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Abstract

In multiple-task hidden-action models, the (mis-)allocation of effort may
play an important role for benefit creation. Signals which capture this benefit
and which are used in incentive schemes should thus not only be judged
by the noise and the associated costs but also by the mis-allocation which
they induce. How can mis-allocation be measured? This article presents two
requirements for such a measure (invariance and monotonicity) and analyses
whether they are met by proposed measures of mis-allocation. All examined
measures assert that an unbiased signal for benefit leads to the lowest mis-
allocation. Here, the signal leading to the lowest mis-allocation is computed
and shown to be unbiased for the benefit only under restrictive assumptions
on the cost function (equal marginal costs for different tasks). Generally,
using an unbiased signal does not imply the lowest mis-allocation.
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1 Introduction

Incentive schemes sometimes lead to outcomes which are not intended. The rea-
son is often that the incentive scheme induces the worker to concentrate on ac-
tivities which are honoured by the incentive scheme while neglecting important
other activities. Loosely speaking, the benefit B received by the employer and the
signal A, which is used to reward the worker, are not aligned. In other words, the
mis-allocation of effort may be traced back to the “Folly of rewarding A, while
hoping for B” (Kerr 1975).

However, there might be good reasons why incentives and benefit are not aligned.
Delegating an activity and using a non-aligned incentive scheme can work as
a commitment device – for example to stick to an aggressive behaviour in an
oligopolistic competition (Sklivas 1987, Fershtman and Judd 1987). Also, mis-
alignment may be deliberately embraced when it is tied to a reduction in uncer-
tainty (Datar, Kulp, and Lambert 2001, Baker 2000 and 2002, Schnedler 2002) .
The present article is concerned with neither of these explanations. Rather it asks
the more basic questions: Is a signal, which is aligned with the benefit, desirable
for an incentive scheme in a multiple-task context? In particular: Does it lead to
low mis-allocation of effort?

The problem of mis-allocation only arises because effort cannot be contractu-
ally fixed. The natural framework to study such situations is the hidden-action
model with its well known trade-off between uncertainty and incentives (Holm-
ström 1979).1 If the hidden-action model is extended to multiple actions (tasks),
distortions of effort allocation may occur and have devastating effects as firstly
shown by Holmstr̈om and Milgrom (1991) and supported by several real-life cases
(see e.g. Prendergast 1999 or Baker 2002). In multiple-task hidden action models,
the trade-off does not only involve uncertainty and the level of effort but also the
allocation of effort. This complicates the ranking of signals according to signal
properties: While in single-task hidden-action models the signal with a lower un-
certainty is clearly preferable, in multiple-task hidden-action models signals can
in principle also be ordered by the mis-allocation which they induce. Attempts to
measure mis-allocation are either not simple (Schnedler 2002) or they apply only
to a specific framework (Feltham and Xie 1994 and Baker 2002). Moreover, mea-
sures are often based on ad-hoc considerations and hence it is not clear whether

1For a recent critical assessment of this trade-off see Prendergast (2000).
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they actually quantify “mis-allocation”.

Here, we focus on the framework for which most of the measures are devised,
the multiple-task linear-exponential-normal model (LEN model), and define two
simple properties which a measure of mis-allocation should have. First, keep-
ing the effect of uncertainty fixed, two signals which lead to the same surplus
should be associated with the same mis-allocation (invariance). Second, a larger
mis-allocation should be associated with a lower surplus when the effect of uncer-
tainty is held constant (monotonicity). We check whether the measures of Feltham
and Xie (1994) and Baker (2002) exhibit these properties and modify the measure
of Baker.

All examined measures confirm the basic intuition that “rewarding for A, while
hoping for B” is foolish: They assert that an unbiased signal for the benefit B leads
to the lowest mis-allocation of effort. A special unbiased signal is thecongruent
signal. For a congruent signal, the marginal effect of effort on the expected signal
is identical to the marginal productivity of effort. Hence, it seems as if congruent
signals set the right incentives for effort allocation.

To test this intuition, we compute the signal leading to the lowest mis-allocation.
Surprisingly, it turns out that this signal is neither necessarily congruent nor un-
biased. In other words, a signal which puts more emphasis on some efforts than
a congruent signal may yield a higher surplus – even though both signals impose
the same uncertainty on the agent. Despite hoping for the benefit B, it thus pays
rewarding according to a biased signal A rather than a signal which unbiasedly
reflects B.

The reason for this result is the following. As soon as uncertainty and risk aversion
are present, the worker will be insured and thus not fully internalise the benefits of
effort. While this has a clear and known effect on the level of effort, it also affects
the allocation of effort between tasks. To counteract this effect, signals which put
more emphasis on certain efforts are more desirable than unbiased or congruent
signals.

The remainder of the paper is structured as follows: Section 2 presents a gen-
eralised version of the multiple task LEN-model. Section 3 provides the so-
lution to the incentive programme. Then, desirable properties of measures for
mis-allocation (invariance, monotonicity) are defined in section 4. Section 5 re-
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views the mis-allocation measures proposed by Feltham and Xie (1994) and Baker
(2002) and checks whether they exhibit the desired properties. In section 6, the
signal leading to the lowest mis-allocation is determined and a sufficient condition
is given when this signal is unbiased. Section 7 presents an example where biased
signals are optimal. Finally, section 8 concludes.

2 The model

The model features two economic decision makers: a principal and an agent. For
simplicity the principal will be referred to by female pronouns while the agent
will be referred to by male pronouns. The agent chooses an-dimensional effort
vectore. While the costs of the effortC(e) are incurred by the agent, the bene-
fit B(e) accrues to the principal. Presumably, there is some pareto-optimal effort
choicee∗ which maximisesB(e)−C(e). If effort is verifiable at court, principal
and agent will agree on a contract in which the agent deliverse∗ and the princi-
pal remunerates him. If, however, effort is not verifiable, such a contract cannot
be enforced by court; principal and agent must rely on other means to internalise
the externality which the agent imposes on the principal. For example, there may
be a signalS(e) available, which conveys information about efforte because its
distribution depends one. By conditioning transfers on the observed signal, the
principal can reward and punish particular effort choices. Signals are often imper-
fect substitutes for a contract, which directly stipulates effort, because they may
impose uncertainty on a risk-averse agent and because they do not necessarily re-
flect the different importance of the various dimensions of effort.

The particular model which will be employed here is the linear-exponential-normal
model or LEN-model, which is typically used when closed form solutions are
needed or when dealing with multiple tasks (e.g. Holmström and Milgrom 1991,
Feltham and Xie 1994, Baker 2002) The name of the model, which was coined by
Spremann (1987), reflects the important assumptions characterising this model.
First, transfers to the agentT(S(e)) are assumed to be linear functions of the sig-
nal: T(S(e)) = w0 + w1S(e), where the termw0 represents the base wage paid
to the agent which is independent of the service andw1 is the performance wage
rate. If w1 is large in absolute terms this indicates a high degree of “incentivisa-
tion”. It should be outlined that linear transfers are generally not optimal (Mir-
rlees 1975, see also Wagenhofer and Ewert 1993 and the criticism of their work by
Breuer 1993). However, besides leading to a closed-form solution, linear transfers
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are sometimes justified on the basis of their robustness in complex environments
(Holmstr̈om and Milgrom 1987). Second, the utility of the agent is exponential:
U(v) = −e(−vr), wherev is the difference between the transfers received and the
costs incurred by the agent (v= T(S(e))−C(e)) andr is the Arrow-Pratt measure
for risk aversion. The larger this measure the more risk-averse is the agent. Fi-
nally, the noise term in signals is assumed to be normally distributed.

Based the LEN-model Feltham and Xie (1994) devise a hidden-action model with
multiple efforts. In their model, benefit is a linear function of efforts:

B(e) =
n

∑
i=1

βiei = (β1, . . . ,βn)

 e1
...

en

= β′e,

where the prime indicates the transpose of a vector. The components of the benefit
coefficient vectorβ represent the marginal productivity of the respective effort
dimension. Similarly, signals are defined as linear functions of effort:

S(e) =
n

∑
i=1

biei + ε = (b1, . . . ,bn)

 e1
...

en

+ ε = b′e+ ε,

whereε is a normally distributed error term with mean zero and varianceσ2. Note,
that a signal is completely characterised by its coefficient vector and variance:
(b,σ2). The components of the signal coefficient vector indicate the marginal
effect of the respective effort dimension on the expected signal. The similar struc-
ture of the benefit and the signal is attractive because we can hope to trace mis-
allocation back to differences in the two coefficient vectorsb andβ. Indeed, the
measures of mis-allocation which are proposed by by Feltham and Xie (1994) as
well as Baker (2002) are based on a comparison of these two vectors.

In contrast to Feltham and Xie (1994) and Baker (2002), a more general cost
function for effort is assumed here:

C(e) =
n

∑
i=1

n

∑
j=1

eici j ej = (e1, . . . ,en)

 c11 · · · c1n
...

...
...

cn1 · · · cnn


 e1

...
en

= e′Ce.

The matrixC is assumed to be symmetric and non-negative definite, so that costs
are always positive:e′Ce> 0 if e 6= (0, . . . ,0)′. The cost function of the previously
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mentioned articles can be obtained by settingC = 1
2I , whereI is the identity ma-

trix. Later, it will turn out that some results which are true with the simpler cost
function do not hold in the more general case.

3 Incentive problem and solution

What is the maximal surplus that principal and agent can obtain when they cannot
contract on effort in the model above? For the answer, we follow the standard
procedure (see e.g. Macho-Stadler and Pérez-Castrillo 1997) of assigning the role
of the mechanism designer to the principal and let her receive any benefit from
the operation of the incentive scheme. A side condition (participation constraint)
ensures that the benefit is indeed generated by the mechanism and not by exploit-
ing the agent. Finally, the rationality of the agent with respect to the effort is
represented by a second side condition (incentive constraint). Overall, the max-
imisation programme takes the form:

maxw0,w1B(e)−w0−w1S(e) (1)

such that e∈ argmax̃eE(U (w0 +w1S(ẽ)−C(ẽ))) (2)

and E(U (w0 +w1S(e)−C(e)))≥ 0. (3)

Using the linearity of the signal, the normality distribution of the noise, and the
shape of the utility function, the base wage can be chosen to compensate the agent
for any harmful effects of uncertainty(w0 = C(e)−w1b′e+ w2

1rσ2), so that the
participation constraint can be eliminated from the programme (see e.g. Salanié
1998 or Kr̈akel 1999). Recalling the definitions of signal, benefit, and costs, the
programme then simplifies to:

maxw1β′e−e′Ce−
w2

1

2
rσ2 (4)

such that e∈ argmax̃eE
(
U
(
w0 +w1b′ẽ− ẽ′Cẽ

))
. (5)

To find the solution to this programme, we first consider the effort choice problem
of the agent for a given incentive scheme(w0,w1). The computed efforts are then
replaced in the main objective function to determine the choice ofw1. Because
the utility function is monotonous in the received wage minus the effort costs, the
agent chooses effort so as to maximise this difference:

max
e

w1b′e−e′Ce.
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The objective function is concave because the second derivative is a symmetrical,
negative definite matrix (−C). Thus, the maximiser can be determined by the
first-order condition. Solving foreyields:

e=
w1

2
C−1b. (6)

Note, thatC−1 exists becauseC is positive definite. Recalling thatB(e) = β′e the
maximisation programme becomes:

max
w1

β′e−e′Ce−
w2

1

2
rσ2.

Replacingeby the optimal effort yields the following expression for the objective
function which now only depends on the optimal performance wage rate:

max
w1

w1

2
β′C−1b−

w2
1

22 b′C−1b−
w2

1

2
rσ2. (7)

Again, the objective function is concave and solving the first order condition gives
the maximiser:

w1 =
β′C−1b

b′C−1b+2rσ2 (8)

Using the optimal wage rate in (7) finally results in an expression for the surplus
which can be generated from an incentive scheme based on the signal(b,σ2):

φ(b,σ2) =
1
4

b′C−1ββ′C−1b
b′C−1b+2σ2r

. (9)

Since the surplus depends on the signal parameters, it is reasonable to ask the
following question: What is a good signal? What parameter values characterise
such a signal? In single-task models, where the only problem is the noise of the
signal, the variance is the crucial parameter: A lower variance implies less com-
pensation for uncertainty and is therefore attractive. Uncertainty is still important
in a multiple-task model. Now, there is also the problem of effort allocation and
some signals may be more useful to achieve a desired allocation. A particularly
promising candidate is a signal which unbiasedly reflects the benefit that the prin-
cipal draws from the effort.

In statistics and econometrics, an estimator is called unbiased for an unknown
parameter, if its expected value coincides with the parameter. The following defi-
nition is the respective equivalent in a hidden action model with linear contracts.
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Definition 1 (Unbiased benefit signal).A signal is called unbiasedfor the benefit
if its expected value equals a multiple of the benefit independently from the exerted
effort:

E(S(e)) = b′e= kβ′e= kB(e) for some fixed k and all e.

In contrast to the econometrical and statistical definition, we allow the expected
value to be a multiple of the benefit. We do so because the signal will be used in
a linear wage scheme, so that the factork can be offset by choosing a piece-wage
rate which is re-standardised: ˜w1 = w1

k .

A second way of characterising a signal is by the relationship between signal and
benefit coefficient vector.

Definition 2 (Congruent signal). A signal is congruentif b = β.

Are congruence and unbiasedness related?

Result 1. A signal (b,σ2) is unbiased for the benefit if and only if the signal
coefficient vector is a multiple of the marginal benefit vector (b= kβ) for some k.

Proof. If b′e = kβ′e for all e, then it is also valid for the unity vectorei which
has a one at thei-th componentei = (0, . . . ,0,1,0, . . . ,0). It follows thatbi = kβi .
Conversely,b = kβ directly implies thatb′e= kβ′e.

By choosingk = 1, this result uncovers the relation between congruence and un-
biasedness: Anycongruentsignal is unbiased.

An unbiased signal – in particular a congruent signal – seems to be a good can-
didate to replace the non-contractible objective in an optimal incentive scheme
because it correctly reflects the relative weight of different efforts in the benefit.
Later, we will derive a condition under which this intuition is valid. But before we
can do so, we have to characterise when signals are “good” and incentive schemes
are “optimal” with respect to mis-allocation. There are several ways to assess the
mis-allocation of a signal. The next section provides two criteria to distinguish
between those ways.

4 Properties of mis-allocation measures

If we desire to rank signals according to the induced mis-allocation, we have to
ensure that uncertainty does not interfere. This cannot be achieved by simply fix-
ing the variance; it is the relation between the informative and the non-informative
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part of the signal which matters. If, for example, the variance is kept constant and
the length of the signal coefficient vector is increased, the informative content also
increases and the effect of uncertainty on the surplus decreases – see equation (9).
Apparently, the informative content must be related to the variance in order to
effectively control for uncertainty. This suggests the following definition.

Definition 3 (Signal-noise ratio). The squared length of the signal coefficient
vector divided by the variance is called signal-noise ratio: ρ := b′b

σ2 .

Is this a sensible definition? Can we eliminate the effect of uncertainty by fixing
the signal-noise ratio?

Result 2. For all signals with signal-noise ratioρ, the effect of uncertainty on the
surplus is constant.

Proof. Take the surplus generated and replaceσ2 by b′b
ρ , this yields the surplus:

φ(b,
ρ

b′b
) =

1
4

b′C−1ββ′C−1b
b′(C−1 +2 r

ρ I)b
,

which is constant inσ2 and does not change with the length of the vectorb; b can
be standardised to a fixed length and the standardisation factors in the numerator
cancel with those in the denominator.

Hence, we can fix the effect of uncertainty using the notion of a constant signal-
noise ratio. This will later enable us to identify and control for the effect of mis-
allocation.

Mis-allocation measures should only pick up the effect of signals on the alloca-
tion of effort. Consider two signals with the same signal-noise ratio. Hence, all
differences between these signals result from a different allocation of effort. If
these signals lead to the same surplus, there is no reason why the mis-allocation
should be different. In fact, if a mis-allocation measure would assign different
values to two such signals, it ranks them without a proper foundation. This idea is
summarised in the following definitions.

Definition 4 (Invariance and Scale-Invariance).Consider two signals(b,σ2)
and(b̃, σ̃2). A measure for mis-allocationδ(·, ·) is called invariantif and only if

ρ(b,σ2) = ρ(b̃, σ̃2) andφ(b,σ2) = φ(b̃, σ̃2) impliesδ(b,σ2) = δ(b̃, σ̃2).
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A measure for mis-allocationδ(·, ·) is called scale-invariantif and only if

δ(b,σ2) = δ(qb,q2σ2).

Scale-invariance captures the idea that a mere change of the scale on which a sig-
nal is measured should not have an effect on the mis-allocation of effort. Because
re-scaling neither alters the effect of uncertaintyρ nor changes the surplus which
can be obtainedφ, an invariant mis-allocation measureδ must assign the same
value to the rescaled signal and is hence scale-invariant:

Result 3. Any invariant mis-allocation measure is also scale-invariant.

The invariance property alone is not very helpful to identify a good mis-allocation
measure. By this criterion, any constant function qualifies as “good”. However,
a meaningful mis-allocation measure should vary with the properties of signals.
A simple requirement, which adds meaning to a mis-allocation measure, can be
defined by relating the measure to surplus. In particular, when comparing two
signals with the same signal-noise-ratio (so that the effect of uncertainty is held
constant), the signal leading to a lower mis-allocation should generate the higher
surplus. This idea is expressed in the following definition.

Definition 5 (Monotonicity). A mis-allocation measureδ(·, ·) is called monotonous
if it ranks any two signals(b,σ2) and (b̃, σ̃2) with the same signal-noise ratio
ρ = ρ̃ according to the surplusφ(·, ·) which can be generated with these signals:

δ(b,σ2) > δ(b̃, σ̃2)⇔ φ(b,σ2) < φ(b̃, σ̃2) givenρ = ρ̃.

If faced with a decision between two signals with the same signal-noise ratio, the
preferable signal must be the one with a lower mis-allocation. Of course, this
definition is based on the idea that the second-best surplus is only affected by two
things: the effect of uncertainty and the effect of mis-allocation. If there were a
third effect than eliminating the effect of uncertainty would not necessarily imply
that the effect of mis-allocation must explain differences in surplus.

The two elementary properties of mis-allocation measures introduced in this sec-
tion, invariance and monotonicity, already have far reaching implications and will
prove helpful later to construct and discard mis-allocation measures.
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5 Mis-allocation Measures

In this section, we present two measures for effort mis-allocation, check whether
they exhibit the properties of invariance and monotonicity, and propose a third
measure.

5.1 Feltham’s and Xie’s measure

Using the same model as in this paper with equally costly tasks (C = 1
2I ), Feltham

and Xie (1994) observe that the relative effort expended in any two tasks is equiv-
alent to the marginal effects of these efforts on the expected signal:

ei

ej
=

bi

b j
,

which can be seen from equation (6) whenC is replaced accordingly. At the same
time and under the same assumption aboutC, the pareto-optimal effort is equal
to the marginal productivity (e∗i = bi), so that the ratio of pareto-optimal efforts is
equal to the ratio of marginal productivities:

e∗i
e∗j

=
βi

β j
.

Now, Feltham and Xie (1994) regard “mis-allocation” to result from a deviation
of the induced effort ratio from the first-best effort ratio. Then, signals which
assign the same relative weight to efforts as in the benefit function (bi

b j
= βi

β j
) are

attractive because they lead to an induced effort ratio which is identical to the
first-best effort ratio:

ei

ej
=

e∗i
e∗j

.

Consequently, a mis-allocation measure can be devised by comparing the signal
coefficientsbwith the benefit coefficientsβ. For a model with two efforts, Feltham
and Xie (1994) propose the following definition.

Definition 6 (Feltham and Xie’s mis-allocation measure).If (b,σ2) is a signal,
its mis-allocation according to Feltham and Xie is:

δFX(b,σ2) := (β1b2−β2b1)2.

What is the signal with the lowest mis-allocation according to this measure?

10



Result 4. The lowest mis-allocation according toδFX is achieved by an unbiased
signal.

Proof. If b is unbiased, it holds thatb = kβ. Replacing the componentsb1 by kβ1

andb2 by kβ2, we obtain the valueδFX(kβ,σ2) = 0 because the measure is always
positive, this is the lowest value which can be reached.

Thus, the measure of Feltham and Xie confirms the intuition that unbiased and
congruent signals are preferable due to their allocation properties. However, the
measure is problematic:

Result 5.The mis-allocation measureδFX is neither invariant and nor monotonous.

Proof. Consider the signal(b,σ2) and the re-scaled signal(qb,q2σ2) with q > 1.
The respective mis-allocation is:

δFX(b,σ2) = (β1b2−β2b1)2 < (β1b2−β2b1)2q2 = δFX(qb,q2σ2).

Thus, the re-scaled signal is not assigned the same value as the original signal and
the measure is not scale-invariant. As scale-invariance is a special case of invari-
ance, the measure is not invariant either. Also, the measure detects a difference
in mis-allocation where there is no respective change in surplus:δFX(b,σ2) <
δFX(qb,q2σ2) but φ(b,σ2) = φ(qb,q2σ2) while ρ(b,σ2) = ρ(qb,q2σ2). So, the
measure is not monotonous.

While the measureδFX might convey some intuition about effort mis-allocation,
it does not feature the two simple properties of monotonicity and invariance.

5.2 Baker’s measure

Baker (2002) comes forward with a different mis-allocation measure, which is
based on an examination of the optimal performance wage ratew1, which we
calculated in equation (8), where again identical costs for efforts are assumed
(C = 1

2I ):2

w1 =
β′b

b′b+ rσ2 =

√
b′b
√

β′βcos(γ)
b′b+ rσ2 ,

whereγ is the angle between the benefit and signal coefficient vector and where
the equality follows from cos(γ) = b′β√

b′b
√

β′β
. Thus, the intensity to which the

2For the original formula in Baker, one needs to assume that the length of the two vectors is
identicalF :=

√
b′b =

√
β′β.
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signal is used depends on the cosine of the angle between the vectors and Baker
(2002) suggests to use this term as a mis-allocation measure.

Definition 7 (Baker’s mis-allocation measure).If γ is the angle between the
signal and benefit coefficient vector, the mis-allocation according to Baker is:

δB := cos(γ).

Differently from Feltham and Xie’s measure, Baker’s measure decreases in the
mis-allocation and is hence a measure of good rather than bad allocation. This
mere semantic difference aside, the measure shares an important feature with
Feltham and Xie’s measure:

Result 6. The lowest mis-allocation according toδB is achieved by an unbiased
signal.

Proof. Givenb = kβ, the angle betweenb andβ is zero and the cosine attains its
maximal value of one – indicating the lowest mis-allocation.

Thus, Baker’s measure supports the initially mentioned intuition and favours un-
biased and congruent signals over biased signals.

The measure of Baker can be also motivated by appealing to the idea of scale-
invariance. Consider the signal class with constant signal-noise ratioρ. Any sig-
nal from this class can be represented by a signal with a signal coefficient vector
b, the length of which is equal to the marginal productivity vectorβ. This can sim-

ply be achieved by multiplying the signal byq =
√

β′β
b′b . By the scale-invariance

property, this change should have no effect on the measured mis-allocation.

If we depict the benefit and signal coefficient vector in a two-dimensional plane
(see figure 1), a change in scale implies a change in the length of the signal co-
efficient vector. According to the scale-invariance property, this change should
have no effect on the mis-allocation. Indeed, the angle between the two vectors
remains constant and contains information about the relationship between signal
and benefit. This suggests that the angle can be used to construct a measure for
mis-allocation.

Because signal coefficient vectors which point into the same direction create the
same surplus, the invariance property requires that these vectors get assigned the

12



β

1

γ1

e1

e2

bβ2

marginal productivity
of effort
marginal effect of effort

β

b
on expected signal

β

Figure 1: Effect of Scale-changes

Changing the scale of the signal does not influence the angle between signal
and benefit coefficient vector.

same value for mis-allocation. For an angle-based measure, this implies that val-
ues should repeat themselves every 2π or every 3600. Trigonometric functions
have this period. This explains why to consider the cosine of the angle between
the signal and benefit coefficient vector. Hence, Baker’s measure naturally arises
from invariance considerations. Does this imply that the measure is invariant?

Result 7. δB is neither invariant nor monotonous.

Proof. Consider the signals(b,σ2) and(−b,σ2) which have the same signal-noise
ratio and lead to the same surplus. Letγ ∈ (−π,π) be the angle betweenb and
β. Then, the angle between−b and β is π + γ. The respective mis-allocation
measure is:δB(b,σ2) = cos(γ) > −cos(γ) = cos(π + γ) = δB(−b,σ2). This has
two implications: First, a change in the measure occurs as a result of re-scaling
and the measure is not invariant. Second, because a change in the value of mis-
allocation is not reflected in surplus the measure is not monotonous.

5.3 A modification of Baker’s measure

The counter-example which destroys invariance and monotonicity of the cosine as
a mis-allocation measure is based on two signals pointing in opposing directions.
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γ =π+γ

β2

β1 e1

e2

marginal productivity
of effort

expected marginal effect
of effort on another signal

expected marginal effect
of effort on some signal

β

γ

β

b

b

b
b

Figure 2: Periodicity of mis-allocation
Two signal vectors which point in the same direction (2π apart) or in opposite
directions (π apart) generate the same surplus and should be assigned the
same mis-allocation.

The respective coefficient vectors generate the same surplus because the signal
can be multiplied with minus one before using it. Such opposing vectors areπ
apart and generate the same surplus, thus an angle-based mis-allocation measure
should have periodπ rather than 2π. The absolute value of the cosine has this
property. This hints to modify Baker’s by using the absolute value:

δM := |cos(γ)|.

A second motivation for the modified measure is similar to Baker’s original idea
about “incentive intensity”. Incentive intensity is not only given when the wage
ratew1 is positive and large, it is also present when the wage rate is negative and
large. Then, the agent is motivated to work hard in order to avoid punishment. So
the intensity of incentives should be measured in terms of the absolute value of
the wage|w1| rather than the actual valuew1. Doing so, and following Baker’s
argument, the absolute value of the cosine replaces the cosine as a measure of
mis-allocation. The so-obtained measure features several defined properties:

Result 8. The mis-allocation measureδM is scale-invariant. Given that costs for
tasks are equal (C= cI), it is also invariant and monotonous.
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Proof. Let b̃ = qb be a rescaling ofb andγ be the angle betweenb andβ. Then,
the angle betweeñb andβ is γ̃ = πk+γ for some natural numberk. The respective
distortion measures are:

δM(b,σ2) = |cos(γ)|= |cos(γ+πk)|= δM(qb,q2σ2),

where the central equality results from the fact that the absolute value of the cosine
has periodπ. Consequently, the measure is scale-invariant. Given equal costs
(C = cI), the surplus generated by a signal(b, ρ

b′b) is:

φ(b,
ρ

b′b
) =

1
4

c−2b′ββ′b
(c−1 +2 r

ρ)b′b
=

b′ββ′b
4c2(c−1 +2 r

ρ)b′b
β′β
β′β

=
cos(γ)2β′β

4c2(c−1 +2 r
ρ)

.

Note, that the signal enters this quantity only viaγ. Moreover, the surplus is
strictly increasing inδM = |cosγ| and attains it maximum forγ = kπ,k = 0,1, . . ..
Thus, the surplus varies if and only ifδM varies: The measure is invariant and
monotonous.

The modified measure retains the property of Baker’s measure that unbiased and
congruent signals yield the lowest mis-allocation: The angle between an unbiased
signal and benefit vector is either zero or a multiple ofπ and the absolute value of
the cosine for this values yields the maximum.

All considered mis-allocation measures assess the mis-allocation to be lowest
when using unbiased signals. So, one is tempted to conclude that unbiased signals
are indeed preferable from a mis-allocation standpoint. Of course, this statement
hinges on the monotonicity of at least one of the measures of mis-allocation. In
the (very) restricted class of problems with identical marginal costs for different
tasks, the modified measure is monotonous and unbiased signals lead indeed to the
lowest misallocation. But what if marginal costs differ? To answer this question,
we compute the signal which maximises the surplus for a given signal-noise ratio.
If the modified measure is monotonous in the larger class, the result must be an
unbiased signal. If the signal is biased, the modified measure is not monotonous
for different marginal costs.

6 Mis-allocation minimising signals

What is the signal which leads to the lowest mis-allocation in a class with a given
signal-noise ratio?
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To answer this question, the surplus needs to be maximised while holding the
signal-noise ratio constant. Calculating the solution is involved: First, the problem
is re-parameterised. Second, the solution to the re-parameterised problem is found
to be the eigenvector of a matrix which depends on costs, benefit, risk aversion,
and signal-noise ratio. Finally, the solution is transformed back. Details of the
proof can be found in the appendix, the solution is summarised in the following
theorem.

Theorem 1 (Signal leading to lowest mis-allocation).The signal vector b∗,
which maximises the surplus in the class with a given signal-noise ratioρ, is

b∗ = k · (2 r
ρ

C+ I)−1β, with k :=

√
ρσ2

β′(2 r
ρC+ I)−2β

.

The role ofk is to standardise the length ofb∗ so that the vector indeed belongs to
the class with the signal-noise ratioρ.

We have thus identified the signal with the lowest mis-allocation for a given
signal-noise ratio. But it is not obvious when this signal is unbiased or biased
for the benefit. The answer is given by the following corollary. The proof is based
on equating the surplus maximising signalb∗ from theorem 1 with the benefit
vectorβ – details can be found in the appendix.

Corollary 1 (Optimality of unbiased signals). An unbiased signal maximises
surplus, if and only if effort costs are identical for different tasks: C= cI with c∈
IR.

This corollary tells us when the intuition works that a congruent signal leads to
low mis-allocation: The marginal costs need to be identical. If costs are not iden-
tical, the optimal signal coefficient vector generally depends on the costs and the
unbiased signal is not optimal anymore. In this case, the intuition fails and none
of the introduced measures is monotonous because a signal different from the
unbiased signal leads to a higher surplus. A respective example is given in the
following section.
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7 Biased but optimal signals

This section gives a simple example with two efforts, where the effort costs differ
and the optimal signal is biased. Consider the cost matrix

C =
(

c1 0
0 c2

)
with c1 > c2.

Using theorem 1, we can now compute the optimal signal:

b∗ = k(2
r
ρ

C+ I)−1β = k

(
2

r
ρ

(
c1 0
0 c2

)
+ I

)−1

β = k

( ρ
2rc1+ρ 0

0 ρ
2rc2+ρ

)
β,

wherek ensures that the signal-noise ratio remains constant. Summarising, the
optimal signal vector is:

b∗ = kρ

( β1
2rc1+ρ

β2
2rc2+ρ

)
.

If we divide the first component of this vector by the second component to see the
relative importance of the first effort on the signal in comparison to the second
effort, the standardisation factork drops out and we get:

b∗1
b∗2

=
c22r +ρ
c12r +ρ

β1

β2
.

Thus, the marginal effect of the first effort on the expected signal is not the same
as on the benefit. Rather, the optimal signal is biased and honours the cheaper
effort e2 more than an unbiased signal. What is gained by inducing the agent to
exert the cheaper instead of the more expensive effort? The intuition underlying
this result is the following. When an unbiased signal is used, the agent allocates
effort as if the aim was to provide an overall lower benefit level. The true bene-
fit function, however, has not changed and hence effort re-allocation can increase
it. In particular, cheaper effort can be induced in place of more expensive effort.
Due to the quadratic cost function giving up a little of expensive effort buys a lot
of cheap effort and due to the linear benefit function this effort allocation leads
to higher benefit levels. Thus, a signal which puts slightly more weight on the
cheaper effort improves the allocation in comparison to an unbiased signal. It is
essential for this argument that effort levels are below the first-best levels. So, the
presence of uncertainty plays a crucial role for this effect. The larger the signal-
noise ratioρ or the smaller the risk aversionr, the closer the optimal signal is to an
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unbiased signal; if the signal becomes very informative (ρ → ∞) or the risk aver-
sion decreases (r → 0), the optimal signal approaches an unbiased signal. Hence,
the disadvantage of using a congruent signal aggravates, the higher the effect of
uncertainty. In practice, this implies that the remuneration of workers with little
influence on a signal (low signal-noise ratio) should be based on correcting signals
to a larger degree than the remuneration of workers with more influence.

The result that the more costly effort needs to be reduced by the signal to obtain
the optimal effort allocation is an artifact of the linearity of the benefit function
and the quadratic cost function. It is, however, generally true that the desired effort
ratio is unlikely to be achieved with an unbiased signal if uncertainty is involved
so that effort exertion is below first-best levels.

8 Conclusion

In multiple-task models, effort mis-allocation has to be considered when design-
ing an incentive scheme. Despite this commonplace observation, our knowledge
about the effects which lead to a distorted allocation of effort between tasks is still
sparse. In particular, the effect of signal properties on the allocation are not fully
understood, yet. Intuitively, a congruent signal seems to be an ideal candidate for
low or even no mis-allocation because the relative marginal effects of effort on the
signal are identical to the relative marginal benefits. As we have seen, this intu-
ition fails already in a relatively simple framework: Congruent signals generally
don’t lead to undistorted effort allocations between different tasks.

Accordingly, mis-allocation measures which assign the lowest mis-allocation to
congruent signals are problematic. But this concerns most mis-allocation mea-
sures (e.g. Feltham Xie 1994, Datar Kulp Lambert 2001, Baker 2002) and prac-
tically leaves us with no sensible approach to directly quantify mis-allocation.3

Without mis-allocation measure, the trade-off between mis-allocation and uncer-
tainty, which is thought to underpin the value of signals in multiple task settings,
cannot be formalised. Likewise, the value of a signal cannot be determined with-
out computing the surplus which it generates. Overall, it is thus desirable to adapt
one of the existing or create a new mis-allocation measure so that the problem of
optimal biased signals is accounted for. The properties of mis-allocation measures

3Indirectly, mis-allocation can be quantified by its consequences on surplus (see Schnedler
2002).
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defined in this article (invariance and monotonicity) may provide some guidelines
– possibly even for an axiomatic approach.

The finding, that unbiased signals might lead to distortion, does not only put in
question approaches how to measure mis-allocation, it also explains the usage of
additional performance signals when unbiased signals are available. If for exam-
ple the objective of a firm is the shareholder value, it might deliberately refrain
from using the shareholder value as the only performance signal to motivate a
manager and flank it by other accounting information such as sales or revenue.
To explain the value of the additional signal, it has been suggested that the sig-
nal might reduce uncertainty and hence the wage bill for the risk-averse manager
(Datar, Kulp, and Lambert 2001, Baker 2000 and 2002, Schnedler 2002). Alter-
natively, the design of the incentive scheme might be employed as a commitment
device to threaten other firms in an oligopolistic market (Sklivas 1987, Fershtman
and Judd 1987). This article brings forward another complementary explanation
which solely arises from the incentive problem: The additional signal is used to
correct for a mis-allocation of effort.
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A Surplus maximising signal

Maximise the surplus inb while holding the signal-noise ratio constant:

max
b

φ(b,σ2) such thatb′b = ρσ2 ⇔ max
{b|b′b=ρσ2}

1
4

b′C−1ββ′C−1b

b′
(
C−1 + 2r

ρ I
)

b
, (10)

where the last expression was obtained by replacing the varianceσ2. Note, that
the solution to the problem does not depend on the length ofb: If b solves the
problem so doeskb. We can thus drop the restriction on the length ofb for the
moment, find any solution to the problem and standardise the solution to the cor-
rect length later.

DefineC̃ := C
(

2r
ρ C+ I

)−1
, then the inverse exists and is equal to the matrix in

the numerator:̃C−1 =
(
C−1 + 2r

ρ I
)

. BecausẽC is symmetric and positive definite,

we can decompose it (C̃ = PΛP′ whereΛ is a diagonal matrix andP andP′ are
projector matrices) and definẽC− 1

2 := PΛ− 1
2P, where the inverse ratio and square-

root is taken of all diagonal elements inΛ. Defineb̃ := C̃− 1
2b and consider the

transformed problem:

max
b̃

b̃′C̃
1
2C−1ββ′C−1C̃

1
2 b̃

b̃′b̃
.

Fix the length of̃b to one:b̃′b̃ = 1. Then, the respective Lagrangian is:

L(b̃,k) = b̃′C̃
1
2C−1ββ′C−1C̃

1
2 b̃−λ

(
b̃′b̃−1

)
.

The corresponding first-order conditions are:(
(C̃

1
2)′C−1ββ′C−1C̃

1
2 −λI

)
b̃ = 0 andb̃′b̃ = 1 (11)

The first condition is an eigenvalue problem; to obtainb̃, we have to find the eigen-
valuesλ of the matrixC̃

1
2C−1ββ′C−1C̃

1
2 . By definingx := (C̃

1
2)′C−1β, the matrix

can be re-written asxx′ and it becomes apparent that the matrix is symmetric and
of rank one. Due to the latter, there can only be one non-zero eigenvalue. This
value can be obtained using the trace-operator (tr(·)):

EV(xx′) = tr(xx′) = tr(x′x) = x′x.
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Replacing this eigenvalue in the eigenvalue problem, we get:

(xx′−x′xI)b̃ = 0.

Obviously,b̃ = kx,k ∈ IR is a solution to this problem. Again due to the rank of
xx′, it is also the only solution. To recover the solution in the original problem, we
have to reverse the transformation:

b∗ = C̃
1
2 b̃ = kC̃

1
2x = kC̃

1
2C̃

1
2C−1β = kC̃′C−1β = k(2

r
ρ

C+ I)−1β.

Finally, we are free to choose the length of the vector ask :=
√

ρσ2

β′(2 r
ρC+I)−2β . Then,

(b∗)′b∗ = ρσ2 and the signal is indeed a member of the signal-noise ratio classρ.

B Optimality of unbiased signals

By theorem 1, it holds that an unbiased signal maximises surplus (given a constant
signal-noise ratio) if and only if

(2
r
ρ

C+ I)−1 = kI,k∈ IR. (12)

This equality can be rewritten as 2r
ρC+ I = 1

k I . Hence, an unbiased signal max-
imises surplus only ifC = cI. If on the other handC = cI then the constantk can
be chosen so that the equality (12) holds (k = 2rc

ρ + 1) and hence identical costs
imply that unbiased signals maximise surplus.
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