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Abstract

In order to deliver an innovation principals employ competing agents in
some circumstances, while employing research team in other circumstances.
This paper compares various structures of R&D to provide a rational behind
this observation. It is assumed, that the principal can employ either one
agent, two competing agents or two agents, cooperating in a team. Which of
the available structures will be chosen by principal, depends on value of prize
in stake, technological benefits of team production and team structure. Due
to the positive effect on incentives, competing agents always generate larger
profit to the principal, than a single agent. Further, they often perform
better than the team, even when the latter has significant technological
benefits. However, the performance of the team may be improved, if it
is organized as a hierarchy with the team leader (who is responsible for
allocation of resources) and his subordinate. The paper provides conditions
on parameters, which determine whether the principal should employ a team
or competing agents for performing R&D.

Keywords: moral hazard, hierarchy, team production, competition, organi-
zation of R&D
JEL Classification: O31, L23, C72

1 Introduction

There is a large body of literature which employs the principal-agent approach to
the analysis of financing of innovation. This literature largely assumes a structure
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of a research unit to be exogenous and investigates the interaction of a principal
with either a single agent or multiple agents forming a team or competing with each
other. However, the decision of the principal on how many agents to employ and
how to structure their interaction is not explored sufficiently. Yet, such decision,
should be key for the principal, since it inevitably influences both the technological
capabilities of the research unit and the incentives of the agents.

Anecdotal evidence suggest, that there are circumstances, when principals (i.e.
grant agencies, venture capitalists, government agencies) decide to employ com-
peting agents. For example, McKinsey, a consultancy, describes a case of a com-
pany in the chemical industry which was seeking ways to change the old chemical
production processes to more competitive synthesis routes. The company used
competing research teams to attack the problem.1 Similarly, Vulcan Inc., which
is a multi-division corporation, owned by former Microsoft co-founder Paul Allen,
has contracted three competing agencies for the project Halo, aimed at the devel-
opment of the problem-solving software.2 On the other hand it is not unusual for a
financier to grant a financial support to a consortium of co-operating independent
teams, rather than to each of these team separately. Numerous examples include
research grants by National Science Foundation of the US or by National Institute
of Health. The purpose of this paper is to contribute to a theory, which ratio-
nalizes a decision of the principal to employ competing agents at some instances,
while to contract a non-competing team or a single agent at other instances.

A theoretical justification for why it can be profitable for the principal to fi-
nance competing agents rather than a single agent is provided in Levitt (1995).
Che and Yoo (2001) analyze the attractiveness of the team production versus
stand-alone production in the repeated setting. Hemmer (1995) shows, that if
there are synergies from performing two tasks, then assigning a team to the sub-
sequent tasks results in higher product quality than assigning separate agents to
each of those tasks. Goldfain and Kovac (2005) compare benefits from employ-
ing competing agents, rather than a single agent, in a dynamic framework with
multiple stages of R&D.

The present paper contributes to the literature on financing of innovation by
investigating, when it is in principal’s interests to assign competing agents to
the same task and when he prefers that agents cooperate in a team. The team
may have significant technological benefits (synergy effects). However, in the
presence of moral hazard the ability of team to exploit these synergies efficiently
may depend on the team’s structure. On the other hand, in the moral hazard
framework competition acts as an important incentive device and may prove to
be a superior organizational structure, comparing with team production, despite

1The case study is available at http://www.mckinsey.com/clientservice/chemicals
2The information about the project can be found at http://www.projecthalo.com
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the lower efficiency of R&D and duplication of research costs.
To support this intuition, I analyze four alternative structures of R&D: stand-

alone agent, competing agents, team with equal partners and hierarchical team.
These structures are compared in a unified framework, where research is financed
by a principal, but the agents have a discretion to decide whether to allocate
money into the project or to divert them for private consumption.

It is shown, that due to the positive effect which competition has on incentives,
the principal always prefers to employ competing agents, rather than a single
agent. The paper is therefore focused on comparing team production (where team
may be organized as a hierarchy or as equal partners team) with competing agents.
A team, where agents are treated identically by the principal, suffers from the
free-riding problem, and therefore often performs worse, than competing agents. I
conclude, that such team will be employed, only if technological benefits of team
production are high, or if a prize in stake is not too large.

The existing literature on team production suggests several mechanisms, which
allow to alleviate the free-riding problem in a one-shot model. The general idea
behind these mechanisms is, that agents are required to monitor each other and
submit the report to the principal, based on their observations (Miller 1997, Ma
1988, Marx and Squintani 2002 ). However, these mechanisms are difficult to im-
plement in the environment where agents feel guilty about spying on their team
mates. Therefore, I suggest an alternative mechanism, which under certain con-
ditions allows to increase the attractiveness of team production. Namely, the
principal may decrease the moral hazard in team by assigning one of the agents
to the principal position (position of the team leader) above the other agent (sub-
ordinate).

If the team leader can observe effort of an agent on the lower level of hierarchy,
then such hierarchical structure gives the team leader power to punish his subor-
dinate, if the latter shirks. This arrangement unambiguously improves incentives
of the subordinate, while also resulting in the efficient allocation of investment
recourses. Hence, the hierarchical team structure significantly improves perfor-
mance of the team and increases range of parameters where the principal chooses
to employ agents, cooperating in a team.

On the other hand, if the team leader cannot observe and verify the effort of
his team mate, then the hierarchical team structure may improve incentives of
the former, although the incentives of the latter remain unaltered. I show that
in this situation there exists a range of parameters, where the team leader over-
invests in R&D, comparing with his best response reaction (i.e. comparing with
his investment choice in equal-partners team). For this range of parameters the
hierarchical team may become a superior arrangement comparing with alternative
team structure.

However, for the unobservable effort of the subordinate the hierarchical team
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always leads to suboptimal allocation of investments and to the loss of efficiency
in terms of success probability. This efficiency loss increases with investment
resources, allocated to the agents. Hence, for sufficiently large value of the prize
in stake (implying large value of investment resources) the principal will never
organize a research team as a hierarchy, if the team leader is not able to monitor
his subordinate.

Aside from the literature on financing of innovation, this paper is related to
several other streams of literature. First, it contributes to the literature on team
incentives by analyzing alternative structures of team production and drawing
implications for the optimal contract and the investment decisions of the agents.
Second, by addressing benefits and disadvantages of team production comparing
to the competitive setup, this paper is close in spirit to the literature on formation
of joint ventures.

In the literature on formation of joint ventures there are only few papers which
explicitly take a principal-agent approach. The most relevant among them is
Fabrizi and Lippert (2003). The authors investigate, how the presence of moral
hazard influences decisions of two firms, each of which has one agent, to conduct a
joint project. The authors focus in their analysis on welfare effect of joint venture
and on the market strategies of the firms. Unlike their work, the present paper
studies influence of different organizational structures on financing decisions of the
principal, incentives of the agents and their investment decisions.

There is a stream of papers in the literature on team incentives, which similarly
to my paper investigate the internal structure of a team and its implementation for
productivity (Macho-Stadler and Perez-Castrillo 1993, Itoh 1991, Itoh 1993). This
literature, however, has very different focus from the present paper: it is focused on
the analysis of the effects which mutual help, cooperation and reciprocity within
the team have on incentives. The existing literature on internal structure of a
team usually compares a group of individuals, where each is concentrated in his
own task with a team, where agents help each other. This is not the issue in the
present paper. Here the cooperation between the agents, in case when they form a
team, is simplified and boils down to the specialization in different tasks, which is
the source of synergy effects in the model. The paper contributes to the literature
by investigating a different aspect of team production, namely, whether and when
a team should be organized as a hierarchy.

The structure of this paper is the following. The basic framework of the model
is described in Section 2. The setup with a single agent, competing agents and
a team with equal partners is discussed through Sections 3 to 5. Section 6 is
devoted to the comparison of team setup with competing agents setup. In Section
7, I investigate the alternative team structure, where one of the agents has a
principal position over his peer, and draw the implications of such team structure
for the incentives of the agent an profit of the principal. Finally, the conclusions
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are summarized in Section 8. Proofs and figures can be found in Appendix.

2 Basic framework of the model

The basic structure of this model is following. There are two identical risk-neutral
agents (entrepreneurs), who have an idea how to solve a particular problem. The
problem (which I will henceforth call a project), if solved successfully, yields a
prize of size R. For example, if the project is to find a cure against a deceases,
then R may represent a discounted stream of all future payoff, generated by sales
of this cure. Moreover, I assume that in case of competition between agents, if
one of them successfully completes the project, the solution will be patented, so
that the follower does not earn anything.

It is assumed that the agents have no wealth and the necessary funds for
research and development are provided by a principal (venture capitalist, grant
agency or a firm which has subcontracted research and development to the agents)
in exchange for a share in the project. Although finances are provided by the
principal, allocation decisions are made by agents. They can either invest funds
or divert them for private uses. The principal is not able to observe the allocation
decision. All he can observe is a success or a failure of the project.

The principal is risk-neutral and maximizes his expected payoff from the project.
I assume that the principal has all bargaining power, which means that after pay-
ing the agents their contractual payoffs, he retains all the residual surplus. The
principal offers agents a contract, which specifies the share of each agent in case
of success and the size of investment.3 Moreover, the principal can decide whether
to allow the agents to compete for the patent or to order them to form a research
team and to join their research efforts. In the former case the winning agent
patents his invention and shares the prize with principal. In the latter case, the
prize is shared between the team and the principal.

The success of the project is stochastic and depends on efforts of both agents
as well as on the structure of the research (team or competition). It is assumed,
that the effort of agents in this model is equivalent to their monetary investments
into R&D. For illustration, consider the case with one agent. Let the principal
transfer amount c to this agent. The agent allocated amount x ≤ c to the research
and consumes c − x. I assume, that the probability of success is given by:

p(x) = 1 − e−x.

To justify this particular functional form, I make a realistic assumption, that the
project is successful only if the agent finishes his research before time T = 1

3It will become clear later, than in case of hierarchical team the principal offers a contract
only to the team leader.
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elapses4. I further assume, that the probability of success is p(x) = P (tx < 1),
where tx is an exponentially distributer random variable with mean 1

x
. Note,

that from the relationship between the exponential and the Poisson distribution,
it follows, that x is an average number of successes in unit of time, while 1

x
is

the expected time, until the first success is made. It is clear therefore, that the
higher is investment x, the shorter is expected time, which elapses before a success
occurs.5 The interpretation of x as a parameter of exponential distribution is not
essential for the model. Another way to justify the functional form of p(x) is to
assume, that by investing x an agent generates a random variable tx, which is
uniformly distributed on the interval [0, ex]. This variable can be interpreted as
a distance covered between the initial stage of R&D and its final stage. Assume,
that the project is successful, if the random variable takes the value tx ≥ 1. The
probability of this event is p(x) = 1 − e−x.

The research and development is modelled as a one-shot game. After the
contract is signed the agents make one-time decision on how much to invest and
the probability of success is a function of this investment.

3 Single agent

Let me first consider the most simple case when only one agent is employed. The
game has two stages: in the first stage the principal offers a contract, where he
determines amount of investment funds c and the share of the agent βS. In the
second stage the agent (given the terms of a contract) allocates x ≤ c into R&D
and consumes c − x. In case of success the agent receives a share βS of R. I will
denote the profit of the agent ΠS

1 , where S stands for “single”. Here I also use
the index of agent i = 1 to avoid confusion in further discussion, when the second
agent will be introduced The game is solved backwards, starting from the agent’s
problem:

max
x∈[0,c]

ΠS
1 = RβS(1 − e−x) + c − x. (1)

Note, that agent’s profit consists of two parts. First, he enjoys a reward RβS in
case of success (which happens with probability 1−e−x). Second, he also consumes
part of funds at his discretion, so that c − x ≥ 0.6 The solution to the problem is

4The assumption of limited financing horizon justified, since it is common for the venture
capital firms or grant agencies to set the time limits within which the research must be completed.
For theoretical justification see Goldfain and Kovac (2005).

5I also make a technical (normalization) assumption, that investment of x monetary units
translates to a probability 1 − e−x.

6To avoid confusion, note, that βS denotes a percent share of the prize, while RβS is a
monetary share.
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the following:

1. x = 0, if RβS ≤ 1,

2. x ∈ (0, c): is such that RβS = ex, if 1 ≤ RβS ≤ ec,

3. x = c, if RβS ≥ ec.

The principal chooses the terms of the contract, namely amount of investment
c and the share of an agent βS, taking into account the solution of Problem 1.
Note that if the principal chooses RβS ≤ 1, the agent will consume all funds,
which leaves a principal with a negative profit ΠS

P = −c. He can do better by
not investing in the project at all. Hence, if the principal decides to invest in
the project, he will never choose RβS ≤ 1. So, we can limit our attention to the
investigation of the strategies, which dominate RβS ≤ 1:

max
c,β

ΠS
P = R(1 − βS)(1 − e−x) − c

s.t. (ICS) RβS ≥ ex,

(RCS) x ≤ c,

(CSS) (RβS − ex)(x − c) = 0.

The incentive compatibility constraint (ICS) ensures, that the agent invests in
R&D. According to resource constraint (RCS) he can only invest as much as c.
Finally, according to complimentary slackness condition (CSS) at least one of the
two other constrains should be binding, as follows from the equilibrium conditions
above. If the incentive constraint does not bind, the agent invests all available
funds, so that RCS binds. If the recourse constraint does not bind, then the
incentive constraint will necessarily be binding.

Both the incentive compatibility constraint and the recourse constraint will
bind in the optimum. There is a following intuition behind this result. Assume,
that the (RCS) does not bind, so that x∗ < c, where x∗ is the equilibrium choice
of the agent. If the principal marginally decreases c, the agent’s investment does
not change (the probability of success stays unaltered), but the investment cost
declines, so that the profit of the principal increases. Hence, in optimal solution
the principal always chooses c so, that the (RCS) binds. The same intuition
justifies why the incentive compatibility constraint should be binding. Indeed,
assume that the constraint does not bind, so that RβS > ex. Then the principal
can decrease a share of the agent (hence, increase his own share) without altering
the probability of success. So, in optimum the principal will choose such βS, that
(ICS) constraint binds.

The explicit solution to the principal problem is derived in the proof to Propo-
sition 1, where I also formally prove, that both (ICS) and (RCS) constrains bind
in optimum.
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Proposition 1. Assume that the principal employs one agent and let R > 2.
Then in SPNE the following statements hold:

1. Values of c and βS are such, that the agent invests all funds which he receives
from the principal, i.e. x = c.

2. The optimal amount of investment is c = ln 1
2
(−1 +

√
1 + 4R), if R > 2 and

c = 0, if R ≤ 2

3. The reward of the agent is RβS = ec.

Both the equilibrium amount of investment c and the reward of the agent RβS

increase in the value of R. This is the essence of the tradeoff which the principal
faces. He is willing to increase his investment, if the project promises a lucrative
payoff. However, in order to ensure that the agent does not divert funds to the
private consumption, the principal has to balance the incentive constraint of the
latter by promising him a larger share of the prize.

Note further, that the c = 0 as R = 2. Since the equilibrium investment
expenditures of the principal increase in R, then for any R ≤ 2 the principal will
not employ a stand-alone agent in equilibrium.

4 Competing agents

In a setting with competing agents, the prize is shared between the winning agent
and the principal. After the terms of a contract (i.e., the share of each agent in
case of success and the amount of investments) are announced, the agents decide
which part of funds they allocate to R&D and which part they consume.

Let the principal transfer amount c to the first agent and amount d to the
second agent. Let x ≤ c be the funds which the first agent allocates to the project
and c− x ≥ 0 are the funds that he diverts to the private consumption. Likewise,
I define y and d− y. Second agent wins the prize, if he successfully completes the
project at time ty, such that ty ≤ tx and ty ≤ 1, where tx is a time, when first
agent completes his project. Hence, the probability that second agent succeeds is:

P (ty ≤ tx ∧ ty ≤ 1) = P (ty ≤ 1 ≤ tx) + P (ty ≤ tx < 1) =

= e−x(1 − e−y) +
∫ 1

0

∫ t

0
xe−xtye−yududt =

(

1 − x

x + y

)

(

1 − e−(x+y)
)

.

Then, the expected payoff of the second agent is ΠC
2 , where “C” stands for

“competition” is :

ΠC
2 (x, y) = RβC

2

y

x + y

(

1 − e−(x+y)
)

+ d − y,
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where RβC
2 is the share which the second agent receives according to a contract.

Analogically, the expected payoff of the first agent is:

ΠC
1 (x, y) = RβC

1

x

x + y

(

1 − e−(x+y)
)

+ c − x,

where RβC
1 is the share which the first agent receives according to a contract. Note,

that conditional on the fact, that at least one agent succeeds, the probability that
first agent succeeds x

x+y
and the probability that the second agent succeeds is y

x+y
.

This result is consistent with the finding of the literature on contests and patent
races (Tullock 1980, Dixit 1987, Loury 1979). Note further, that for y = 0, the
profit ΠC

1 reduces to the profit of an agent in stand-alone situation.
In equilibrium, each agent plays his best response to the rival’s strategy by

choosing amount of investment x or, respectively, y, taking RβC
2 , RβC

1 , c and d
as given. Let us consider the best response correspondence for the first agent.
Taking the derivative of ΠC

1 I receive:

∂ΠC
1

∂x
= RβC

1

(

1 − e−(x+y)

(x + y)2
y +

x

x + y
e−(x+y)

)

− 1.

Hence, the best response of the first agent to the investment choice of the second
agent is

1. x = 0, if RβC
1 ≤ y

1 − e−y
,

2. x ∈ (0, c) such that RβC
1 =

(x + y)2

(1 − e−(x+y))y + xe−(x+y)(x + y)
, if

y

1 − e−y
≤

RβC
1 ≤ (c + y)2

(1 − e−(c+y))y + ce−(c+y)(c + y)

3. x = c, if RβC
1 ≥ (c + y)2

(1 − e−(c+y))y + ce−(c+y)(c + y)
.

The best response of the second agent can be derived similarly. Depending on
the parameters, there are seven potential equilibria in the last stage of the game:
(0, 0), (x, 0), (0, y), (x, y), (c, y), (x, d), (c, d). The conditions for each of those
equilibria to occur, are described in Table 1 in Appendix.

The problem of the principal is to choose the terms of the contract so that the
residual expected payoff (gross payoff net of agents compensation) is maximized. I
first derive the optimal contract for each possible equilibrium and then choose the
one, which delivers the principal the highest profit. If the equilibrium investment
decision is (x, y) = (0, 0), then the optimal solution is not to employ the agents
and hence the profit of the principal is zero. The equilibrium decision such, that

9



x ∈ (0, c], y = 0 or x = 0, y ∈ (0, d] is equivalent to at most one agent being
employed. Solution of the problem in this case is described in previous section.
Finally, if neither x nor y are zero in equilibrium, then the problem of principal
is to maximize his profit subject to incentive compatibility constraints, which are
described by equilibrium conditions (see Table 1). The principal receives his share
of the prize if at least one of the agents wins, which happens with probability
1 − (1 − p(x))(1 − p(y)) = (1 − e−(x+y)). In equilibrium the principal is going to
treat the agents symmetrically, so that βC

1 = βC
2 and c = d. Further, the optimal

contract will be such, that the agents find it just incentive compatible to allocate
all recourses which they receive to R&D. In other words, they will receive exactly
a share which makes them to invest x = y = c into the project. The problem
of the principal in the reduced form (i.e. with binding constrains and symmetric
agents) can be written as:

max
βC , c

ΠC
P = R(1 − βC)(1 − e−2x) − 2c

s.t. RβC := RβC
1 = RβC

2 = e2x4x2

2x2−x+e2xx
,

x = c.

The solution to this problem leads to the optimal contract and is formalized in
Proposition 2.

Proposition 2. Let competing agents be employed. Assume that R > 2 and that
the agents are identical. Then for the optimal contract following statements hold:

1. The optimal choice of βC
1 , βC

2 , c, d leads to unique SPNE such that the agents
allocate all the funds into R&D: x = c, y = d.

2. In equilibrium the agents are treated symmetrically: βC
1 = βC

2 , c = d.

3. Equilibrium level of investment c increases in R and is given by

R =
e2c [4c(e2c − 1) + 3(e2c − 1)2 + c2(4 + 8e2c)]

(e2c + 2c − 1)2

4. The rewards of the agents are given by RβC
1 = RβC

2 := RβC =
4c

1 − e−2c + 2ce−2c
.

According to Proposition 2, if the principal employs competing agents, he will
suggest a contract which leads to unique SPNE with (x, y) = (c, c). From the
relationship between R and c it follows, that R → 2 as c → 0 (one can see this by
applying the L’Hospital rule twice). Hence, for R ≤ 2 the competing agents will
not be employed.
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The optimal contract for the competing agents is developed under the assump-
tion, that only the winner of the patent race receives a reward. It is easy to see
that any contract, where the follower also receives some reward, will be strictly
worse from the principal’s point of view. Indeed, for each amount of investment
the optimal contract will be such, that agents invest all received funds in R&D.
Hence, the probability of success will be the same in a setting, where the follower
receives some reward, as in the setting where he receives nothing. However, in the
former case the incentives of the agents to invest are significantly weaker, which
increases the rent they can extract from the principal. Hence, in more general
contract, where an agent earns a reward RβL if he wins the patent race, and a
reward RβF , if he looses this race7, the principal will optimally choose RβF = 0.

The last step which is left to be done is to decide whether the principal indeed
prefers to employ competing agents instead of a single agent.

Corollary 1. Assume, R > 2. Then the principal always prefers to employ com-
peting agents, rather than a single agent.

The competition has a twofold effect in this model. It increases probability
of success and disciplines agents by decreasing the rent which they can extract
from the principal. These effects soften the principal’s tradeoff. Comparing to
the set-up with a single agent, he can afford increasing the investment level by
larger amount, while increasing the reward to the agents only by smaller share.
As is shown in the proof to the proposition above, in equilibrium the principal
will invest more if he employs competing agent, than if he employs a single agent.
However, the share, which he pays to each agent is smaller in the former case, then
in the latter. This result conforms to the intuition in Goldfain and Kovac (2005),
where the authors show (in different modelling framework) that competition is
always beneficial for the principal, when the agents are identical.

5 Team production

An alternative organization of R&D, which the principal might use, is a research
team. In the team the agents join their efforts in order to complete the project. If
the project is successful, the prize is divided according to the contract between the
principal and the team. I assume, that the principal observes neither individual
nor the joint contribution of the agents to research. Hence, the agents receive their
reward only if the team succeeds. The problem inherited in the team production
is free-riding. If the team wins the prize, each agent receives his share, no matter
how much he has invested in the research. Hence, the agents face a tradeoff

7“L” and “F” stay for the “Leader” and the “Follower” respectively.
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between increasing a joint probability of success by investing and increasing their
own payoff by consuming the funds.

The team, however, may have technological benefits compared to other or-
ganizational structures of the research unit. These technological benefits from
cooperation (further referred to as synergy effects) allow the team to generate a
higher success probability for fixed amount of investments, than each agent in
stand-alone situation can achieve. I model the team production by assuming that
the joint investments influence the probability of success in the following way:

p(x, y) = 1 − e−(x1−α+y1−α)
1

1−α
.

In the Appendix, I provide a formal model which justifies the choice of the

function (x1−α +y1−α)
1

1−α for modelling of the synergy effects in team production.
It is shown that this specification reflects a situation, where probability of success
depends on two skills or production factors, and each of two agents is “talented”
in different skill (so, that it is relatively “cheap” for him). In this case the joint
production (i.e. the probability of success) is maximized, when each agent spe-
cializes in his cheapest factor.8 The parameter α ∈ [0, 1), that is assumed to be
a common knowledge, characterizes a degree of complementarity between skills
of team members, which is the source of synergies in this model. If α = 0, then
there are no technological benefits from employing a team. It succeeds with the
probability p = 1 − e−(x+y), which is the same as if a single agent invests (x + y).
Moreover, this probability exactly equals the probability that at least one of the
competing agents succeeds, as derived in Section 4.9 If α > 0, i.e. there are syn-
ergies in team production, then for the same amount of investment x and y the
team succeeds with higher probability, than a single agent, who invests the same
amount (or, for that matter, than at least one of two independent agents).

5.1 Optimal contract for team

This section is devoted to the solution of principal’s problem in case when the
team is employed. I assume, that the principal signs two separate contracts with
both agents, in which he determines investment funds allocated to each agent and
a share of each agent in case of success. As before, the game is solved backwards
starting from the last stage, where the agents in team choose x and y, given the
terms of contract.

8Specialization is one of the sources of synergy effects. Another possible source is a better
organization of work, which allows to decrease the duplication of effort. See Lippert (2005) for
a model, relevant in this case.

9This is a result of a property of the exponential distribution: if probability of success as
function of investments is p (x) = 1−e−x, then p (x+y) = 1−(1−p (x))(1−p (y)) = 1−e−(x+y).
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I assume, that the agents choose their efforts simultaneously. Hence, each
member of the team maximizes his own profit, by playing the best response to the
investment decision of his team-mate, taking the terms of contract as given. The
decision problem of the first and second agent respectively are:

max
x∈[0,c]

ΠT
1 = RβT

1 (1 − e−(x1−α+y1−a)
1

1−a
) + c − x,

max
y∈[0,d]

ΠT
2 = RβT

2 (1 − e−(x1−α+y1−a)
1

1−a
) + d − y.

Consider the problem of the first agent. The first derivative of the payoff
function is the following:

∂ΠT
1

∂x
= RβT

1 (x1−α + y1−α)
α

1−α x−αe−(x1−α+y1−a)
1

1−a − 1.

Let me define k :=
cαe(c1−α+y1−a)

1
1−α

(c1−α + y1−α)
α

1−α

. Then, the best response of the first agent

(i.e., optimal choice of x) to any y of the second agent is:

1. x = 0, if RβT
1 ≤ 1 and y = 0,

2. x ∈ (0, c) such that RβT
1 =

xαe(x1−α+y1−a)
1

1−α

(x1−α + y1−α)
α

1−α

, if k ≥ RβT
1 ≥ 1

3. x = c if RβT
1 ≥ k.

Similarly, I can define the best response for the second agent. As in the case of
competition, depending on values of RβT

1 , RβT
2 , c and d, different equilibria can

occur. The equilibrium conditions and resulting choice of (x, y) are summarized
in Table 2 in Appendix. As above, I will derive the optimal contract for each
possible equilibrium and then will choose the contract, which maximizes the payoff
of the principal. If (x, y) = (0, 0) is played in equilibrium, then the principal
prefers not to employ the team, which yields him a zero profit. Otherwise, the
principal maximizes his profit subject to incentive compatibility constraints, given
by equilibrium conditions, described in Table 2. There are two considerations to
be taken into account. First, the principal will give the agents exactly the amount
of money, which they are willing to invest (given their reward in case of success and
synergy effects). Hence, it must be the case, that x = c and y = d. The intuition
behind this result is analogical to the one, discussed in Section 3 and in proof to
the Proposition 1. Further, notice that for fixed investment (c+d) the probability
of success is maximized, if the agents invest equal amounts to R&D. Hence, the
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principal will offer symmetric contracts to both agents, so that x = y = c = d (this
result is proved in the proposition below). Therefore, we can write the reduced
form of the principal’s problem:10

max
βT ,c,x

ΠT
P = R(1 − 2βT )(1 − e−2

1
1−α x) − 2c (2)

s.t. RβT := RβT
1 = RβT

2 = e2
1

1−α x

2
α

1−α
,

x = c.

The solution to the optimal choice model is formulated in the following proposition.

Proposition 3. The optimal contract for a team has the following features:

• If R > 1 + 2
1

1−α , then the optimal choice of βT
1 , βT

2 , c, d leads to unique
equilibrium, where agents allocate all the funds into R&D, so that x = c,
y = d.

• If 3 · 2 α
α−1 < R ≤ 1 + 2

1
1−α then there are two SPNE: (0, 0) and (c, c).

• If R ≤ 3·2 α
α−1 then the equilibrium value of investment expenditures is c = 0.

• The agents are treated symmetrically: βT
1 = βT

2 , c = d.

• In equilibrium (c, c) optimal c is given by R = 2
α

α−1 e2
1

1−α c(1 + 2e2
1

1−α c), so

that: c∗ = 2
1

α−1 ln 1
4

(

−1 +
√

1 + 2
1

1−α 4R
)

.

• The reward of the agents is : RβT
1 = RβT

2 =
e2

1
1−α c

2
α

1−α

.

The most surprising result of the Proposition 3 is that teams with very high
synergy effects (α close to 1) might end up investing nothing to the research
and development. From the proposition it follows, that the higher is the synergy
effect, the higher should be the price in stake to ensure full-investment equilibrium.
Actually, for α close to 1, the prize should be infinitely large to ensure unique (c, c)
equilibrium. For smaller prizes the agents can as well choose equilibrium (0, 0).
The intuition for this is that for high synergy effects it is sufficient to invest a small
amount in order to have a success with high probability. Hence, the principal will
allocate relatively small c to project and consequently will promise low shares to
the agents. If one of the team peers decides to divert funds, the other has very

10The general form is given in the proof to Proposition 3
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low probability of winning the prize alone, and the share is not large enough to
justify the effort.

However, the equilibrium (0, 0) is Pareto-dominated by equilibrium (c, c). In-
deed using the Proposition 3, the expected profit of each agent in the full in-

vestment equilibrium is Π(c, c) = 2
α

α−1 (e2
1

1−α c − 1). In equilibrium (0, 0) each
agent earns Π(0, 0) = c. It is then straightforward, that Π(c, c) > Π(0, 0) for any
α ∈ (0, 1] and c > 0.

Many game-theorists, the most prominent among which are Harsanyi and Sel-
ten (1992), consider the Pareto-dominant equilibrium to be a natural focal point
in a game where equilibria are Pareto-ranked.11 The experimental literature, on
the other hand, shows, that in this type of games (called coordination games), the
Pareto-dominant Nash equilibrium is not always the unique outcome. However,
according to Cooper, DeJong, Forsythe and Ross (1990) the coordination failure is
likely to happen when decisions of the agents are influenced by presence of a coop-
erative dominated strategy, which (provided that the agents are able to cooperate)
gives both of them larger payoff, than the Pareto-dominant equilibrium. Their re-
sults suggest, that otherwise the agents are likely to choose the Pareto-dominant
equilibrium.

As I show below, in the present model collusion between agents would lead
to the full-investment decision, which is also Pareto-dominant equilibrium in the
simultaneous move game. Hence, based on the argument of Harsanyi and Selten
(1992) and the experimental results of Cooper et al. (1990) I will assume, that in
the simultaneous move game the agents are able to choose equilibrium (c, c) over
equilibrium (0, 0).12

Let me further notice, that the contract described in Proposition 3 is collusion-
proof in a sense, that if the agents collude, they will choose to invest all funds
in their discretion. Indeed, assume that the agents collude on maximizing joint
profit, which then has to be shared between them. In this case each agent takes
into account a positive externality which his choice of investment has on the joint
profit. An agent’s equilibrium investment decision therefore, will be at least as
large, as in the case of self-profit maximization.13 Moreover, as I have shown

11According to Harsanyi and Selten (1992) p.221-223, among two equilibria U and V , equi-
librium U dominates equilibrium V if it results in strictly higher payoff for both players. The
authors take a point of view, that “there is no risk involved in a situation, where expectations
can be coordinated by common payoff interests of the relevant players”.

12Alternatively, to eliminate equilibrium (0, 0) I can assume that there are mechanisms, which
prevent the agents from choosing zero investment simultaneously. For example, I can assume
that there are tiny fixed costs of running a research laboratory, so that each player has to invest
at least ε > 0 into R&D.

13Kandel and Lazear (1992) show more formally, that maximization of a joint surplus in
a team leads to the higher effort level, than the effort level, resulting from individual profit
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above, equilibrium (c, c) generates larger profit, than equilibrium (0, 0). This
means, that given contract in place, the colluding agents would prefer to coordinate
on equilibrium (c, c). Hence, given the optimal contract, equilibrium investment
decision of the agents does not depend on whether they collude or not.

6 Team versus competition

In this model the problem of the principal is analyzed in two stages. In the second
stage he chooses optimal contract, taken the structure of research department
(team or competing agents), synergy effect and size of the prize as given. In
the first stage the principal chooses such structure of research department, which
maximizes his payoff, taking α and R as given. The optimal contract for team
and competition was derived in previous sections. Here I will discuss when the
principal prefers to employ a team and when he prefers to employ competing
agents.

The compensation in a setting with competing agents reminds the relative
performance evaluation schemes (RPE). In the literature on contract theory, this
scheme is used to penalize the member of a team, who performs worse than his
pears. This feature is also present in my model: if the agents compete, each of them
is rewarded only if he has better result than his rival (which also means that he wins
the prize and patents the invention). On the other hand, the compensation scheme
in a team rewards each entrepreneur if the whole team performs well; this is so-
called joint performance evaluation (JPE). The insights from the optimal contract
literature suggest that in a one-shot game the optimal payment scheme for teams
is RPE (Holmstrom 1982, Che and Yoo 2001). Intuitively, this conclusion should
also hold if we compare the competing agents and team without synergy effects.
However, when the synergy effects present the team could potentially become an
attractive arrangement, if the increase in success probability due to synergies is
high enough.

In order to compare competitive setting and team, I will first consider the
benchmark case without moral hazard. Note, if all actions of agents are observ-
able and verifiable, then the principal can write a contract specifying the level of
investment, which agents should allocate into the project. Then their reward is
zero for any organizational structure of research unit, and the whole payoff from
the projects is retained by the principal. In absence of synergy effect (α = 0), the
profit of principal is the same regardless whether he employs a team, or competing
agent:

ΠT
P = ΠC

P = R(1 − e−(c∗+d∗)) − (c∗ + d∗),

maximization.
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where (c∗, d∗) ∈ argmaxc,d R(1 − e−(c+d)) − (c + d).
It is clear, that if there are synergy effects (α > 0), then profit of the principal

is larger if he employs team, than if he employs competing agents, since for any c
and d the following inequality holds:

ΠT
P = R(1 − e−(c1−α+d1−α)

1
1−α

) − (c + d) > ΠC
P = R(1 − e−(c+d)) − (c + d).

The picture, however, changes significantly in the presence of moral hazard.
According to Propositions 2 and 3 the optimal share of agents and investments of
the principal are such that in equilibrium both agents find it incentive compatible
to invest all funds their receive. Hence, the principal has two mechanisms how to
induce the most efficient investment decision: size of funds and size of share. For
given prize R and synergy effect α, the larger is the amount of funds which the
agents receive, the larger is the amount which they can potentially divert from
investing. On the other hand, the larger is their share, the more prone are the
agents to invest as much as they can into R&D. Therefore, the principal always
faces a tradeoff between increasing his investment (hence potential probability of
success) and increasing the share of the agents in order to balance the incentive
constraint.

Let us first consider a case, where α = 0. It is intuitive, that, for a fixed R, the
share of a prize, paid to a team should be larger, than the share of a prize paid
to one of the competing agents. On the contrary, the funds which the principal
invests in the optimum should be smaller in the former case. This is the natural
result of free-riding, inherited in JPE scheme. Consequently, the profit of the
principal should be larger, if he employs competing agents, than if he employs a
team without synergy effect. This intuition is confirmed by Corollary 2.

Corollary 2. Assume, there are no synergies effect in team, i.e. α = 0. Then the
following statements hold:

1. The principal invests less funds in R&D if he employs a team, than if he
employs competing agents.

2. A share of the prize which is to be paid to the agents in case of success is
larger if the team is employed.

3. The expected profit of the principal is smaller if he employs a team, than if
he employs competing agents.

It is surprising, that the conclusion of the above proposition does not change
much for α > 0. Figure 1 shows combinations of α and R, such that the principal
is indifferent between team and competition (the graph corresponds to the equa-
tion ΠT

P (α,R)−ΠC
P (R) = 0). In the region above the line, team is more beneficial
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arrangement, than competition and below the line the latter is preferred to the for-
mer. Recall, that I restrict the analysis of the team behavior to the full-investment
equilibrium (c, c).

2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1
α

ΠT
P (α,R) − ΠC

P (R) = 0

R

+

−

c

a

b

Figure 1: Competing agents versus team.

Competing agents will never be employed, if R ≤ 2 (on the Figure 1 the
corresponding regions are labelled a and c). On the other hand, the team will
never be employed, if R ≤ 3 ·2 α

1−α (the region corresponds to the union of a and b

on the picture). Let me define k := log 3−log 2
log 3

≈ 0.369. If α > k, then 3 · 2 α
1−α < 2

and for all 3 · 2
α

1−α < R < 2 the principal can employ team, but not competing
agents or a single agent (region c). The principal will not finance a project, if
3 · 2 α

1−α > R (region a). If α ≤ k, then 3 · 2 α
1−α ≥ 2 and the principal will employ

competing agents (but not a team) for all values of R, such that 2 < R < 3 · 2 α
1−α

(the corresponding region is b). When the parameters R and α are such that both
the team and competing agents generate a positive profit, the principal chooses
an arrangement, which maximizes his own surplus from the project.

Consider now R > 2, so that financing of competing agents is feasible. As
becomes clear from the picture, the team is never a preferred arrangement, if the
synergy effects are moderate (α ≤ 0.369). But even for significant synergy effects,
team is not always better than competition, despite of the technological advan-
tages. For the fixed α, as R increases, the competition becomes more attractive.
The reason is that as the value of prize in stake is high, the principal is willing to
increase his investment in order to reach higher success probability. But this also
means that he has to promise a higher share to the agents in order to balance their
incentive compatibility constraint. If the synergy effects are high in the team, the
agents can generate a high probability of success by investing only small amount
of resources. Hence, it is very tempting for them to divert fraction of funds and
therefore the incentive compatible share must be too large, comparing to a struc-
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ture with competing agents. This leads us to somewhat surprising conclusion.
The model suggests, that we should observe the research teams, financed by a
third party (venture capitalist, grant agency, etc.), only if the synergy effects of
team production are significant or if the prize is not too large. For large prize
and moderate synergy effect we should most of the time observe the principals,
financing competing agents.

This result is quite counterintuitive. No doubt, there are numerous cases in
the practice of R&D financing, when the principal finances competing projects
in order to choose then the best output. Nevertheless, it is much more common
to see a principal financing a research team, then competing research units. In
the following sections I investigate alternative structure, which can under certain
conditions increase the attractiveness of a team to the principal.

7 Team with a hierarchical structure

There are several mechanisms, which can reduce the moral hazard within a team
and hence increase the surplus of the principal. Important feature of the team
work is that agents can often observe the action of their peers, even when the
principal cannot. Che and Yoo (2001) show that repeated interaction with a team
increases the attractiveness of the team to a principal. In the repeated setting, if
one of the team members is observed to shirk during some period of interaction,
he is punished by the penalty strategy of his peer, which generates the worst
sustainable payoff for each member. This “reputation effect” deters agents from
shirking and allows the principal to increase his payoff from a project.

In my model, however, I concentrate on one-time interaction between the prin-
cipal and the agents. Namely, the interaction will be terminated, as soon as the
project succeeds or as soon as the maximal financing horizon elapses. An example
of such relationship could be an interaction between a venture capitalist and a
firm. It will most of the time be terminated as soon as a firm is taking to IPO or
merged with other company.

In the static setting the ability of the team members to monitor each other can
still be useful, if it creates a potential for peer pressure. There is a considerable
literature on how the peer pressure improves the incentives of team members.
This literature usually assumes, that team members are able to commit to punish
the free riders, because they derive positive utility from punishing. Further, the
punishment is often considered to be non-pecuniary, such as “mental or physical
harassment” (Kandel and Lazear 1992, Baron and Gjerde 1997).

There are also papers, which consider the effect of the monetary punishment
on the performance of the team. In this case the punishment is executed by the
principal, but only if he has verifiable evidence that an agent shirks. This evidence
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he obtains from reports of the team mates of the agent. Marx and Squintani (2002)
show that by including a requirement to monitor and to report on his peer in a
contract of each team member, the principal can reach the first-best outcome.
However, while such “spying” can be justified in some environments, it can be
totally inappropriate in the environments, where people feel guilty for spying on
their team members.

I will assume that in my model due to prohibitively large moral costs it is not
possible to execute a peer pressure or to write a contract between the principal
and agents, which requires agents to monitor and to report on their peers. In such
environment an agent can impose a punishment on his team mate only if he has a
principal position, i.e., a position of the manager of the research department, the
head of the research team, etc. By organizing the research team as a hierarchy, the
original principal can utilize ability of agents to observe the effort of their peers by
giving an agent on the higher hierarchy level a competence to punish his shirking
team mates on the lower level of the hierarchy. Intuitively, that should decrease
the moral hazard on behalf of the agents on the lower level of hierarchy.

Hence, in the next sections I will investigate an alternative structure of a team,
which is further referred to as a hierarchical team. In this setting, only one agent
interacts directly with the principal. He also has a discretion to decide, whether
to employ the second agent and which contract offer to him. In fact, he acts as
a principal with respect to the second agent. However, whether the team should
be organized as a hierarchy, or whether the team members should be employed on
equal conditions, is a decision to be made by the original principal, based on his
profit maximization problem. I will consider two cases: the case where the first
agent (the team leader) can, without incurring any costs, observe and verify the
effort of the second agent (subordinate), and the case where this is not possible.

The timing of the game, in case when the principal opts for a team with
hierarchy, is the following:

1. The principal signs a contract (Rβ1, c) with the team leader (A1).

2. A1 decides whether to stay alone or to employ the second agent (A2).

3. If A2 is employed, then he and A1 sign a contract (Rβ1β2, d ≤ c).

4. A1 chooses level of investment x ≤ c − d.

5. A2 chooses level of investment y ≤ d.

6. The outcome is realized and the payoffs are distributed

In the following discussion I will distinguish between case, where stages 4 and
5 are simultaneous and a case, when they are sequential.
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7.1 No moral hazard on behalf of agent A2

Let me first consider a situation, where the team leader can, without incurring any
costs, perfectly observe and verify the investment decision of the subordinate. This
is likely to be the case, since, unlike the principal, the team leader understands
the nature of the project and is working knee to knee with his employee. Hence,
the contract between two can be written upon the observable and verifiable effort
(i.e., investment level) of A2. Since A1 can perfectly observe the effort of his team
mate, he can impose a prohibitively large punishment, if the latter diverts part
of funds for own consumption.14 In this case, the second agent does not earn
any rent (Rβ1β2 = 0) and will invest y = d into the project. Note, that since A2

always invests all funds in his discretion, it is not essential, whether the investment
decision is made sequentially or simultaneously.

Agent A1 is obviously better off by employing A2, than pursuing the project
alone, while in the former case he can gain from synergy effects and does not have
to pay any rent for this. The problem of A1 has the following form (in ΠH

1 , the
superscript “H” stands for “hierarchy”):

max
x,d

ΠH
1 = Rβ1(1 − e−(x1−α+d1−α)

1
1−α

) + c − x − d

s.t. x + d ≤ c

In the optimal solution to this problem x = d, because for any x + d ≤ c, the

probability of success is maximized if x = d. Hence, Rβ1 = e2
1

1−α
x

2
α

1−α
. The principal

will choose the level of investment c and the share Rβ1 so that all funds are
invested, which implies, that x = d = c

2
. This arrangement is obviously more

beneficial for the principal, than the team with equal partners. In the latter case,
both agents sign a contract with the principal, and since the principal does not
observe their effort, he has to pay a rent to both agents. If, however, A1 observes
the effort of A2, the moral hazard on behalf of the latter agent is eliminated and
the principal has to provide incentives only to one agent. The problem of the
principal, therefore, is following:

max
β,c

ΠH
P = R(1 − β)(1 − e−2

1
1−α x) − 2c

s.t. RβT = e2
1

1−α x

2
α

1−α
,

x = c.

14I assume, that there is a mechanism that I do not model or investigate in details, which
allows a team leader to punish his subordinate, if he observes that the latter shirks.
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From the maximization problem it follows, that the optimal value c is given by
equation

R = 2
α

α−1 e2
1

1−α c(1 + e2
1

1−α c).

The threshold value of R, starting from which the project will be financed, is
R̃ = 2 · 2 α

α−1 . Note, that since R̃ < 2 for any α ∈ [0, 1), it is never the case, that
the principal decides to invest c > 0 if he employs competing agents, but invests
zero if he employs a team.15 Note also, that since R̃ < R̂ for any α ∈ [0, 1), the
principal will finance the team with hierarchy more often (i.e. for larger range of
parameters), than the team with equal partners.16

Comparing the optimal contracts for two alternative team structures17, it is
easy to see, that for any given investment level c the principal pays a half share of
the prize to the agents in case of hierarchical team, than in case of equal-partners
team. At the same time, for given value of total investment expenditures the
probability of success is the same. Indeed, for both alternative team structures
the optimal contract leads to the full investment equilibrium, where resources are
allocated in most efficient manner between the agents (i.e. x = y). The final
conclusion is, that if the principal can ensure, that agents observe each other
effort, he will prefer to organize his research team as a hierarchy. In this hierarchy
he interacts directly only with the first agent, who execute a monitoring function
over the second agent. Such structure allows to decrease the moral hazard problem
and increases attractiveness of a team.

7.2 Non-observable effort of A2

If the effort of the second agent is not observable, the problem becomes significantly
more complicated. Agent A1 now has three decisions to made: whether to employ
A2 or to develop the project alone, the design of the optimal contract (provided,
that A2 was employed) and own investment decision. The game is solved by
backward induction. The problem of the second agent is to choose the optimal
level of investment y, such that y ≤ d:

max
y∈[0,d]

ΠH
2 = Rβ1β2(1 − e−(x1−α+y1−α)

1
1−α

) + d − y.

The derivative of the profit function is

∂ΠH
2

∂y
= Rβ1β2y

−α(x1−α + y1−α)
α

1−α e−(x1−α+y1−α)
1

1−α − 1.

15Recall, that this was not the case for team with equal partners
16R̂ = 3 · 2 α

α−1 is a threshold value for team with equal partners, see Section 5.
17The optimal contract for equal partners team is developed in Section 5.
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I have extensively discussed on several occasions, why the principal will always
choose such a share and investment, that the agents find it just incentive compat-
ible to invest all funds which they receive into R&D (see for example the proof of
Proposition 1 and the discussion in Section 3). The same argument applies to the
case when the first agent acts as a principal to the second agent. A1 will choose
such combination (β2, d), that for any given x the second agent will find it just
incentive compatible to allocate all funds, which he receives, into R&D. Hence,

the first order condition
∂ΠH

2

∂y
= 0 will be satisfied at the boundary y = d of the

set [0, d]. For the ease of notation I will define t := (x1−α + y1−α)
1

1−α . Then, I can
re-write the first order condition of the second agent in the following form:

Rβ1β2 =
yα

tα
et. (3)

There are two remarks, which arise from the investigation of the agents’ problem.

Remark 1. If A1 decides to employ A2, he will never choose zero level of investment.
When the second agent is employed, he has to be paid a share β2 of Rβ1 in
case of success. Suppose, A1 does not invest anything in the project. Then, the
probability of success is determined by the investments of the second agent: p =
1−e−y. However, if A1 decides not to employ A2, he can achieve the same success
probability by investing x = y and he does not have to pay a share to the second
agent. Hence, if A1 employs A2 he will invest x > 0 into the project. Note, that
this is a special case of the following result: A1 will always invest at least as much

as A2, so that x ≥ y. Indeed, the probability of success p = (1 − e(x1−α+y1−α)
1

1−α
)

is symmetric in x and y. On the other hand, a share which has to be paid to A2

increases in y. Hence, if A1 wants to implement the total amount of investment
x + y, he is better of choosing such contract and level of investment, that x ≥ y.

Remark 2. If the agents do not observe each other effort, then with respect to their
investment decision, they play a simultaneous move game. Note, that any outcome
of that game the principal can replicate, by contracting the agents himself, so that
agent A1 will be offered a contract (Rβ1(1 − β2), c − d) and agent A2 will be
offered a contract (Rβ1β2, d). Hence, if in the hierarchical team neither of the
agents observe an effort of his partner, the principal can do at least as well by
employing a team with equal partners.

The hierarchical team, however, may give the team leader (i.e. agent A1) a
possibility to make his effort observable his subordinate. Most obviously, he can
complete part of the project and present results to his employee. Alternatively,
the team leader can commit to invest certain amount of effort by committing part
of investment resources to the project (buying computers, financing the research
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laboratory, etc.) and making that decision known to his team mate. Interestingly,
if it is at all possible for the team leader to make his effort observable to his
team pear, either by performing part of job, or by committing money, he prefers
to do that. Indeed, that allows the team leader to play sequential move game
with respect to investment decision, rather than simultaneous move game. And in
sequential game he can reach at least as large profit, as in the simultaneous move
game.18 The question now remains, whether the principal would ever prefer to
employ a hierarchical team, if he understands, that this structure allows the team
leader to make his effort observable to the second agent.

Assuming, that the choice of investment is sequential, it is possible to construct
a problem of the team leader (agent A1):

max
{d,β2,x}

ΠH
1 = Rβ1(1 − β2)(1 − e−t) + c − (d + x) (4)

s.t. t = (x1−α + y1−α)
1

1−α

Rβ1β2 = yα

tα
et, y = d

0 ≤ d ≤ t, x ≥ 0

d + x = d + (t1−α − d1−α)
1

1−α ≤ c.

This problem has a complicated first-order condition and is not tractable for
all value of α. However, investigation of the first-order conditions, allows to make
a number of propositions about the investment decisions of the agents.

Case 1: α = 0

If there are no synergy effects in team production, then the probability of
success is p(x, y) = 1 − e−(x+y), where x + y ≤ c. In this case it is obvious, that
A1 will never employ A2. In stand-alone situation he can implement the same
probability of success and he does not have to pay a share to his employee.

As for the principal in this situation, he is better off by employing a single
agent A1, than a team with equal partners. Indeed, the probability of success is
the same in both settings, but there is double moral hazard in the latter case.
However, according to Corollary 1, the principal receives even higher profit by
employing competing agents.

Case 2: α > 0.

In the presence of technological benefits of team production, agent A1 faces a
complicated tradeoff. He can employ agent A2 and allow him to allocate part of

18If x∗ is the optimal investment choice of the team leader in the sequential move game, than
for any (x, y) holds Π1(x

∗, y(x∗)) ≥ Π1(x, y), where Π1(x, y) is profit of the team leader.
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investment funds into the project, which will increase the probability of success
due to synergy effect. However, he also has to promise A2 a share of the prize,
large enough to deter the latter from consuming the investment funds. Hence,
by employing the second agent, A1 suffers twice: he has to give away part of the
funds, which he otherwise could consume himself, and he has to give up part of
the reward in case of success. It is therefore intuitive, that A1 should be reluctant
to employ A2 and if he does employ him, then it is reasonable to expect, that the
latter will be allocated only a small part of total investment funds.

In the solution to A1’s maximization problem (4), the derivatives with respect
to d and t become:

∂ΠH
1

∂d
= −1 − αdα−1(et − 1)t−α + d−α(t1−α − d1−α)

α
1−α ,

∂ΠH
1

∂t
= e−tt−(1+α)

(

αdαet(et − 1) − t
(

−Rβ1t
α + et(dαet + (t1−α − d1−α)

α
1−α )

))

.

If the derivative
∂ΠH

1

∂d
is decreasing in d, then agent A1 will optimally decide not

to employ the second agent. On the other hand, if he chooses to cooperate with
the second agent, then the derivative must necessarily increase for some d.

Lemma 1. If A1 employs A2 in equilibrium, then the optimal solution to the
maximization problem (4) will be reached in the interior of the feasible set, so that
∂ΠH

1

∂d
= 0 and

∂ΠH
1

∂t
= 0.

Proposition 4. For the team with hierarchical structure the following statements
hold:

1. Agent A1 will not employ agent A2, whenever α ≤ ᾱ, where ᾱ ≈ 0.432 solves

the equation 1 − (1 − α)
α

2α−1 + (1 + (1 − α)
1−α
2α−1 )α = 0.

2. If A1 employs A2, then the allocation of investment resources between agents
is suboptimal, i.e. d < x.

The proof of the proposition is given in Appendix A. Let me first notice,
that the hierarchical team is an inefficient arrangement. Due to the suboptimal
allocation of resources between the agents, it generates a smaller probability of
success for given c, then the alternative team structure. In Appendix, I illustrate
the allocation of funds in case of team with hierarchy for α = 2

3
(see Figure 4)19

This example shows, that A1 is willing to transfer the second agent only small

19Using Lemma 1 above, it is straightforward to derive Rβ1 as function of t. This relationship
can be used then to recover equilibrium x and d. Complete solution for α = 2

3 is provided in the
proof of Corollary 3 in Appendix.
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fraction of the investment recourses, which he obtains from the principal. In other
words, A1 makes only a minor use of the synergy effects, compared with optimal
allocation x = d.20 The unwillingness of A1 to share is the source of inefficiency
in the hierarchical team. If the principal employs hierarchical team, then in order
to achieve the same probability of success as in team with equal partners, he has
to invest more in the former case, which increases his investment costs.

This inefficiency of hierarchical team has also an implication for the decision
of agent A1 to employ the second agent. The first statement of the Proposition
4 suggests, that when the synergy effects are moderate, then from the point of
view of agent A1 the contribution of A2 to the project is not sufficient to justify
the costs, connected with his employment. Note, however, that when the principal
himself employs both agents, he allocates the investment resources in most efficient
manner, so that agents invest equal amounts. In this case, due to the optimal use
of synergy effect, the participation of the second agent in the project has more
sound effect on the probability of success. A1 never employs the second agent for
α ≤ ᾱ, where ᾱ ≈ 0.432. However, the original principal would have financed
a team with equal partners for the same synergy effect, if the value of price in
stake were large enough to justify investment costs.21 Moreover, there exist a set
of (α,R) with α ≤ ᾱ, such that the principal would actually prefer to employ a
team, rather than competing agents.22

The continuity of profit function ΠH
1 also ensures, that the first agent might end

up not employing agent A2 even for the synergy effects α > ᾱ. To illustrate this,
I show in the Appendix, that for α = 0.5, the first agent will prefer to stay alone,
if the value of prize in stake R is larger, than 14.490. It is quite intuitive, that
for moderate synergy effects agent A1 is reluctant to employ agent A2, if the prize
in stake increases. Indeed, the principal is willing to invest more in the project,
if the prize in stake is large. He also has to balance the incentive constraint by
offering a larger reward to the agents. Agent A1 has both investment resources and
the reward at his discretion. This amount of money at hand makes his tradeoff
between increasing the probability of success by employing the second agent and
increasing own utility by consuming the funds, ever more complicated. Hence, for
R large enough he may prefer to undertake the project alone.

The bottom line from the Proposition 4 is, that for “large” set of parameters
(α,R), the hierarchical team structure is not feasible to the principal in a sense,
that in equilibrium the first agent will not employ the second agent. If agent A1

does employ agent A2, then the allocation of resources between them is suboptimal,
which leads to the loss of efficiency in terms of success probability.

20This allocation is optimal from the efficiency point of view, because it maximizes the prob-
ability of success for given amount of investment resources.

21This follows from Proposition 3.
22See Figure 1 in Section 6.
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Consider now such (α,R), that the hierarchical team is feasible for the princi-
pal. Which team structure serves him better, depends on combination of param-
eters α and R. However, intuition suggests, that the outcome of the hierarchical
team may be better than the outcome of the equal partners team, only if it leads
to the investment decision, which the principal is not able to replicate in the corre-
sponding simultaneous move game. In other words, if for fixed (Rβ1(1−β2), Rβ1β2)
an equilibrium in the hierarchical team is situated to the right from an equilibrium
in the team with equal partners, than there is a possibility, that hierarchical team
generates larger profit to the principal.23

More formally, assume that the optimal contract in the case of hierarchical
team requires, that the agents A1 and A2 are paid (Rβ1(1−β2), Rβ1β2) respectively.
Let (xh, yh) be the equilibrium investment of agents A1 and A2 in the hierarchical
team. Similarly, let (xt, yt) be the equilibrium investments of agents in the equal
partners team with shares fixed to (Rβ1(1 − β2), Rβ1β2). Then, if xh ≤ xt, the
principal can replicate the outcome of the hierarchical team by signing a contract
with the agents, where A1 is allocated an amount c = xh and A2 is allocated
d = yh, while the shares are (Rβ1(1 − β2), Rβ1β2). If this is the case, then the
hierarchical team does not have any advantages from the principal’s point of view.

Consider now the situation, where xh > xt (see Figure 5 in Appendix for illus-
tration). In this case the team leader overinvests in the project, comparing with
his best response function. In other words, given the corresponding investment
choice of the agent A2, the team leader (agent A1) would prefer to execute lower
level of effort. However, given the sequential structure of the investment, he can-
not change his investment decision. Moreover, the principal cannot replicate the
outcome of this game by signing a contract with each agent separately. Indeed,
in the equilibrium of the corresponding simultaneous move game, xt < xh. Natu-
rally, in team with equal partners, the principal can implicate the probability of
success ph, which corresponds to investment level (xh, yh). Since the principal al-
ways allocates resources in the most efficient manner (which is not the case in the
hierarchical team), he can achieve the probability ph by incurring smaller costs.
However, the principal also has to adjust the rewards of agents appropriately. In
particulary, the reward of the agent A2 must be increased, since efficiency requires
that he is allocated larger amount of resources, than he receives in team with
hierarchy. Let the sum of these adjusted shares be RβT . If the principal employs
hierarchical team, he has to pay a reward of Rβ1. If RβT > Rβ1 and the difference
in the investment costs is not too large, than the principal may prefer to employ
a hierarchical team, rather than a team with equal partners. The corollary below
proves this intuition.

23The illustration of such case is provided in Appendix, see Figure 5.
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Corollary 3. There exists an open set of parameters (α,R), such that the hier-
archical team is feasible to the principal, and he prefers to employ a hierarchical
team, rather than team with equal partners.

In Appendix, I provide a proof of this corollary by a mean of example. I show,
that for α = 2

3
the principal will finance a hierarchical team for α ∈ (0.734, 0.75],

while for this range of parameters he will set c = 0 in case of team with equal
partners. For α ∈ (0.75, 0.895) both teams are feasible, but profit of the principal
is larger under hierarchical team. By continuity, this result also holds in the open
set around α = 2

3
.

The choice between hierarchical team and team with equal partners depends on
the balance between efficiency of R&D and power of incentives. For small values
of R the principal might prefer to finance a hierarchical team, if the team leader
is prepared to overinvest in the sequential equilibrium, compared with his best re-
sponse reaction. Indeed, for low values of R the principal is only willing to invest
little resources in the project. This implies, that probability of success is small,
even when resources are allocated efficiently. Hence, if agent A1 has incentives to
invest intensively in the hierarchical team and the increase in efficiency due to the
optimal allocation of resources is not significant, then the principal might prefer
the latter structure over the team with equal partners. However, intuition and
the examples in Appendix suggest, that the range of parameters, where hierar-
chical team performs better is small. As the prize in stake increases, so does the
equilibrium investment expenditures of the principal. The efficiency becomes now
an important issue, because increase in the success probability due to the optimal
allocation of funds becomes more significant. It is obvious, that the principal will
never employ the hierarchial team, if he has to give up a larger share of the prize,
than with the alternative team structure. But also when the opposite is the case,
he will prefer to employ the team with equal partners, when the efficiency gain is
large enough to justify the reward of the agents. In my examples, the principal
will always prefer the team with equal partners, if α = 0.5. If α = 2

3
, he will prefer

a team with equal partners over the hierarchical team for R > 0.895.

8 Conclusion

In this paper I investigate four different organizational structures of the research
and development in the framework where the financing decisions (made by a prin-
cipal) and allocation decisions (made by agents) are separated. The allocation
decision is not observable to the principal, which creates a moral hazard problem.
The common implication for the contract between the principal and agents in all
four cases is, that when the principal decides to increase amount of finances, al-
located to the project, he also has to increase a reward of the agents, which they
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obtain in case of success. Otherwise, they tend to consume part of funds, instead
of allocating them into R&D.

However, different structures have different effect on the incentives, which leads
to decrease or increase in the rent, allocated to the agents. Competition between
agents proves to be a strong incentive device. Despite the duplication of research
costs, it leads to a significant decrease in agents’ rents, so that the principal will
always prefers employing competing agents, rather than a single agent.

Comparing with competition, the team production may have large synergy ef-
fects, which result in higher probability of success for the same amount of funds,
allocated to the R&D. However, team production suffers from the free-riding prob-
lem, which increases incentive compatible reward of the agents, comparing with
the competitive structure. The model therefore predicts, that the principal will
prefer to use team structure, only if the synergy effects are significant or the prize
is not too large. For moderate synergy effects and large value of the prize, the
principal will rather employ competing agents.

If, however, one of the agents is able to observe the effort of the other agent,
then the principal can improve performance of the team if he assigns the former
agent to a principal position (position of a team leader). This agent acts as a
second principal to his team pear. He determines the optimal contract (share of
the prize and the investment resources), which the latter receives, and can impose
a prohibitively large punishment for if he detects shirking. Since the team leader is
able to perfectly observe effort of the other agent, the contract between them will
be written upon observable effort and the moral hazard on behalf of the second
agent will be eliminated.

On the other hand, if the agents cannot observe each other efforts, then (from
the principal’s point of view) the hierarchical team does not have any benefits,
comparing to the case where the principal contracts the agents himself. However,
hierarchical team structure may provide the team leader an opportunity to make
his effort observable to another agent, either by completing part of the project, or
by committing resources to it. If this is the case, then this team structure may
still prove to be superior to the equal-partners team, if it results in equilibrium,
which the principal cannot replicate by contracting the agents himself. It follows
from the analysis, that this will be the case, only if the team leader is willing to
overinvest in equilibrium, compared to his best response reaction.

Although sometimes the hierarchical team structure gives the team leader pow-
erful incentives to invest in the project, it also leads to a suboptimal allocation of
funds and a significant loss of efficiency in terms of success probability. The team
leader is reluctant to involve another agent into the project. Although the joint
probability of success could be increased by allocating more funds to the second
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agent24, he also has to be rewarded for his effort by receiving a larger share in case
of success. On the other hand, the team leader can increase his own utility by
consuming these funds, and in addition he could enjoy the larger share of a prize.
Hence, he will only distribute a minor part of funds to the second agent. There-
fore, for fixed amount of investment expenditures, the hierarchical team leads to
much lower success probability than a team, with equal partners.

Due to the low efficiency of a hierarchical team, the team leader will not em-
ploy the second agent for large set of parameters (for example, when α < 0.43).
For (α,R), which belong to this set, the hierarchical team is not feasible to the
principal. On the other hand, for the same set of parameters, the team with equal
partners team may perform even better than competition, due to the efficient al-
location of investment resources. The model also suggests, that even when both
alternative team structures are feasible to the principal, he should most of the
time structure his research team as a team with equal partners. The reason is
that as the prize increases, the principal is willing to allocate more resources into
the project. This implies, that increase in probability of success due to the opti-
mal allocation of these resources becomes significant and overweighs any positive
effect, which the hierarchical team might have on the incentives of the leader.

An implication of the model is, that in environments, where the team leader
has difficulties monitoring his team mates, one should expect to observe team
leader executing disproportional large effort. On the contrary, other members of
the team should only perform a minor work.

Another implication of this model for the practice of R&D financing is that
the financiers (e.g. grant agencies, venture capitalists, firms, subcontracting R&D)
should encourage the information exchange and transparency within the research
team. Even if this transparency does not increase ability of the financiers to
observe efforts, they can benefit from it indirectly by using the hierarchical team
structure. On the other hand, if due to working conditions or very different job
tasks the agents are not able to observe or understand amount of effort, imputed
by their team pears, the financiers should most of the time organize their research
unit as a team with equal partners, rather than hierarchy. Especially when the
team members cannot observe each other effort, competition may be a superior
organizational structure, if the synergy effects in team are moderate and the prize
in stake is large enough.

24For each amount of money, which the first agent is ready to allocate to the project, the
probability of success is maximized, if both agents invest half of that amount.
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A Mathematical appendix

Proof of Proposition 1

As a first step, I will show that the recourse constraint RCS binds in optimum.
Assume, that c is large enough, so that RCS does not bind. Denote f(x) =
R(1 − β(x))(1 − e−x), where Rβ(x) ≥ ex according to ICS. The problem of
the principal in this case is to maximize expected profit, subject to incentive
constraint:

max
x∈[0,c]

f(x) − c

s.t. ICS.

I will denote the solution to this problem as x̂. Note, that the profit of the
principal decreases in c. Hence, optimal c is such, that c = x̂ and the profit of the
principal is f(x̂) − x̂.

Assume now, that for any x the principal chooses c so, that the RCS is also
binding. Then the problem of the principal is:

max
x∈[0,c]

f(x) − c

s.t. ICS,

c = x.

Denoting the solution to this problem as x∗, I can write the expected profit of
the principal as f(x∗)−x∗. Note, that since x∗ = argmaxf(x)−x, for any x̂ holds
the following inequality: f(x∗) − x∗ ≥ f(x̂) − x̂. Hence, the principal will always
choose c such, that the recourse constraint is binding.

Further, assume, that (ICS) is not binding, so that Rβ > ec. This however,
cannot be an optimum, because for any Rβ > ec the agent will choose the level
of investment x = c, so that the probability of success does not change. However,
the principal can increase his profit by decreasing Rβ. Hence, in optimum the
principal will choose such β and c, that Rβ = ec, i.e. (ICS) constraint will be
binding.

With all constraint being binding the Problem (2) looks as follows:

max
c,β

ΠS
P = R(1 − β)(1 − e−x) + c − x

s.t. (ICS) Rβ = ex,

(RCS) x = c,

(CSS) (Rβ − ex)(x − c) = 0.
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The solution to this problem is c = ln 1
2
(−1 +

√
1 + 4R). For any R > 2, c is

positive.

Proof of Proposition 2

The problem of the principal in the general form is

max
βC
1 , βC

2 , c, d
ΠC

P = R(1 − x
x+y

βC
1 − y

x+y
βC

2 )(1 − e−(x+y)) − (c + d)

s.t. (ICC1) RβC
1 ≥ ex+y(x + y)2

x2 − y + ex+yy + xy
,

(ICC2) RβC
2 ≥ ex+y(x + y)2

y2 − x + ex+yx + xy
,

(RCC1) x ≤ c,

(RCC2) y ≤ d,

(CSC1)

(

RβC
1 − ex+y(x + y)2

x2 − y + ex+yy + xy

)

(c − x) = 0,

(CSC2)

(

RβC
2 − ex+y(x + y)2

y2 − x + ex+yx + xy

)

(d − y) = 0.

According to incentive compatibility constraints ICC1 and ICC2 the agents
choose their investment x and y to maximize their expected utility. On the other
hand, since all available funds come from the principal, the agents cannot invest
more then c, respectively d, which is described by recourse constraints RCC1 and
RCC2. Finally, complementary slackness conditions CSC1 and CSC2 ensures that
at least one of constrains ICC1, RCC1 and ICC2, RCC2 is binding. If RCC1 does
not bind, than ICC1 must necessarily be binding. On the other hand, if ICC1

does not bind, then RCC1 must be binding according to equilibrium conditions
(the same holds for ICC2 and RCC2).

I will develop a proof in several steps.

Step 1.

All constrains will be binding, which follows from the same argument as in the
proof to Proposition 1.

Step 2.
With all constrains being binding, we can re-write the principal problem in the

following form:
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max
x,y

(

R − ex+y(x + y)2

x2 − y + ex+yy + xy
− ex+y(x + y)2

y2 − x + ex+yx + xy

)

(1 − e−(x+y)) − (x + y).

I take the first-order condition w.r.t. x and y and expressing R, so that I
receive the system of equation25:

R = F1(x, y), R = F2(x, y).

Subtracting second equation from the first one I receive the following expression:

ex+y(ex+y − 1)2(x − y)(x + y)3(−1 + ex+y − (x + y))(ex+y + x + y − 1)

(y2 + x(y + ex+y − 1))2((−1 + ex+y)y + x(x + y))2
= 0.

The above equality holds, if the following conditions are satisfied:

1. (y2 + x(y + ex+y − 1))2((−1 + ex+y)y + x(x + y))2 6= 0,

2. ex+y(ex+y − 1)(x − y)(x + y)3(−1 + ex+y − (x + y))2(ex+y + x + y − 1) = 0

From the first condition it follows, that x 6= −y. The second part holds true if at
least one of the following conditions is satisfied:

1. x = y,

2. x = −y

3. −1 + ex+y + x + y = 0,

4. −1 + ex+y − (x + y) = 0.

Condition 2 is ruled out based on result that x 6= −y. For simplicity I will denote
x + y := a. Condition 4 holds iff a = 0, implying x = −y, which we have ruled
out. Indeed, denoting, it is easy to see that the function f(a) = ea − a − 1
reaches it’s unique minimum at 0, so that f(0) = 0. As for condition 3, the
function g(a) = ea + a − 1 is strictly increasing in a, and there is unique solution
of g(a) = 0, namely a = 0, which is impossible due to result x 6= −y. Hence, it
necessarily must be, that condition 1 holds, i.e. x = y. This automatically implies,
that Rβ1 = Rβ2 and c = d = x = y. Hence the agents are offered a symmetric
contract.

Step 3.

25The equations are straightforward to receive, but too cumbersome to present them in the
paper
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I can now re-write a problem of the principal in the following form:

max
βC , c

ΠC
P = R(1 − βC)(1 − e−2x) − 2c

s.t RβC =
e2x4x2

2x2 − x + e2xx
,

x = c.

The solution to the problem is given by

R =
e2c (4c(e2c − 1) + 3(e2c − 1)2 + c2(4 + 8e2c))

(e2c + 2c − 1)2
(5)

To see, that R is increasing in c, let me re-write the Equation (5) in the following
form:

R = e2c +
8e4cc2

(e2c + 2c − 1)2
.

It is straightforward to verify, that both function on the right-hand side of the
equation increase in c.

Step 4.
Recall, that I assume, R > 2. Now let us to verify, that optimal contract

c = d, RβC
1 = RβC

2 := RβC =
4c

1 − e−2c + 2ce−2c
, where c is given by Equation

(5) leads to unique SPNE. Equilibria (x, 0),(0, y),(c, y),(x, d) are ruled out because
the agents are treated symmetrically, so that x = y in SPNE.

There are two possibilities left: (0, 0) and (c, c). Recall (see Table 1), that
equilibrium (0, 0) will be played iff RβC ≤ 1. However, c > 0 for any R > 2. And
c > 0 implies, that RβC > 1. To see this, note, that RβC is increasing in c and
RβC → 1 as c → 0. Hence for any R > 2, (0, 0) will not be played in equilibrium.
Therefore the optimal contract, described in Proposition 2 leads to unique SPNE
(c, c).

Proof of Corollary 1

For clarity of notations I will denote as t the amount of finance which a single
agent receive and c the amount of finance which each of competing agents receives.
The amount of finance and shares of agents are determined from the following
expressions (see Proposition 1 and Proposition 2):

R = et(1 + et), RβS = et (6)

R =
e2c (4c(e2c − 1) + 3(e2c − 1)2 + c2(4 + 8e2c))

(e2c + 2c − 1)2
, RβC =

4ce2c

e2c + 2c − 1
(7)
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I will first prove that according to the optimal contract the principal invests
less if he employs a single entrepreneur, than if he employs competing agents, i.e.
2c > t. Assume on the contrary that 2c ≤ t. I will show that, contrary to (6) and
(7) this implies the following relation:

et(1 + et) >
e2c (4c(e2c − 1) + 3(e2c − 1)2 + c2(4 + 8e2c))

(e2c + 2c − 1)2
(8)

Note, that it is enough to prove, that (8) holds for t = 2c. Plugging t = 2c
into (8) and rearranging the terms I obtain the following inequality:

(1 + e2c)(e2c + 2c − 1)2 > 4c(e2c − 1) + 3(e2c − 1)2 + c2(4 + 8e2c).

I will denote the function on the left-hand side as L(c) = (1+e2c)(e2c +2c−1)2

and the function on the right-hand side as R(c) = (4c(e2c − 1) + 3(e2c − 1)2 + c2(4 + 8e2c)).
Note, that L(0) = R(0) = 0. I will prove now that for any c > 0, L′(c) > R′(c),
which implies that for any c > 0, L(c) > R(c). Taking the respective derivatives,
I obtain:

L′(c) = 2(−1 + 2c + e2c)(2 + (3 + 2c)e2c + 3e4c),

R′(c) = 4(−1 − 2c2c + 4c2e2c + 3e4c + c(2 + 6e2c)).

Both these derivatives are positive for any c > 0. Subtracting R′(c) from L′(c)
I obtain the following function:

f(c) = 2e2c(−4c2 + 8c(−1 + e2c) + 3(−1 + e2c)2).

Since f(0) = 0, it is enough to show that function monotonically increases for
c > 0 in order to prove that for any c > 0, f(c) > 0. The first derivative of the
function f(c) is positive, since

−2 − e2c + 3e4c + c(4e2c − 2) > 0.

for any c > 0. Hence, I have proved that if 2c ≤ t, than the following holds:

et(1 + et) ≥ e2c(1 + e2c) >
e2c (4c(e2c − 1) + 3(e2c − 1)2 + c2(4 + 8e2c))

(e2c + 2c − 1)2
.

This, however, contradicts the conditions (6) and (7), which should be satisfied
simultaneously for given R. Hence, it must be, that 2c > t.

Next, I will show, that conditions (6) and (7) imply that RβC < RβS. Suppose
on the contrary, RβC ≥ RβS. Then it is enough to show, that for RβC = RβS,
the following inequality holds (contrary to Equations 6 and 7):

et(1 + et) <
e2c (4c(e2c − 1) + 3(e2c − 1)2 + c2(4 + 8e2c))

(e2c + 2c − 1)2
.
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If RβC = RβS, then et =
4ce2c

e2c + 2c − 1
. Substituting this to the expression for

R, given by (6) I obtain the following expression:

R =
4ce2c

e2c + 2c − 1

(

1 +
4ce2c

e2c + 2c − 1

)

.

On the other hand, according to (7),

R =
e2c (4c(e2c − 1) + 3(e2c − 1)2 + c2(4 + 8e2c))

(e2c + 2c − 1)2
.

However, it is not possible that these two equalities are satisfied simultaneously.
Indeed, I will show, that for any c > 0 holds the inequality:

4ce2c

e2c + 2c − 1

(

1 +
4ce2c

e2c + 2c − 1

)

<
e2c (4c(e2c − 1) + 3(e2c − 1)2 + c2(4 + 8e2c))

(e2c + 2c − 1)2
⇔

⇔ 4c2 + 8c2e2c < 3e4c − 6e2c + 3

To prove that the last inequality holds for any c > 0, I will take the derivatives
of the function l(c) = 4c2 + 8c2e2c and r(c) = 3e4c − 6e2c + 3 and compare them
(notice, that l(0) = r(0) = 0). The derivatives are l′(c) = 4(2c + 4ce2c + 4c2e2c)
and r′(c) = 4(3e4c − 3e2c). Comparing l′(c) and r′(c) I establish the following:

l′(c) < r′(c) ⇔ 2c < e2c(3e2c − 4c2 + 3 + 4c). (9)

Obviously, 2c < e2c for any c > 0. Also, 3e2c > 4c2 for any c > 0. Hence,
l′(c) < r′(c). This in turn implies, that

et(1+et) ≤ 4ce2c

e2c + 2c − 1

(

1 +
4ce2c

e2c + 2c − 1

)

<
e2c (4c(e2c − 1) + 3(e2c − 1)2 + c2(4 + 8e2c))

(e2c + 2c − 1)2
,

which contradicts (6) and (7). Therefore, I conclude, that it must be that RβC <
RβS.

I have proved, that the principal invests more in case of competing agents
(2c > t), so that the probability of success is higher than in single-agent case.
On the other hand, the share of a prize which would be paid in case of success is
smaller if competing agents are employed (βC < βS). According to Propositions
1 and 2, the profit of the principal if he employs competing agents, respectively
single agent is:

ΠC
P = R(1 − βC)(1 − e−2c) − 2c = (R − 4ce2c

e2c + 2c − 1
)(1 − e−2c) − 2c;

ΠS
P = R(1 − βS)(1 − e−t) − t = (R − et)(1 − e−t) − t.
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First, let me notice, that ΠS
P (t) is increasing in t. Indeed, the derivative of the

function is Re−t − et which is positive, if R > e2t. According to optimal contract,
R = et(1 + et), which indeed implies R > e2t. Hence, I can write the inequality:

(R − e2c)(1 − e−2c) − 2c > (R − et)(1 − e−t) − t.

Further, notice, that e2c > et >
4ce2c

e2c + 2c − 1
. Together with inequality above,

that implies

(

R − 4ce2c

e2c + 2c − 1

)

(1 − e−2c) − 2c > (R − e2c)(1 − e−2c) − 2c >

> (R − et)(1 − e−t) − t.

Hence, ΠC
P > ΠS

P .

Production function and probability of success in team

For consistency of presentation I will start the discussion with the case of one
agent. Assume, that in order to produce an output the agent needs to acquire
two skills or production factors, such as capital, which I will call “K” and labor
“L”. He allocates the available budget x in order to acquire these skills. The cost
of skill K is p > 1 and the cost of skill L is normalized to 1. Assume further,

that the production function has a CES form f(K,L) = (K1−α +L1−α)
1

1−α , where
0 ≤ α < 1 is a degree of complementarity between K and L. Hence, the agent
faces a following maximization problem:

max
K,L

f(K,L) = (K1−α + L1−α)
1

1−α

s.t. pK + L = x.

The optimal solution to this problem is

(K∗, L∗) =





xp−
1
α

1 + p
α−1

α

,
x

1 + p
α−1

α





and the output, which the agent produces in optimum is f(x) = x · (1 + p
α−1

α )
α

1−α .
This output converges to x, as p goes to infinity. Therefore, the agent who disposes
a budget x and chooses his factors of production optimally, will produce the output
of value x, if the price of one factor is infinitely large. This output determines the
probability of success p(x) in a way, which I have already discussed earlier:

p(x) = 1 − e−x.
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The output x can be interpreted as a “knowledge” or productivity, which the agent
acquires while investing in factors. This productivity determines the parameter
of Poisson distribution so, that the average number of success in unit of time is x
and the expected time before first success is 1/x.

Consider now the problem of two agents who jointly maximize the team output.
Let one of them have a budget x and another y. One agent invests in K1 and L1,
where cost of K1 is p > 1 and cost of L1 is 1 and the other agent invests in K2

and L2, with costs 1 and p > 1 respectively. The maximization problem therefore
is the following:

max
{K1,K2,L1,L2}

f(·) = ((K1 + K2)
1−α + (L1 + L2)

1−α)
1

1−α ; (10)

s.t. pK1 + L1 = x,

K2 + pL2 = y.

The complete solution to this maximization problem is developed below. Here
I will discuss the result and the intuition behind it. The problem does not have
an interior solution, and depending on values of parameters p and α, the optimal
choice of the production factors is the following:

[(K1, L1), (K2, L2)] =



(0, x) ;





y + px

1 + p
α−1

α

,
yp−

1
α − x

1 + p
α−1

α







 , if
x

y
≤ p−

1
α ,

[(K1, L1), (K2, L2)] = [(0, x); (y, 0)] , if p− 1
α <

x

y
< p

1
α ,

[(K1, L1), (K2, L2)] =









xp−
1
α − y

1 + p
α−1

α

,
x + yp

1 + p
α−1

α



 ; (y, 0)



 , if
x

y
≥ p

1
α .

This optimal solution has the following property. If the budgets of two agents
are not very different, so that p− 1

α < x
y

< p
1
α , then the agents specialize and each

invests in his cheapest factor of production. If, however, one of the agents has too
small budget, so that x

y
≤ p−

1
α or x

y
≥ p

1
α , then he specializes in his the cheapest

factor, while his team mate invests in both factors. Then the output at optimal
allocation has the following form:

f(x, y) =































(y + px)
(

1 + p
α−1

α

)

if x
y
≤ p−

1
α ,

(

x1−α + y1−α
)

1
1−α if x

y
∈
(

p−
1
α , p

1
α

)

,

(x + yp)
(

1 + p
α−1

α

)

if x
y
≥ p

1
α .

(11)
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If p → ∞, then both agents specialize in their cheapest factor of production
and the output f(x, y) is

f(x, y) = (x1−α + y1−α)
1

1−α .

If we interpret this output as a parameter of the Poisson distribution, then the
probability that team reaches a success before time T = 1 elapses is:

p(x, y) = 1 − e−(x1−α+y1−α)
1

1−α
.

Hence, the specification of synergy effect in team, which I have chosen, reflects
a case when each of two agents is “talented” in different skill or production factor,
and joint production is maximized, when each agent specializes in his cheapest
factor. Note, that if both factors are equally expensive, so that price of K and L
can be normalized to 1, then no specialization occurs and optimal production has
a form f(x, y) = x + y so that probability of success is

p(x, y) = 1 − e−(x+y).

Solution to the maximization problem (10)
From the set up of problem (10) and the fact, that the amount of factors

is always nonnegative, it is clear that the solution should satisfy the following
constraint:

L1 ∈ [0, x] , K2 ∈ [0, y] .

Given this constraints, it is easy to show that there is no interior solution to the
problem. Indeed, solving the system of the first-order conditions one obtains the
following result:

(K∗
1 , L

∗
1) =

(

− xp + y

(1 − p)2
, x +

p2x + py

(1 − p)2

)

,

(K∗
2 , L

∗
2) =

(

y +
px + yp2

(1 − p)2
,− x + yp

(1 − p2)

)

.

Obviously, this can not be a solution, since K1 < 0 and L2 < 0. Therefore let
us consider the boundary solutions. There are eight possible allocations:

1. L1 = 0, K2 ∈ (0, y),

2. L1 = 0, K2 ∈ (0, y),

3. L1 = x,K2 = y,
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4. L1 = 0, K2 = y,

5. L1 = x,K2 = 0,

6. L1 = 0, K2 = 0,

7. L1 ∈ (0, x), K2 = y,

8. L1 ∈ (0, x), K2 = 0.

Allocation 1 and 7, 2 and 8, 4 and 5 are symmetric and therefore I will develop
the complete solution only for the allocations 1,2,3,6 and 7. Recall again problem
(10):

max
{K1,K2,L1,L2}

f(·) = ((K1 + K2)
1−α + (L1 + L2)

1−α)
1

1−α ;

s.t. pK1 + L1 = x,

K2 + pL2 = y.

Allocation 6 is: [(K1, L1), (K2, L2)] = [(x
p
, 0), (0, y

p
)]. The output resulting from

this allocation of factors is

f6(x, y) =
1

p
(x1−α + y1−α)

1
1−α .

Allocation 3 is [(K1, L1), (K2, L2)] = [(0, x), (y, 0)] and the corresponding out-
put is

f3(x, y) = (x1−α + y1−α)
1

1−α .

Obviously, for any p > 1, f6 < f3, so that the Allocation 6 cannot be optimal
solution to the problem (10).

Allocation 1 leads to the following maximization problem:

max
{K1,K2,L1,L2}

f(·) = A((K1 + K2)
1−α + (L1 + L2)

1−α)
1

1−α ;

s.t. K1 = 0, L1 = x,

K2 + pL2 = y,

K1, K2, L1, L2 ≥ 0.

We are interested in interior solution to this problem, because otherwise the
problem is analogical either to Allocation 3 or to Allocation 5. The interior solution
exists if x ≤ yp−

1
α and has the following form:

[(K1, L1), (K2, L2)] = [(0, x),





yp−
1
α − x

1 + p
α−1

α

,
y + px

1 + p
α−1

α



],
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and the corresponding production is f1(x, y) = (y + px)(1 + p
α−1

α )
α

1−α .

Allocation 2, leads to the maximization problem

max
{K1,K2,L1,L2}

f(·) = ((K1 + K2)
1−α + (L1 + L2)

1−α)
1

1−α ;

s.t. K1 = x
p
, L1 = 0,

K2 + pL2 = y,

K1, K2, L1, L2 ≥ 0.

The existence of interior solution requires x ≤ yp
1
α and the solution is the following:

[(K1, L1), (K2, L2)] = [

(

x

p
, 0

)

,





y − xp−
1
α

1 + p
α−1

α

,
p−

1
α (x

p
+ y)

1 + p
α−1

α



]

f2(x, y) =

(

x

p
+ y

)

(1 + p
α−1

α )
α

1−α .

Finally, Allocation 4 : [(K1, L1), (K2, L2)] = [(x
p
, 0), (y, 0)] results in output

f4(x, y) =

(

x

p
+ y

)

.

So, to determine the optimal solution we need to compare the value of func-
tions f1(x, y), f2(x, y), f3(x, y) and f4(x, y). This comparison is relatively straight-
forward and therefore I only sketch it without going into details. There are several
cases to be considered:

1. y ≤ xp
1
α . If this is the case, then for any p > 1 the following obviously holds:

f4(x, y) =

(

x

p
+ y

)

≤ f2(x, y) =

(

x

p
+ y

)

(1 + p
α−1

α )
α

1−α ,

f2(x, y) =

(

x

p
+ y

)

(1 + p
α−1

α )
α

1−α ≤ f1(x, y) = (y + px)
(

1 + p
α−1

α

)
α

1−α .

It is less obvious, that f1(x, y) > f3(x, y). To prove this, I will re-write the
inequality in the following form:

f1(x, y) > f3(x, y) ⇔ (t + p)1−α
(

1 + p
α−1

α

)α
> 1 + t1−α, (12)

where t = y

x
. Notice, that if t = p

1
α , then the left-hand side of the above

inequality, which I will call L(t) is equal to the right-hand side, which I will

call R(t), namely L(t) = R(t) = 1 + p
1−α

α .

43



Since both L(t) and R(t) are increasing functions of t, it is enough to show,
that L′(t) > R′(t) in order to prove that inequality (12) is true. Taking the
respective derivatives, one can see, that

L′(t) > R′(t) ⇔ (t + p)−α
(

1 + p
α−1

α

)α
> t−α ⇔ t

t + p
>

p
1−α

α

1 + p
1−α

α

where the last inequality always holds for y

x
= t > p

1
α .

2. xp−
1
α ≤ y ≤ xp

1
α . If this is the case, then there are three outputs to

be compared: f3(x, y), f4(x, y) and f2(x, y). The analysis in analogical to
previous case and the conclusion is f3(x, y) > f2(x, y) > f4(x, y).

3. y ≤ xp−
1
α . Using the similar approach, as in (1), it is possible to show, that

f4(x, y) < f3(x, y).

The analysis of the residual allocations 5, 7 and 8 is symmetric. Hence, among
all possible allocations, which satisfy the constrains of problem (10) the allocation
which maximize the joint production are:

1. Allocation 1, if x
y
≤ p−

1
α ,

2. Allocation 3, if p− 1
α < x

y
< p

1
α ,

3. Allocation 7, if x
y
≥ p

1
α .

The resulting output therefore is the following:

f(x, y) =































(y + px)
(

1 + p
α−1

α

)

if x
y
≤ p−

1
α ,

(

x1−α + y1−α
) 1

1−α if x
y
∈
(

p−
1
α , p

1
α

)

,

(x + yp)
(

1 + p
α−1

α

)

if x
y
≥ p

1
α .

(13)

Proof of Proposition 3

The problem of the principal in general form is:

max
βT
1 , βT

2 , c, d
ΠT

P = R(1 − βT
1 − βT

2 )(1 − e−(x1−α+y1−α)
1

1−a
) − (c + d)

s.t. (ICT1) RβT
1 ≥ e(x1−α+y1−α)

1
1−α

xα

(x1−α + y1−α)
α

1−α

,
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(ICT2) RβT
2 ≥ e(x1−α+y1−α)

1
1−α

yα

(x1−α + y1−α)
α

1−α

,

(RCT1) x ≤ c,

(RCT2) y ≤ d,

(CST1)





RβT
1 − e(x1−α+y1−α)

1
1−α

xα

(x1−α + y1−α)
α

1−α





 (x − c) = 0,

(CST2)





RβT
2 − e(x1−α+y1−α)

1
1−α

yα

(x1−α + y1−α)
α

1−α





 (y − d) = 0.

As it was the case with competition, at least one of the constrains (ICT1, RCT1)
and (ICT2, RCT2) will be binding. If the incentive constraint is not binding, then
an agent will invest all available funds, i.e. resource constrain will be binding. On
the other hand, if the recourse constrain is not binding, then equilibrium conditions
imply, that incentive constraint is binding.

The proof is developed in several steps.

Step 1. All constrains for the principal problem are binding. The argument is
analogical to the proof of Proposition 1.

Step 2. With all constrains being binding, we can re-write the problem of the
principal in the following form:

max
x,y

ΠT
P = R





1 − e(x1−α+y1−α)
1

1−α
xα

(x1−α + y1−α)
α

1−α

− e(x1−α+y1−α)
1

1−α
yα

(x1−α + y1−α)
α

1−α





 (1−e−(x1−α+y1−α)
1

1−a
)−(x+y)

Taking the first-order condition w.r.t x and y and expressing R, I receive the
system of equation R = F1(x, y), R = F2(x, y).26 In the optimal solution therefore,
F1(x, y) = F2(x, y), which can be shown to be equivalent to:

xy(xα − yα) = α
(

e(x1−α+y1−α)
1

1−α − 1
)

(

x1−α + y1−α
) α

1−α xy(y2α−1 − x2α−1).

The above equation obviously holds iff x = y. This in turn implies, that c = d
and βT

1 = βT
2 .

26The first-order conditions are straightforward, but are too cumbersome, and therefore are
not presented here.
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Step 3. Taking into account the results of two previous steps, I can re-write
the problem of the principal in the following form:

max
βT ,c,x

ΠT
P = R(1 − 2βT )(1 − e−2

1
1−α x) − 2c (14)

s.t. RβT = e2
1

1−α x

2
α

1−α
,

x = c.

Solving this problem, I receive the optimal amount of investments c:

R = 2
α

α−1 e2
1

1−α c(1 + 2e2
1

1−α c), hence (15)

c = 2
1

α−1 ln
1

4

(

−1 + 2
1

1−α

√

4
1

α−1 + 22+ 1
α−1 R

)

. (16)

Step 4. According to (16), c is monotonically increasing in R. Let us determine
the threshold R̂, such that c > 0 if R > R̂. Solving Equation (16) for c = 0, I
obtain the value of R̂ = 3 ·2 α

α−1 . So, for R ≤ 3 ·2 α
1−α the team will not be employed

and for R > 3 · 2
α

1−α the team will be employed. In the latter case the profit of
the principal is positive. To see this, I will first prove, that ΠT

P is increasing in R,
if R ≥ R̂. I substitute back expression for optimal c into the ΠT

P :

ΠT
P =

1

4

(

4R − 8

√

4
1

α−1 + 22+ 1
α−1 R + 23+ 1

α−1 (2 + ln 4)−

−23+ 1
α−1 ln

(

−1 + 2
1

α−1

√

4
1

α−1 + 22+ 1
α−1 R

))

.

The derivative w.r.t. R,
−5 · 2 1

α−1 +
√

4
1

α−1 + 22+ 1
α−1 R

−2
1

α−1 +
√

4
1

α−1 + 22+ 1
α−1 R

, is positive if R > R̂.

Since ΠT
P (R̂) = 0, for any R > R̂, profit of the principal is positive..

Step 5. I have proved that the agents are offered a symmetric contract. If the
incentive constraint is satisfied, they allocate all fund to R&D. This rules out all
equilibria expect (0, 0) and (c, c), where optimal c was derived at step 3.

According to the equilibrium conditions (see Table 2), an equilibrium (0, 0) will
be played if RβT

1 = RβT
2 ≤ 1. From the incentives constraint (see maximisation

problem 14), RβT
1 = RβT

2 =
e2

1
1−α x

2
α

1−α

. Hence, (0, 0) is not an equilibrium, if

e2
1

1−α x

2
α

1−α

> 1 ⇐⇒ c > 2
1

α−1 ln 2
α

1−α ⇐⇒ R > 1 + 2
1

1−α .
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From the incentive constraint it also follows, that RβT
1 ≤ 1 iff c ≤ 2

1
α−1 ln 2

α
1−α .

Using the expression for c (Equation 16), I obtain the following condition:

c ≤ 2
1

α−1 ln 2
α

1−α iff R ≤ 1 + 2
1

1−α .

Hence, there are two equilibria (c, c) and (0, 0), if 3 · 2
α

1−α < R ≤ 1 + 2
1

1−α .
Otherwise, there is a single equilibrium (c, c).

Proof of Corollary 2

The proof is completely analogical to the proof of Corollary 1 and will be
therefore abandoned.

Proof of Lemma 1

Recall, that the domain of d and t is such, that d ∈ [0, t] and t ∈ [d, ((c −
d)1−α + d1−α)

1
1−α ]. Let me first consider the derivative

∂ΠH
1

∂d
= −1 − αdα−1(et −

1)t−α + d−α(t1−α − d1−α)
α

1−α . Agent A1 employing agent A2 implies, that this
derivative is increasing in d = 0, so that the optimal d is positive. Further, for

d = t the derivative
∂ΠH

1

∂d
takes the value

∂ΠH
1

∂d
= −1 − α

t
(et − 1) < 0. Hence, d = t

cannot be the optimal solution. Therefore, the optimum should be reached in the

interior of the interval [0, t], so that
∂ΠH

1

∂d
= 0.

Consider now the derivative
∂ΠH

1

∂t
. I have showed in the Proof of Proposition 1,

that it is optimal for the principal to provide such incentives, that agents invest
all funds in their discretion into the R&D. Hence, the principal will choose such c,

that the optimal choice of x and d satisfies c = d+x = d+(t1−α−d1−α)
1

1−α , which

is equivalent to t = ((c − d)1−α + d1−α)
1

1−α . But, for this t to be an equilibrium

choice of the first agent, it must be, that
∂ΠH

1

∂t
≥ 0, or, equivalently

Rβ1 ≥ ett−(1+α)
(

−αdα(et − 1) + t(dαet + (t1−α − d1−α)
α

1−α )
)

.

Since t = ((c−d)1−α+d1−α)
1

1−α for any β1, which satisfies the inequality above,
the principal will choose β1, such that the inequality above is just satisfied, so that
∂ΠH

1

∂t
= 0.

Proof of Proposition 4.

Consider the first statement of the proposition. Agent A1 will not employ A2,

if derivative
∂ΠH

1

∂d
< 0 for any d. This condition is satisfied, if

−1 − αdα−1(et − 1)t−α +

(

(

t

d

)1−α

− 1

)
α

1−α

< 0.
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Taking into account, that et − 1 > t, the following inequality holds:

−1 − αdα−1(et − 1)t−α +

(

(

t

d

)1−α

− 1

)
α

1−α

< (17)

< −1 − αd−1+αt1−α +

(

(

t

d

)1−α

− 1

)
α

1−α

(18)

Let me substitute z =
(

t
d

)1−α
. Note, that z > 1 since d < t. Then, I can

re-write the right-hand side of the inequality (18), as:

−1 − αd−1+αt1−α +

(

(

t

d

)1−α

− 1

)
α

1−α

= −1 − αz + (z − 1)
α

α−1 .

If f(z) = 1 + αz − (z − 1)
α

α−1 is positive for some α, then the right-hand

side of inequality (18) is negative, which implies
∂ΠH

1

∂d
< 0. The function f(z)

reaches its minimum in z∗ = 1 + (1 − α)
1−α
2α−1 . The value of function in z = z∗ is

f(z∗) = 1− (1−α)
α

2α−1 +(1+ (1−α))
1−α
2α−1 . This value is positive, if α < ᾱ, where

ᾱ ≈ 0.4316. Hence, for all α ≤ ᾱ, f(z) ≥ 0. This implies that the derivative
∂ΠH

1

∂d

is strictly negative, so that agent A1 will never employ agent A2.

The second statement of the proposition follows directly from the Lemma 1.

If A1 employs A2, then the first order condition with respect to d is
∂ΠH

1

∂d
= 0.

Substituting x = (t1−α − d1−α)
α

1−α I receive the equivalent condition:

xα = dα + αd2α−1(et − 1)t−α.

Given t > 0, this condition directly implies x > d.

Solution for the hierarchical team, α = 0.5

Let α = 0.5. Then, the derivatives of ΠH
1 with respect to d and t are the

following:

∂ΠH
1

∂d
=

1 − et − 4
√

dt + 2t

2
√

dt
(19)

∂ΠH
1

∂t
=

e−t

2t
3
2

(

2(Rβ1 − et)t
3
2 −

√
d(et − 1)(2t − 1)

)

. (20)

Notice, that In the solution to A1’s maximization problem d = 0 if and only if
1 − et + 2t ≤ 0.
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Sufficiency:

If 1 − et + 2t ≤ 0, then
∂ΠH

1

∂d
< 0 for any d ∈ [0, t]. Hence, optimal solution is

d = 0.

Necessity:

If d = 0 is the optimal solution, then it must be the case, that
∂ΠH

1

∂d
< 0. Recall,

that
∂ΠH

1

∂d
=

1 − et − 2t

2
√

dt
− 2.

Hence, for d = 0,
∂ΠH

1

∂d
→ −∞, if 1−et+2t ≤ 0 and

∂ΠH
1

∂d
→ +∞ if 1−et+2t > 0.

Therefore, for d = 0 to be an optimal solution it is necessarily must be, that
1 − et + 2t ≤ 0.

Let me denote t̂ the solution of the equation 1− et + 2t = 0. Then, inequality
1 − et + 2t ≤ 0 is equivalent to t ≥ t̂. It is possible to estimate, that t̂ ≈ 1.25643.
Hence, for any t ≥ t̂, the first agent will optimally choose d = 0 and will not
employ the second agent. Let us find out, which value of Rβ1 corresponds to this
threshold value.

According to Lemma 1, for t > t̂, we can limit our attention to the interior

solution of A1’s problem, so that
∂ΠH

1

∂d
= 0 and

∂ΠH
1

∂t
= 0. From these first-order

conditions it is possible to express Rβ1:

d =
(1 − et + 2t)2

16t
, (21)

Rβ1 = et

(

1 +
(et − 1)

√
d(2t − 1)

2t
3
2

)

. (22)

The equations above can be used to find the value of Rβ1, corresponding to thresh-
old value t̂: Rβ̂1 ≈ 3.51286. For any Rβ1 ≥ Rβ̂1 the first agent will not employ
the second agent. To find the value of R, which corresponds to the Rβ̂1, one need
to solve the problem of the principal.

max
{c,β1}

ΠH
P = R(1 − β1)(1 − e−t) − c

s.t. c = x + d = (t1−α − d1−α)
1

1−α + d

d is given by (21)

Rβ1 is given by (22).
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The first order condition to this problem is given by:

R = − 1

8t3

(

et(−2 + t − 4t3 + et(6 − 7t + 4t2) + e3t(2 − 5t + 6t2) −

−e2t(6 − 11t + 10t2 + 8t3))
)

. (23)

Plotting the graph for R(t), where t ∈ [0, t̂] it is possible to verify, that R increases
in t. Using Equation (23), I can now estimate the threshold R̂ = R(t̂). For the
values R > R̂ the first agent will prefer not to employ agent A2. By plugging the
value of t̂ into the function f(t), it is possible to estimate, that R(t̂) ≈ 14.4903.
Hence, if R ≥ 14.4903 and α = 0.5, the team with hierarchy is not feasible to
the principal. Continuity implies, that the same conclusion holds for the open set
around α = 0.5.

If R < R(t̂), then Equation (23) can be used to numerically evaluate the profit
of the principal and the parameters of the contract in the situation when the

hierarchical team is employed. The fact, that t = ((c−d)1−α +d1−α)
1

1−α and d < c
implies, that t = 0 iff c = 0. Hence, we can use Equation (23) to find R, such that
c(R) = 0. By applying the L’Hospital rule three times in a raw, it is possible to
establish, that as R → 1.5 as c → 0. Hence, for R ≤ 1.5 the principal will choose
zero level of investments in equilibrium, otherwise he will choose c > 0.

To compare the hierarchical team with the team with equal partners, notice,
that from the Proposition 3 it follows, that the latter will be financed for R > 1.5.
Hence, we have to compare profit of the principal, investment expenditures and
reward of the agent for two alternative team structures for R ∈ (1.5, 14.4903).
From the numerical comparison (see Figure 2) it follows, that the principal is
better off by employing the team with equal partners.

Proof of Corollary 3

The proof is done by a mean of example. Consider α = 2
3
. Using Lemma 1,

the first order conditions of the A1’s problem are:

d =
27t4

8(3t + et − 1)3
. (24)

Rβ1 =
et

3t
5
3

(

−6d
1
3 t

4
3 + 3t

5
3 + d

2
3 (2 + 3t + et(3t − 2))

)

. (25)

The problem of the principal is

max
{c,β1}

ΠH
P = R(1 − β1)(1 − e−t) − c

s.t. c = x + d = (t1−α − d1−α)
1

1−α + d

d is given by (24)

Rβ1 is given by (25).
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The first order condition results in the following equation:

R =
1

4(3t + et − 1)3
et
(

14 + 4et − 27t2 + 27t3 + e3t(54t − 26) +

+et(−46 + 59t − 9t2) + 18e2t(3 − 6t + 2t2 + 3t3)
)

. (26)

It is tedious, but relatively straightforward to verify, that R increases in t.
As I have shown above (see example for α = 0.5), c = 0 iff t = 0. Applying

L’Hospital rule to the Equation (26), one can establish, that R → 47
64

≈ 0.73 as
t → 0. Since R is increasing in t, the hierarchical team will be allocated the
positive amount of investment, if R > 47

64
≈ 0.73. For all R ∈ [0.73, 0.75], the

team with equal partners will not be financed (this follows from the Proposition
3). The profit functions ΠH

P and ΠT
P are increasing in R, which implies, that in the

neighborhood of R = 0.75 it must be true, that ΠH
P > ΠT

P . From the numerical
computations it follows, that ΠH

P = ΠT
P if R ≈ 0.8952. Hence, the principal will

employ the hierarchical team, if R ∈ [0.73, 0.8952]. For R > 0.8952 he will prefer
team with equal partners. On Figure 3, I illustrate the profit of the principal
under both alternative team structures for R > 0.8952.
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B Appendix: Tables and Figures
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Figure 2: Profit of the principal (α = 1
2 , R ∈ (1.5, 14.4903)): equal-partner team (thick line)

vs. team with hierarchy (thin line).
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Figure 3: Profit of the principal (α = 2
3 , R ≥ 0.8952): equal-partner team (thick line) vs. team

with hierarchy (thin line).
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Figure 4: Equilibrium investment level of agents A1 and A2 in team with hierarchy: α = 2
3
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Figure 5: Illustration of a case, where the team leader overinvests in the hierarchical team:

α = 2
3 , R = 2. The reaction functions of the agents A1 (the team leader) and A2 are x(y) and

y(x) respectively.
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RβC
1 RβC

2

(0, 0) RβC
1 ≤ 1 RβC

2 ≤ 1

(x, 0) RβC
1 ≥ ex Rβ2

1−e−x

x
≤ 1

(0, y) Rβ1
1−e−y

y
≤ 1 RβC

2 ≥ ey

(x, y) RβC
1 = ex+y(x+y)2

x2−y+ex+yy+xy+y2 RβC
2 = ex+y(x+y)2

y2−x+ex+yx+xy+y2

(c, y) RβC
1 ≥ ec+y(c+y)2

c2−y+ec+yy+cy+y2 RβC
2 = ec+y(c+y)2

y2−c+ec+yc+cy+y2

(x, d) RβC
1 = ex+d(x+d)2

x2−d+ex+dx+xd+d2 RβC
2 ≥ ex+d(x+d)2

d2−x+ex+dx+xd+d2

(c, d) RβC
1 ≥ ec+d(c+d)2

c2−d+ec+dc+cd+d2 RβC
2 ≥ ec+d(c+d)2

d2−c+ec+dc+cd+d2

Table 1: Equilibrium conditions in competition

RβT
1 RβT

2

(0, 0) RβT
1 ≤ 1 RβT

2 ≤ 1

(x, y) RβT
1 = e(x1−α+y1−α)

1
1−α

·xα

(x1−α+y1−a)
α

1−α
RβT

2 = e(x1−α+y1−α)
1

1−α
·yα

(x1−α+y1−a)
α

1−α

(c, y) RβT
1 ≥ e(c1−α+y1−α)

1
1−α

·cα

(c1−α+y1−a)
α

1−α
RβT

2 = e(c1−α+y1−α)
1

1−α
·yα

(c1−α+y1−a)
α

1−α

(x, d) RβT
1 = e(x1−α+d1−α)

1
1−α

·xα

(x1−α+d1−a)
α

1−α
RβT

2 ≥ e(x1−α+d1−α)
1

1−α
·dα

(x1−α+d1−a)
α

1−α

(c, d) RβT
1 ≥ e(c1−α+d1−α)

1
1−α

·cα

(c1−α+d1−a)
α

1−α
RβT

2 ≥ e(c1−α+d1−α)
1

1−α
·dα

(c1−α+d1−a)
α

1−α

Table 2: Equilibrium conditions in team production

54


