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We analyze the strategic behavior of firms when demand is determined

by a rule of thumb behavior of consumers. We assume consumer dynamics

where individual consumers follow simple behavioral decision rules governed

by imitation and habit as suggested in consumer research. On this basis, we

investigate monopoly and competition between firms, described via an open-

loop differential game which in this setting is equivalent to but analytically

more convenient than a closed-loop system. We derive a Nash equilibrium and

examine the influence of advertising. We show for the monopoly case that a

reduction of the space of all price paths in time to the space of time-constant

prices is sensible since the latter in general contains Nash equilibria. We prove

that the equilibrium price of the weakest active firm tends to marginal cost

as the number of (non-identical) firms grows. Our model is consistent with

observed market behavior such as product life cycles.
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product life cycle, monopoly, competition, pricing, advertising

1. Introduction

In many situations, strategic pricing represents a difficult task for firms, especially

if the consumers are not known to strictly follow a given demand function. In

reality, however, consumers behave boundedly rationally as observed in numerous

psychological and experimental investigations (cf. Conlisk 1996) and appreciated

in some areas of industrial organization (cf. Ellison 2006). In the present work,

we examine a model which describes how firms shall optimally, i. e. strategically,

set their prices or advertising levels when confronted with habitual imitative con-

sumers. Such consumers either imitate popular product choices or form a habit and

∗For many valuable comments we are grateful to Frank Riedel, Paul Heidhues, Tymon Tatur, Lars
Koch-Metzger, Frederik Herzberg and all participants at the BGSE Micro Workshop (Bonn),
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repeatedly purchase the same product. This rule of thumb behavior is psycholog-

ically supported (Assael 1984) and acknowledged in the economic literature (e. g.

Stigler and Becker 1977, Schlag 1998).

The demand side of a market with habitual imitative consumers has been examined

in a companion paper (Matzke and Wirth 2008). There we have shown—using imi-

tation and habit as the only model ingredients—under which conditions a product is

feasible (i. e. has sufficient demand to survive lastingly on the market), which types

of sales curves can be generated, and how the imitative and habitual parameters

influence feasibility and sales evolution. The corresponding model has been stated

in form of a population game as defined in Sandholm (2005), using the fact that for

a large population size the stochastic process generated by the evolutionary process

can be approximated by solutions to ordinary differential equations (Benäım and

Weibull 2003).

For a complete market description, the demand side is here complemented with

a supply side model. The demand side consists of the continuous-time consumer

population game from Matzke and Wirth (2008). The game of the supply side

describes the strategic behavior of firms, which anticipate the consumers’ behavior

and thus the demand dynamics. With such a description at hand, we can then

transfer the concept of welfare into this framework, examine how advertising might

influence the results, and show that the model is consistent with observed market

patterns such as product life cycles.

As motivated in Matzke and Wirth (2008), in a consumer–seller relationship the

strategic variables (e. g. price, quality, output) are determined by the firms. Any

influencing parameter on the demand side (such as personal preference or reservation

price) is fixed, i. e. exogenous in a market model. Hence, due to their reactive role,

consumers naturally do not compete actively with each other or with firms, which

prohibits a conventional game theoretic demand side model. In contrast, for the

firms a strategic behavior of determining the degrees of freedom can be devised

using game theoretic approaches. In particular, we apply a differential game in

order to model the firms’ behavior.

This paper aims at providing an insight into the strategic response of firms when

confronted with demand dynamics generated by the imitative and habitual con-

sumer behavior. The consumer model is in the spirit of Smallwood and Conlisk

(1979) as well as von Thadden (1992) in that the consumers are unable or not will-

ing to act strategically and thus act adaptively. Our rational supply side approach

differs in methodology. We employ a normal form game in which firms choose a

price path at the beginning of the game and gain an according profit. (This could

easily be extended to repeated choices of price paths.) A more classic normal form

game, which describes a single discrete time step, would not exploit the full richness

of the model since the time-continuous demand side calls for at least a continuous-

time price path. At the other extreme, a steady price adjustment at all points in

time is rather unrealistic since a firm can hardly react continuously without time
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lag (though, nonetheless, the proposed model will be able to capture even this case).

By letting the firms fix a price path at the beginning of the game (e. g. for a certain

time period, which is represented by the duration of the game), we strike a balance

between both extremes.

We employ a differential game, i. e. a time-continuous game where the state variables

(here the consumer subpopulation sizes) follow first-order ordinary differential equa-

tions. More specifically, the chosen product prices (control variables) determine the

rate of change in consumer subpopulation sizes (state variables), where consumers

are grouped into subpopulations according to the product they own. Technically,

there is no effect in the opposite direction, which renders the dynamics an open-loop

system. However, in a deterministic setting we have equivalence of open and closed

loops. This is convenient since closed loops are considered—in contrast to static

open loops—as being genuinely strategic since they comprise a feedback in which

the control variables are affected by the state variables.

In this context, the following result turns out to be very interesting: The firms’

action space generally contains all possible price paths and thus is very complex.

However, for a monopoly we will show that a Nash equilibrium often lies in the re-

duced space of time-constant prices. This justifies that most of the time we return to

time-constant price paths and steady state analysis. Nevertheless, we additionally

analyze some exemplary cases with general price paths. Moreover, we will see that

markets with imitative and habitual consumers behave naturally in that e. g. an in-

creasing number of firms enhances competition and reduces prices. However, perfect

competition is generally only achieved in symmetric markets. Finally, advertising

is shown to be an effective method to sustain demand, and a welfare definition is

suggested.

1.1. Further motivation and related literature

Boundedly rational consumer behavior—as advocated by Ellison (2006), Conlisk

(1996), and many others—is often observed in consumer research, in particular

imitation of group behavior or habitual purchase (cf. Assael 1984, p. 371ff, 53). Just

to mention some exemplary laboratory experiments, Venkatesan (1966) shows that

consumers generally conform to group norms. Pingle and Day (1996) summarize

experiments which show that boundedly rational behavior such as imitation and

habit (which they call “economic choices in reality”) represents means in order to

get well-performing economic choices in presence of decision costs. Our focus here

lies on markets with boundedly rational consumers that follow habitual imitative

decision rules as introduced in Matzke and Wirth (2008).

Closely related to the demand dynamic employed here is the model by Smallwood

and Conlisk (1979). They consider consumers who buy the same product each

period until a breakdown occurs. Then, they choose another product depending

on its market share. It is examined how strongly the consumers should rely on

product popularities. Despite having been published in 1979 already, there is still
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social learning literature building on this model, for example Ellison and Fudenberg

(1995).

Imitative behavior in general constitutes a well-known and frequently used concept

in evolutionary game theory and social learning, compare for instance Schlag (1998),

Ellison and Fudenberg (1993), and Banerjee (1992), just to name a few notable

papers. Habit, on the other hand, occurs in the habit formation literature (Heaton

1993) as well as implicitly in some industrial organization models (for instance

in Smallwood and Conlisk 1979, where habit is implicitly formed as long as no

breakdown occurs). Habit may also be interpreted as a special case of learning,

since agents learn from past experience (Sobel 2000, p. 257) and positive experience

with a good may cause habitual purchase behavior.

Firms are usually more rational than consumers can or aim to be. The reason lies

in the large number of agents and equipment that are employed in order to avoid

costly wrong decisions. The approximation of rational firms seems reasonable, even

though some early work in the field of bounded rationality assumes the opposite,

i. e. boundedly rational firms (e.g. Rothschild 1947, Cyert and March 1956). How-

ever, in line with most of the recent literature, we restrict bounded rationality to

the consumers and to assume fully rational firms (Ellison 2006, p. 4). We will stick

to this convention, i. e. our firms aim at maximizing their profits given the demand

side and the pricing strategies of the competitors which is modeled via a differen-

tial game as introduced by Isaacs (1954). In combination with the two previously

mentioned simple rule of thumb ingredients, imitation and habit by consumers, the

model will be able to generate typical patterns observed in consumer markets such

as product life cycles (de Kluyver 1977, Brockhoff 1967, Polli and Cook 1969).

The outline of this paper is as follows. Section 2 recapitulates the consumer model,

defining the consumers’ behavioral rules and deducing the resulting demand dy-

namics. Subsequently, section 3 introduces the competition game played by the

supply side. The game is first applied to exemplary monopoly or oligopoly settings,

after which more general results and conclusions are drawn for the monopoly and

oligopoly case. In section 4, an adequate welfare definition is provided, and a pos-

sible generation of product life cycles is described. Additionally, a model extension

by advertising is suggested. Finally, we conclude in section 5.

2. Model for boundedly rational demand side

In a preceding article, we introduced an approach to model boundedly rational

consumers and analyzed the resulting demand dynamics (Matzke and Wirth 2008).

Before we model the firms’ strategic response to this demand side, let us briefly

recapitulate the consumer model. For details we refer to Matzke and Wirth (2008).
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2.1. Methodology

The methodology applied builds upon the work of Sandholm (2006) and consists

mainly of a population game with a particular choice of a conditional switch rate.

Each consumer owns at most one unit of n possible products. A consumer owning

good i is equipped with an independent Poisson alarm clock of rate Ri, i. e. an alarm

clock which rings after an exponentially distributed time with expected value R−1
i .

Each time the alarm rings (which is associated with a broken product), the consumer

switches to product j with switching probability pij =
ρij

Ri
. If the consumer does

not own a product yet, the alarm clock signalizes an arising interest in buying a

good. Typically, the frequency R0 of revisions without any good is larger than the

rate Ri of possible replacements of good i, since the goods usually survive longer

than the consumers without any good are satisfied.

Let us denote ρij(x, t) the conditional switch rate from product i to product j at

time t and state x = (x1, . . . , xn) (where xi denotes the market share of consumers

owning product i). Obviously, Ri =
∑n

j=0 ρij(x, t) (where subscript 0 stands for

consumers without any good).

The switching rates and probabilities of course depend on the product prices, and

exactly this dependence will later form the instrument via which firms exert an

influence on consumer behavior during their competition. However, the price de-

pendence is not necessary to understand the dynamics of the demand side. Hence,

the reader may implicitly understand all parameters to depend on the product

prices, but this dependence will not be introduced explicitly until the treatment of

the supply side.

The previous definitions characterize a population game with all potential con-

sumers as players (Matzke and Wirth 2008). This game uniquely determines a

mean dynamic which describes the temporal change of market shares,

ẋi =

n∑

j=0

xjρji(x, t) − xi

n∑

j=0

ρij(x, t), xi(0) = x0
i , i = 0, . . . , n. (1)

We define the sales of product i, Si(t), as the number of units of product i ∈
{1, . . . , n} sold at time t,

Si(t) = N
n∑

j=0

xj(t)ρji(x(t), t), i = 0, . . . , n, (2)

where N denotes the number of possible consumers. Using mean dynamic (1), we

obtain a relation between sales and consumer subpopulations,

ẋi + xiRi =

n∑

j=0

xjρji ⇔ Si

N
= ẋi + xiRi, i = 0, . . . , n. (3)
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2.2. Consumer dynamics

Now only the switching probabilities pij(x, t) =
ρij(x,t)

Ri
remain to be specified. Of

those people who do not own any product, the fraction of consumers deciding to

buy product i is described by p0i. Consumers’ choices are sensitive to market shares

or popularities of the products (Smallwood and Conlisk 1979): When consumers

passively encounter a product, its level of familiarity rises, thus increasing the pos-

sibility for this product to be bought. Consumers may also actively imitate others

in buying the same good since the popularity of a product might give information

about the product’s past performance (Ellison and Fudenberg 1993). As discussed

in Matzke and Wirth (2008) a linear relation

p0i = ϕixi, i 6= 0, (4)

seems to be a good modeling approach. ϕi ∈ [0, 1] generally differs from product to

product (Assael 1984, p. 432, 414) and can even be time dependent. It constitutes

the accumulated influence of product frequency on the consumers’ purchase decision

via different mechanisms and can be interpreted as an anticipated product quality.

Of course, ϕi depends on the good’s properties as there are the price, the (expected)

quality, the strength of networking and fashion effects for that product etc.

Let us now turn to those people owning product i. Someone who is content with

that good tends to buy a new unit of the same good, even though a better product

might exist. Assael (1984, p. 53) summarizes several studies on the topic and comes

to the conclusion that a form of habit evolves, leading to repeat purchases of a

product without further information search or evaluating brand alternatives. Hence

we assume a fixed, product-specific percentage of consumers to develop a buying

habit so that

pii = si ∈ [0, 1], i 6= 0. (5)

The fraction of switching consumers (1 − pii) divides up into the fractions pij of

people switching to product j 6= i. They behave just like those consumers not yet

owning any good, i. e.

pij = (1 − pii)p0j = (1 − si)ϕjxj , i 6= 0 ∧ j 6= 0, i. (6)

The switching probabilities pi0 and p00 are now uniquely determined by the con-

straints
∑n

j=0 pij = 1 and
∑n

j=0 p0j = 1.

For i = 1, . . . , n, the mean dynamic (1) eventually takes the form

ẋi = xi

(

ϕiR0 − (1 − si)Ri − ϕi

n∑

j=1
j 6=i

[R0 − (1 − sj)Rj ] xj − ϕiR0xi

)

= ϕiR0xi

(

Ψi − xi −
n∑

j=1
j 6=i

Φjxj

)

, (7)
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where Ψi := 1 − Ri

R0

1−si

ϕi
and Φi := 1 − Ri

R0
(1 − si) stand for “quality” and “habit

induction” of product i.

All constants Ri, ϕi and si may in principle (and will later) be time-dependent so

that product modifications or fashion trends can be modeled.

Population games with the switching probabilities as defined above will represent

the demand side of our market model. Let us hence define:

Definition 2.1 (Habitual imitative consumers). Agents who behave according to

the above model with switching probabilities (4) to (6) are called habitual imitative

consumers. A population game with such agents is called the demand side of a

market with habitual imitative consumers.

3. Strategic pricing in a monopoly & oligopoly

After having repeated the framework of the demand side model, let us now examine

markets in which firms anticipate the consumers’ actions (indeed, companies do try

to predict consumer behavior) and set their prices accordingly.

Naturally, the imitation factor ϕi and habit coefficient si depend on the good prices,

i. e. ϕi = ϕi(ξ1(t), . . . , ξn(t)), si = si(ξ1(t), . . . , ξn(t)), i = 1, . . . , n, where the price

of good j at time t is denoted ξj(t). To keep things simple while staying sufficiently

realistic, we shall assume ϕi and si to depend on ξi only. The consumers see

the prices of all goods, and the probability to buy product i (encoded by ϕi and

si) rises with falling price ξi. They behave like many small iron particles which

are attracted by different magnets, representing the products. The strength of

a magnet relative to its competitors determines the eventual amount of trapped

particles, which illustrates the mechanism of competition. Competing firms will

seek a compromise between large margins and sufficiently low prices to attract

consumers more strongly than their competitors (via high ϕi and si).

Recall that the imitation function has the following interpretation: A consumer

owning no good or switching product imitates the population of consumers own-

ing good i with probability ϕi(ξi). Equivalently, the fraction ϕi(ξi) of the whole

population would purchase good i at a price of ξi. Obviously, ϕi(ξi) represents the

normalized demand function of product i, or in probabilistic terms, ϕi(ξi) is the

demand distribution of product i. Hence, let us agree upon the following

Condition 3.1. In a market with habitual imitative consumers, let ϕi(~ξ) and si(~ξ)

denote the imitation and habit coefficient for product i, depending on the vector
~ξ=(ξ1,. . ., ξn) of product prices. Then ϕi and si are monotonously decreasing in ξi.

In the following we will abbreviate vectors of scalars according to (σi)i=1,...,m = ~σ.

We are now able to describe a normal form competition game of the firms.

Definition 3.2 (Normal form competition game). The normal form competition

game in a market with habitual imitative consumers is a normal form game G =

(n, S, Π) with
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• the number of agents n being the number of firms, where each firm produces one

product and the products are understood to be characterized by the functions

si(ξ1, . . . , ξn) and ϕi(ξ1, . . . , ξn),

• the set S of all possible strategy combinations with S ⊆ [R
R+

+ ]n =R
R+

+ ×· · ·×R
R+

+

(a subset of the space of n-tuples over maps ξi : R+ → R+, t 7→ ξi(t), where

ξi(t) denotes the price of good i at time t),

• the utility function Π : S → R
n
+, Πi(ξ1, . . . , ξn) = F

[

(ξi(t) − ci)Si

(

~s(~ξ(t)), ~ϕ(~ξ(t)), ~x(t)
)]

,

being the firms’ profit, where there are no fixed costs, ci denotes the (time-

independent) marginal cost of production for good i, and ~S(~s(~ξ(t)), ~ϕ(~ξ(t)), ~x(t)) ≡
~S(t, ~x(0)) is the sales vector (cf. (2)) belonging to the population game (7) with

ρ defined by (4) to (6). The operator F : R
R+ → R+, which assigns a non-

negative real number to each map f : R+ → R, may assume different forms.

The imitation and habit function ~ϕ(~ξ) and ~s(~ξ) may in general be time dependent.

The operator F can e. g. constitute the cumulated discounted profit over a certain

time period [0, T ],

FT [π(t)] =

∫ T

0

exp[−rt]π(t)dt,

where π(t) represents the firm’s profit at time t. For an infinite time horizon this is

extended to

F∞ [π(t)] =

∫ ∞

0

exp[−rt]π(t)dt.

For a zero discount rate r, the latter definition is not well-defined. In this case we

resort to the long-term profit rate,

F∂ [π(t)] = lim
T→∞

1

T

∫ T

0

π(t)dt = lim
t→∞

π(t),

where the last expression only holds for time-invariant prices in the steady state.

In this case (which is for example of interest when the firms would like to validate

their prices in an equilibrated market), we will also denote F∂ as the steady state

profit.

Note that 3.2 in conjunction with (7) defines a differential game as in Isaacs (1954).

Definition 3.2 allows for a time dependent price. The firms set their price paths

initially and then strictly follow these. The lack of opportunities for price path

revisions implies no disadvantage for the firms, since the consumer model is deter-

ministic and consumer behavior thus predictable. Therefore, even if the firms would

be able to change their prices during the game, they would not do so unless the

market conditions were changed by an external event. (Such price path revisions

could readily be modeled by extending the normal form competition game to a
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repeated game.) Put differently, assume the optimal pricing strategies to be func-

tions of the state also, i. e. ~ξ = ~ξ(~x, t), which would correspond to the closed-loop

case. Then, the corresponding optimal path in state space, ~x(t), could be computed

by solving the mean dynamic (7). Choosing ξ̂(t) = ~ξ(~x(t), t), we obtain the optimal

open-loop control path, which is exactly equivalent to the corresponding closed-loop

path. (Note that this would be different for models with non-Markovian strategies

and positive time lags between a firm’s action and the others’ reaction, in which

case trigger strategies, i. e. punishment after path deviation of a competitor, might

exist, cf. Dockner, Jørgensen, Van Long, and Sorger (2001).)

Obviously, firms do not at each time maximize their current profit, but choose their

price paths in order to obtain an optimal overall profit in the long run.

3.1. Monopoly

As a first illustrative example, let us consider the simplest case possible, the monopoly

with fixed prices (as in equilibrated or price-restricted markets). The monopoly

strategy space thus reduces to the space S = R+ of time-constant price func-

tions ξ1(t) = ξ1. For given ϕ1(ξ1), s1(ξ1) the Nash equilibrium with steady state

profit now yields an optimum monopoly price (corresponding oligopoly prices are

addressed in the next section).

Example 3.1 (Steady state monopoly price). Consider the normal form competi-

tion game

G = (1, R+, F∂ [π(t)]) =
(

1, R+, lim
t→∞

(ξ1 − c1)S1(s1, ϕ1(ξ1), t)
)

,

with S = R+ representing the set of all constant price functions in R+. Let us

assume a constant habit function s1 and the generic piecewise affine imitation func-

tion ϕ1(ξ1) = max
(

0, 1 − ξ1

Ξ1

)

with maximum reservation price Ξ1 ≥ c1. The price

in the (unique) Nash-equilibrium is the maximizer of

max
ξ1∈R+

[

lim
t→∞

(ξ1 − c1)S1(s1, ϕ1(ξ1), t)
]

,

where S1 follows from equation (3) with x1(t) = Ψ1

1+
“

Ψ1
x1(0)

−1
”

exp[−tR0Ψ1ϕ1]
solving

the ordinary differential equation (7). The optimal price is given by

ξ∗1 = Ξ1 −
√

R1

R0
(1 − s1)Ξ1(Ξ1 − c1) if ξ∗1 > c1.

For ξ∗1 < c1 the firm is recommended not to produce. The product therefore is

feasible, if and only if c1 ≤ Ξ1

[

1 − R1

R0
(1 − s1)

]

.1

Of course, the constant s1 in the above example is a very crude approximation

(though reasonable if a certain range of prices is not exceeded), since then, obviously,

1This is just a different representation of the feasibility condition Ψ1[ξ1 = c1] > 0 from Matzke
and Wirth (2008).
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the monopolist could gain infinite profit by suddenly charging infinite prices (which

the consumers will pay due to their habit). Hence, when looking at time dependent

prices, one should for example set s1(ξ1) = ϕ1(ξ1).

A product is feasible if it persists in the steady state and the firm does not make

any losses when selling the good. The feasibility condition from the above example

naturally extends to a result for general ϕ1(ξ1) and s1(ξ1).

Proposition 3.1. The single product on the market with habitual imitative con-

sumers is feasible if and only if Ψ1[ξ1 = c1] > 0.

Proof. Due to condition 3.1, ϕ1 and s1 are monotonously decreasing with ξ1. Hence,

Ψ1 is so as well. Also, Matzke and Wirth (2008) have shown that a single product

on a market is feasible if and only if Ψ1 > 0. Hence, if and only if Ψ1[ξ1 = c1] > 0,

there exist prices ξ1 for which the firm makes a positive profit.

The previous example of an equilibrated monopoly market did not exploit the pos-

sibility of time-varying prices. Yet, it might very well be that non-constant prices

result in a higher profit: A widely observed pricing strategy consists in charging

an elevated price most of the time with (more or less regular) intermittent special

offers. This strategy probably aims at making people buy the product during the

low-price period and thereby inducing a habit for the high-price period. However,

for periodic price changes we will show that in a market with habitual imitative

consumers a Nash equilibrium is found to lie in the space of time-constant prices,

which in many cases justifies to a priori confine ourselves to steady states and con-

stant pricing. To show this, we will proceed in steps and first prove the criticality,

later the optimality of a constant price.

Proposition 3.2. Let us consider a monopoly market with habitual imitative con-

sumers in which the firm has a periodic price path, i. e. in each time period [kT, kT +

T ], k ∈ N, the same price path ξ1(t) = ξ1(t + T ) = ξ1(t + 2T ) = · · · is pursued. The

appropriate normal form competition game reads

G =

(

1, R
[0,T ]
+ ,

1

T

∫ T

0

(ξ1(t) − c1)S1(s1(ξ1(t)), ϕ1(ξ1(t)), t)dt

)

,

assuming that a periodic state, i. e. a state with x1(t) = x1(t + T ) = · · · , has been

reached. Then, the proposed profit operator indeed yields the average profit per

time. (Instead, profit F∂ could equivalently be used.) Then, if the good is feasible, a

constant price is a critical value for the monopoly.

Proof. For simplicity, we abbreviate R := R1

R0
and skip the index 1 for all other

variables. Also, we will introduce the non-dimensional time t̂ = R0t and T̂ = R0T ,

where for ease of notation, the hats are dropped in the following.

Let ξ(t) be periodic with period T and assume that after some equilibration time,

all other system variables also behave periodically with same period.
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The non-dimensionalized ordinary differential equation ẋ = xϕ(Ψ− x) is of Riccati

type and thus readily solved for x,

x =
exp

(∫ t

0
ϕΨdτ

)

∫ t

0 ϕ exp
(∫ τ

0 ϕΨdθ
)
dτ + 1

x(0)

, x(0) =
exp

(∫ T

0
ϕΨdτ

)

− 1
∫ T

0 ϕ exp
(∫ τ

0 ϕΨdθ
)
dτ

,

where the expression for x(0) follows from the periodicity condition x(0) = x(T ).

Using S(t)/(NR0) = ẋ + Rx = x[R + ϕ(Ψ − x)], the normalized long-term profit

rate can be expressed as

Π

NR0
=

1

T

∫ T

0

(ξ − c)x[R + ϕ(Ψ − x)]dt.

Finally, in appendix A.1, a lengthy sequence of non-trivial transformations proves

that the Gâteaux derivative of Π with respect to ξ is zero for all test directions ϑ,

if for ξ we substitute the constant price ξ∗ which is implicity defined by ξ∗ − c =

− Ψ(ξ∗)
Ψ′(ξ∗) , where Ψ′ ≡ dΨ

dξ . In other words, the Euler-Lagrange equation for Π is

fulfilled for the constant price ξ∗, and hence ξ∗ is critical.

For the constant price to be a Nash equilibrium, the second variation of the long-

term profit rate Π with respect to the price is required to be negative definite. To

show this, we need the following lemma, whose proof is given in appendix A.2.

Lemma 3.3. Let H : R → {0, 1} be the Heaviside function. The following inequality

holds for all α ∈ R and Lebesgue-integrable functions ϑ : [0, T ] → R:

∫ T

0

∫ T

0

ϑ(t)ϑ(τ) exp[α(τ − t + TH(t− τ))]dτdt ≤ exp(αT ) − 1

α

∫ T

0

ϑ2dt.

Under fairly mild conditions on the functions ϕ and Ψ at the critical point ξ∗ we

now obtain the optimality result. We will use the same abbreviations as in the

previous proof.

Proposition 3.4. Let the conditions of proposition 3.2 hold. Moreover, assume

R(ϕΨ)′ ≥ ΨΨ′ϕ2 at the constant critical price ξ∗. Then, for a feasible good, if

2(Ψ′(ξ∗))2 > Ψ′′(ξ∗)Ψ(ξ∗), a constant price is a (local) optimum for the monopoly.

Proof. Only the negative definiteness of the second variation of Π with respect to

ξ remains to be shown. Indeed, using

∫ T

0

〈
∂2x(t)

∂ξ2
, ϑ, ϑ

〉

dt = − 2Ψ′ϕ′Ψ

exp(ϕΨT ) − 1

∫ T

0

ϑ exp(ϕΨt)dt

∫ T

0

ϑ

exp(ϕΨt)
dt

+
(ϕΨ)′′ − ϕ′′Ψ

ϕ

∫ T

0

ϑ2dt − 2Ψ′ϕ′Ψ

∫ T

0

ϑ

exp(ϕΨt)

∫ t

0

ϑ exp(ϕΨτ)dτdt
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Figure 1: Optimal affine price evolution (left) as well as subpopulation (solid line)
and sales (dotted line) evolution (right) for parameter values R1 = 0.1R0,
T = 10/R0, r = 0, c1 = 0.1/Ξ1, and x1(0) = 0.001 (cf. example 3.2).

for any test direction ϑ, appendix A.3 derives

〈
∂2Π/R0

∂ξ2
, ϑ, ϑ

〉

=
N

T
2Ψ

[

R(ϕΨ)′ − ΨΨ′ϕ2

exp(ϕΨT ) − 1

(

exp(ϕΨT )

∫ T

0

ϑ exp(ϕΨΘ)

∫ T

Θ

ϑ

exp(ϕΨt)
dtdΘ

+

∫ T

0

ϑ exp(ϕΨΘ)

∫ Θ

0

ϑ

exp(ϕΨt)
dtdΘ

)

+

(

ϕΨ′ − R
ϕ′

ϕ
− R

Ψ′′

2Ψ′

)∫ T

0

ϑ2dt

]

.

By lemma 3.3 we obtain

〈
∂2Π/R0

∂ξ2
, ϑ, ϑ

〉

≤ N

T
2Ψ

[

R(ϕΨ)′ − ΨΨ′ϕ2

ϕΨ

∫ T

0

ϑ2dt +

(

ϕΨ′ − R
ϕ′

ϕ
− R

Ψ′′

2Ψ′

)∫ T

0

ϑ2dt

]

=
N

T
2R

(

Ψ′ − Ψ′′Ψ

2Ψ′

)∫ T

0

ϑ2dt

for R(ϕΨ)′ ≥ Ψϕ2Ψ′. Hence, under the assumption 2(Ψ′)2 > Ψ′′Ψ (and Ψ′ < 0 and

Ψ ≥ 0 for a feasible product) we have the desired negative definiteness.

The first condition holds for R small enough, i. e. at least for long-lasting products,

the latter condition holds for instance for affine Ψ. Hence it indeed makes sense for

some cases to reduce the complex price space R
[0,T ]
+ by focussing on time-constant

prices.

For the issues dealt with so far, the general mathematical system was analytically

treatable. For other questions, we have to resort to specific examples in order

to obtain a qualitative insight into the characteristics of a market with habitual

imitative consumers. Clearly, in such cases it is instructive to consider only very

simple forms of s, ϕ, and especially ξ that just capture the necessary features for

the discussed problem at hand. In particular, affine functions (the simplest case

possible) are well-suited to study trends (e. g. price trends). The following example

is meant to examine the optimal price trend for a good that is sold during a finite

time period. It illustrates that proposition 3.4 does not hold for bounded time

intervals.

Example 3.2 (Cumulated discounted profit in a monopoly setting). For simplicity,

let us assume ϕ1 = s1 = 1 − ξ1

Ξ1
, and let us only allow for affine price functions

ξ1(·) ∈ L([0, T ]) := {f : [0, T ] → R | ∃ a, b : f(t) = a + bt}. Consider the normal
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form competition game

G =

(

1, L([0, T ]),

∫ T

0

exp[−rt](ξ1(t) − c1)S1 (s1(ξ1(t)), ϕ1(ξ1(t)), t) dt

)

.

For given parameters R1, T, r, c1, x1(0), the optimal price path ξ1(t) can be found

numerically (an analytical solution turns out to be too complex to provide any in-

sight). As a result, for a whole range of realistic parameters we obtain that the

product is initially sold below marginal cost, and then the price rises. One example

calculation is depicted in figure 1.

Of course, when r is chosen extremely large, this trend is reversed. However, this

only happens for values of r ∼ R0 to 2R0. This would correspond to an interest

rate of above 100% within the time R−1
0 , i. e. if on average a consumer thinks of the

good only once a year, the interest rate would have to be above 100% per annum!

From this example, we may conclude that on a market with habitual imitative

consumers a beneficial pricing strategy consists in starting at a low price and then

increasing the price steadily. It might even be advantageous to initially give away

products for free. The underlying idea is to initially strongly increase the market

share in order to exploit habitual behavior.

3.2. Oligopoly and polygopoly

In this section we turn to oligopoly and polygopoly markets. As for the monopoly,

we will begin with an introductory example and then prove a feasibility result

analogous to the result for a single firm. Afterwards, we examine the firms’ behavior

for an increasing number of competitors.

Example 3.3 (Steady state oligopoly prices). Consider the situation of exam-

ple 3.1, this time with n firms. Moreover, we now assume ϕi(ξi) = 1

1+
ξi
Ξi

(this

choice renders the system analytically solvable and is an approximation to an affine

ϕi(ξi) for low prices). The corresponding normal form competition game reads

G =

(

n, Rn
+, lim

t→∞

(

(ξi − ci)Si(~s, ~ϕ(~ξ), t)
)

i=1,...,n

)

.

If all n products are feasible, the steady state Nash equilibrium oligopoly prices ξ∗i
can be computed analytically (cf. appendix A.4),

~ξ∗ =







Ξ1

1−Φ1
0 0

0
. . . 0

0 0 Ξn

1−Φn












Λ+







Λ11 0 0

0
. . . 0

0 0 Λnn













−1





Λ







Φ1

...

Φn






+







(1 − Φ1)Λ11
c1

Ξ1

...

(1 − Φn)Λnn
cn

Ξn













, (8)
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where Λ is the inverse of matrix An, defined as

(An)ij :=

{

1, j = i

Φj, j 6= i
.

This example is one of the very few cases, where the optimal prices can indeed be

calculated analytically. It is not of great importance, but serves to illustrate few

general features of oligopoly markets. First of all, we observe that the reservation

prices Ξi and the marginal costs ci have a positive effect on ξ∗i . The reservation

price Ξi even acts as a kind of proportionality factor on ξ∗i via the first diagonal

matrix in equation (8). Also, due to 1 − Φi = Ri

R0
(1 − si), the matrix entries and

hence the prices tend to infinity as the habit factor si approaches one, the value

where consumers blindly purchase habitually. A further intuitive fact consists in the

shrinking significance of the marginal costs with rising reservation price. Finally, let

us note that the different good parameters Φi, ci, Ξi affect all prices ξ∗j , j = 1, . . . , n,

and not just the price of that good which they describe.

Let us now turn to the feasibility of goods in an oligopoly.

Proposition 3.5. Consider an n-product market with habitual imitative consumers

on which the products i, i = 1, . . . , n − 1, coexist with 0 < Φi < 1. Then product n

is feasible if and only if

Ψn[ξn = cn] > ~̃x · Φ(~̃ξ) =
n−1∑

i=1

Φi(ξ̃i)x̃i

where ~̃x is the vector of market shares on the (n − 1)-goods market (i. e. without

product n) in the steady state and ~̃ξ the corresponding price vector.

Proof. Due to condition 3.1, Ψn is monotonously decreasing with ξn. Also, Matzke

and Wirth (2008) have shown an nth product to be feasible on a market with

habitual imitative consumers, if and only if Ψn > ~̃x · ~Φ. Let us assume, ξ̂ is such

that Ψn[ξ̂] = ~̃x · ~Φ(
~̃
ξ). Then, according to the result just cited, for ξn = ξ̂ the

good does just not exist on the market so that the n-goods market behaves like the

(n − 1)-goods market and firms 1 to n − 1 choose the prices
~̃
ξ. If ξ̂ is smaller than

cn, then due to condition 3.1, Ψn[ξ̂] is larger than Ψn[ξn] for ξn ≥ cn so that for a

profitable price good n still does not persist on the market. If on the other hand ξ̂

is larger than cn, then by decreasing ξn a little (to which the other firms react by

choosing prices slightly different from
~̃
ξ) we obtain a situation in which good n has

a non-zero market share and is sold above marginal costs.

According to Matzke and Wirth (2008), Ψn[ξn = cn] represents the hypothetic

monopoly market share when the price equals the marginal costs. Hence, intuitively,

the above proposition implies that this hypothetic monopoly market share has to
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be larger than the weighted sum of market shares of products 1 to n− 1, where the

weights Φi ≤ 1 are the larger the stronger the corresponding goods induce habit.

Next, we shall study market implications from rising numbers of competitors. To

start with, let us return to example 3.3 with identical firms.

Proposition 3.6. In example 3.3, assume a symmetric oligopoly with n identical

firms, where each firm optimally chooses the same price ξ∗,n. Then, for an increas-

ing number of firms the price ξ∗,n decreases. In the limit n → ∞, it converges to

the marginal cost c.

Proof. Due to the symmetry of the market, we can skip the indices in equation (8).

Also, we readily verify Λij = −Φ
(1−Φ)(1+(n−1)Φ) for i 6= j and Λii = 1+(n−2)Φ

(1−Φ)(1+(n−1)Φ)

so that equation (8) yields

ξ∗,n =
ΞΦ + (n − 1)c − (n − 2)c(1 − Φ)

(n − 1) − (n − 3)(1 − Φ)

n→∞−→ c.

Furthermore,

ξ∗,n+1

ξ∗,n
=

n +
(

Ξ
c + 1−Φ

Φ

)

n − 1 +
(

Ξ
c + 1−Φ

Φ

)

︸ ︷︷ ︸

=:C1>0

· n + 2−3Φ
Φ

n + 1 + 2−3Φ
Φ

︸ ︷︷ ︸

=:C2≥−1

=
(n + C1)(n + C2)

(n + C1)
︸ ︷︷ ︸

≥1

(n + C2)
︸ ︷︷ ︸

≥0

+C1 − C2 − 1
.

Also, since for feasible goods, ξ∗,n ≥ c and Ψ[ξ∗,n] > 0, we have

0 < Ξ

[

Ψ[ξ∗,n]

(

1 +
Ξ

c

)

+
ξ∗,n

c
− 1

]

=
Ξ

c
[Ξ + ξ∗,n + (Ψ[ξ∗,n] − 1)Ξ] + (Ψ[ξ∗,n] − 1)Ξ

⇔ 0 <
Ξ

c
+

(Ψ[ξ∗,n] − 1)Ξ

Ξ + ξ∗,n + (Ψ[ξ∗,n] − 1)Ξ
= C1 − C2 − 1,

where in the last step we have used 1−Φ = (1−Ψ[ξ∗,n]) Ξ
Ξ+ξ∗,n . Together with the

above equation, this yields ξ∗,n+1

ξ∗,n < 1.

Apparently, competition gets harder the more competitors coexist on the market.

In the limit, we obtain perfect competition. This result actually holds for more

general symmetric markets, which we will prove step by step. We will first show

that steady state Nash equilibrium prices decrease for rising numbers n of firms.

Later we will analyze the limit n → ∞.

Lemma 3.7. Consider a symmetric oligopoly with n identical firms and with habit-

ual imitative consumers. Let Φ(ξ) and Ψ(ξ) be differentiable. Then, the derivative

of the steady state profit rate Πn
i (of the ith firm in the n-goods market) with respect

to the price ξi (of the ith product), evaluated at the steady state Nash equilibrium

price ξ∗,n−1 of the (n − 1)-goods market, is negative,

∂Πn
i

∂ξi

∣
∣
∣
∣
ξi=ξj=ξ∗,n−1

< 0.
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Proof. If all n products coexist on the market, mean dynamic (7) can be written as

An~x = ~Ψ and the steady state profit of firm i as

Πn
i = NRi(ξi − ci)xi = NRi(ξi − ci)Λi

~Ψ,

with matrices An and Λ defined as in example 3.3 and Λi being the ith row of Λ.

Since Ψj does not depend on ξi for i 6= j, we obtain

∂Πn
i /(NRi)

∂ξi
=

n∑

j=1

ΛijΨj + (ξi − ci)Λii
dΨi

dξi
+ (ξi − ci)

n∑

j=1

Ψj
∂Λij

∂ξi
.

Due to the market symmetry, we may write Ψi = Ψ, ξi = ξ, and ci = c. The

derivative
∂Λij

∂ξi
at ξi = ξj = ξ can equivalently be computed as

∂Λ̃ij

∂ξi
, where Λ̃ is the

inverse of matrix

(Ãn)kl =







1, l = k,

Φ, l 6= k, i,

Φi[ξi], l = i, l 6= k.

We readily verify Λ̃ij = −Φ
1+(n−2)Φ−(n−1)ΦΦi[ξi]

for i 6= j and Λ̃ii = 1+(n−2)Φ
1+(n−2)Φ−(n−1)ΦΦi[ξi]

so that

∂

∂ξi





n∑

j=1

Λij





∣
∣
∣
∣
∣
Φi=Φ

=
∂

∂Φi

(
Φ − 1

(n − 1)ΦiΦ − (n − 2)Φ − 1

)∣
∣
∣
∣
Φi=Φ

dΦi

dξi
,

and
∂Πn

i /(NRi)

∂ξi
=

Ψ

1 + (n − 1)Φ

[

1 +
ξ − c

1 − Φ

(
1 + (n − 2)Φ

Ψ

dΨ

dξ
+

(n − 1)Φ

1 + (n − 1)Φ

dΦ

dξ

)]

.

We would like to show that this is negative at ξi = ξj = ξ∗,n−1, which is the Nash

equilibrium price on the (n−1)-firms market and hence satisfies
∂Πn−1

i

∂ξi

∣
∣
ξi=ξj=ξ∗,n−1 =

0. Solving
∂Πn−1

i /(NRi)

∂ξi

∣
∣
ξi=ξj=ξ∗,n−1 = 0 for (ξ∗,n−1 − c), we obtain

ξ∗,n−1 − c = − Ψ(1 − Φ)[1 + (n − 2)Φ]

[1 + (n − 3)Φ][1 + (n − 2)Φ]dΨ
dξ

∣
∣
ξ∗,n−1 + (n − 2)ΦΨdΦ

dξ

∣
∣
ξ∗,n−1

.

This can be inserted into
∂Πn

i /(NRi)
∂ξi

∣
∣
ξi=ξj=ξ∗,n−1 , which yields

∂Πn
i /(NRi)

∂ξi

∣
∣
∣
∣
∣
ξi=ξj=ξ∗,n−1

=
Ψ

1 + (n − 1)Φ



1 −
[1 + (n − 2)Φ]2 dΨ

dξ

∣
∣
ξ∗,n−1 + (n − 1)ΦΨ 1+(n−2)Φ

1+(n−1)Φ
dΦ
dξ

∣
∣
ξ∗,n−1

[1 + (n − 3)Φ][1 + (n − 2)Φ]dΨ
dξ

∣
∣
ξ∗,n−1 + (n − 2)ΦΨdΦ

dξ

∣
∣
ξ∗,n−1



 .

This is indeed negative, since the fraction in brackets is larger than one: Due

to dΦ
dξ , dΨ

dξ < 0 (follows from condition 3.1), all summands in the numerator and

denominator are negative. Furthermore, the first summand of the numerator is
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smaller (i. e. more negative) than the first summand of the denominator. The same

holds for the second summands, if we use that for feasible products 0 < Ψ ≤ Φ ≤ 1

and hence 1+(n−2)Φ
1+(n−1)Φ > n−1

n .

The previous lemma now implies the desired result.

Proposition 3.8. Consider a symmetric oligopoly with n identical firms and with

habitual imitative consumers. Let Φ(ξ) and Ψ(ξ) be differentiable. If Φ(ξ) and

Ψ(ξ) are such that there exists exactly one steady state Nash equilibrium, then the

equilibrium price ξ∗,n decreases as the number of firms n rises.

Proof. We show ξ∗,n ≤ ξ∗,n−1. We may assume

∂Πn
i

∂ξi

∣
∣
∣
∣
ξi=ξj=c

≥ 0,

since otherwise all firms would choose ξi = c as the unique Nash equilibrium price,

and ξ∗,n−1 must have been greater than or equal to marginal cost c so that the

proposition would already be proven. Also, due to lemma 3.7,

∂Πn
i

∂ξi

∣
∣
∣
∣
ξi=ξj=ξ∗,n−1

< 0.

Define f : R → R, ξ 7→ f(ξ) =
∂Πn

i

∂ξi

∣
∣
∣
ξi=ξj=ξ

. Then f is continuous with

f(ξ∗,n−1) < 0 and f(c) ≥ 0 so that by Rolle’s theorem there exists a price ξ∗,n ∈
[c, ξ∗,n−1) with f(ξ∗,n) = 0 at which f changes sign to negative. Hence, ξ∗,n <

ξ∗,n−1 is a local maximizer of Πn
i and thus the unique Nash equilibrium price.

Hence, despite the consumers’ bounded rationality, our model has intuitive compet-

itive features and provides a foundation for perfect competitive equilibrium prices

as the number of firms tends to infinity.

Next, we will prepare the second result, which shows that the prices of the weakest

products on the market converge against their marginal costs as the number of

competitors rises to infinity. This holds for a general polygopoly and directly implies

that on the symmetric market all prices converge against marginal costs.

Lemma 3.9. Consider a polygopoly with n firms and with habitual imitative con-

sumers, where all n products coexist in the steady state Nash equilibrium. For given

n, let in denote the index of the “weakest” good, i. e. the one with lowest market

share xin = minj=1,...,n{xj} in the steady state Nash equilibrium. Let Φin(ξin) and

Ψin(ξin) be differentiable. If there is ν > 0 such that in the steady state Nash equi-

librium
∂xin

∂ξin
< −ε < 0 for all n > ν, then as the number of firms n tends to infinity,

the price of good in converges to marginal cost, i. e. (ξ∗,n
in

− cin) → 0. xin shall here

be understood as the steady state market share.
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Proof. The steady state profit rate of good in is given by Πn
in

= NRin(ξin − cin)xin

so that

∂Πn
in

∂ξin

∣
∣
∣
∣
ξj=ξ∗,n

j

= NRin

(

xin

∣
∣
ξj=ξ∗,n

j

+ (ξin − cin)
∂xin

∂ξin

∣
∣
∣
∣
ξj=ξ∗,n

j

)

,

where ξj = ξ∗,n
j indicates evaluation at the steady state Nash equilibrium prices.

For a contradiction, assume there exists δ > 0 such that for all µ > ν there is

n(µ) > µ with (ξ∗,n
in

− cin) > δ. Hence,

∂Π
n(µ)
in(µ)

∂ξin(µ)

∣
∣
∣
∣
ξj=ξ

∗,n(µ)
j

< NRin(µ)

(
xin(µ)

− εδ
)
≤ NRin(µ)

(
1

n(µ)
− εδ

)

which is strictly negative for µ large enough. However, this contradicts the Nash

equilibrium condition
∂Π

n(µ)
in(µ)

∂ξin(µ)

∣
∣
∣
∣
ξj=ξ

∗,n(µ)
j

= 0 so that we obtain lim supn→∞(ξ∗,n
in

−

cin) ≤ 0.

Since trivially, (ξ∗,n
in

− cin) ≥ 0, we finally find limn→∞(ξ∗,n
in

− cin) = 0.

This lemma is almost what we aimed at, however, it depends on conditions on state

variables (
∂xin

∂ξin
< −ε) which might not be satisfied. A shrinking market share for

rising prices is indeed economically plausible but not necessarily true. Hence, we

would like to express all conditions in terms of the control variables Φi and Ψi, for

which we need the following lemma, whose proof is given in appendixA.5.

Lemma 3.10. Let 0 < Φi < 1, i = 1, . . . , n, and let Λ be the inverse of matrix An

defined as

(An)ij =

{

1, i = j,

Φj , i 6= j,
i, j = 1 . . . n.

Then,

Λii ≥ 1 and Λij ≤ 0 for all i, j = 1, . . . , n with i 6= j.

Now we can prove an estimate for the change of market shares.

Lemma 3.11. Consider a polygopoly with n firms and with habitual imitative con-

sumers, where all n products coexist in the steady state Nash equilibrium. Let Φi(ξi)

and Ψi(ξi) be differentiable. Then

∂xi

∂ξi

∣
∣
∣
∣
ξj=ξ∗,n

j

≤ ∂Ψi

∂ξi

∣
∣
∣
∣
ξj=ξ∗,n

j

for all 1 ≤ i ≤ n, where xi is understood as the steady state market share.

Proof. Without loss of generality let i = 1. Also, in the following, let all parameters,

equations, and derivatives be evaluated at the steady state Nash equilibrium (i. e. at
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ξj = ξ∗,n
j ). Then, mean dynamic (7) yields An~x = ~Ψ, which can be differentiated

with respect to ξ1 to give

∂An

∂ξ1
~x + An

∂~x

∂ξ1
=

∂~Ψ

∂ξ1
⇔ ∂~x

∂ξ1
= A−1

n

(

∂~Ψ

∂ξ1
− ∂An

∂ξ1
~x

)

= A−1
n








∂Ψ1

∂ξ1

−x1
∂Φ1

∂ξ1...
−x1

∂Φ1

∂ξ1








.

Denoting the inverse of An by Λ, the first row of the above equation becomes

∂x1

∂ξ1
= Λ11

∂Ψ1

∂ξ1
− x1

∂Φ1

∂ξ1

n∑

j=2

Λ1j,

which together with the previous lemma and ∂Ψ1

∂ξ1
, ∂Φ1

∂ξ1
≤ 0 (due to condition 3.1)

yields the desired result.

The previous lemma can be interpreted as follows: The change of steady state

market shares xi is larger than the change of the corresponding “product qualities”

Ψi, i. e. shares are quite sensitive to quality changes. Lemmata 3.9 and 3.11 can

now be combined to yield the following.

Proposition 3.12. Consider a polygopoly with n firms and habitual imitative con-

sumers, where all n products coexist in the steady state Nash equilibrium. For given

n, let in denote the index of the “weakest” good, i. e. the one with lowest market

share xin=minj=1,...,n{xj}. Let Φin(ξin) and Ψin(ξin) be differentiable. If there is

ν > 0 such that
∂Ψin

∂ξin

∣
∣
ξin =ξ∗,n

in

<−ε<0 for all n>ν, then as the number of firms tends

to infinity, the price of good in converges to marginal cost, i. e. (ξ∗,n
in

−cin)→0. �

The proof of this result can inductively be repeated for the second “weakest” good,

the third “weakest” one, and so on up to the mth “weakest” good, where m is any

positive integer.

Corollary 3.13. Consider a polygopoly with n firms and let the assumptions from

proposition 3.12 hold. As the number of firms tends to infinity, the m “weakest”

products’ prices converge to their marginal costs, where m is any positive integer.�

As a consequence, since on a symmetric market any good is the “weakest” one, the

prices of all goods converge to marginal costs. In general, however, there may be

products so superior to the rest of the market that their prices stay away from

marginal costs while all other prices converge against marginal costs. The proof of

lemma 3.9 can be slightly adapted to show that this may only be true for a finite

number of products.
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Figure 2: An arbitrary imitation function, plotted as normalized inverse demand
function. The consumer surplus equals CSi = κi

ϕ∗
i
Si, and the producer

surplus is given by PSi = ιi

ϕ∗
i
Si, where ξ∗i denotes the current price of

product i and ϕ∗
i = ϕi(ξ

∗
i ) is the resulting imitation coefficient.

4. Extensions: Welfare, product life cycle generation,

and advertising

To point into possible directions of further research we will briefly discuss three

supplements to our model as there are welfare, the generation of product life cycles,

and advertising.

4.1. A welfare definition

In the following, we shall propose a suitable welfare definition for our setting to

allow for theories of social implications. The producer surplus can be calculated

as usual from the Marshallian definition, whereas the consumer surplus has to be

obtained differently as a consequence of the non-standard consumer behavior.

Definition 4.1 (Welfare). Given the imitation function ϕi(ξi) for good i, the contri-

bution of that good to the producer and consumer surplus at time t can be calculated

as

PSi(t) = (ξi(t) − ci)Si(t), (9)

CSi(t) =
Si(t)

ϕi(ξi(t))

(
∫ ϕi(ξi(t))

0

[
ϕ−1

i (ϕ) − ξi(t)
]
dϕ

)

. (10)

The social welfare takes the form

W (t) =

n∑

i=1

PSi(t) + CSi(t). (11)

For a single good with an arbitrary imitation function, consumer and producer

surplus at a specific time are illustrated in figure 2. Before further motivation, note

that the imitation function ϕi(ξi) can be interpreted as the demand distribution

for good i. In other words, for a consumer the probability P to have a reservation

price ξrp
i for good i larger than or equal to some price ξ∗i is given by the demand
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distribution, i. e.

ϕi(ξ
∗
i ) = P[ξrp

i ≥ ξ∗i ].

Phrased differently, the imitation function ϕi(ξi) constitutes the probability distri-

bution of the reservation price ξrp
i of a set of heterogeneous consumers, and the

reservation price ξrp
i is distributed according to the density −dϕi(ξi)

dξi
. (If instead

we assume fickle homogeneous consumers, where each individual’s reservation price

changes from time to time, ϕi(ξi) can be interpreted as the reservation price prob-

ability of a single consumer.) Against this background, the following alternative

characterization of the consumer surplus may serve as motivation.

Proposition 4.1. Let ϕi(ξi)ξi → 0 for ξi → ∞, and let ξ∗i be the current price of

product i and ϕ∗
i = ϕi(ξ

∗
i ) the resulting imitation coefficient. Let the consumers’

reservation price ξrp
i for good i have probability density −dϕi(ξi)

dξi

∣
∣
ξrp

i

=: −ϕ′
i(ξ

rp
i ).

(i) Pick one consumer arbitrarily and give her the option to buy either product

i or none. The expected value of her utility, Ui = max(ξrp
i − ξ∗i , 0), is then

given by

E[Ui] =

∫ ∞

ξ∗
i

ϕi(ξi)dξi.

(For simplicity, we here also allow infinite values of the expected utility.)

(ii) Pick one consumer, who has reservation price ξrp
i ≥ ξ∗i , i. e. who would buy

product i. The expected value of her utility, ui, is given as

E[ui] =
E[Ui]

ϕ∗
i

.

(iii) Assume that those consumers who actually buy product i are uniformly dis-

tributed among all potential buyers (i. e. those with ξrp
i ≥ ξ∗i ), then the expected

consumer surplus is given by

CSi = E[ui]Si =
E[Ui]

ϕ∗
i

Si.

Proof. (i) The consumer’s utility Ui is a random variable depending on the reser-

vation price ξrp
i . Hence,

E[Ui] =

∫ 1

0

Ui(ξ
rp
i )dP(ξrp

i ) =

∫ ∞

0

Ui(ξ
rp
i )(−ϕ′

i(ξ
rp
i ))dξrp

i

= −
∫ ∞

ξ∗
i

(ξrp
i −ξ∗i )ϕ′

i(ξ
rp
i )dξrp

i = − [(ξrp
i − ξ∗i )ϕi(ξ

rp
i )]

∞
ξrp

i =ξ∗
i
+

∫ ∞

ξ∗
i

ϕi(ξ
rp
i )dξrp

i .

The left summand of the last expression equals zero, since ξrp
i ϕi(ξ

rp
i )

ξrp
i →∞−→ 0.

Ui is a so-called integrable random variable, if and only if ϕi ∈ L1([0,∞)) (in

which case the integral is bounded).
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(ii) The consumers with ξrp
i ≥ ξ∗i make up ϕi(ξ

∗
i ) of the total population. Among

them, ξrp
i is distributed according to

P[ξrp
i ≥ ξ] =

{

1, ξ < ξ∗i ,
ϕi(ξ

rp
i )

ϕi(ξ∗
i ) , else,

so that analogously to the above, E[ui] = E[Ui]
ϕi(ξ∗

i ) .

(iii) By a change of variables ϕ = ϕi(ξ
rp
i ) and integration by parts we obtain

∫ ϕi(ξ
∗
i )

0

[ϕ−1
i (ϕ)−ξ∗i ]dϕ = −

∫ ∞

ξ∗
i

(ξrp
i −ξ∗i )ϕ′

i(ξ
rp
i )dξrp

i =

∫ ∞

ξ∗
i

ϕi(ξ
rp
i )dξrp

i = E[Ui],

which together with the definition of CSi yields the desired result.

Our definition thus resembles the standard approach: CSi approximates the differ-

ence between average reservation price among all buyers and the actual price.

As a brief application, we show that for a symmetric oligopoly, the welfare rises

with the number of firms.

Proposition 4.2. Consider a symmetric oligopoly with n identical firms and with

habitual imitative consumers. Let ϕ(ξ) and s(ξ) be differentiable and such that

there exists exactly one steady state Nash equilibrium with equilibrium price ξ∗,n. If

the total steady state sales nSn :=
∑n

i=1 Si(ξ
∗,n) increase more strongly in n than

ϕ∗,n := ϕ(ξ∗,n), i. e. d(nSn)
dn /(nSn) > dϕ∗,n

dn /ϕ∗,n, then the welfare increases for a

rising number of firms.

Proof. As before, since all firms are identical we skip the indices. As illustrated in

figure 2, the welfare is given by nSn

ϕ∗,n (κ + ι). Define Ωn = nSn

ϕ∗,n , then

dΩn

dn
=

d(nSn)
dn ϕ∗,n − nSn dϕ∗,n

dn

(ϕ∗,n)2
,

which is larger than 0 by assumption. Also, ξ∗,n decreases for a rising number of

firms by proposition 3.8, and hence, κ + ι increases due to the monotonicity of ϕ(ξ)

(condition 3.1). Altogether, the welfare rises for rising n.

Apparently, despite the consumers’ bounded rationality, we obtain the standard

result of an increasing welfare. This implies a certain amount of market efficiency,

comparable to a market with rational consumers.

4.2. The generation of product life cycles

In this paragraph, we briefly illustrate how a realistic product life cycle may emerge

from our model. As a simple example, consider a consecutive introduction of many
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Figure 3: Product life cycles (left) when many products enter the market succes-
sively and the maximum reservation price Ξi of each product decreases in
time (right). In this simulation we chose ϕi(ξi) = si(ξi) = 1 − ξi

Ξi
with

maximum reservation price Ξi = Ξ
1+αR0(t−ti)

, α = 5 · 10−2. Furthermore,

we have a time interval T = 6
R0

between the introduction of products,
an alarm clock rate Ri = 0.025R0 for all goods, an initial subpopulation
xi(0) = 10−3, and constant product prices ξi = 0.1Ξ.

products, all competing with each other. Think for instance of the mobile phone

market, where new (innovative) mobile phones frequently enter the market. The

maximum reservation price for a product may be assumed highest at its introduction

on the market when it still represents the state of the art, and then it decreases in

time, as innovation goes on. Hence, also habit and imitation function are highest

at the time of product introduction.

The most simple setting is to assume fixed prices ξi, simple imitation and habit

functions ϕi(ξi) = si(ξi) = 1 − ξi

Ξi
, new product introductions equally distributed

over time, and a simple evolution of the maximum reservation price Ξi in time,

e. g. Ξi = Ξ
1+αR0(t−ti)

, where ti is the time of introduction of product i. Figure 3

shows the resulting product life cycles of the successively introduced products, ob-

tained from an exemplary simulation.

Notice the classical pattern with a gentle increase of the sales right after product

launch, a broad maturity period and a quite steep decline until the product vanishes

(cf. for example de Kluyver (1977), Polli and Cook (1969) and others).

4.3. Marketing strategies: Advertisement

In section 2.2, in order to employ specific switching probabilities, we used the mech-

anism of imitation (4), that is, the probability of buying good i is proportional to

the amount xi of people who already own it. xi may here be interpreted as the

probability that the consumer gets to know the product from other consumers. The

multiplicative imitation factor ϕi represents how strongly the consumer is convinced

to buy the good when she knows it. However, consumers can also get to know the

good via advertisements, which constitute an effective tool for firms to influence

the consumers’ buying behavior. The probability to see the product’s commer-

cial is given by ai ∈ [0, 1], where ai depends positively on the advertising budget.

The overall probability to become aware of product i (via commercials or other
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consumers) hence is ai + xi − aixi so that (4) and (6) change to

p0i = ϕi(xi + ai − xiai), i 6= 0, (12)

pij = (1 − si)ϕj(xj + aj − xjaj), i 6= 0 ∧ j 6= 0, i. (13)

For the same motivation as in section 2.2, equation (5) remains unchanged,

pii = si ∈ [0, 1], i 6= 0. (14)

We shall in the following always assume ϕi, si > 0. An interesting question would be

whether a non-feasible product can be made feasible by advertising. The following

lemma provides an answer for a single good market (where we disregard advertising

costs and only examine whether a demand for that good exists).

Proposition 4.3. The single product on a market with habitual imitative consumers

is always feasible if it is advertised, i. e. a1 > 0.

Proof. The mean dynamic for the single good market takes the form

ẋ1 = ϕ1R0(x1 + a1 − x1a1) + x1(R1s1 − ϕ1R0(x1 + a1 − x1a1)) − R1x1

= x1ϕ1R0[Ψ1 − 2a1 − x1(1 − a1)] + ϕ1R0a1.

In the stationary state ẋ1 = 0 we thus obtain

x1 =







1
2−Ψ1

, a1 = 1,

Ψ1−2a1+
√

(Ψ1−2a1)2+4a1(1−a1)

2−2a1
, a1 6= 1,

which is positive for a1 > 0, irrespective of the value of Ψ1.

Apparently, commercials help the good to survive on the market. This statement

is illustrated in figure 4 where the steady state market share is shown for different

advertising levels. For a positive level, the market share is always positive and hence

the product feasible.

Note that in proposition 4.3 we only consider the demand side of the market, i. e. we

examine whether the product is demanded by consumers in the steady state. We

ignore that the firm might not be able to operate in the black because of immense

advertising costs.

An analogous result can be shown for an oligopoly.

Proposition 4.4. On an n-product market with habitual imitative consumers, prod-

uct i is always feasible if it is advertised, i. e. ai > 0 (unless there is a good j with

Φj = 1).
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Figure 4: Stable steady state value of the market share x1 for different advertising
levels a1.

Proof. The mean dynamic reads

ẋi = ϕiR0xi

[

Ψi − 2ai − (1 − ai)

(

xi +

n∑

j=1
j 6=i

Φjxj

)]

+ ϕiR0ai

(

1 −
n∑

j=1
j 6=i

Φjxj

)

.

For xi = 0 we obtain ẋi > 0. Hence, the system trajectory can never approach

xi = 0 so that the market share of product i always stays strictly away from zero.

An advertising campaign is usually associated with costs that depend on its reach.

Let us therefore introduce advertising costs ca
i for good i. Obviously, the derivative

∂ai

∂ca
i

has to be non-negative. With this altered model at hand, various simulations can

be performed for specific functions ϕi(ξi), si(ξi) and ai(c
a
i ). One could for instance

examine the product feasibility including advertising costs, whether advertising is

profitable at all, how large ai should optimally be, or whether there is a threshold

value for xi above which advertising is no longer beneficial. For illustration, we pick

up example 3.2 and add advertising. We will compute the optimal affine pricing

and advertising strategy. Before, however, we need to extend the definition of the

normal form competition game.

With advertising, firms have a second strategic variable besides their product’s

price which represents the advertising expenses. Hence, the set S of all pos-

sible strategy combinations now is a subset of the space of n-tuples over maps

(ξi, c
a
i ) : R+ → R

2
+, t 7→ (ξi(t), c

a
i (t)), S ⊆

[

(R2
+)

R+

]n

= (R2
+)

R+ × . . . × (R2
+)

R+ .

The components of profit Π : S → R
n
+ now become Πi(ξ1, . . . , ξn, ca

1 , . . . , c
a
n) =

F
[

(ξi(t) − ci)Si

(

~s(~ξ(t)), ~ϕ(~ξ(t)),~a(~ca(t)), t
)

− ~ca(t)
]

, where ~S(~s(~ξ(t)), ~ϕ(~ξ(t)),~a(~ca(t)), t)

denotes the sales vector produced by the population game including advertising ac-

cording to equations (12) and (13).

Example 4.1 (Cumulated discounted profit in a monopoly setting with advertis-

ing). For simplicity, let us assume ϕ1 = s1 = 1 − ξ1

Ξ1
and a1 = 1

1+K/ca
1
, and let us

only allow for affine price and advertising cost functions ξ1(·), ca
1(·) ∈ L([0, T ]) :=

{f : [0, T ] → R | ∃ a, b : f(t) = a + bt}. Consider the normal form competition game

G =

(

1, L2([0, T ]),

∫ T

0

exp[−rt] [(ξ1(t) − c1)S1 (s1(ξ1(t)), ϕ1(ξ1(t)), a1(c
a
1(t)), t) − ca

1(t)] dt

)

.

For given parameters R1, T, r, c1, x1(0), the optimal price paths ξ1(t) and ca
1(t) can
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Figure 5: Optimal affine price evolution (left) and optimal affine advertising ex-
penses (middle), as well as subpopulation (solid line) and sales (dotted
line) evolution (right) for parameter values R1 = 0.1R0, T = 10/R0,
r = 0, c1 = 0.1/Ξ1, K = 2 · 10−6, x1(0) = 0 (cf. example 4.1).

be found numerically. As a result, for a whole range of realistic parameters we

obtain the reverse of example 3.2: The price decreases with time. One example

calculation is depicted in figure 5.

Apparently, a firm is recommended to start an advertising campaign in parallel to

the product launch and steadily decrease the product price as well as the adver-

tising expenses during the lifespan of the product. Due to the initial advertising,

the market share is rapidly increased with brute force. Via the subsequent price

decrease, habit purchases can be kept on a high level, and reluctant customers are

attracted. Thereby, the market is optimally exploited by initially letting customers

with a high reservation price pay high prices and only later reducing the price to

make people with low reservation prices buy the product (similarly to the concept of

price discrimination). Advertising becomes less crucial when the market share has

already reached a certain level (the product sells itself) and is therefore reduced.

5. Conclusion

We examined the optimal strategic pricing for firms when the demand evolution

is generated by the behavior of boundedly rational consumers who follow a rule

of thumb and base their decisions on imitation and habit. The demand dynamic

is described within the framework of a population game with associated switching

probabilities, and it serves as a basis for strategic pricing of a monopoly or oligopoly

in a differential game. The optimal price paths correspond to Nash equilibria of a

normal form competition game.

The modeling approach is supported by psychological and experimental studies, and

the introduced methodology allows for broad applications and qualitative theoretical

analysis.

We investigated product feasibility (i. e. the conditions under which firms operate

profitably in the long-term) and expressed it with the help of the hypothetical

popularity of the product if it was sold for a price equal to the marginal cost.

Furthermore, we showed that markets with habitual imitative consumers are in a

sense well-behaved: For a rising number of firms, the prices decrease, the prices of
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the weakest products (but not necessarily of all products) converge against marginal

costs, and the welfare rises (at least for a symmetric market). Such results (despite

the boundedly rational consumer behavior) prove once more the existence of some

kind of efficiency in not totally rational markets.

We also proved for the monopoly that under certain conditions, Nash equilibria are

found in the strategy space of all time-constant price paths so that a reduction of

the (quite complex and untractable) strategy space of all possible price paths is at

least sometimes sensible.

Finally, the assumed boundedly rational consumer behavior was shown to lead to

observed market patterns such as product life cycles, and extensions to the model

were proposed and examined such as an adequate definition of welfare, which allows

for analysis of social implications, and the introduction of advertising, which allows

to explore optimal advertising strategies.

A. Appendix
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A.1. Criticality of a constant monopoly price (Proposition 3.2)

Using the relation (obtained via integration by parts and Fubini’s theorem)

∫ t

0

f(τ)

∫ τ

0

g(θ)dθdτ =

[∫ t

0

f(τ)dτ

∫ t

0

g(τ)dτ

]t

0

−
∫ t

0

∫ τ

0

f(θ)dθg(τ)dτ =

∫ t

0

g(τ)

∫ t

τ

f(θ)dθdτ,

we can write the variation of x(t) with respect to ξ in some test direction ϑ as

*

∂x(t)

∂ξ
, ϑ

+

=

exp(ϕΨt)

"

R t
0 (ϕΨ)′ϑdτ

„

exp(ϕΨt)−1
Ψ

+ 1
Ψ

«

−
R t
0 exp(ϕΨτ)

“

ϕ′ϑ + ϕ
R τ
0 (ϕΨ)′ϑ(θ)dθ

”

dτ −

RT
0 exp(ϕΨτ)(ϕ′ϑ+ϕ

R τ
0 (ϕΨ)′ϑdθ)dτ(exp(ϕΨT )−1)−

RT
0 (ϕΨ)′ϑdτ exp(ϕΨT )

RT
0 ϕ exp(ϕΨτ)dτ

(exp(ϕΨT )−1)2

#

„

exp(ϕΨt)−1
Ψ

+ 1
Ψ

«2

=

exp(ϕΨt)

"

(ϕΨ)′
R t
0 ϑdτ

exp(ϕΨt)
Ψ

−
R t
0 exp(ϕΨτ)

“

ϕ′ϑ + ϕ(ϕΨ)′
Rτ
0 ϑdθ

”

dτ −

RT
0 exp(ϕΨτ)(ϕ′ϑ+ϕ(ϕΨ)′

R τ
0 ϑdθ)dτ(exp(ϕΨT )−1)−(ϕΨ)′

RT
0 ϑdτ exp(ϕΨT )

RT
0 ϕ exp(ϕΨτ)dτ

(exp(ϕΨT )−1)2

#

„

exp(ϕΨt)
Ψ

«2

=

exp(ϕΨt)

"

(ϕΨ)′
exp(ϕΨt)

Ψ

R t
0 ϑdτ − ϕ′ R t

0 exp(ϕΨτ)ϑdτ − ϕ(ϕΨ)′
R t
0 exp(ϕΨτ)

R τ
0 ϑdθdτ −

RT
0 exp(ϕΨτ)(ϕ′ϑ+ϕ(ϕΨ)′

R τ
0 ϑdθ)dτ(exp(ϕΨT )−1)−(ϕΨ)′

RT
0 ϑdτ exp(ϕΨT )

RT
0 ϕ exp(ϕΨτ)dτ

(exp(ϕΨT )−1)2

#

„

exp(ϕΨt)
Ψ

«2

=

exp(ϕΨt)

"

(ϕΨ)′
exp(ϕΨt)

Ψ

R t
0 ϑdτ − ϕ′ R t

0 exp(ϕΨτ)ϑdτ − ϕ(ϕΨ)′
R t
0 exp(ϕΨτ)

R τ
0 ϑdθdτ −

RT
0 exp(ϕΨτ)(ϕ′ϑ+ϕ(ϕΨ)′

R τ
0 ϑdθ)dτ(exp(ϕΨT )−1)−(ϕΨ)′

RT
0 ϑdτ exp(ϕΨT )

RT
0 ϕ exp(ϕΨτ)dτ

(exp(ϕΨT )−1)2

#

„

exp(ϕΨt)
Ψ

«2

=

exp(ϕΨt)

"

(ϕΨ)′
exp(ϕΨt)

Ψ

R t
0 ϑdτ − ϕ′ R t

0 exp(ϕΨτ)ϑdτ − ϕ(ϕΨ)′
R t
0 ϑ

R t
θ exp(ϕΨτ)dτdθ −

RT
0 exp(ϕΨτ)(ϕ′ϑ+ϕ(ϕΨ)′

R τ
0 ϑdθ)dτ(exp(ϕΨT )−1)−(ϕΨ)′

RT
0 ϑdτ exp(ϕΨT )

RT
0 ϕ exp(ϕΨτ)dτ

(exp(ϕΨT )−1)2

#

„

exp(ϕΨt)
Ψ

«2

=

exp(ϕΨt)

"

(ϕΨ)′
exp(ϕΨt)

Ψ

R t
0 ϑdτ − ϕ′ R t

0 exp(ϕΨθ)ϑdθ − ϕ(ϕΨ)′
R t
0 ϑ

exp(ϕΨt)−exp(ϕΨθ)
ϕΨ

dθ −

RT
0 exp(ϕΨτ)(ϕ′ϑ+ϕ(ϕΨ)′

R τ
0 ϑdθ)dτ(exp(ϕΨT )−1)−(ϕΨ)′

RT
0 ϑdτ exp(ϕΨT )

RT
0 ϕ exp(ϕΨτ)dτ

(exp(ϕΨT )−1)2

#

„

exp(ϕΨt)
Ψ

«2

=

exp(ϕΨt)

"

−ϕ′ R t
0 exp(ϕΨθ)ϑdθ +

(ϕΨ)′

Ψ

R t
0 ϑ exp(ϕΨθ)dθ −

RT
0 exp(ϕΨτ)(ϕ′ϑ+ϕ(ϕΨ)′

R τ
0 ϑdθ)dτ(exp(ϕΨT )−1)−(ϕΨ)′

RT
0 ϑdτ exp(ϕΨT )

RT
0 ϕ exp(ϕΨτ)dτ

(exp(ϕΨT )−1)2

#

„

exp(ϕΨt)
Ψ

«2

=

exp(ϕΨt)

"

ϕΨ′

Ψ

R t
0 ϑ exp(ϕΨθ)dθ −

ϕ′ RT
0 exp(ϕΨτ)ϑdτ+ϕ(ϕΨ)′

RT
0 exp(ϕΨτ)

R τ
0 ϑdθdτ

exp(ϕΨT )−1
+

(ϕΨ)′ exp(ϕΨT )
RT
0 ϕ exp(ϕΨτ)dτ

RT
0 ϑdτ

(exp(ϕΨT )−1)2

#

„

exp(ϕΨt)
Ψ

«2

=

exp(ϕΨt)

"

ϕΨ′

Ψ

R t
0 ϑ exp(ϕΨθ)dθ −

ϕ′

exp(ϕΨT )−1

RT
0 ϑ exp(ϕΨθ)dθ −

ϕ(ϕΨ)′

exp(ϕΨT )−1

RT
0 exp(ϕΨτ)

R τ
0 ϑdθdτ +

(ϕΨ)′ exp(ϕΨT )
RT
0 ϕ exp(ϕΨτ)dτ

(exp(ϕΨT )−1)2

RT
0 ϑdτ

#

„

exp(ϕΨt)
Ψ

«2

=

exp(ϕΨt)

»

ϕΨ′

Ψ

R t
0 ϑ exp(ϕΨθ)dθ −

ϕ′Ψ
Ψ(exp(ϕΨT )−1)

RT
0 ϑ exp(ϕΨθ)dθ +

(ϕΨ)′

Ψ(exp(ϕΨT )−1)

RT
0 ϑ exp(ϕΨθ)dθ

–

„

exp(ϕΨt)
Ψ

«2
=

Ψ

»

ϕΨ′ R t
0 ϑ exp(ϕΨθ)dθ +

ϕΨ′

exp(ϕΨT )−1

RT
0 ϑ exp(ϕΨθ)dθ

–

exp(ϕΨt)
.
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Using the price ξ implicitly defined by ξ − c = −Ψ(ξ)/Ψ′(ξ) (which follows from maximizing the profit for a constant price and a steady state,

i. e. no periodic oscillations), the variation of the profit rate then is given as

fi

∂Π/R0

∂ξ
, ϑ

fl

=
1

R0

d

dε
Π(ξ(·) + εϑ(·))

˛

˛

˛

˛

ε=0

=
N

T

Z T

0
x(R + ϕ(Ψ − x))ϑ + (ξ − c)

„

x(ϕΨ)′ϑ − x2ϕ′ϑ +

fi

∂x(t)

∂ξ
, ϑ

fl

(R + ϕΨ − 2ϕx)

«

dt

=
N

T

Z T

0
Ψ(R + ϕ(Ψ − Ψ))ϑ −

Ψ

Ψ′

0

B

@
Ψ(ϕΨ)′ϑ − Ψ2ϕ′ϑ +

2

6

4

exp(ϕΨt)
h

ϕΨ′

Ψ

R t
0 ϑ exp(ϕΨθ)dθ + ϕΨ′

Ψ(exp(ϕΨT )−1)

R T
0 ϑ exp(ϕΨθ)dθ

i

“

exp(ϕΨt)
Ψ

”2

3

7

5
(R + ϕΨ − 2ϕΨ)

1

C

A
dt

=
N

T
(ΨR − Ψ2ϕ)

Z T

0
ϑdt −

N

T

Z T

0

Ψ

Ψ′
(R − ϕΨ)

2

6

4

exp(ϕΨt)
h

ϕΨ′

Ψ

R t

0
ϑ exp(ϕΨθ)dθ + ϕΨ′

Ψ(exp(ϕΨT )−1)

R T

0
ϑ exp(ϕΨθ)dθ

i

“

exp(ϕΨt)
Ψ

”2

3

7

5
dt

=
N

T
(ΨR − Ψ2ϕ)

Z T

0
ϑdt −

N

T

Ψ3

Ψ′
(R − ϕΨ)

Z T

0

exp(ϕΨt)

(exp(ϕΨt))2
ϕΨ′

Ψ

Z t

0
ϑ exp(ϕΨθ)dθdt −

N

T

Ψ3

Ψ′
(R − ϕΨ)

Z T

0

exp(ϕΨt)

(exp(ϕΨt))2
ϕΨ′

Ψ (exp(ϕΨT ) − 1)

Z T

0
ϑ exp(ϕΨθ)dθdt

=
N

T
(ΨR − Ψ2ϕ)

Z T

0
ϑdt −

N

T
Ψ2ϕ(R − ϕΨ)

Z T

0

1

exp(ϕΨt)

Z t

0
ϑ exp(ϕΨθ)dθdt −

N

T
Ψ2ϕ(R − ϕΨ)

Z T

0

1

exp(ϕΨt)

1

exp(ϕΨT ) − 1

Z T

0
ϑ exp(ϕΨθ)dθdt

=
N

T
(ΨR − Ψ2ϕ)

Z T

0
ϑdt −

N

T
Ψ2ϕ(R − ϕΨ)

Z T

0
ϑ exp(ϕΨθ)

Z T

θ

1

exp(ϕΨt)
dtdθ −

N

T
Ψ2ϕ(R − ϕΨ)

Z T

0

1

exp(ϕΨt)

1

exp(ϕΨT ) − 1
dt

Z T

0
ϑ exp(ϕΨθ)dθ

=
N

T
(ΨR − Ψ2ϕ)

Z T

0
ϑdt −

N

T
Ψ2ϕ(R − ϕΨ)

Z T

0
ϑ exp(ϕΨθ)

»

−

1

ϕΨexp(ϕΨT )
+

1

ϕΨexp(ϕΨθ)

–

dθ −

N
T

Ψ2ϕ(R − ϕΨ)

exp(ϕΨT ) − 1

»

−

1

ϕΨexp(ϕΨT )
+

1

ϕΨ

– Z T

0
ϑ exp(ϕΨθ)dθ

=
N

T
(ΨR − Ψ2ϕ)

Z T

0
ϑdt −

N

T
Ψ(R − ϕΨ)

Z T

0
ϑ exp(ϕΨθ)

»

−

1

exp(ϕΨT )
+

1

exp(ϕΨθ)

–

dθ −

N
T

Ψ(R − ϕΨ)

exp(ϕΨT ) − 1

»

1 −

1

exp(ϕΨT )

– Z T

0
ϑ exp(ϕΨθ)dθ

=
N

T
(ΨR − Ψ2ϕ)

»Z T

0
ϑdt −

Z T

0
ϑ exp(ϕΨθ)

»

−

1

exp(ϕΨT )
+

1

exp(ϕΨθ)

–

dθ −

1

exp(ϕΨT ) − 1

»

1 −

1

exp(ϕΨT )

– Z T

0
ϑ exp(ϕΨθ)dθ

–

=
N

T
(ΨR − Ψ2ϕ)

»Z T

0
ϑdt −

Z T

0
ϑ exp(ϕΨθ)

»

−

1

exp(ϕΨT )
+

1

exp(ϕΨθ)

–

dθ −

1

exp(ϕΨT )

Z T

0
ϑ exp(ϕΨθ)dθ

–

=
N

T
(ΨR − Ψ2ϕ)

»Z T

0
ϑdt −

Z T

0
ϑdθ

–

= 0.
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A.2. Proof of lemma 3.3

Proof. For Lebesgue-integrable functions ϑ, θ, let us define the bilinear forms

〈ϑ, θ〉L =

∫ T

0

∫ T

0

ϑ(t)θ(τ) exp[α(τ − t + TH(t− τ))]dτdt

〈ϑ, θ〉R =
exp(αT ) − 1

α

∫ T

0

ϑ(t)θ(t)dt.

For ϑ ∈ L1([0, T ])\L2([0, T ]), 〈ϑ, ϑ〉R is unbounded so that 〈ϑ, ϑ〉L ≤ 〈ϑ, ϑ〉R triv-

ially. Hence, let us assume ϑ ∈ L2([0, T ]) from now on.

〈·, ·〉L and 〈·, ·〉R are (sequentially) continuous in both arguments in L2([0, T ]): Let

θk
k→∞−→ θ in L2([0, T ]). By Hı̈£¡lder’s inequality and the continuous Sobolev em-

bedding L2([0, T ]) →֒ L1([0, T ]),

|〈ϑ, θ〉R−〈ϑ, θk〉R| =

∣
∣
∣
∣
∣

∫ T

0

ϑ(θ − θk)dt

∣
∣
∣
∣
∣
≤ ||ϑ||L2 ||θ − θk||L2

k→∞−→ 0

|〈ϑ, θ〉L−〈ϑ, θk〉L| =

∣
∣
∣
∣
∣

∫ T

0

∫ T

0

ϑ(θ − θk)eα(τ−t+TH(t−τ))dτdt

∣
∣
∣
∣
∣
≤ e|αT |

∫ T

0

|ϑ|dt

∫ T

0

|θ − θk|dt

= e|αT |||ϑ||L1 ||θ − θk||L1 ≤ C||ϑ||L2 ||θ − θk||L2
k→∞−→ 0

for some constant C. Continuity in the first argument follows analogously. By

∣
∣〈θ, θ〉L/R − 〈θk, θk〉L/R

∣
∣ ≤

∣
∣〈θ, θ〉L/R − 〈θ, θk〉L/R

∣
∣+
∣
∣〈θ, θk〉L/R − 〈θk, θk〉L/R

∣
∣ k→∞−→ 0

we immediately have continuity of ϑ 7→ 〈ϑ, ϑ〉L/R.

We would like to show 〈ϑ, ϑ〉L ≤ 〈ϑ, ϑ〉R for regular step functions ϑ ∈ T =
{
∑N−1

i=0 aiχ[ i
N T, i+1

N T ]

∣
∣
∣N ∈ N, ai ∈ R

}

. The lemma then follows by the above-shown

continuity and the density of regular step functions in L2([0, T ]): It is well-known

that step functions are dense in L2([0, T ]), so density of T in the space of step

functions remains to be shown. Let f =
∑n−1

j=0 bjχ[tj ,tj+1], 0 = t0 ≤ · · · ≤ tn = T .

Set fk =
∑k−1

j=0 f( j
kT )χ[ j

k T, j+1
k T ] ∈ T . fk equals f on all intervals [ j

kT, j+1
k T ] which

lie completely in an interval [ti, ti+1]. This is not the case for a maximum number

of n intervals [ j
kT, j+1

k T ]. Hence, ||fk − f ||L2 ≤ nT
k (maxi,j |bi − bj|)2 k→∞−→ 0.

Now, let ϑ =
∑N−1

i=0 aiχ[ i
N T, i+1

N T ] and assume α 6= 0. Then,

〈ϑ, ϑ〉R =
eαT − 1

α

N−1∑

j=0

a2
j

∫ j+1
N T

j
N T

1dt =
eαT − 1

α

N−1∑

j=0

a2
j

T

N
,

〈ϑ, ϑ〉L =

N−1∑

i=0

N−1∑

j=0

aiaj

∫ i+1
N T

i
N T

∫ j+1
N T

j
N T

eα(τ−t+TH(t−τ))dτdt

=

(
1 − eα T

N

)(
1 − e−α T

N

)

α2
aAaT +

eαT − 1

α

N−1∑

j=0

a2
j

T

N
,
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where a = (a0, . . . , aN−1)
T and the matrix A is given by

Aij =







−eα i−j
N T , i > j,

−eα N+i−j
N T , i < j,

eα T
N −eαT

1−eα T
N

, i = j.

Hence, 〈ϑ, ϑ〉L ≤ 〈ϑ, ϑ〉R is equivalent to

(
1−eα T

N

)(
1−e−α T

N

)
aAaT ≤ 0 ⇔ aAaT ≥ 0 ⇔ aBaT :=

1

2
a(A+AT)aT ≥ 0.

However, this is true since B is weakly diagonally dominant with non-negative

diagonal entries,

∑

j 6=i

|Bij | = −1

2




∑

j 6=i

Aij +
∑

j 6=i

Aji



 =
1

2
2

N−1∑

j=1

ejα T
N =

1 − eαT

1 − eα T
N

−1 =
eα T

N − eαT

1 − eα T
N

= Bii,

and thus by Gershgorin’s theorem, B is positive semi-definite. For α = 0, the

inequality 〈ϑ, ϑ〉L ≤ 〈ϑ, ϑ〉R follows from continuity in α = 0 (using de l’Hôpital’s

rule).
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A.3. Negative definite second variation of profit for constant price (Proposition 3.4)

*

∂2Π/R0

∂ξ2
, ϑ, ϑ

+

=

* ∂

fi

∂Π/R0
∂ξ

, ϑ

fl

∂ξ
, ϑ

+

=
N

T

Z T

0

*

∂x(t)

∂ξ
, ϑ

+

[R + ϕ(Ψ − 2x)]ϑ + x[(ϕΨ)
′
− xϕ

′
]ϑϑ +

"

x(ϕΨ)
′
ϑ − x

2
ϕ
′
ϑ +

*

∂x(t)

∂ξ
, ϑ

+

(R + ϕΨ − 2ϕx)

#

ϑ

+(ξ − c)

2

4

*

∂x(t)

∂ξ
, ϑ

+

(ϕΨ)
′
ϑ + x(ϕΨ)

′′
ϑϑ − 2x

*

∂x(t)

∂ξ
, ϑ

+

ϕ
′
ϑ − x

2
ϕ
′′

ϑϑ +

*

∂2x(t)

∂ξ2
, ϑ, ϑ

+

(R + ϕΨ − 2ϕx) +

*

∂x(t)

∂ξ
, ϑ

+ 

(ϕΨ)
′
ϑ − 2ϕ

′
xϑ − 2ϕ

*

∂x(t)

∂ξ
, ϑ

+!

3

5 dt

=
N

T

Z T

0

Ψ

»

ϕΨ′ R t
0 ϑ exp(ϕΨΘ)dΘ +

ϕΨ′

exp(ϕΨT )−1

RT
0 ϑ exp(ϕΨΘ)dΘ

–

exp(ϕΨt)
[R + ϕ(Ψ − 2x)]ϑ + x[(ϕΨ)

′
− xϕ

′
]ϑϑ +

2

6

6

4

x(ϕΨ)
′
ϑ − x

2
ϕ
′
ϑ +

Ψ

»

ϕΨ′ R t
0 ϑ exp(ϕΨΘ)dΘ +

ϕΨ′

exp(ϕΨT )−1

RT
0 ϑ exp(ϕΨΘ)dΘ

–

exp(ϕΨt)
(R + ϕΨ − 2ϕx)

3

7

7

5

ϑ

−
Ψ

Ψ′

2

6

6

4

Ψ

»

ϕΨ′ R t
0 ϑ exp(ϕΨΘ)dΘ +

ϕΨ′

exp(ϕΨT )−1

RT
0 ϑ exp(ϕΨΘ)dΘ

–

exp(ϕΨt)
(ϕΨ)

′
ϑ + x(ϕΨ)

′′
ϑϑ − 2x

Ψ

»

ϕΨ′ R t
0 ϑ exp(ϕΨΘ)dΘ +

ϕΨ′

exp(ϕΨT )−1

RT
0 ϑ exp(ϕΨΘ)dΘ

–

exp(ϕΨt)
ϕ
′
ϑ − x

2
ϕ
′′

ϑϑ +

*

∂2x(t)

∂ξ2
, ϑ, ϑ

+

(R + ϕΨ − 2ϕx)

+

Ψ

»

ϕΨ′ R t
0 ϑ exp(ϕΨΘ)dΘ +

ϕΨ′

exp(ϕΨT )−1

RT
0 ϑ exp(ϕΨΘ)dΘ

–

exp(ϕΨt)

0

B

B

@

(ϕΨ)′ϑ − 2ϕ′xϑ − 2ϕ

Ψ

»

ϕΨ′ R t
0 ϑ exp(ϕΨΘ)dΘ +

ϕΨ′

exp(ϕΨT )−1

RT
0 ϑ exp(ϕΨΘ)dΘ

–

exp(ϕΨt)

1

C

C

A

3

7

7

5

dt

=
N

T

Z T

0

Ψ

»

ϕΨ′ R t
0 ϑ exp(ϕΨΘ)dΘ +

ϕΨ′

exp(ϕΨT )−1

RT
0 ϑ exp(ϕΨΘ)dΘ

–

exp(ϕΨt)
(R − ϕΨ)ϑ + ΨϕΨ

′
ϑϑ +

2

6

6

4

ΨϕΨ
′
ϑ +

Ψ

»

ϕΨ′ R t
0 ϑ exp(ϕΨΘ)dΘ +

ϕΨ′

exp(ϕΨT )−1

RT
0 ϑ exp(ϕΨΘ)dΘ

–

exp(ϕΨt)
(R − ϕΨ)

3

7

7

5

ϑ

−
Ψ

Ψ′

2

6

6

4

Ψ

»

ϕΨ′ R t
0 ϑ exp(ϕΨΘ)dΘ +

ϕΨ′

exp(ϕΨT )−1

RT
0 ϑ exp(ϕΨΘ)dΘ

–

exp(ϕΨt)
(ϕΨ)

′
ϑ + Ψ(ϕΨ)

′′
ϑϑ − 2Ψ

Ψ

»

ϕΨ′ R t
0 ϑ exp(ϕΨΘ)dΘ +

ϕΨ′

exp(ϕΨT )−1

RT
0 ϑ exp(ϕΨΘ)dΘ

–

exp(ϕΨt)
ϕ
′
ϑ − Ψ

2
ϕ
′′

ϑϑ +

*

∂2x(t)

∂ξ2
, ϑ, ϑ

+

(R − ϕΨ)

+

Ψ

»

ϕΨ′ R t
0 ϑ exp(ϕΨΘ)dΘ +

ϕΨ′

exp(ϕΨT )−1

RT
0 ϑ exp(ϕΨΘ)dΘ

–

exp(ϕΨt)

0

B

B

@

ϕΨ
′
ϑ − ϕ

′
Ψϑ − 2ϕ

Ψ

»

ϕΨ′ R t
0 ϑ exp(ϕΨΘ)dΘ +

ϕΨ′

exp(ϕΨT )−1

RT
0 ϑ exp(ϕΨΘ)dΘ

–

exp(ϕΨt)

1

C

C

A

3

7

7

5

dt

=
N

T

Z

T

0

Ψ

»

ϕΨ′ R t
0 ϑ exp(ϕΨΘ)dΘ +

ϕΨ′

exp(ϕΨT )−1

RT
0 ϑ exp(ϕΨΘ)dΘ

–

exp(ϕΨt)
(R − ϕΨ)ϑ + 2ΨϕΨ

′
ϑϑ

+

Ψ

»

ϕΨ′ R t
0 ϑ exp(ϕΨΘ)dΘ +

ϕΨ′

exp(ϕΨT )−1

RT
0 ϑ exp(ϕΨΘ)dΘ

–

exp(ϕΨt)

2

6

6

4

Rϑ − 2Ψϕϑ +
Ψ2

Ψ′
ϕ
′
ϑ + 2ϕ

Ψ2

Ψ′

»

ϕΨ′ R t
0 ϑ exp(ϕΨΘ)dΘ +

ϕΨ′

exp(ϕΨT )−1

RT
0 ϑ exp(ϕΨΘ)dΘ

–

exp(ϕΨt)

3

7

7

5

−
Ψ2

Ψ′

»

ϕΨ′ R t
0 ϑ exp(ϕΨΘ)dΘ +

ϕΨ′

exp(ϕΨT )−1

RT
0 ϑ exp(ϕΨΘ)dΘ

–

exp(ϕΨt)
(ϕΨ

′
ϑ − Ψϕ

′
ϑ) − 2Ψ

2
ϕ
′
ϑϑ −

Ψ2

Ψ′
ϕΨ

′′
ϑϑ −

Ψ

Ψ′

*

∂2x(t)

∂ξ2
, ϑ, ϑ

+

(R − ϕΨ)dt
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′
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ϕ
′
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A.4. Oligopoly price for example 3.3

Proof. Let An and Λ = (A−1
n ) be as in example 3.3. Furthermore, let us write

vectors (ai)i=1,...,n as ~a and diagonal n×n matrices with diagonal entries (ai)i=1,...,n

as ā. If all n goods coexist on the market, then for the steady state the mean

dynamic (7) can be rewritten as

~Ψ = An~x.

According to equation (3), the sales ~S and the profit ~Π then adopt the form

~S = NR̄~x = NR̄A−1
n

~Ψ and ~Π = (Ξ − c̄)~S = (Ξ − c̄)NR̄A−1
n

~Ψ.

Letting (A−1
n )i denote the ith row of matrix A−1

n , the Nash equilibrium is found by

solving the system of first order optimality conditions

0 =
dΠi

dξi
= NRi

(
A−1

n

)

i

[

~Ψ + (ξi − ci)
d~Ψ

dξi

]

, i = 1, . . . , n,

where d~Ψ
dξi

=
(
0, . . . , 0, 1−Ψi

ϕi
, 0, . . . , 0

)T dϕi

dξi
. For the system to be analytically solv-

able, we chose ϕi =
(
1 + ξi

Ξi

)−1
and hence dϕi

dξi
= −ϕ2

i

Ξi
. Then, for i = 1, . . . , n the

optimality condition can be equivalently transformed into

Λi













1 − 1−Φ1

Ξ1
(Ξ1 + ξ1)
...

1 − 1−Φi

Ξi
(Ξi − ci + 2ξi)

1 − 1−Φi+1

Ξi+1
(Ξi+1 + ξi+1)
...













= 0,

or expressed as a sum,

n∑

j=1

Λij

(

Φj −
1 − Φj

Ξj
ξj

)

− Λii

(
1 − Φi

Ξi
ξi −

(1 − Φi)ci

Ξi

)

= 0, i = 1, . . . , n.

In matrix notation this reads






Λ +







Λ11 0 0

0
. . . 0

0 0 Λnn



















1−Φ1

Ξ1
0 0

0
. . . 0

0 0 1−Φn

Ξn







~ξ = Λ~Φ +







(1 − Φ1)Λ11
c1

Ξ1

...

(1 − Φn)Λnn
cn

Ξn







,

which directly implies the solution for the optimal prices ~ξ∗.
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A.5. Proof of lemma 3.10

Proof. In Matzke and Wirth (2008) we have shown

det








1 α2 · · · αm

α1 1
...

...
...

. . . αm

α1 α2 . . . 1








> 0 (15)

for any m > 0 and 0 < αi < 1, i = 1, . . . , m, which we will need later.

According to Cramer’s rule

Λij =
det(An)i→ej

det(An)
,

where (An)i→ej denotes matrix An with the ith column replaced by the jth unit

vector ej. For i 6= j, using Laplace expansion along the ith column and subsequent

column and row interchanges of the (i, j)-minor matrix of An, we obtain

det(An)i→ej = − detB0,

where (without loss of generality assuming i < j)

B0 =























Φj Φ1 · · · Φi−1 Φi+1 · · · Φj−1 Φj+1 · · · Φn

Φj 1
...

...
...

...
...

... Φ1
. . . Φi−1

...
...

...
...

...
... 1 Φi+1

...
...

...
...

... Φi−1 1
...

...
...

...
...

... Φi+1
. . . Φj−1

...
...

...
...

...
... 1 Φj+1

...
...

...
...

... Φj−1 1
...

...
...

...
...

...
...

. . . Φn

Φj Φ1 · · · Φi−1 Φi+1 · · · Φj−1 Φj+1 · · · 1























.

In order to show det B0 ≤ 0, let us define Bt for 0 ≤ t ≤ 1 by replacing the (1, 1)-

entry in B0 by Φj + t(1 − Φj). Now, t 7→ detBt is continuous with detB1 > 0 due

to (15). Hence, if we had detB0 < 0, then by Rolle’s theorem there would be some

t ∈ (0, 1) with det Bt = 0. However,

detBt = (Φj + t(1 − Φj)) det








1 Φ1 · · · Φn
Φj

Φj+t(1−Φj) 1
...

...
...

. . . Φn
Φj

Φj+t(1−Φj) Φ1 · · · 1








,

which due to (15) is larger than zero, since 0 <
Φj

Φj+t(1−Φj)
< 1. This contradicts

detBt = 0 so that our initial assumption detB0 < 0 is wrong. Also, we have

detAn > 0 due to (15) so that finally, Λij = − det B0

detAn
≤ 0. Moreover, from 1 =
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∑n
j=1 Λij(An)ji = Λii +

∑

j 6=i Λij(An)ji ≤ Λii we obtain Λii ≥ 1.
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