in the Journal of Mathematical Biology.
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1 Introduction

Animals’ gregarious behavior may result from various reasons as self defence,
mating behavior, or concentration of food. As has already been noticed by
Lorenz (1966), none of these causes seem applicable to evasive herds of ungu-
lates in open plains, to shoals of fish in the open sea, or to flocks of birds. Later
explanations as of vigilance (Bertram 1978, Motro and Cohen 1989, Elgar 1989,
Lima1994, Bednekoff and Lima 1998) or of other sorts of information sharing
(Ward and Zahavi 1973, Clark and Mangel 1984, Turner and Pitcher 1986, Tem-
pleton and Giraldeau 1995, Valone and Templeton 2002) may not be applicable
to the commonly observed tendency of potential prey to aggregate in face of
danger, and to escape as a group. As has already been noticed by Hamilton
(1971 and references there), there is a body of evidence indicating that prey’s
gregarious behavior often facilitates predation (for more recent references see
Hebblewhite and Pletscher 2002, Whitfield 2003).
An already widely accepted explanation, suggested by Hamilton to this phe-

nomenon, was based on risk-sharing (see also Williams 1964): Even if a large
aggregate of prey facilitates the predation of one or few individuals out of it,
the chance of any of its member to be the chosen victim may still be small.
Moreover, once such an aggregate is established, it becomes advantageous to
any of its members to push its way to the center, thereby decreasing its own
predation probability (Hamilton 1971, and later empirical evidences in Foster
and Treherne 1981, Bumann et al 1997, James et al 2004).
Hamilton’s model has shifted the focus of the problem from the two-player

game, played by a predator and a group of prey, to that of the n-player game,
played among individuals within the prey population. A tacite assumption
of the risk-sharing argument, however, concerns the role of the predator as a
passive nature-force, picking its prey at random, rather than an active, decision-
making player, attempting to choose the most vulnerable prey in group. This
is a plausible assumption for a gatherer type of a predator, and it was convinc-
ingly established for various predators of fish (Bumann et al 1997, Nonacs et
al 1998, James et al 2004), tadpoles (Spieler 2003), crabs (Viscido and Wethey
2002), beetles (Romey 2004) or limpets (Coleman et al 2004). It appears to be
less applicable for predators of evasive prey as flocking birds (Nishimura 2002,
Cresswell and Quinn 2004) or ungulates in the open (Fanshawe 1993, Hebble-
white and Pletscher 2002). In these cases, it has been well established that the
choice of a vulnerable prey is a most crucial stage of the hunt. But when this
is the case, the risk-sharing effect becomes irrelevant to the most vulnerable,
slowest individuals in the evasive herd. On the contrary, being part of a large
group, makes this prey more easy to home in on. The question, in this case, is
what prevents the dissolving of the herd due to successive desertions by those
of its members that find themselves, each at a time, in its rear.
As has been suggested elsewhere (Eshel 1978), a key factor in the estab-

lishment of gregarious behavior of evasive prey lies, quite paradoxically at first
sight, in the extra information this behavior reveals to the predator about the
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identity of the slowest prey in herd. While this is obviously disadvantageous
to the slowest prey, it is advantageous to faster members of the herd, as it
decreases the probability that the predator will mistakenly home in on them.
But then, not joining the herd may as well mark the vulnerability of the slower
prey, rendering it preferable target for the predator. To analyze this situation,
a model of an asymmetric n + 1-player game, n unequal prey individuals and
a decision-making predator, the Savannah Model, was suggested (Eshel 1978).
Contrary to Hamilton’s model, the Savannah Model assumes that the predator
has full information both about the location of the prey, and about the identity
of the slowest prey in any group it pursues. Under these extreme conditions,
fully gregarious behavior of the prey resulted as the only outcome of the game.
Note that, although deviating from the specific assumptions of Hamilton’s risk-
sharing model, the Savannah Model still follows Hamilton’s most fundamental
idea of a selfish prey, seeking to increase its own survival probability.
In the present work we further develop this idea under a rather general

assumption about the predator’s set of information. In section 2 we introduce
a prey-predator game, of which Hamilton’s Selfish Herd and Eshel’s Savannah
Model are special cases. While in environments close to these two, prey’s totally
gregarious behavior is shown to always be the outcome of the game, we also find
conditions for partially gregarious and solitary behavior of the prey. In section
3 we implicitly characterize the equilibria and stable equilibria of the game. In
section 4 we concentrate on an important set of equilibria, regular ones, in which
a herd is formed either by all prey individuals, or by a subgroup of the fastest
ones, and the predator always prefers to pursue a solitary prey, if it detects
one. For a range of environments, close to that of the Savannah Model (the
savannah environment, subsection 4.1), it is shown that a regular equilibrium
always exists, and it is generally stable. Under further assumptions, all equilibria
are shown to be regular. Non regular equilibria (in addition to regular ones) are
shown to exist in environments close to that of Hamilton’s Model.

2 The Herd Formation Model
A prey population Ω consists of n unrelated individuals within the territory of
a single predator. The individuals within the prey population are distinguished
by their probability of being caught by a predator, when it pursues them, p1 <
p2 < ..... < pn. Individual 1, the fastest prey, has the lowest probability of being
caught. Each of the individuals chooses whether to join the (single) herd or to
hide as a solitary individual. Let H ⊆ Ω be the set of individuals that form the
herd, and let S = Ω−H be the set of solitary individuals. Note that either H or
S may be empty if all individuals (or none) join the herd. Let h be the number
of individuals in the herd, and let s be the number of solitary individuals, with
h+ s = n.
The (single) predator surveys the terrain and tries to locate a prey. The

predator aims to catch a single prey. Once it catches one prey, the chase ends.
A herd of size h escapes the predator’s attention with probability qh. We
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assume that it is more difficult for a larger herd to pass undetected by the
predator, i.e. qh+1 < qh (This assumption may not be valid for cases in which
sharing of information helps large herds to avoid predators, e.g. Turner and
Pitcher 1986. The present model, however, suggests an alternative explanation
to prey’s gregarious behavior). A solitary individual will escape the attention
of the predator with probability q1 = q < 1, hiding solitarily does not guarantee
safety. Detecting prey, whether solitary individuals or a herd, are assumed to
be independent events.
If the predator detects only the herd (but fails to detect any solitary prey), it

will pursue the herd. If it fails to observe the herd but detects some solitary prey,
it will pursue one of the solitaries it detected. The predator’s strategy specifies
what it will do if it detected both the herd and some solitary individuals. The
predator may use a pure strategy or a mixed one: It will pursue the herd with
probability 1− x, and one of the solitary individuals with probability x.
The main difference between the herd and the group of solitary prey is the

information the predator receives about the prey it pursues. When pursuing
one of the solitary individuals, it receives no signal about their speed, and it
therefore homes in on one of those it detected with equal probabilities. In
contrast, when the predator pursues the herd, it is more likely to home in on a
slow individual.
Let θi,H be the probability that, pursuing the herdH, the predator will home

in on individual i. We assume that θi,H satisfies the following three assumptions:

1. When pursuing a herd, the predator will eventually home in on one of its
members:

P
η∈H

θη,H = 1.

2. The predator homes in on a faster prey individual with lower probability
than on a slower one: If i, j ∈ H, i < j, then θi,H ≤ θj,H .

3. If a faster individual joins the herd, its probability of being pursued by
the predator is lower than that of a slower individual that joins the herd:
If i, j /∈ H, i < j then θi,H∪{i} ≤ θj,H∪{j}.

The following is an example of a function θi,H that satisfies the above 3
assumptions:

Example:

θi,H =
pρiP

η∈H
pρη

,

where ρ ≥ 0. The parameter ρ measures the precision of the information the
predator receives when pursuing the herd. For ρ = 0, the predator receives no
information and will home in on any of the individuals with equal probabilities.
For the limit case ρ = ∞, the predator makes no mistake and homes in on
the slowest individual in the herd. These two extreme cases correspond to
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Hamilton’s (1971) selfish herd model (ρ = 0), and Eshel’s (1978) savannah
model (ρ =∞) .

The assumptions given above define a Herd Formation Game, in which each
prey individual chooses whether to join the herd, and the predator chooses
whom to pursue when it observes both the herd and some solitaries. The payoff
of each prey individual is its probability of not being caught, and the predator’s
payoff is its probability of catching a prey.
An equilibrium of this game consists of a strategy of the predator plus a

partition of the prey population into a herd and solitary individuals, such that
no individual can gain by deviating from its strategy. The strategies of the
players in this game can be described by the pair hH,xi , where 0 ≤ x ≤ 1
is the predator’s strategy (the probability with which it will pursue a solitary
individual in the case that it detected both the herd and some solitaries), and
H ⊆ Ω is the herd (formed by those prey individuals that choose to join the
herd). S = Ω−H is the corresponding set of solitary individuals.
Being interested in the formation and stability of herds, we restrict our

analysis to equilibria with pure prey’s strategies. This will sometime require
the consideration of the predator’s mixed strategies.

Definition:
(i) The pair hH,xi is an equilibrium if each prey individual plays a best re-

sponse to the strategies of all the others (prey and predator), and the predator’s
strategy x is a best response to the partition of the prey population.
(ii) The pair hH,xi is a stable equilibrium if the strategy of each prey individ-

ual is the unique best response to the strategies of all others, and the predator’s
strategy x is the unique best response to the partition of the prey population.

3 Best Responses and Equilibria
In this section we analyze the best response of the predator to each partition
formed by the prey population, and the best response of each prey individual
to both the predator’s strategy and the partition formed by all other prey.
Consequently we characterize the equilibria and stable equilibria of the game.

3.1 The Predator’s Best Response

Given the prey’s choices, a herd H of size h has been formed (s = n− h is the
size of the group of solitaries). The predator’s strategy 0 ≤ x ≤ 1 determines
the predator’s action when detecting both the herd and some solitary prey. In
this case, the predator pursues a random solitary in probability x, and pursues
the herd in probability 1 − x. In all other cases, the predator pursue the only
group of prey it detected, independently of its strategy. This means that when
all prey individuals took the same decision, either to form a single herd, or to
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remain solitary, the predator is indifferent between its strategies, each of them
leads to the same action and is, therefore, a best response to the prey’s choice.
Assume that neither the herd H, nor the group S of solitaries is empty. The

predator’s best response to the prey’s choice, in this case, is the strategy that
will provide it with the highest probability of success when detecting both the
herd and some solitaries. Pursuing the herd, the predator has a probability θη,H
to home in on its member η ∈ H, with a conditional probability pη of success.
Its total probability of success is then

P
η∈H

θη,Hpη. On the other hand, pursuing

a solitary, the predator has equal probabilities both to detect and to pursue, if
it detected, each of the s solitaries, hence it has a probability 1/s to home in
on any solitary. Homed in on the specific solitary σ ∈ S, it has a conditional
probability pσ of success. Its total probability of success, if pursuing a solitary,
is therefore 1

s

P
σ∈S

pσ.

Proposition 1 Assume that neither the herd H, nor the group S of solitaries
is empty, then:
(i) If X

η∈H
θη,Hpη >

1

s

X
σ∈S

pσ, (1)

then the predator’s unique best response is to pursue the herd, whenever detected
(x = 0).
(ii) If the reverse of (1) holds as a strict inequality, then the predator’s unique

best response is to pursue a solitary prey, whenever it detect one (x = 1).
(iii) A (non unique) best response of the predator can be a mixed strategy

only if inequality (1) is replaced by an equality. This is possible only for a
zero-measure set of parameters.

3.2 The Prey’s Best Response

We now calculate one prey individual’s best response to the predator’s strategy
0 ≤ x ≤ 1 and to all other prey individuals’ choices, i.e. to their partition
into herd and solitaries. We first find a condition for a prey individual i that
is currently in the herd, to be better off remaining there. For this we have to
compare its probability to be caught if staying in herd, with its probability to
be caught if leaving it.
Staying in herd, the probability that it will be caught is θi,Hpi times the

probability that the predator will pursue the herd. The predator will pursue
the herd for sure if it detects the herd and no solitary prey. This occurs in
probability (1− qh) q

s. It will pursue the herd in probability 1− x if it detects
both the herd and some solitaries. This occurs in probability (1− qh) (1− qs).
Summing up, the probability of i to be caught, if remaining in herd, is:

[(1− qh) q
s + (1− x) (1− qh) (1− qs)] θi,Hpi.
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To calculate its probability to be caught if leaving the herd, we distinguish
between the cases where h ≥ 3, and the one in which h = 2. In the first case, if
prey i deserts the herd and joins the solitaries, the herd shrinks toH 0 = H−{i} ,
and the set of solitaries expands to S0 = S∪{i}. In this case, the probability that
individual i will be caught is pi/ (s+ 1) times the probability that the predator
will pursue a solitary (as there are now s+1 of them). The predator will pursue
a solitary for sure if it only detects the solitaries. This occurs in probability
qh−1

¡
1− qs+1

¢
. It will pursue a solitary in probability x if it detects both the

herd and some solitaries. This occurs in probability (1− qh−1)
¡
1− qs+1

¢
. Thus

the probability of prey i to be caught if leaving the herd is:£
qh−1

¡
1− qs+1

¢
+ x (1− qh−1)

¡
1− qs+1

¢¤ 1

s+ 1
pi.

Individual i is therefore better off in the herd than hiding as a solitary iff:

[(1− qh) q
s + (1− x) (1− qh) (1− qs)] θi,Hpi

<
£
qh−1

¡
1− qs+1

¢
+ x (1− qh−1)

¡
1− qs+1

¢¤ 1

s+ 1
pi.

By a simple manipulation, denoting the right hand side of the following
inequality by τh (x) , individual i is better off staying in the herd iff:

θi,H <

¡
1− qs+1

¢
[(1− x) qh−1 + x]

(s+ 1) (1− qh) [xqs + 1− x]
= τh (x) h ≥ 3 (2)

In the case that the herd has only 2 members (h = 2), if prey i abandons it,
the herd dissolves and all individuals become solitaries. The condition for being
better off when remaining in the herd in this case is:

θi,{i,j} <
(1− qn)

n (1− q2) [xqn−2 + 1− x]
= τ2 (x) . (3)

The right hand sides of the last two conditions, τh (x) , are independent of
i, they depend only on the size of the herd (h) and on the predator’s strategy
(x) .
Note that if condition (3) holds for some i, j, then the situation in which

all individuals hide solitarily is not an equilibrium. The slowest of the two
individuals i, j, assume it is i, will join j to form a herd, and since prey j is
faster, θj,{i,j} < θi,{i,j}, and prey j will be better off staying in this herd of size
two rather than dissolve it.

In an analogous way, prey i, that is currently solitary, will be better off
staying as a solitary iff:

θi,H∪{i} >
(1− qs) [(1− x) qh + x]

s (1− qh+1) [xqs−1 + 1− x]
= τh+1(x). (4)
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Note that all the above inequalities will be strict inequalities for almost all
sets of parameters, equalities hold for a set of parameters of measure zero.
It follows (as is shown in Proposition 2) that if the slowest individual in H

is better off staying in the herd, then all other individuals in the herd will also
be better off in the herd than hiding as solitarily.

Proposition 2 For any predator strategy 0 ≤ x ≤ 1 :
(i) If an individual in the herd is better off in the herd than being solitary,

then all faster individuals in the herd are also better off being in the herd.
(ii) If a solitary individual is better off as solitary than in the herd, then all

slower solitary individuals are better off being solitary than joining the herd.

Proof. (i) Let individual i ∈ H be better off staying in the herd than hiding
solitarily, and let η ∈ H be a faster prey than i. In this case θη,H ≤ θi,H , and
by inequality (2), θi,H < τh (x) , hence θη,H < τh (x) . But this is the condition
for individual η to be better off staying in the herd.
(ii) Let individual i be a solitary individual. If its best response is to stay

solitary, then by inequality (4): θi,H∪{i} > τh+1 (x) . Let η be a solitary prey
slower than i. By our assumptions on the homing in probabilities: θi,H∪{i} ≤
θη,H∪{η} (when a slower individual joins a herd its probability of being pursued
is higher than that of a faster individual that joins the herd). It follows that
θη,H∪{η} > τh+1 (x) , which implies that individual η0s best response is to remain
solitary.

Conclusion: Given a partition of the prey population into a herd and
a group of solitaries, it suffices to test whether the slowest individual in the
herd and the fastest solitary individual play their best response. If these two
individuals play their best response, then all other individuals necessarily play
their best response.

3.3 Equilibria and Stable Equilibria

From Proposition 2 and inequalities (1) - (4) we get:

Proposition 3 The pair hH,xi is an equilibrium iff the three following condi-
tions are satisfied:
i) θi,H ≤ τh(x), where i is the slowest member of H, τh(x) being defined in

(2) and (3).
ii) θj,H∪{j} ≥ τh+1(x), where j is the fastest solitary prey, if there is a

solitary prey.
iii) x is a predator’s best response to the formation of the herd H.
hH,xi is a stable equilibrium iff inequalities (i) - (ii) are strict, and x is the

unique predator’s best response to the formation of the herd H.
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4 Regular Herds
Proposition (2) introduces some regularity into the equilibrium partitions of the
prey population. It suggests that herds, in which the slowest member is faster
then all solitary individuals, are reasonable candidates for equilibrium. We show
conditions under which such equilibria exist, and conditions under which only
such equilibria exist.

Definition: A (non empty) herd H is a regular herd if its slowest member is
faster than any solitary prey. We denote by Rh the regular herd of size h, (h =
2, 3, ...n), consisting of the fastest h prey individuals.

Note that the grand herd Rn = Ω , corresponding to the fully gregarious
behavior of the prey, is regular.

Proposition 4 The strategy x = 1 (pursuing a solitary prey whenever it is
detected) is always a predator’s best response to a regular herd. It is the unique
predator’s best response to any regular herd Rh, where h ≤ n− 1.

Proof. We already know that, once the grand herd was formed, the predator is
indifferent between all its strategies, all of them amount to pursuing the herd,
if it was detected. In this case any predator’s strategy, x = 1 included, is a
predator’s best response to Ω.
Assume a regular herd Rh with 2 ≤ h ≤ n− 1, then any solitary individual

σ ∈ Ω − Rh is slower than any member η ∈ Rh of the herd, hence pη < pσ. It
follows that any weighted average of the values pη over all η ∈ Rh is smaller
than any average (weighted or not) of the values pσ over all σ ∈ Ω − Rh, and
as a special case X

η∈Rh
θη,Rhpη <

1

s

X
σ∈Ω−Rh

pσ.

From part (ii) of Proposition 1 it follows that the predator’s unique best
response to Rh is to pursue a solitary prey, whenever it is detected.
From the propositions 4 and Proposition 3 it follows that the pair hRh, 1i

is an equilibrium iff θh,Rh ≤ τh(x) and, when h < n, if θh+1,Rh+1 ≥ τh+1(x).
We now show that either a large size of the prey population or a low prob-

ability of escaping the attention of the predator are sufficient to ensure the
existence of an equilibrium with a regular herd.

Proposition 5 If the prey population is sufficiently large, and the prey’s prob-
ability q to hide is sufficiently small, so as to satisfy

nqn−2 < 1− qn, (5)

then there exists an equilibrium hRh, 1i, with a regular herd Rh, regardless of
the homing in probabilities {θi,H}.
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Proof. We already know that the strategy x = 1 is a predator’s best response to
any regular herd Rh. From and the definition of τ2 (1) (see (3)) it follows that, if
(5) holds, then τ2 (1) = (1− qn) /nqn−2 (1− q2) > (1− qn) /nqn−2 > 1, hence
θ2,R2 ≤ 1 < τ2 (1). In this case it follows from (3) that, given the predator’s
strategy x = 1, the slowest member of the regular herd R2 would be better off
staying in it. If, in addition, θ3,R3 ≥ τ3 (1), then it follows from inequality (2)
that individual 3 is better off staying solitary. From propositions 3 it follows
that hR2, 1i is then an equilibrium. If, on the contrary, θ3,R3 < τ3 (1), then
the slowest member of the regular herd R3 would be better off staying in it.
Repeating this argument, either there is a regular herd Rh, with 2 ≤ h ≤ n− 1,
for which hRh, 1i is an equilibrium, or else, θn,Rn < τn (1), which, implies that
hΩ, 1i is an equilibrium.
Note that the condition (5), guaranteeing the existence of a regular herd, is

satisfied under quite moderate requirement on n and on q. Thus, any proba-
bility q ≤ 0.2 to hide as solitary is sufficient to guarantee the existence of an
equilibrium with a regular herd for any prey population of a size larger than
two. Even when the probability of hiding solitary increases to a level as high as
q = 0.8, the condition (5) guarantees the existence of such an equilibrium for
any prey population larger than 16.

We now concentrate on two important environments in which the condition
of Proposition 5 is likely to be satisfied, and for which we shall be able to be
more specific about the type of herd that will be formed in equilibrium.

1. The first is the Savannah Environment, in which the predator can detect
any prey with high probability. For this environment we show that if
the predator is not as efficient in homing in on the slowest member of a
pursued herd as it is in detecting prey, then, for values of x sufficiently close
to one, the pair hΩ, xi is an equilibrium, and no other regular equilibria
can possibly exist. If, on the contrary, the predator is more efficient in
identifying the slowest member of any herd than in detecting a solitary
prey, we shall see that no equilibrium hH,xi can exist, in which H is a
not regular herd, nor can there be equilibria of the form hΩ, xi. Yet if, in
this case, the population is not too small, then there exist an equilibrium
hRh, 1i, with a regular herd smaller than Ω.

2. The second environment is Hamilton’s regime of the Selfish Herd. Here,
the predator has low probabilities of detecting any prey, whether solitary
or in group, and when detecting a group of prey, the predator receives
little information about its various members; it then homes in on any
one of them with almost equal probabilities. Under these assumptions,
our model yields the original Hamilton’s condition for the formation and
stability of the grand herd. We further find conditions under which stable
equilibria hH,xi exist, where H is a partial herd. In this case we show
that stable equilibria exist, both with regular and irregular herds.
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4.1 The Savannah Environment

Under the title of the Savannah Environment, we study the Herd Formation
Game when the probability q of hiding as solitary (and hence the probability
qh < q that a herd of size h > 1 will escape the attention of the predator) is
small.

Proposition 6 i) If the predator’s probability θn,Ω to home in on the slowest
member of the grand herd Ω is smaller than its probability 1 − q to detect a
solitary prey, then for a sufficiently small value of q, and for x sufficiently close
to one, hΩ, xi is an equilibrium.
ii) If for any herd H, the predator’s probability θi,H of homing in on its

slowest member is smaller than 1 − q, then, for a sufficiently small q, all the
regular equilibria are of the form hΩ, xi.
iii) If, on the other hand, θn,Ω > 1 − q , then there is no equilibrium of

the form hΩ, xi; but if, in addition, q is still sufficiently small and the prey
population is sufficiently large, then there exists an equilibrium hRh, 1i, with a
regular herd Rh such that h < n.
iv) If for any herd H, the predator’s probability θi,H of homing in on its

slowest member is larger than 1−q, and q is sufficiently small, then all equilibria
of the model have a regular herd. Recall that in this case, if the size of the prey
population is sufficiently large, we know that such an equilibrium exists.

Proof. i) If θn,Ω < 1 − q, then indeed θn,Ω < (1− q) / (1− qn) = τn(1),
and from continuity argument it follows that for x sufficiently close to one,
θn,Ω < τn(x). Since any predator’s strategy is best response to Ω, it follows
from propositions 3 that hΩ, xi is an equilibrium.
ii) Assume now that for any herd H and its slowest member i, θi,H < 1− q,

and let hRh, 1i be an equilibrium with h < n. Since the individual h+ 1 is the
slowest in Rh+1, we know that θh+1,Rh+1 < 1− q. But for all q, qh < 1 and for
all s :

(s+ 1) (1− qh) q
s < (s+ 1) qs <

sX
i=0

qi =
1− qs+1

1− q
,

hence for s = n− h

θh+1,Rh+1 < 1− q <
1− qs

s (1− qh+1) qs−1
= τh+1 (1) , (6)

and it follows from (2) that, given the predator strategy x = 1, hRh, 1i cannot
be an equilibrium: The solitary h + 1 will then be better off joining the herd.
But since, as a special case, θn,Ω < 1−q, we already know that for x sufficiently
close to one, hΩ, xi is an equilibrium
iii) If θn,Ω > 1− q, then

qn < q < 1− (1− q) /θn,Ω.
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This implies that

τn (1) =
1− q

1− qn
< θn,Ω,

and hΩ, 1i is not an equilibrium.
Since τn (x) is an increasing function of x, it follows that hΩ, xi cannot be

an equilibrium for any 0 ≤ x ≤ 1. But Proposition 5 implies that if the prey
population is sufficiently large, then there exists an equilibrium hRh, 1i with a
regular herd. Since hΩ, 1i is not an equilibrium, we know that h < n.

iv) Assume now that for any herd H, if i is its slowest member, then θi,H >
1 − q. If hH,xi is an equilibrium, and i is the slowest member in H, then i
should then be better off staying in herd, hence from (2) and the assumption
θi,H > 1− q we get:

1− q < θi,H ≤ τh(x) =

¡
1− qs+1

¢
[(1− x) qh−1 + x]

(s+ 1) (1− qh) [xqs + 1− x]
. (7)

But for q sufficiently small (it is enough, in this case, to require q ≤ 1/2),
inequality (7) can only be satisfied if the predator’s strategy x is bounded away
from 0, since when x = 0, the right-hand side of (7) is

τh(0) =
qh−1

¡
1− qs+1

¢
(s+ 1) (1− qh)

<
1

s+ 1
<
1

2
≤ 1− q,

which contradicts inequality (7) .
We now show that H cannot be an irregular herd. Suppose it is, then there

exists a solitary individual j which is faster than individual i. The condition for
individual j to remain solitary is (inequality (4)):

θj,H∪{j} ≥ τh+1(x).

But j, if it joins the herd H, would not be the slowest member in the newly
created herd H ∪ {j}. Individual i would then still be the slowest in the herd.
As the slowest individual, it will be chosen by the predator with probability of
at least 1−q, hence individual j will be homed in on with probability of at most
q. This, together with the previous inequality, implies:

q ≥ θj,H∪{j} ≥ τh+1(x) =
(1− qs) [(1− x) qh + x]

s (1− qh+1) [xqs−1 + 1− x]
. (8)

From inequalities (7) and (8) we obtain:

q > (1− q)
(1− qh)

(1− qh+1)

(1− qs)

(1− qs+1)

[(1− x) qh + x]

[(1− x) qh−1 + x]

(s+ 1)

s

[xqs + 1− x]

[xqs−1 + 1− x]
(9)

For a sufficiently small q, the first three terms of the right-hand-side of (9)
can be made arbitrarily close to 1. Since, as we observed, x is bounded away
from 0, the fourth term can also be made close to 1, by making q, and therefore
qh, qh−1 sufficiently close to 0. The next term (s+ 1) /s is clearly greater than
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1, while the last term is greater than q. Thus, by choosing q sufficiently small,
the right hand side of (9) can be made greater than q, contrary to inequality
(9) , hence H cannot be a non regular herd.
Finally, from Proposition 5 we know that if the size of the prey population

is sufficiently large, then an equilibrium hRh, 1i, where Rh is a regular herd,
exists.
Indeed, if there is a sufficiently large number of solitaries around, then a

predator with a strategy x = 1 of pursuing solitary prey, if detected, will very
rarely pursue the regular herd, and even the slowest member in this herd will be
better off staying in it. Proposition 5 guarantees, in this case, the existence of an
equilibrium hRh, 1i with a regular herd. Proposition 6 characterize conditions
under which no other sort of an equilibrium exists.

4.2 Hamilton’s Regime of the Selfish Herd

We now analyze the second environment, Hamilton’s regime of the Selfish Herd.
In Hamilton’s original model the gatherer-predator’s main difficulty is in finding
the prey. Once it found one, it has no difficulty in catching it. It is also as-
sumed that, once the predator detected a group, it does not distinguish between
the prey individuals in the group, and it homes in on one of them with equal
probabilities. In the terminology of our model, this means that q, qh are close
to 1, and that θi,H = 1/h. We generalize Hamilton’s model, and refer to it as
Hamilton’s Regime by assuming that the homing in probabilities θi,H are close
to 1/h, with θi,H ≥ θj,H whenever i is slower than j.

Hamilton’s original results can be re-stated as following:

Proposition 7 (Hamilton’s Theorem) Assume that the homing in probability
θi,Ω on any prey individual i ∈ Ω is sufficiently close to 1/n. If the probability
1 − qn that the predator will detect the grand herd is less than n times the
probability 1−q that it will detect a solitary prey, (1− q) / (1− qn) > 1/n, then,
for a hiding probability q sufficiently close to one, the grand herd Ω is stable
for all of the predator’s strategies. That is, for each of the predator’s strategies
0 ≤ x ≤ 1, the unique best response of each prey individual is to remain in the
herd Ω.
If, on the other hand, (1− q) / (1− qn) < 1/n, then there is no equilibrium

in which the grand herd Ω forms.

Proof. (i) From (2) and the requirement (1− q) / (1− qn) > 1/n it follows
that for q (and therefore for qn, qn−1 ≥ q) sufficiently close to one, τn (0) =
qn−1 (1− q) / (1− qn) > 1/n, hence for θn,Ω sufficiently close to 1/n, τn (0) >
θn,Ω. Recall that τn (x) is an increasing function of x, hence for any predator’s
strategy x, θn,Ω < τn (x). From (2) it thus follows that for any predator’s
strategy x, any prey n is strictly better off staying in herd.
(ii) Since the prey individual n, being the slowest in a herd of n members,

has a probability larger than average to be chosen by the predator, we know
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that θn,Ω ≥ 1/n. Together with the inequality (1− q) / (1− qn) < 1/n, this
implies θn,Ω > (1− q) / (1− qn) = τn (1) ≥ τn (x) for all 0 ≤ x ≤ 1, hence no
equilibrium hΩ, xi can exist.
Inequality (1− q) / (1− qn) < 1/n, as we see, does not preclude the existence

of an equilibrium with a smaller herd than Ω.

Proposition 8 Assume that there exists an integer h, 2 ≤ h < n, for which

1− qh
h

< 1− q <
1− qh+1
h+ 1

, (10)

then for values of q (and hence qh and qh−1) sufficiently close to 1, any herd of
size h is a part of an equilibrium hH,xi .

Proof. Let H be any herd with h members, and let x be the predator’s best
response to the herd H. By (2) , individual i ∈ H is better off staying in the
herd if:

θi,H < τh (x) =

¡
1− qs+1

¢
(s+ 1)

[(1− x) qh−1 + x]

(xqs + 1− x)

1

(1− qh)
. (11)

By choosing q sufficiently close to 1, the first term of the right hand side of

(11) can be made to be close to 1− q
³
since 1− qs+1 = (1− q)

Xs

k=0
qk
´
, and

the second term close to 1. The right hand side of (??) then becomes as close as
we wish to (1− q) / (1− qh) hence, choosing, in addition, θi,H sufficiently close
to 1/h, the left hand part of condition (10), (1− qh) /h < 1 − q, guarantees
(??) , which implies that all individuals in the herd H are better off staying in
the herd.
Similarly, the right hand part of requirement (10), 1−q < (1− qh+1) / (h+ 1),

ensures that θi,H∪{i} > τh+1(x), hence all prey individuals that are not in H
are better off staying solitaries. It follows that hH,xi is an equilibrium.

The last Proposition implies the possible existence of irregular herds: If for
some 2 ≤ h < n, condition (10) holds, then all herds of size h are stable. There

are
µ

n
h

¶
such herds, but only one of them is regular. Note, moreover, that

except for a zero-measure set of parameters, all these equilibria are stable, with
a predator strategy either x = 1 or x = 0.

4.3 Stability and Weak Stability of the Prey’s Fully Gre-
garious Behavior

We have seen that, except for a zero-measure set of parameters, an equilibrium
hH,xi with 2 ≤ h < n is stable, with either x = 1 or x = 0. This is not the
case for H = Ω. When the grand herd Ω forms, the predator never observes
a solitary prey, and therefore all of its strategies are best responses to Ω. The
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condition for hΩ, xi to be an equilibrium is that the slowest prey individual n is
better off in the herd:

θn,Ω < τn (x) =
1− q

1− qn
[(1− x) qn−1 + x] . (12)

The right hand side of (12), τn (x) , is an increasing function of x, hence
if this condition is satisfied for some x, it must hold for all larger x, and in
particular for x = 1,

θn,Ω < τn (1) =
1− q

1− qn
. (13)

i.e. hΩ, 1i is an equilibrium. If inequality (12) holds for x = 0 as a strict
inequality, namely if

θn,Ω < τn (0) =
1− q

1− qn
qn−1, (14)

then hΩ, xi is an equilibrium for all 0 ≤ x ≤ 1.
In that case, moreover, the set {hΩ, xi |0 ≤ x ≤ 1} is stable: The predator

may use any of its strategies, but it is always strictly beneficial for all prey
individuals to remain in the herd.
This stability condition, (14) , is satisfied in Hamilton’s environment, when-

ever (1− q) / (1− qn) ≥ 1/n and q is close to 1. It is never satisfied in the
Savannah environment, where q is close to 0, even if condition (13) is satisfied,
and hΩ, 1i is an equilibrium. The fully gregarious behavior Ω cannot then be
stable.
If the fully gregarious behavior is an equilibrium, but not a stable one, i.e.

if:
τn (0) =

1− q

1− qn
qn−1 ≤ θn,Ω <

1− q

1− qn
= τn (1) ,

then there exists a unique solution x0, 0 ≤ x0 < 1, to the equation θn,Ω = τn (x) .
For all x > x0, θn,Ω < τn (x) , hence the grand herd Ω is stable as long as the
predator’s strategy is in (x0, 1]. But as long as all prey individuals are in the
herd, there is no reason why the predator’s strategy should remain within this
interval. Thus, there is no stable equilibrium hΩ, xi, nor a set of equilibria which
is stable.
However, a weaker concept of stability was suggested for a similar model

by Binmore and Samuelson (1999). This was based on the assumption that
if a player is indifferent between strategies, he may drift between them, but
the change in its strategy will then be slow, whereas when an individual does
not play its best response, there is more pressure in the direction of the best
response, and the adjustment in this direction will be much faster. Applying
this assumption to the case τn (0) ≤ θn,Ω < τn (1) in our model, the grand herd
Ω remains stable as long as the predator’s strategy drifts within the interval
(x0, 1], but as it first crosses x0, the best response of the slowest prey individual
n will be to leave the herd. This will happen faster than any additional change
in the predator’s strategy, which might enable also the prey individual n − 1
to leave the herd. But we already know that, once the herd Rn−1 is formed,
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it is the predator’s best response to play x = 1, and then it becomes the best
response of the slower prey to return to the herd, this way we return to hΩ, 1i .
In such a case, following Binmore and Samuelson, we speak of weak stability

of the fully gregarious behavior of the prey, predicting that the herd Ω will be
observed most of the time, with occasional deviations of the slowest prey, while
the predator’s strategy will drift at the vicinity (x0, 1] of x = 1.

5 Discussion

5.1 The model - Motivation and Justification

The present work attempts to explain the commonly observed tendency of po-
tential prey to aggregate in face of danger, and to escape in group. Contrary to
other situations of gregarious behavior of a potential prey, this phenomenon is
hard to explain on the basis of sharing information (e.g. Valone and Templeton
2002, and references there) or group vigilance (e.g. Bednekoff and Lima 1998,
and references there), especially in face of recent findings (e.g. Hebblewhite and
Pletscher 2002, Whitfield 2003) that gregarious behavior often facilitates rather
than hinder predation. Moreover, gregarious behavior of evasive prey is hard to
be explained, as we have seen, by Hamilton’s argument of risk-sharing (1971),
since a crucial tacit assumption in this argument is that members of the aggre-
gate share more or less the same risk of predation. This is not the case with
evasive herds, in which slowest members take big share of the risk of predation.
A crucial question in this case is what keeps such herds from being repeatedly
abandoned by their slowest members.
As we suggest here, a key factor in the answer to this question lies in the

function of group escaping as a test of speed, exposing the slow prey as a pre-
ferred target for the predator. Not participating in such a test may, under
certain conditions, be even more revealing (see, for comparison, Zahavi 1977).
This does not mean that staying in herd is, under any circumstances, the best
strategy for all prey individuals. To characterize the exact conditions for the
maintenance of various forms of prey groups, we studied an n+ 1 player game:
A predator, seeking to increase its probability of a successful hunt, and n prey
individuals, different from one another in speed, each seeking to decrease its
own probability to be caught by the predator. The term "predator", in this
context, may well be represented by a pack of predator’s, provided one prey, at
the most, is hunted at a time.

5.2 Main Results and Interpretation

In section 3 we have presented characterization of equilibria and stable equilib-
ria of the game. Conditions for the formation of fully gregarious behavior of
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the prey were demonstrated in 4.3. Given all other parameters, it was shown
that the predator’s inefficiency in detecting the slowest member in herd, and its
efficiency in detecting solitary prey, are crucial prerequisites for the formation
of fully gregarious behavior. The first of the two is typical to Hamilton’s regime
of the model (section 4.2), the latter is typical to the savannah environment, in
which shelter is rare (section 4.1). Conditions for partially gregarious behav-
ior of the prey were also demonstrated throughout section 4. In the case of a
predator’s high efficiency in detecting solitary prey, characterizing the savannah
environment, it was further shown that all partial herds, maintained at equilib-
rium, are regular in the sense that they consist of the fastest prey individuals.
The predator’s behavior, in such equilibria, was characterized by its preference
for solitary prey, whenever it detects one.
The establishment of a regular herd, either total or partial (in comparison

to solitary behavior of the prey), was shown to always be in the advantage of
the fastest prey individuals, and in the disadvantage of the slowest ones. It
decreases the probability that the predator will home in on a fast prey, and
increases the probability that it will home in on a slow one, either if solitary
or in the herd. Consequently, the formation of a regular herd is always in the
advantage of the predator. As such, it can be interpreted as a stable coalition
between the predator and the fast prey individuals.
Quite interesting is the fact that the formation of a regular herd is not

necessarily in the advantage of even all members of the herd. Certainly it is not
in the advantage of the slowest member of the grand herd, but similar examples
can be easily demonstrated also for partial herds. In such a case, the formation
of a single group by some fastest prey individuals may force the next fastest ones
to participate in a coalition that is harmful for them . Not doing so may then
be even more harmful for them. As we have shown, this process may either end
up with the establishment of a partial regular herd, or continue till the grand
herd is formed, depending on environmental parameters.
The present model generalize both Hamilton’s model of the selfish herd

(1971), and Eshel’s savannah model (1977).

5.3 Supporting Evidence and Comparison with Alterna-
tive Models

The prediction that predators in open plains prefer to attack solitary prey, and
that by doing so they reach their highest rate of success, is supported by a
bulk of field observations (e.g. Hebblewhite and Pletscher 2002, Whitfield 2003,
and references there), yet this finding is not indicative, as it stands as well in
agreement with the predictions of both the vigilance and the information-sharing
models.
The predicted favorable effect of low availability of shelter on prey’s gregari-

ousness stands in agreement with the observations of Hebblewhite and Pletscher
(2002) that elks, mainly dwellers of open plains, tend to escape in group, while
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mule deer, whitetail deer and moose, often bush dwellers, tend to spread off
when attacked. The same difference is well documented between the tendency
of the open plain dwellers, gnu and zebras, to escape in group, and the tendency
of bush dwelling antelopes to spread off.
The predicted negative effect of recognizable differences among individuals

within a group of prey on its coherence may be supported by the apparent size-
homogeny of shoals of fish or of groups of small birds, even when of different
species.
The prediction that gregarious behavior of evasive prey increases the total

predation probability is already well supported by a bulk of field observations
(Hebblewhite and Pletscher 2002, Whitfield 2003, but see also references in
Lorenz 1966, Hamilton 1971). This finding is more difficult to explain on the
basis of theories as of vigilance or information-sharing, that attempt to explain
gregarious behavior on its effect to decrease the predation probability.
We are well aware of the fact that supporting evidence to our model is too

meagre to rule out alternative explanations, but it is by no means our intention
to rule them out.
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