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Abstract

Splitting leagues or tournaments seems to be puzzling when agents are

homogeneous and splitting leads to a negative competition effect. However,

it can be shown that the principal can nevertheless benefit from splitting.

First, splitting can be used as a divide-and-rule strategy by the principal

to create additional incentives when collusion among the agents is possible.

Second, splitting leagues gives the principal the opportunity to introduce

promotions and relegations between nested tournaments (i.e., tournaments

that are intertemporally linked), which also enhances incentives.
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1 Introduction

In practice, we find a lot of situations in which agents compete in tourna-

ments for certain prizes that have been fixed in advance. The agent with the

best performance receives the high winner prize, whereas the other agents

only get lower loser prizes.1 Examples for such rank-order tournaments can

be found in sports (see, e.g., Ehrenberg and Bognanno [1990] on golf tourna-

ments, Becker and Huselid [1992] on stock-car racing, Lynch and Zax [1998]

on horse racing and Garicano and Palacios-Huerta [2000] on soccer) and in

internal labor markets (see, e.g., Baker, Gibbs and Holmström [1994] and

Treble, van Gameren, Bridges and Barmby [2001] on job-promotion tourna-

ments, Mantrala, Krafft and Weitz [2000] on contests between salesmen, and

Gibbons and Murphy [1990] on relative performance pay between managers).

Often we find different tournaments or leagues instead of one large league

in which all agents would compete together against each other. For example,

there are parallel sport contests, simultaneous job-promotion tournaments

in the same firm (particularly, on different hierarchical levels, in different

plants of a firm, and in the so-called ”dual ladder”2 between managers on

the one hand and engineers on the other hand), and different leagues in

nearly any sport. In addition, tournaments or leagues are often nested so

that winning one tournament gives an agent the opportunity to compete in

a higher tournament in the next period. Such nesting can be observed in

sports as well as in corporate hierarchies.
1For rank-order tournaments see Lazear and Rosen (1981), Nalebuff and Stiglitz (1983),

Green and Stokey (1983), O’Keefe, Viscusi, and Zeckhauser (1984), Rosen (1986).
2See, e.g., Gunz (1980), Feuer (1986).
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Some arguments for splitting leagues can be derived from the theory of

rank-order tournaments: If agents are heterogeneous and the principal is able

to observe an agent’s type, he will prefer to organize a different tournament

or league for each type to preserve overall incentives (Lazear and Rosen

1981, pp. 857—863). However, if the principal cannot distinguish between

heterogeneous agents, he may still prefer different leagues as a self-selection

device (O’Keefe, Viscusi and Zeckhauser 1984). Lazear (1989) discusses the

problem of sabotage in tournaments.3 Heterogeneity may even worsen the

situation as the presumable losers may see no other way but sabotage to

get back into the race. In such situations, organizing different leagues may

mitigate the sabotage problem.

However, at least three aspects speak against these arguments: First,

participants of tournaments are not always heterogeneous. Sometimes they

are homogeneous, or there is symmetric uncertainty so that agents have to

be treated as being homogeneous. Second, splitting leagues may not be the

best response to solve the above mentioned problems. Incentives in tour-

naments with observed heterogeneity can also be restored by introducing a

handicap system (Lazear and Rosen 1981, pp. 861—863). Different leagues

are not necessarily the best (information revelation) mechanism to solve sort-

ing and incentive problems in situations with asymmetric information about

the agents’ types. Sabotage problems may be better solved by adjusting the

optimal prize spread (see Lazear 1989) or by announcing Draconian sanc-

tions such as disqualification. Third, splitting leagues may be harmful from
3Perhaps the most spectacular case in sports has been the one with Tonya Harding,

who had hired someone to injure her opponent Nancy Kerrigan during the Olympic Games
1994 in Lillehammer.
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the viewpoint of competition. As is known from market competition, a large

number of competitors results in stronger competition. In analogy, splitting

leagues might lead to a negative competition effect so that overall incentives

are weakened.

In this paper, I will show that despite a negative competition effect and

despite homogeneity of the agents there may be a rationale for splitting

leagues: As mentioned by Dye (1984), for instance, collusion among the

agents can destroy the incentive effects of a tournament. However, if collu-

sion is not correlated between different leagues, it can be shown that splitting

leagues mitigates the collusion problem, since stable collusion in one league

may not necessarily be accompanied by collusion in the other league (insur-

ance effect). Moreover, the principal can design a superordinate tournament

between the different leagues so that collusion in one league will shift the

tournament prizes to the other leagues. Note that these additional incen-

tives do not violate the self-commitment property of tournaments which has

been emphasized by Malcomson (1984). Since the total amount of tourna-

ment prizes for the leagues are still fixed in advance, opportunistic behavior

by the principal can be excluded which then ensures incentives for the agents.

A second argument for splitting leagues comes from the possibility of relega-

tion and promotion of agents between nested leagues. It can be shown that

the negative competition effect of splitting leagues, which has been men-

tioned above, is dominated by the additional incentives from relegation and

promotion.

The model discussed in the paper is related to the literature on logit-form

rent-seeking contests (see, e.g., Tullock [1980], Hillman and Riley [1989, pp.
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30-35], Baik and Kim [1997],Gradstein and Konrad [1999], Wärneryd [2000]).

However, there are two important differences: Whereas the agents’ cost func-

tion (i.e., the spent resources measured in monetary terms) is assumed to be

linear in logit-form contests, in this paper costs are represented by a con-

vex function as is usual in rank-order tournaments to describe an agent’s

disutility of effort. Second, prizes or rents are typically given exogenously in

contests. In this paper, tournament prizes are endogenous. As typical for

rank-order tournament models, the prizes are optimally chosen by the prin-

cipal. There are also parallels to the paper of Rosen (1986), who analyzes

nested elimination tournaments using a logit-form contest success function.

However, the Rosen (1986) paper focuses on optimal prize structures and

selection instead of splitting versus no-splitting. The paper is most strongly

related to Kräkel (2002) who also considers such logit-form tournaments with

convex costs and endogenous prizes. In Kräkel (2002), this tournament type

is labeled ”J-type tournament”, because it is often found in Japanese firms.

Kräkel then compares these J-type tournaments with the so-called ”U-type

tournaments” which are typical of US firms. However, the advantages of

splitting leagues are not discussed in Kräkel (2002).

It is important to mention that the tournament type considered in this

paper is not only relevant for Japanese firms. Since the logit-form contest

success function can be endogenously derived in a rank-order tournament

with exponentially distributed noise as has been shown by the literature on

patent races (see, e.g. Loury [1979], and especially Baye and Hoppe [2003]),

the model presented in this paper is relevant for a wide range of tournament

situations: In a patent race, the agent with the shortest time to success
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wins. In analogy, we can think of tournaments (in sports or internal labor

markets) in which the most swift agent (e.g., runner) or the first agent who

successfully finishes his task or the agent with the least faults or the salesman

with the least customer complaints, for example, is declared the winner of

the tournament.

The paper is organized as follows. Section 2 describes the model and

highlights the negative competition effect of splitting leagues. In section

3, the advantages of splitting leagues for mitigating collusion problems are

discussed. Section 4 shows that additional incentives from relegation and

promotion between nested leagues dominate the negative competition effect.

2 The Basic Model

A model with n ≥ 4 risk neutral and homogeneous agents,4 and a risk neu-
tral principal is considered. It is assumed that n is an even integer, which

simplifies the discussion of splitting leagues. The principal wants to orga-

nize a tournament competition between the agents. This tournament can

be either directly interpreted as a one-shot competition between the agents

or, alternatively, as a reduced form for a Round Robin tournament during a

sport season, for example. First, the principal has to choose between split-

ting and no-splitting. At the second stage, the principal chooses the optimal

prize structure that maximizes his objective function. It is assumed that
4Whenever possible, organizers of real tournaments try to match contestants of equal

quality to induce maximal incentives. Often such matching can be realized quite easily
by using publicly observable characteristics of the agents. Particularly in sports, only
tournaments that exhibit high degrees of homogeneity can be attractive for the audience
(Rosen and Sanderson 2001, p. F50). Hence, most real tournaments in both sports and
internal labor markets are by construction quite homogeneous.
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the principal wants to maximize total effort of the n agents minus the sum

of the tournament prizes. At the third stage, the n agents compete for the

given tournament prizes by exerting effort ei (i = 1, ..., n). Efforts are non-

contractible. The winning probability of agent i can be described by

p (ei) =


ei

ei +
P

j 6=i ej
for ei +

P
j 6=i
ej > 0

1

m
otherwise

with m as the number of contestants (logit-form contest success function).

Without splitting we have m = n. If the n-player tournament is split into

different leagues, we will have m < n.

The agents are assumed to have zero reservation utility. Furthermore,

tournament prizes are not allowed to be negative. In other words, we consider

a situation with limited liability, because otherwise the incentive problem

would be trivial: The principal could always implement first-best efforts by

choosing a certain prize spread and guarantee each agent his reservation

utility by appropriately adjusting the loser prizes. It is assumed that effort

entails costs on an agent which is described in monetary terms by the function

c(ei) =
c
2
· e2i with c > 0.5

As a benchmark result the outcome of the n-player tournament is consid-

ered. Suppose that the principal has only fixed a winner prize w > 0 at the

previous stage, i.e. the winner receives w and the n−1 other agents get zero
5Note that the negative competition effect generally holds for any convex cost function

and endogenous prizes. See Proposition 6(i) in Kräkel (2002), p. 625.
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loser prizes.6 At the third stage, agent i (i = 1, ..., n) wants to maximize

EUi (ei;n) =
ei

ei +
P

j 6=i ej
w − c

2
e2i . (1)

The first-order condition yields7

w

c ·
³
ei +

P
j 6=i ej

´2 = eiP
j 6=i ej

. (2)

Analogously, for any other agent k 6= i, j we get w/
·
c ·
³
ei +

P
j 6=i ej

´2¸
=

ek/
P

j 6=k ej.Together with Eq.(2) we obtain

ei ·
³X

j 6=k
ej
´
= ek ·

³X
j 6=i
ej
´
,

which shows that the game has a unique symmetric Nash equilibrium e∗i =

e∗k = e
∗ (n) with

e∗ (n) =

r
(n− 1)w
cn2

. (3)

Inserting into Eq. (1) gives

EUi (e
∗ (n) ;n) =

(n+ 1)w

2n2
. (4)

Hence, each agent receives a positive rent compared to his zero outside op-

tion. Moreover, since prizes are not allowed to be negative (limited-liability

assumption), the principal cannot extract this rent from the agents by charg-

ing an entrance fee or choosing negative loser prizes. The best the principal
6Later on, it will become obvious that this is indeed the optimal prize structure.
7Here and in the following, the second-order condition is always satisfied.
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can do is choosing n − 1 zero loser prizes and a positive winner prize that
maximizes his objective function

π (n) = n · e∗ (n)− w =
r
(n− 1)w

c
− w. (5)

The first-order condition for the optimal prize w∗ (n) leads to

w∗ (n) = π∗ (n) =
n− 1
4c

. (6)

Hence, any splitting of the n-player tournament into z leagues with nL agents

competing in league L and
zP

L=1

nL = n yields profits

zX
L=1

π∗ (nL) =
zX

L=1

nL − 1
4c

=
n− z
4c

< π∗ (n) . (7)

The following proposition summarizes the benchmark result of Section 2:

Proposition 1 (i) A tournament between m ≤ n agents has a unique sym-
metric equilibrium in which the principal chooses m− 1 zero loser prizes and
a winner prize w∗ (m) according to (6), and the m agents choose identical

efforts e∗(m) according to (3). (ii) Any splitting of the n-player tournament

into different leagues results into lower profits than no-splitting.

Proposition 1(i) shows that the optimal tournament prize structure con-

sists of a positive winner prize which is linearly increasing in the number

of contestants and n − 1 zero loser prizes. Furthermore, result (ii) empha-
sizes the negative competition effect : Splitting the n-player tournament into

different leagues would lead to decreased efforts and, therefore, decreased
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profits. According to Eq. (7), the larger the number of leagues the lower the

principal’s profits. For this reason, it is assumed for the rest of the paper

that the principal will choose two leagues each with n/2 contestants, if he

decides to split the n-player league. Altogether, the previous results strictly

favor no-splitting. However, introducing the possibility of collusion and the

possibility of relegation and promotion between different leagues will show

that splitting may dominate no-splitting.

3 Collusion and Superordinate Tournaments

In this section, the basic model is modified by the additional assumption that

the agents may be able to generate a stable collusion that leads to minimal ef-

forts. Since efforts are non-contractible so that the principal cannot use legal

sanctions to punish the agents, optimal collusive efforts are zero.8 By this,

again each agent has the same probability of winning — as in the symmetric

equilibrium of Proposition 1 — but now his effort costs are zero. Note that

stability of collusion is not derived endogenously here.9 As collusion is illegal,

endogenous stability would require a tournament supergame and appropriate

supergame strategies so that collusion becomes self-enforcing. However, in

the one-shot game of Section 2 we have a unique equilibrium with positive

efforts. Hence, any collusive outcome cannot be stable in a static context.

In practice, besides dynamic interaction stable collusion also depends on

other factors such as trust between the agents. All these factors should not
8All results will remain qualitatively the same, if the lowest possible effort in case of

collusion is assumed to be a sufficiently low positive number.
9For a discussion of endogenous stability see, for example, Kräkel (2002).
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be modelled explicitly in the paper. Instead, the following discussion focuses

on the connection between splitting leagues and the collusion problem given

that agents are able to form a stable collusive agreement with a certain ex-

ogenous probability. Since, there does not exist a standard model for this

problem, three variants of the collusion model will be discussed to check the

robustness of the results. In the first model, stable collusion is assumed to

be equally likely in any league irrespective of the number of contestants. In

other words, splitting does not change the likelihood of a stable collusion in

a given league. However, as mentioned in the introduction, splitting leagues

offers the opportunity for the principal to organize a superordinate tourna-

ment between the leagues. In the first model, there exists an exogenous

probability δ for a stable collusion between the leagues in this superordinate

tournament. Since splitting leagues typically leads to a separation of the

agents (which implies less communication, trust and so on between agents of

different leagues), usually δ should be lower than the probability of a stable

collusion within a league. The two other models take into account that usu-

ally stable collusion is more difficult to sustain in large groups.10 Therefore,

it is assumed that splitting leagues has the additional disadvantage of stable

collusion becoming more likely in a single league. In the second model, there

are different exogenous probabilities for stable collusion in the splitting and

the no-splitting case. In the third model, the collusion probability is assumed

to be decreasing in the number of contestants.

The three models have nearly the same timing of events. At the first
10There are several arguments in favor of this assumption — for example, trust arguments,

transaction-costs arguments, free-rider problems in sanctioning agents that deviate from
the collusive agreement.
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stage, the principal decides whether to split the n-player tournament into

different leagues or not. Given his decision at the previous stage, the principal

chooses the optimal tournament prize structure at the second stage. In the

no-splitting case, he chooses n− 1 zero loser prizes and one positive winner
prize in analogy to Proposition 1. In the splitting case, the principal chooses

an optimal prize structure for each league. In addition, he has the option to

organize a superordinate tournament between the leagues and to choose an

appropriate prize structure for this tournament. At the third stage, for each

single tournament or league nature decides whether a stable collusion takes

place (with probability γ) or not (with probability 1− γ). To abstract from

asymmetric information problems, it is assumed that each agent can observe

whether a collusive climate has formed in the different leagues.11 In the

splitting case of the first model, however, first with probability δ (1−δ) stable
collusion between the leagues is realized (not realized). If overall collusion

is not possible, again for each single league nature decides whether there is

stable collusion (with probability γ) or not (with probability 1 − γ).12 At

the fourth stage, each agent chooses his effort. If stable collusion has formed,

the agents can coordinate their decisions.13 Otherwise, they simultaneously

choose those individual efforts that maximize their respective utilities.

In the first model, the collusion probability of each league is described by
11Note that we could introduce an additional stage where — given the possibility of a

stable collusion — the agents can decide whether to coordinate their effort decisions (i.e.,
use the chance of collusion) or not. In the no-splitting case, this decision would be trivial.
In the splitting case, it can easily be seen that — despite the superordinate tournament —
coordinating efforts will dominate not coordinating.
12We can think of a two-step negotiation. First, the agents try to form a grand coalition,

because it would be most attractive. If this coalition is not realized (with probability 1−δ),
the agents will try to coordinate their decisions at least within the single leagues.
13Formally they write a binding contract that maximizes their collective utility.
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γ and the collusion probability in the superordinate tournament by δ. If the

principal has decided not to split the n-player league and if stable collusion

is not possible, an agent’s equilibrium effort is described by Eq. (3). In

the collusive case, however, all agents agree to exert zero effort. Hence, the

principal chooses the optimal prize that maximizes π(n) = (1−γ)ne∗(n)−w
which gives

w∗(n) = π∗(n) =
(1− γ)2(n− 1)

4c
. (8)

If the principal has preferred to split the n-player league into two n/2-

leagues A and B, he has the additional opportunity to organize a superordi-

nate tournament between the two leagues. In particular, let wL denote the

winner prize14 in league L (L = A,B) and
P

i eiL the sum of efforts exerted

in league L. Then the principal can choose an optimal prize w which is split

between the two leagues according to

wA =

P
i eiAP

i eiA +
P

i eiB
w and wB =

P
i eiBP

i eiA +
P

i eiB
w. (9)

This design of the superordinate tournament has at least two advantages: On

the one hand, the self-commitment property of tournaments that has been

highlighted by Malcomson (1984) is preserved. On the other hand, additional

incentives are induced so that now a collusive agreement of choosing zero

efforts in one league cannot longer be optimal for the agents.

When choosing efforts at the last stage of the game, it is decisive whether a

grand coalition has formed (with probability δ) or not (with probability 1−δ).
14Note that we know from the discussion in Section 2 that the principal optimally chooses

n
2 − 1 zero loser prizes in each league.
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If it has formed, all agents will choose zero efforts; if not, four outcomes have

to be distinguished — either collusion takes place (1) in both leagues (with

probability γ2), or (2) in neither league (with probability (1 − γ)2), or (3)

only in league A (with probability γ(1 − γ)), or (4) only in league B (with

probability (1− γ)γ):

(1) Given stable collusion in both leagues, each league will choose identical

efforts for its members, because agents are homogeneous and the cost function

is convex. The optimal effort e∗A of league A then maximizes

EUA(eA) =
eA
n
2
eA
wA − c

2
e2A =

eA
n
2
eA
·

n
2
eA

n
2
eA +

n
2
eB
w− c

2
e2A =

eA
eA + eB

2w

n
− c
2
e2A

and optimal effort e∗B of league B maximizes

EUB(eB) =
eB

eA + eB

2w

n
− c
2
e2B.

Both first-order conditions together yield

2w

cn (eA + eB)
2 =

eA
eB
=
eB
eA
.

Hence, we have e∗A = e
∗
B =: e

∗ and EUA(e∗A) = EUB(e
∗
B) =: EU(e

∗) with

e∗ =

r
w

2cn
and EU(e∗) =

3w

4n
. (10)

(2) Given no collusion in both leagues, agent i of league A wants to
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maximize

EUiA(eiA) =
eiAP
j ejA

·
P

j ejAP
j ejA +

P
j ejB

w− c
2
e2iA =

eiAP
j ejA +

P
j ejB

w− c
2
e2iA.

From the first-order condition we obtain

w

c ·
³P

j ejA +
P

j ejB

´2 = eiAP
j 6=i ejA +

P
j ejB

. (11)

In analogy, for another member k of leagueAwe getw/
·
c ·
³P

j ejA +
P

j ejB
´2¸

=

ekA/
³P

j 6=k ejA +
P

j ejB
´
and together with i’s first-order condition we have

eiA ·
ÃX
j 6=k

ejA +
X
j

ejB

!
= ekA ·

ÃX
j 6=i
ejA +

X
j

ejB

!
.

This equation shows that eiA = ekA =: ê
∗
A, i.e. all members of league A

choose the same optimal effort level. Interchanging the subscripts of the two

leagues implies that in league B all agents also prefer identical efforts ê∗B.

Hence, Eq. (11) for league A together with the corresponding first-order

condition for league B leads to

ê∗A¡
n
2
− 1¢ ê∗A + n

2
ê∗B
=

ê∗B¡
n
2
− 1¢ ê∗B + n

2
ê∗A
,

which shows that ê∗A = ê
∗
B =: ê

∗. Inserting into Eq. (11) leads to

ê∗ =

r
w(n− 1)
cn2

and EU(ê∗) = w
n+ 1

2n2
. (12)
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Comparing these results with (10) shows that ê∗ > e∗ and EU(ê∗) < EU(e∗).

This finding is also intuitively plausible: Collusion implies lower efforts and,

therefore, higher expected utilities for the agents. In addition, ê∗ is identical

with e∗(n) from Eq. (3), because without collusion we have the same incen-

tives for the agents as in the n-player tournament due to the construction of

the superordinate tournament.

(3) If collusion only takes place in league A, the agents of league A will

coordinate their efforts to maximize

EUA(eA) =
eA
n
2
eA
·

n
2
eA

n
2
eA +

P
j ejB

w − c
2
e2A =

eA
n
2
eA +

P
j ejB

w − c
2
e2A.

The first-order condition for optimal effort ẽ∗A yields

w

c ·
³
n
2
ẽ∗A +

P
j ejB

´2 = ẽ∗AP
j ejB

. (13)

In league B, however, agent i wants to maximize

EUiB(eiB) =
eiBP
j ejB

·
P

j ejB
n
2
eA +

P
j ejB

w − c
2
e2iB =

eiB
n
2
eA +

P
j ejB

w − c
2
e2iB.

The first-order condition leads to

w

c ·
³
n
2
eA +

P
j ejB

´2 = eiB
n
2
eA +

P
j 6=i ejB

. (14)

Since the respective first-order condition for any other member k of league B

is given by (14) with subscript ”i” being replaced by ”k”, obviously eiB = ekB
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holds. Hence, each agent of league B exerts the same optimal effort level ẽ∗B.

Using the notation ẽ∗A and ẽ
∗
B, the two conditions (13) and (14) together give

ẽ∗A
n
2
ẽ∗B
=

ẽ∗B
n
2
ẽ∗A +

¡
n
2
− 1¢ ẽ∗B ⇒ ẽ∗B =

n− 2 +√5n2 − 4n+ 4
2n

ẽ∗A. (15)

Inserting into (13) yields

ẽ∗A =
2
q
w
¡
n− 2 +√5n2 − 4n+ 4¢

√
c
¡
3n− 2 +√5n2 − 4n+ 4¢ , (16)

which leads to

ẽ∗B =

r
w

cn2

¡
n− 2 +√5n2 − 4n+ 4¢ 32
3n− 2 +√5n2 − 4n+ 4 (17)

according to Eq. (15). By substituting for ẽ∗A and ẽ
∗
B in the agents’ objective

functions we obtain

EUA(ẽ
∗
A) =

2w
¡
5n− 2 +√5n2 − 4n+ 4¢¡

3n− 2 +√5n2 − 4n+ 4¢2 and

EUB(ẽ
∗
B) = w

³
n− 2 +√5n2 − 4n+ 4

´ 3n2 − 4 + (n+ 2)√5n2 − 4n+ 4
n2
¡
3n− 2 +√5n2 − 4n+ 4¢2 .

The solution for case (4), where collusion is only given in league B, can easily

be calculated by interchanging the subscripts A and B in case (3). Note that

in all four cases the agents have positive expected utilities, i.e. they realize

positive rents compared with their zero outside options.

At the second stage, given the splitting case the principal has to choose

the optimal tournament prize. Since at this time he does not know whether
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there will be collusion in the superordinate tournament or in any of the two

leagues, he chooses w to maximize

π = (1− δ)
³
γ2ne∗ + (1− γ)2nê∗ + 2γ(1− γ)

³n
2
ẽ∗A +

n

2
ẽ∗B
´´
− w

= (1− δ)

µ
γ2
r
n

2
+ (1− γ)2

√
n− 1 (18)

+γ(1− γ)

q
n− 2 +√5n2 − 4n+ 4

¶r
w

c
− w.

The solution of the maximization problem and the corresponding profits of

the principal from splitting leagues are therefore given by

w∗ = π∗ =
(1− δ)2

4c

µ
γ2
r
n

2
+ (1− γ)2

√
n− 1 (19)

+γ(1− γ)

q
n− 2 +√5n2 − 4n+ 4

¶2
.

Comparing Eqs. (19) and (8) shows that splitting will be more favorable

than no-splitting from the principal’s viewpoint if

(1− δ)

µ
γ2
r
n

2
+ (1− γ)2

√
n− 1 (20)

+γ(1− γ)

q
n− 2 +√5n2 − 4n+ 4

¶
> (1− γ)

√
n− 1

⇔ δ < 1− 1

1 + γ2

1−γ
q

n
2(n−1) + γ

sn− 2 +√5n2 − 4n+ 4
n− 1 − 1


| {z }

>0

≡ δ̄(γ, n)

(21)

Note that the denominator is monotonically increasing in γ and monotoni-
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cally decreasing in n. These findings are summarized in the following propo-

sition:

Proposition 2 If the exogenous collusion probability γ is independent of

the number of contestants, there will exist a cut-off value δ̄(γ, n) so that

the principal prefers splitting to no-splitting if and only if δ < δ̄(γ, n) with

∂δ̄(γ, n)/∂γ > 0 and ∂δ̄(γ, n)/∂n < 0. If δ → 0, from the principal’s view-

point splitting will strictly dominate no-splitting for any γ ∈ (0, 1].

The first result of Proposition 2 shows that the principal will choose split-

ting instead of no-splitting at the first stage of the game, if the probability

δ of a grand coalition in the superordinate tournament is sufficiently small.

Note that splitting leagues has two advantages with respect to collusion: On

the one hand, the superordinate tournament prevents the agents from choos-

ing zero efforts when there is stable collusion within a single league. The

sign of the derivative ∂δ̄(γ, n)/∂γ points out that this comparative advan-

tage against no-splitting becomes even more important the higher γ. In the

limit, if γ → 1, efforts will be zero in the no-splitting case but strictly posi-

tive with splitting. On the other hand, since stable collusion is stochastically

independent between the leagues, we have a kind of insurance effect when

splitting leagues. If collusion happens in one league the principal may have

luck so that there is no collusion in the other league. Note that for simplic-

ity it has been assumed that the principal chooses only two leagues in the

splitting case. This assumption even seems to be plausible in the light of

Eq. (7). However, for optimizing on the insurance effect perhaps more than

two leagues may result in even better outcomes for splitting compared to
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no-splitting.

The comparative-static result ∂δ̄(γ, n)/∂n < 0 shows that the principal

will rather prefer no-splitting than splitting, if n becomes large. This result

indicates that there is an additional competitive disadvantage from split-

ting leagues in the presence of collusion. This effect can be best seen from

inequality (20) which can be rewritten as

(1− δ)

γ2rn
2
+ 2γ(1− γ)

s
n

4
− 1
2
+

r
5

16
n2 − 1

4
n+

1

4
+ (1− γ)2

√
n− 1


> (1− γ)

√
n− 1.

On the left-hand side, the expression in brackets consists of three terms,

because we have to distinguish between three events when splitting leagues

— there is collusion either in both leagues (with probability γ2) or in only

one league (with probability 2γ(1 − γ)) or in neither league (with proba-

bility (1 − γ)2). Hence,
p

n
2
indicates total profits for the collusion case,r

n
4
− 1

2
+
q

5
16
n2 − 1

4
n+ 1

4
for the semi-collusion case, and

√
n− 1 for the

no-collusion case. Analogously,
√
n− 1 on the right-hand side indicates total

profits in the no-collusion case under no-splitting. Note that both
p

n
2
andr

n
4
− 1

2
+
q

5
16
n2 − 1

4
n+ 1

4
are smaller than

√
n− 1 and that in both terms

the coefficient of n is smaller than 1. Note also that the realization of the large

value
√
n− 1 is less likely under splitting than under no-splitting, i.e. the

coefficient of
√
n− 1 is (1−γ)2 under splitting, whereas it is (1−γ) > (1−γ)2

under no-splitting. Altogether, increasing n leads to higher incentives and

to higher total profits in either case, but the marginal effect is significantly
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stronger under no-splitting than under splitting because of the different coef-

ficients. As inequality (20) and Proposition 2 show, this additional negative

competition effect has to be outweighed by a lower δ for splitting still domi-

nating no-splitting.

Perhaps, the comparison between splitting and no-splitting has been quite

unfair in favor of no-splitting, because in the splitting case agents have two

chances of realizing a stable collusion — first in the superordinate tournament,

and, if the grand coalition fails, then in each single league. However, if we

assume collusion only to be possible within and not between leagues (i.e.,

δ = 0), then the second result of Proposition 2 shows that splitting will

always dominate no-splitting for any arbitrary value of γ. In other words,

in that case the additional negative competition effect of splitting leagues is

strictly dominated by the additional incentive effect and the insurance effect

of the superordinate tournament.

Starting from the last point, in the second model we assume δ = 0. Nev-

ertheless, splitting leagues is not assumed to be completely advantageous for

preventing collusion. Since in practice, stable collusion is easier to sustain in

smaller groups, let γ again denote the collusion probability in the n/2-player

leagues (splitting case) and α · γ the collusion probability in the n-player
league (no-splitting case) with α ∈ (0, 1). Hence, by assumption collusion is
more likely in a single league after splitting. The following proposition shows

that despite this assumption, splitting leagues may still be favorable for the

principal when collusion among the agents cannot be ruled out:

Proposition 3 Let (a) δ = 0, (b) the collusion probability in the n/2-player
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leagues be γ, and (c) that in the n-player league be α·γ with α ∈ (0, 1). There
always exists a feasible cut-off value ᾱ(γ, n) so that splitting will dominate

(be dominated by) no-splitting from the principal’s viewpoint, if and only if

α > (<)ᾱ(γ, n). The cut-off value ᾱ(γ, n) is monotonically increasing in both

γ and n.

Proof. See Appendix.

The proposition shows that for any parameter values c, n and γ, when

splitting leagues there is always a trade-off between the competitive disadvan-

tages on the one hand, and the additional incentive effect and the insurance

effect on the other hand. In other words, there does not exist any possible

parameter constellation for which the cut-off value ᾱ(γ, n) becomes negative

or greater than one so that splitting always or never dominates no-splitting.

Moreover, like δ̄(γ, n) from Proposition 2, the cut-off ᾱ(γ, n) is also inde-

pendent of c, but depends on γ and n. ᾱ(γ, n) is strictly increasing in n

because of the additional negative competition effect discussed above. In

this situation, no-splitting can only be dominated by splitting, if the collu-

sion probability is similar in both cases (i.e., if α→ 1). The cut-off ᾱ(γ, n) is

also monotonically increasing in γ. This result can be explained as follows:

If γ is large, the parameter α has a high impact on the relation between split-

ting and no-splitting concerning the collusion probability. For small values

of α, collusion is much more likely in the splitting than in the no-splitting

case which can hardly be compensated by the additional incentive effect and

the insurance effect. Hence, for large values of γ, the parameter α has to be

high enough so that splitting has still a chance to beat no-splitting from the
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principal’s viewpoint.

In the third model, the collusion probability is assumed to be a de-

creasing function of the number of league members since, in practice, it is

difficult to sustain a collusive agreement among a large number of agents. In

particular, I assume that the probability of a stable collusion will be given

by

γ(m) =
β

m
with 0 < β ≤ n

2

if the league consists of m agents. The upper bound, n
2
, guarantees that

splitting the n-player league into two n/2-player leagues leads to a collusion

probability that is not greater than one. Again, like in the second model, the

collusion probability between leagues is assumed to be δ = 0. The following

result can be obtained:

Proposition 4 If δ = 0 and the collusion probability of a league with m ≤
n agents is given by γ(m) = β/m with 0 < β ≤ n

2
, splitting will always

dominate no-splitting from the principal’s viewpoint.

Proof. See Appendix.

Interestingly, the principal will always prefer splitting to no-splitting in-

dependent of the parameters β and n. This result supports the findings of

Proposition 2: If stable collusion is possible within but not between leagues

(δ = 0), splitting will always be beneficial for the principal, even if it leads

to a significantly higher collusion probability within a single league and to

serious competitive disadvantages.

To sum up, the results of Propositions 2—4 have shown that splitting

leagues may dominate no-splitting in the presence of possible collusion be-
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tween the agents. There is a trade-off, because splitting generates additional

incentives and has an insurance effect for the principal in connection with

collusion, but also leads to an additional negative competition effect. If sta-

ble collusion between leagues is rather impossible, the principal will nearly

always prefer splitting to no-splitting.

4 Relegation and Promotion in Nested Tour-

naments

In this section, a second advantage of splitting leagues will be discussed.

Although splitting leads to a negative competition effect, combining both

leagues via nesting may yield additional intertemporal incentives. Here nest-

ing means that the first-period outcomes of the two n/2-player leagues deter-

mine the composition of future tournaments. For example, the principal can

choose the best player of each league to compete in a major league after the

first period whereas the other (n/2)− 1 players of each league are relegated
to a minor league. I will show that the additional incentives generated by

nesting dominate the negative competition effect. In order to discuss nested

tournaments, the static model of Section 2 has to be replaced by a dynamic

one. For this reason, I consider a dynamic model without discounting that

lasts 2 periods. In each period, there is a tournament that guarantees each

agent his zero reservation utility by setting appropriate tournament prizes.

If the principal does not want to split the n-player league (no-splitting
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case), his expected profits will be

2π∗(n)
(6)
=
(n− 1)
2c

. (22)

In the splitting case, however, the principal has the opportunity to in-

troduce a promotion-and-relegation rule within a nested-tournament setting.

In the first period, there are two leagues, each with n/2 agents. Again, call

these two leagues A and B, and let wL denote the winner prize of league L

(L = A,B).15 Suppose that after the first period the principal promotes x

(1 ≤ x ≤ n
2
− 1) agents from each league to a high-prize or major league,

and chooses n
2
− x agents from each league that are relegated to a low-prize

or minor league. For the second period, let wMA denote the winner prize in

the major league and wMI (≤ wMA) the winner prize in the minor league.16

I assume that the principal chooses the first-period winner and by random

x− 1 of the n
2
− 1 losers of each league L to play in the major league. The

remaining n
2
− x losers of each league L are relegated to the minor league.

To sum up, in the first period we have only the two leagues A and B each

consisting of n/2 players, and in the second period there only exist a major

league with 2x players and a minor league with n− 2x players.
The random-selection part of the promotion-and-relegation rule is, of

course, a simplification of rules that are used in practice. However, to calcu-

late ex ante the probability of belonging to the x most (n
2
−x least) successful

agents of each league, we must compute the respective order statistics and
15Again, the principal optimally chooses (n/2)− 1 zero loser prizes in each league.
16Again, it is optimal (and feasible) for the principal to choose zero loser prizes.
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these calculations would not be tractable in the given setting.17 A further

justification for the random-selection rule can be seen in the fact that for the

first period a symmetric equilibrium in which each agent chooses the same ef-

fort will be the most plausible one because of the assumption of homogeneous

agents. But then ex post the agents that are relegated and promoted must

indeed be chosen by random.18 However, the most relevant justification for

the random-selection rule is given by the main purpose of this section: I will

show that there exist promotion-and-relegation rules that lead to splitting

dominating no-splitting. As can be seen below, a random-selection rule is one

of these rules. Hence, if a more exact discrimination among the (n/2) − 1
losers would lead to an even better result for the splitting case, the main

result of this section would only be reinforced.

Contrary to the no-splitting case, the two periods have to be strictly

distinguished when splitting leagues. In the first period, promotion and

relegation can generate additional incentives, which is not possible in the

second period. The game is now solved by backward induction. The solution

for the second period is already given by Eqs. (3) and (4) when substituting
17In the introduction, I have mentioned that the logit-form model can be endogenously

derived by assuming exponentially distributed noise; see, e.g., Loury (1979). Let si
be the score of agent i (i = 1, ..., n), which is distributed with cdf prob{si ≤ s} =
Fi(s) = 1 − exp{−eis} over [0,∞] with ei as agent i’s effort. Let the sis be stochas-
tically independent and assume that the agent with the lowest score si is declared the
winner (e.g., the agent with the least faults). Then agent i’s probability of winning isR∞
0

h
exp{−sPn/2

j 6=i ej}ei exp{−eis}
i
ds = ei/(ei +

Pn/2
j 6=i ej), which yields the well-known

logit-form contest success function. To see the intractability of calculating the exact or-
der statistics for the relegation problem we simply have to look at the cdf of the lowest
order statistic: This function will become relevant if, for example, only the least success-
ful agent of each league is relegated. In this case, the relegation probability is given by

prob{si > max[sj |j 6= i]}=
R∞
0

hQ
j 6=i [1− exp{−ejs}] ei exp{−eis}

i
ds.

18Of course, assuming a random rule in advance leads to different incentives compared
to a random rule which is derived endogenously.

26



for the respective number of contestants and the respective notation. We

obtain

e∗MA =

r
(2x− 1)wMA

4cx2
and EU∗MA =

(2x+ 1)wMA
8x2

(23)

for the major league, and

e∗MI =

s
(n− 2x− 1)wMI
c (n− 2x)2 and EU∗MI =

(n− 2x+ 1)wMI
2 (n− 2x)2 (24)

for the minor league.

At the end of the first period, the members of each league L (L = A,B)

are either promoted to the major league or relegated to the minor league.

The expected utility of member i choosing effort eiL can be written as

EU∗iL =
eiL

eiL +
P

j 6=i ejL
(wL +EU

∗
MA)

+

Ã
1− eiL

eiL +
P

j 6=i ejL

!
x− 1
n
2
− 1EU

∗
MA

+

Ã
1− eiL

eiL +
P

j 6=i ejL

!
n
2
− x

n
2
− 1EU

∗
MI −

c

2
e2iL.

The first-order condition for the optimal effort choice yields

wL +
n−2x
n−2 (EU

∗
MA − EU∗MI)

c ·
³
eiL +

P
j 6=i ejL

´2 =
eiLP
j 6=i ejL

. (25)

Analogously, we find for member k 6= i, j that the left-hand side of Eq. (25)
must equal ekL/

³P
j 6=k ejL

´
. Hence, we have a symmetric equilibrium in
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which each agent chooses

e∗L =

r
2 (n− 2)wL

cn2
+
2 (n− 2x)
cn2

(EU∗MA − EU∗MI) (L = A,B) . (26)

Comparing Eq. (26) with the equilibrium effort in a static n/2-player tour-

nament, i.e. e∗(n
2
)
(3)
=
q

2(n−2)wL
cn2

, shows that nesting tournaments indeed

creates additional incentives: The first term under the square root in (26) is

identical with the one in the expression for e∗(n
2
), but there is an additional

term, which is positive. This term is monotonically increasing in the spread

between expected utility in the major and the minor league, EU∗MA−EU∗MI ,
which can be interpreted as the ”option value” of being promoted instead of

relegated after the first period. The higher this value, the higher the incen-

tives for each agent in the first period. In addition, the second term under

the square root in (26) is monotonically decreasing in the number of promo-

tions, x.19 This finding is also intuitively plausible: The larger the number

of promotions, the higher the probability that an agent is promoted by luck

and, therefore, the lower the additional incentives. Hence, if all agents are

promoted to the major league after the first period (i.e. if x = n
2
), then

the additional incentives from nesting will be zero. However, note that the

overall impact of x on incentives also depends on the effect of x on e∗MA and

e∗MI .
20

At the beginning of the first period, the principal has to decide about x,
19Note that ∂

∂x (EU
∗
MA − EU∗MI) = −14wMA

x+1
x3 − wMI

n−2x+2
(n−2x)3 < 0.

20By substituting (26) into the agents’ objective function we obtain EU∗iL = wL
n+2
n2 +

(2x−1)n+2x
n2 EU∗MA+ (n+ 1)

n−2x
n2 EU∗MI , which is strictly positive since x ≤ n

2 .
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wA, wB, wMI and wMA. He wants to maximize his objective function

π =
n

2
e∗A +

n

2
e∗B + 2xe

∗
MA + (n− 2x) e∗MI − (wA + wB + wMI + wMA) (27)

=

r
(n− 2)wA

2c
+
(n− 2x)
2c

(EU∗MA − EU∗MI)

+

r
(n− 2)wB

2c
+
(n− 2x)
2c

(EU∗MA − EU∗MI)

+

r
(2x− 1)wMA

c
+

r
(n− 2x− 1)wMI

c
− (wA + wB + wMI + wMA).

We obtain the following result:

Proposition 5 If tournaments can be nested, the principal will always prefer

splitting to no-splitting.

Proof. See Appendix.

The proposition shows that — in the given setting — the principal is always

able to design nested tournaments with relegations and promotions so that

the additional incentives dominate the negative competition effect of split-

ting leagues. Interestingly, this result holds although the principal faces an

additional limited-liability problem when nesting tournaments: The proof in

the Appendix (see Eq. (A3)) shows that optimal first-period prizes are given

by

w∗L =
(n− 2)
8c

− (n− 2x)
(n− 2) (EU

∗
MA −EU∗MI) (L = A,B) .

Hence, if the prize spread between major and minor league and, therefore,

the ”option value” EU∗MA − EU∗MI becomes very large, optimal first-period
prizes may become negative to prevent excessive incentives in leagues A and

B. However, this is not allowed because of the limited-liability assumption.
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As can be seen in the proof of Proposition 5, splitting always dominates

no-splitting despite this additional restriction.

Note that Proposition 5 applies to a wide range of sport events with nested

tournaments which exhibit a certain knockout rule: In the first round, there

are two groups of players, A and B, with identical prizes w∗A and w
∗
B. In the

second round, the best x agents of each group compete for a high prize w∗MA,

whereas the remaining n − 2x players only compete for a low prize w∗MI .

However, the results of Proposition 5 do not apply to regular leagues in

sports which have a constant number of players. In the proof of Proposition

5, it is assumed that the number of relegations differs from the number of

promotions (x 6= n/4). Hence, in the second period the two leagues will be of
different size. But perhaps Proposition 5 can be applied to scenarios where

the size of leagues is altered in time. Such events sometimes happen even in

leagues with a constant number of players due to commercial considerations

or statutory changes. In such cases, the results of Proposition 5 give some

hints on the resulting incentive effects.

Applications of Proposition 5 can also be found in internal labor markets

of hierarchical firms. In particular, job-promotion tournaments are often

nested: Only those agents that have been successful in the past are promoted

to compete with other successful agents on a higher rank of the hierarchy.

For example, we can think of two divisions, A and B, and only the best

x employees of each division are promoted to a higher rank where the 2x

employees then compete for the high prize w∗MA.
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5 Conclusion

In this paper, two arguments in favor of splitting leagues have been discussed.

First, splitting leagues may be beneficial for the principal in the presence of

possible collusion between the agents. Splitting leads to additional incen-

tives and has a kind of insurance effect for the principal given that stability

of collusion is stochastically independent between leagues. However, splitting

also suffers from a competitive disadvantage, which becomes even worse in

connection with the collusion problem. If stable collusion between leagues is

rather unlikely, splitting becomes dominant compared to no-splitting. Sec-

ond, splitting yields additional incentives when introducing the possibility

of promotion and relegation between nested tournaments. These additional

incentives will always dominate the negative competition effect from splitting

leagues in the given setting.

Of course, the analysis above is somewhat restrictive since a special type

of tournament — logit-form tournament with endogenous prizes — and a spe-

cial type of cost function — quadratic costs — have been discussed. Perhaps

other settings would lead to different results. Unfortunately, by assuming

a general convex cost function instead of quadratic costs explicit solutions

cannot be derived any longer. However, the analysis above only wants to em-

phasize that there are situations in which splitting leagues can be profitable

for the principal despite homogeneous agents and a negative competition

effect.
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Appendix

Proof of Proposition 3:

Using δ = 0 for the superordinate tournament, γ for the splitting case

and αγ for the no-splitting case, (20) can be written as

γ2
r
n

2
+(1−γ)2√n− 1+γ(1−γ)

q
n− 2 +√5n2 − 4n+ 4 > (1−αγ)√n− 1

⇔ α > (2− γ)− γ

r
n

2(n− 1) − (1− γ)

s
n− 2 +√5n2 − 4n+ 4

n− 1 ≡ ᾱ(γ, n).

(A1)

The cut-off ᾱ(γ, n) will be feasible, if it is positive but smaller than one.

ᾱ(γ, n) > 0 can be rearranged to

2−
s
n− 2 +√5n2 − 4n+ 4

n− 1| {z }
>0

> γ·
1 + pn

2
−
q
n− 2 +p(5n2 − 4n+ 4)
√
n− 1


| {z }

<0

,

which is always satisfied: The left-hand side is positive, because
q

n−2+√5n2−4n+4
n−1 is

monotonically decreasing and
q

n−2+√5n2−4n+4
n−1 = 1.8481 for n = 4. The

right-hand side is negative, since

1 +

p
n
2
−
p
n− 2 +√5n2 − 4n+ 4√

n− 1 < 0

⇔
r
n

2
+
√
n− 1−

q
n− 2 +√5n2 − 4n+ 4 < 0 (A2)

is true, because
p

n
2
+
√
n− 1−

p
n− 2 +√5n2 − 4n+ 4 is monotonically de-

creasing for n ≥ 4 andpn
2
+
√
n− 1−

p
n− 2 +√5n2 − 4n+ 4 = −0.054706

32



for n = 4. Furthermore, ᾱ(γ, n) < 1 can be rewritten as

γ <

p
n− 2 +√5n2 − 4n+ 4−√n− 1p

n− 2 +√5n2 − 4n+ 4−√n− 1−pn
2| {z }

>1

,

which obviously is true.

In addition, we have

∂ᾱ(γ, n)

∂n
=

γ
q

2(n−2+Ω)
n−1 Ω+ 2

p
n
n−1 (3n+ 2− Ω) (1− γ)

4
p

n
n−1 (n− 1)2

q
n−2+Ω
n−1 Ω

> 0

(with Ω =
√
5n2 − 4n+ 4) since 3n+ 2 > Ω for all feasible n, and

∂ᾱ(γ, n)

∂γ
=

p
n− 2 +√5n2 − 4n+ 4−pn

2√
n− 1 − 1 (A2)> 0.

Proof of Proposition 4:

Now (20) has to be rewritten as

µ
2β

n

¶2r
n

2
+

µ
1− 2β

n

¶2√
n− 1 + 2β

n

µ
1− 2β

n

¶q
n− 2 +√5n2 − 4n+ 4

>

µ
1− β

n

¶√
n− 1⇔

q
n− 2 +√5n2 − 4n+ 4− 3

√
n− 1
2| {z }

>0

>
2β

n

µq
n− 2 +√5n2 − 4n+ 4−

r
n

2
−√n− 1

¶
| {z }

>0

⇔
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p
n− 2 +√5n2 − 4n+ 4− 3

√
n−1
2p

n− 2 +√5n2 − 4n+ 4−pn
2
−√n− 1| {z }

>1

>
2β

n|{z},
<1

which is always satisfied.

Proof of Proposition 5:

Using Eq. (27) and the expressions for EU∗MA and EU
∗
MI (see (23) and

(24)), the first-order conditions for wA and wB yield

w∗L =
(n− 2)
8c

−(n− 2x)
(n− 2)

µ
(2x+ 1)wMA

8x2
− (n− 2x+ 1)wMI

2 (n− 2x)2
¶

(L = A,B) .

(A3)

The first-order conditions for wMA and wMI are

(2x+ 1) (n− 2x)
32cx2

r
(n−2)wA

2c
+ (n−2x)

2c

³
(2x+1)wMA

8x2
− (n−2x+1)wMI

2(n−2x)2
´

+
(2x+ 1) (n− 2x)

32cx2
r

(n−2)wB
2c

+ (n−2x)
2c

³
(2x+1)wMA

8x2
− (n−2x+1)wMI

2(n−2x)2
´

+
2x− 1

2
p
c (2x− 1)wMA

= 1

and

−(n− 2x+ 1)
8c (n− 2x)

1r
(n−2)wA

2c
+ (n−2x)

2c

³
(2x+1)wMA

8x2
− (n−2x+1)wMI

2(n−2x)2
´

−(n− 2x+ 1)
8c (n− 2x)

1r
(n−2)wB

2c
+ (n−2x)

2c

³
(2x+1)wMA

8x2
− (n−2x+1)wMI

2(n−2x)2
´

+
n− 2x− 1

2
p
c (n− 2x− 1)wMI

= 1
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Substituting for wA and wB according to (A3) leads to

w∗MA =
4 (n− 2)2 (2x− 1)x4

(2x (2x− 1) (n− 1)− n)2 c

and

w∗MI =
(n− 2)2 (n− 2x− 1) (n− 2x)2
4 ((n− 2x) (n− 1) + 1)2 c .

Inserting the four optimal prizes into the principal’s objective function gives

π =
n− 2
4c

+
(n− 2) (2x− 1)x2

c (2x (2x− 1) (n− 1)− n) +
(n− 2x− 1) (n− 2) (n− 2x)
4c ((n− 2x) (n− 1) + 1) .

Comparing this expression with Eq. (22) shows that the principal will prefer

splitting to no-splitting if and only if

n− 2
4c

+
(n− 2) (2x− 1)x2

c (2x (2x− 1) (n− 1)− n) +
(n− 2x− 1) (n− 2) (n− 2x)
4c ((n− 2x) (n− 1) + 1) >

(n− 1)
2c

⇔ ∆(x) := 8n (2n− 3)x3 − 8n ¡n2 − 2¢x2 + 2n ¡3n2 − 7n+ 3¢x+ n2 (2n− 1) > 0.
(A4)

The first derivative21

∆0(x) = 24n (2n− 3)x2 − 16n ¡n2 − 2¢x+ 2n ¡3n2 − 7n+ 3¢
21Note that for simplicity we abstract from the fact that x has to be a positive integer.
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shows that the function ∆(x) has two relative extrema:

x∗1 =
1

24 (2n− 3)
³
8n2 − 16 + 4√43 + 53n2 + 4n4 − 18n3 − 81n

´
and

x∗2 =
1

24 (2n− 3)
³
8n2 − 16− 4√43 + 53n2 + 4n4 − 18n3 − 81n

´
.

As ∆0(x) describes a parabola open to the top, x∗1 corresponds to a relative

minimum and x∗2 to a relative maximum. Note that x
∗
2 ∈

£
0, n

2

¤
for n ≥ 4, and

that x∗2 leads to positive prizes w
∗
L in (A3). Hence, x

∗
2 is a feasible solution.

Since ∆(0) = n2 (2n− 1), ∆(n
2
) = −n3 + 2n2, and

∆(x∗2) = n
2Ψ

3
2 − 2n2Λ− 1215n+ 452

27 (2n− 3)2

(where Ψ = 43+53n2+4n4−18n3−81n and Λ = −642+8n4+51n2+243n−
54n3) with ∆(x∗2) > ∆(0) > 0, the solution x∗2 describes a global maximum

which always satisfies condition (A4).
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