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1 Introduction
Social security old age insurance has been a policy issue for decades in all
countries with pay-as-you-go public pension systems. A key policy question
is whether it is better to …nance social security on a pay-as-you-go (PAYG) or
fully funded basis. Until recently, academics and policymakers have mostly used
deterministic models to analyze this fundamental question. Recent proposals to
privatize social security in the US, in addition to less radical proposals such as
the social security administration’s plan to invest a portion of the Social Secu-
rity Trust Fund in equities, have highlighted that the de…cient treatment of risk
and uncertainty might seriously ‡aw policy analysis. The reason for this ‡aw
is that many proposed policy reforms involve subtle changes in who bears vari-
ous risks. It has only been in the last few years that theoretical and numerical
models have incorporated uncertainty in order to analyze these issues. This has
lead to a renewed interest in overlapping generations models.

Most of the theoretical literature is based on the Diamond (1965) OLG
model with capital. Under certainty, the question of whether to …nance social
security on a fully funded basis or whether there is a Pareto-improving role
for a PAYG system then translates to the question of dynamic e¢ciency of
competitive equilibria (Bose (1974), Breyer (1989), Bose and Ray (1993)).

Under uncertainty, the analysis of social security becomes conceptually more
complex. The reason for this complexity is that, apart from the issue of e¢cient
capital accumulation, risk sharing issues have to be considered. We analyze the
interaction between risk sharing and capital accumulation in a stochastic OLG
model with production. This allows us to derive implications about the Pareto
optimality of competitive equilibria with a redistributive transfer scheme like
a PAYG social security system. We characterize conditions under which the
dynamic risk sharing opportunities of a PAYG social security system may lead
to a Pareto-improvement of a pure market allocation.

In the development of the OLG literature three themes concerning e¢ciency
can be identi…ed: e¢cient intergenerational exchange, e¢cient production (over-
accumulation of capital) and Pareto optimality. The …rst theme of e¢cient inter-
generational exchange was already mentioned in the seminal paper by Samuelson
(1958). As is well known, in pure exchange OLG economies the …rst welfare the-
orem may fail to hold, i.e. competitive equilibria may fail to be Pareto optimal.
The contributions to this theme are concerned with the reasons for this failure.
A characterization of e¢cient exchange was given by Balasko and Shell (1980)
and Okuno and Zilcha (1980) in a pure exchange OLG model under certainty.

The second theme was introduced in OLG models in the celebrated con-
tribution by Diamond (1965) where the question of overaccumulation of cap-
ital (dynamic e¢ciency) is examined. The …rst complete characterization of
dynamic e¢ciency was given in the context of an in…nite horizon production
model by Cass (1972). Tirole (1985) has analyzed the relationship between dy-
namic e¢ciency and the existence of bubbles as well as the Pareto optimality
of bubbly equilibria in an OLG model with production under certainty. An
extension of the dynamic e¢ciency issue under certainty to a setting with un-
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certainty has been given by Zilcha (1990) and Dechert and Yamamoto (1992).
They derived complete characterizations of dynamic e¢ciency in stochastic OLG
models. However, they do not deal with risk sharing issues and hence Pareto
optimality.

A third theme that has received considerable interest is that of Pareto opti-
mality of equilibria in OLG models. As can be seen from the discussion above,
this question is closely related to the other two themes. First, in the pure
exchange case under certainty, the question of exchange e¢ciency (theme 1)
and that of Pareto optimality (theme 3) are equivalent. In fact, the charac-
terizations given in Balasko and Shell (1980) and Okuno and Zilcha (1980) are
stated in terms of Pareto optimality. Our terminology, exchange e¢ciency, is
introduced to highlight that Pareto optimality in a general setting (with pro-
duction) consists of three distinct issues: e¢cient exchange, e¢cient production
and impossibility of improving by joint changes in distribution and production
of commodities. A fourth issue, the e¢cient allocation of risk, enters once un-
certainty is introduced. The risk sharing issues that have to be considered in a
stochastic setting are of course closely related to exchange e¢ciency, since the
notion of exchange e¢ciency involves the consumers’ preferences which re‡ect
their attitudes towards risk. Second, under certainty it can be shown that ef-
…cient production (theme 2) already implies Pareto optimality (theme 3) in a
competitive equilibrium (see Bose and Ray (1993) for a discussion). Under un-
certainty, however, the relationship becomes more complex because risk sharing
issues have to be considered.

At this point we have to be more precise about the notion of Pareto optimal-
ity adopted under uncertainty. The de…nition most often used in the literature
is that of interim Pareto optimality1 which means that agents born in di¤er-
ent states are considered distinct agents. Agents’ welfare is thus evaluated by
conditioning their utility on the date of their birth. We also make use of this
concept of optimality.

The use of interim Pareto optimality excludes Pareto-improvements through
risk sharing that arise from the market incompleteness implied by the missing
insurance possibilities against the state in which an individual is born. If it
is assumed that markets are complete once an individual is born (sequentially
complete markets), then the remaining risk sharing possibilities (if any) follow
from the dynamic structure of the economy. It may be possible to introduce
a kind of intertemporal insurance which works as an intergenerational transfer
under certainty with the exception that transfers in the second period of life
may be di¤erent in distinct states of the world and thus also incorporate an
insurance aspect.2

1 The terms interim and conditional Pareto optimality are not used consistently in the
literature. We follow Demange and Laroque (1999) and use interim Pareto optimality for
allocations which are optimal among all feasible allocations, not only stationary ones.

2 An alternative notion of optimality would be ex ante Pareto optimality. Here agents’ util-
ity is evaluated before they are born, i.e. in expected terms. A good discussion of alternative
concepts of Pareto optimality can be found in Dutta and Polemarchakis (1990) and also in
Chattopadhyay and Gottardi (1999).
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A …rst result concerning interim Pareto optimality was obtained in an in‡u-
ential paper by Abel, Mankiw, Summers and Zeckhauser (1989). They derive
a strong su¢cient condition for interim Pareto optimality of a market equilib-
rium. A characterization of exchange e¢ciency in a pure exchange model under
uncertainty was derived by Chattopadhyay and Gottardi (1999), extending the
result by Balasko and Shell (1980). As under certainty, exchange e¢ciency is of
course equivalent to interim Pareto optimality in a pure exchange setting under
uncertainty.

Our …rst main result gives a complete characterization of interim Pareto
optimality in a stochastic OLG model with production. It turns out that the
concept of interim Pareto optimality is equivalent to exchange e¢ciency in a
competitive equilibrium. Futhermore, exchange e¢ciency implies dynamic ef-
…ciency in a competitive equilibrium. In particular this means that extending
a pure exchange model to production does not improve the possibilities of risk
sharing, although the redistributional possibilities improve in comparison to a
pure exchange model. This implies that under exchange e¢ciency, there exists
no pure redistributive transfer system like a PAYG social security system that
is Pareto improving. Our second main result shows that, contrary to the case of
certainty, the conditions for dynamic e¢ciency and exchange e¢ciency do not
coincide under uncertainty. Our analysis shows that under the interim Pareto
optimality concept the important e¢ciency benchmark is exchange e¢ciency.
This means that the possibility of overaccumulation of capital is not necessarily
related to the risk sharing part of the e¢ciency problem. As argued above, un-
der certainty, dynamic e¢ciency implies exchange e¢ciency, hence the concepts
of exchange e¢ciency, dynamic e¢ciency and interim Pareto optimality are
all equivalent under certainty. Under uncertainty however, dynamic e¢ciency
is weaker than interim Pareto optimality. This means that dynamic e¢ciency
does not rule out dynamic risk sharing possibilities which could be implemented
by a PAYG social security system. A PAYG system can thus be interpreted as
an insurance against aggregate productivity risk in the second period of life (old
age).

The characterization does not only answer the question whether a market
equilibrium without social security is suboptimal. It also applies to equilibria
with social security. This can be seen by noticing that a redistributive policy like
social security can replicate monetary equilibria in an OLG model where money
is a pure store of value. The fact that the e¢ciency characterization applies
to monetary equilibria as well has been used by Balasko and Shell (1981) in a
pure exchange OLG model under certainty and Bose and Ray (1993) in an OLG
model with production under certainty. Under uncertainty, Manuelli (1990) ex-
amined optimality of monetary equilibria in a pure exchange setup. Aiyagari
and Peled (1991) and Demange and Laroque (1999) carry out a similar analysis
in an economy with a linear storage technology, where the latter analysis ex-
plicitly considers social security equilibria. The contributions under uncertainty,
however, restrict attention to stationary allocations, whereas our analysis (with
neoclassical production technology and uncertainty) does not require this.

The paper is organized as follows. In section 2 the model is developed. In

3



section 3, we introduce the notions of exchange e¢ciency and dynamic e¢ciency
in our setting. Section 4 features our …rst main result, the characterization of
interim Pareto optimality in a stochastic OLG model with production. Section
5 presents our second main result, a generic example in which dynamic e¢ciency
and interim Pareto optimality do not coincide. Section 6 gives a su¢cient
condition for interim Pareto optimality and relates the condition to the existence
of land. Section 7 presents a second welfare theorem for our economy. Section
8 concludes.

2 The Model
We consider a stochastic version of the Diamond model (Diamond (1965)). Un-
certainty enters the model via shocks to the production technology. Time is
discrete, starts at 0 and extends in…nitely into the future. There is production
and a consumption/saving decision at every point of time. The production tech-
nology at time is described by a function F : R2

+£At ! R+ where F (Kt; Lt; µt)
is the output produced at time t given the capital stock is Kt; labor input is
Lt and the current stochastic shock is µt: The perishable good produced by the
technology is the only good in the economy and is used for production and con-
sumption. There is one representative consumer born per period of time and
state of the economy who inelastically supplies one unit of labor in his youth and
lives for two periods and trades the consumption good on sequentially complete
markets. Due to the production shocks, he has an uncertain second period of
life. There is no population growth. These assumptions are only made for the
simplicity of exposition. It can easily, at the cost of some additional notation,
be dispensed with. Further, again for simplicity, the depriciation rate rate is
assumed to be 1. More speci…cally, the production function satis…es:

² F (Kt;Lt; µt) is homogenous of degree 1 in Kt;Lt, strictly increasing,
strictly concave and twice continuously di¤erentiable in Kt;Lt: Further
F (0;Lt; µt) = F (Kt;0; µt) = 0: It also satis…es the Inada conditions
lim

Kt!0
FK (Kt;Lt; µt) = 1 and lim

Kt!1
FK (Kt;Lt; µt) = 0: As usual, de…ne

f (kt; µt) = F
³

Kt
Lt

;1; µt

´
; the per capita production function. It inherits

from F the following properties:

f 0 = @f
@k > 0; f" < 0; f 0 (0; µt) = 1; f 0 (1; µt) = 0:

For each period in time t; the set of production shocks, At; is assumed to
have …nite cardinality with A0 being single valued. Consider all sequences of
the form (µ0; µ1; µ2; :::) where µi 2 Ai: These sequences form an uncountable set,
denoted : Let A denote the ¾¡algebra generated by the product topology on
; if each Ai is endowed with the discrete topology. Let (;A; ¹) be a measure
space with probability measure ¹ which is assumed to satisfy:
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If fµ0g £ fµ1g £ ::: £ fµtg £ fµt+1g £ At+2 £ ::: 2 A is given, then the con-
ditional probability qt+1 (µt+1j ¾t) = ¹(fµ0g£fµ1g£:::£fµtg£fµt+1g£At+2£:::)

¹(fµ0g£fµ1g£:::£fµtg£At+1£:::) with
¾t = (µ0; µ1; µ2; :::; µt) is well de…ned and strictly positive for every µt+1 2 At+1:

Given that the production shocks are the only source of uncertainty in the
economy, it is possible to describe the uncertainty by a date-event tree, where
¾0 = fµ0g is the root, ¾t = (µ0; µ1; µ2; :::; µt) is a node at time t. The set of
nodes at time t is therefore A0 £ A1 £ A2 £ ::: £ At and denoted by §t: The
date-event tree ¡ is therefore equal to § = [t¸0§t: The generic element of ¡
will be denoted by ¾: Further we can de…ne the functions gt : §t+1 ! §t by
gt (µ0; µ1; µ2; :::; µt; µt+1) = (µ0; µ1; µ2; :::; µt) ; i.e. gt assigns to each node in §t+1
its predecessor in §t: The unique predecessor of a node ¾ will also be denoted
by ¾¡1: ¾+ denotes the set of nodes which are successors of node ¾; i.e. the
set of all nodes for which ¾ is the predecessor. Since the sets At are …nite, the
number of successors of a node is always …nite. A path is a sequence of nodes
f¾tg such that ¾t = gt (¾t+1) and a generic path will be denoted by ¾1: t (¾)
denotes the period of time at which event ¾ 2 §t occurs. For more details on
the event-date tree see Chattopadhyay and Gottardi (1999).

There is one commodity available at each node in the tree and one consumer
is born, who lives for two periods. So agents are here distinguished according
to date and state of nature in which they are born. Therefore agents can be
identi…ed with the node at which they are born, so that in the rest of the paper
the agent born in node ¾ will be called agent ¾:

The consumption set of agent ¾ is R1+S(¾)
+ ; S (¾) is the cardinality of At+1

if the agent is born in period t: His preferences will be described by a utility
function u¾

¡
x (¾; ¾) ; (x (¾0; ¾))¾02¾+

¢
where x (¾) =

¡
x (¾;¾) ; (x (¾0;¾))¾02¾+

¢

denotes the consumption vector of agent ¾; x (¾; ¾) is his consumption in his
youth, (x (¾0;¾))¾02¾+ is his consumption in the di¤erent states of nature in his
old age. In his youth, each agent inelastically supplies one unit of labor. In old
age, agents receive interest payments from capital. Let w (¾) denote the wage
paid in node ¾ and R (¾) the capital income. Throughout the paper assume
that w (¾) > 0 and R (¾) > 0: The preferences of the agents are assumed to
satisfy the following assumptions:

1. The agent born in period -1 has preferences which are strictly monotone
in the single consumption good in period 0.

2. The preferences of other agents are described by a twice continuously
di¤erentiable (in the interior of its domain), strictly increasing and strictly
di¤erentiably quasiconcave u¾ : R1+S(¾)

+ ! R+:

The …rm problem is to decide at each node ¾ how much capital to invest, i.e.
after the shock realization in period t. This capital is then used at the successor
nodes of ¾ to produce output. Given the probabilities and prices, the …rm tries
to maximize expected pro…ts. Let prices Ãt (¾t) for all ¾t 2 §t for all t ¸ 0 be
given. Let k (¾t) denote the investment undertaken by the …rm in state ¾t: The
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…rm’s problem is then

max
k(¾)¸0

X

µt+12At+1

qt+1 (µt+1j¾t) ¢ Ãt+1 (µt+1; ¾t) ¢ f (k (¾t) ; µt+1) ¡ Ãt (¾t) ¢ k (¾t)

(1)

The prices can, given the investment decisions, be de…ned as follows: set
Ã¡1 ´ 1 and de…ne recursively Ãt (¾t) ¢ 1

f 0(k(¾t);µt+1) = Ãt+1 (¾0) for ¾0 2 ¾+
t :

>From the prices used in the …rm problem we derive the contingent claim
prices for the sequentially complete markets by setting

p (¾t) = Ãt (¾t) ¢
tY

i=0

qi (µij (µi¡1; µi¡2; :::; µ0)) (2)

for ¾t = (µ0; :::; µt) : With this contingent prices, by setting w (¾) = p (¾) ¢£
f

¡
k

¡
gt¡1 (¾)

¢
; µt

¢
¡ f 0 ¡k

¡
gt¡1 (¾)

¢
; µt

¢
¢ k

¡
gt¡1 (¾)

¢¤
and R (¾0) = p (¾0) ¢

[f0 (k (¾) ; µt+1) ¢ k (¾)] the consumer problem for consumers born in t ¸ 0 can
be written as

max
(x(¾;¾);(x(¾0;¾))¾0 2¾+)2R1+S(¾)

+

u¾
¡
x (¾;¾) ; (x (¾0;¾))¾02¾+

¢
(3)

s:t: p (¾) ¢ x (¾; ¾) +
X

¾02¾+

p (¾0) ¢ x (¾0;¾) · w (¾) +
X

¾02¾+

R (¾0)

Next, we de…ne feasible allocations in this economy, the notion of interim
Pareto optimality and a competitive equilibrium.

De…nition 1 A feasible al location (given initial capital ek) is a tuple (x; k) =
(x (µ0;¡1) ;

¡¡
x (¾;¾) ; (x (¾0;¾))¾02¾+

¢¢
¾2§)

³
(k (¾))¾2§ ;ek

´
) such that

1. x (¾0;¡1) + x (¾0; ¾0) + k (¾0) = f
³
ek; µ0

´

2. For ¾ 2 § : x (¾0;¾) +x (¾0;¾0) + k (¾0) = f (k (¾) ; µ) 8¾0 = (µ;¾) 2
¾+

For notational convenience allocations will be simply denoted by (x;k) in
the rest of paper, unless confusion arises.

The concept of Pareto optimality for the economy adopted in this paper is
now introduced (Muench (1977), Peled (1982)).

De…nition 2 A feasible allocation (x;k) is called interim Pareto-optimal if
there exists no other feasible al location

³
bx;bk

´
such that bx (µ0;¡1) ¸ x (µ0;¡1)

and u¾
¡bx (¾;¾) ; (bx (¾0;¾))¾02¾+

¢ ¸ u¾
¡
x (¾; ¾) ; (x (¾0; ¾))¾02¾+

¢
for al l ¾ 2 §;

with at least one strict inequality.
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Now, we introduce the concept of a competitive equilibrium for the economy.
As a price system p we de…ne a list of contingent prices (p (¾))¾2§ :

De…nition 3 (x¤; k¤; p¤) is a competitive equilibrium if

1. (x¤; k¤) is a feasible allocation.

2. given the price system p¤ and k¤; household ¾ solves (3).

3. given the price system p¤; k¤ (¾) solves (1) 8¾ 2 §:

Remark 4 Given that the shocks each period are …nite, the tree describing the
uncertainty has a countable number of nodes. Existence of a competitive equi-
librium in this economy can be proved by …rst showing that after a suitable
transformation of the single consumer problem with a given youth wage, the
competitive prices in such a ”static” two period problem exist. The argument
can then be extended by induction (see for example Zilcha (1990)).

A convenient and standard assumption we will make is to assume that
sup

µ2[t¸0At

fk jf (k; µ) = kg is …nite, so that our economy is bounded, and there-

fore, all allocations will be bounded above.

3 Dynamic E¢ciency and Exchange E¢ciency
In the literature on e¢ciency in OLG models, most models deal only with a
characterization of e¢ciency of exchange economies, i.e. economies without
production (Balasko and Shell (1980), Okuno and Zilcha (1980), Geanakoplos
and Polemarchakis (1991)). There are, on the other hand, a number of results
that deal with characterization of e¢ciency in in…nite production problems,
but without considering speci…c preferences for consumers and thus without
explicitly dealing with Pareto optimality (Cass (1972), Benveniste and Gale
(1975)). Both results have been extended to uncertainty (Chattopadhyay and
Gottardi (1999) extend the former; Zilcha (1990) and Dechert and Yamamoto
(1992) the latter). In the rest of the paper, we will call the latter form of
e¢ciency dynamic e¢ciency and refer to the former as exchange e¢ciency. Note
that under uncertainty, e¢cient exchange incorporates an e¢cient allocation of
risk, since exchange e¢ciency is related to consumers’ preferences, which in turn
re‡ects their attitudes towards risk. The purpose of this paper is to examine
how the two concepts are related to interim Pareto optimality.

To start, we give the de…nition of dynamic e¢ciency and note that a sequence
of investment decisions is called dynamically ine¢cient if it is not dynamically
e¢cient.

De…nition 5 A sequence of investment decisions
¡
k (¾)¾2§

¢
is dynamical ly ef-

…cient (given initial capital ek) if there exists no other sequence of investment
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decisions
³
bk (¾)¾2§

´
such that

f
³
bk (¾) ; µ

´
¡bk (¾0) ¸ f (k (¾) ; µ) ¡ k (¾0) 8¾0 2 ¾+8¾ 2 §

f
³
ek; µ1

´
¡bk (¾) ¸ f

³
ek; µ1

´
¡ k (¾) 8¾ 2 §1

with at least one strict inequality.

Remark 6 In the de…nition for uncertainty given e.g. in Dechert and Yamam-
ato (1992) the inequalities are only required to hold with probability one with
respect to the probability measure ¹ de…ned over the set of paths . In the con-
text of interim optimality, however, it seems natural to change the de…nition
in the way mentioned above. Consider e.g. the case in which there is a shock
each period according to a continuously distributed random variable. Then the
probability of a certain shock occuring at a certain time is zero, i.e. that the
probability of a certain ”node” ¾ occuring is zero. Nevertheless there is a con-
tinuum of consumers, namely those born at successor ”nodes” of ¾ who have
this single shock (respectively node ¾) in their history. According to the proba-
bility one de…nition of dynamic e¢ciency, the production in their life could be
zero, so the resulting allocation would generally not be interim Pareto optimal.
In this sense the de…nition in Dechert and Yamamoto (1992) takes the ex ante
period zero standpoint.

Dynamic e¢ciency thus rules out overaccumulation of capital in the sense
that a decrease in savings at one or more nodes would allow for a permanently
higher consumption level. For dynamic e¢ciency necessary and su¢cient condi-
tions can be derived with the following assumptions on the production function
(see Mitra (1979)):

There are positive constants m1;m2;m3; m4 such that for all k > 0 and µ 2
[t¸0At the following holds:

m1 · kf 0 (k; µ)
f (k; µ)

· m2 and m3 · ¡kf" (k; µ)
f 0 (k; µ)

· m4 (4)

These elasticity conditions will be used later in the proof of our characteri-
zation of interim Pareto optimality.

Before we state a characterization of dynamic e¢ciency some additional
notation is required. Given b¾ 2 ¡; we de…ne a subtree (of ¡) with root b¾,
denoted by ¡b¾; as a collection of nodes such that ¡b¾ ½ ¡ and ¡b¾ is itself a
tree with b¾ as its root. Given a path ¾1; ¾1

t denotes the t¡th coordinate of
the path. Given an arbitrary subtree ¡b¾; we de…ne a path in the subtree ¡b¾ as
a path with the property that for t ¸ t (b¾) all the nodes are elements of the
subtree and denote it by ¾1 (¡b¾) ; i.e. ¾1 (¡b¾) ½

n
¾1

1 ; :::; ¾1
t(b¾)¡1

o
[ ¡b¾: For
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any b¾ 2 ¡; we denote by ¡(b¾; ¡) the subtree that has b¾ as its root and includes
all successor nodes of b¾:

Under this assumption and the standard assumptions made above, Zilcha
(1990) derives the following characterization of dynamic e¢ciency under un-
certainty. The fact that we have slightly changed the de…nition of dynamic
e¢ciency does obviously not alter the result.

Theorem 7 Under the above assumptions on the production function an inte-
rior feasible allocation (x¤; k¤) for which k¤ is bounded below, i.e. there exists
" > 0 such that k¤ (¾) ¸ " for all ¾ 2 ¡; is dynamically ine¢cient if and only if
there exists a node ¾¿ 2 ¡ and some C > 0 such that

1X

t=¿

1
Ã (¾t)

· C

along every path ¾1 2 ©
¾1

1 ; :::; ¾1
¿¡1

ª [ ¡(¾¿ ;¡) ; where Ãt (¾t) are the non-
contingent prices de…ned above.3

Let us now illustrate the concept of (intergenerational) exchange e¢ciency.
We can reduce our economy with production to a pure exchange economy by
…xing the production and investment/saving decisions of a given competitive
equilibrium by taking the now …xed (competitive equilibrium) output as ag-
gregate endowment at each node. If it is not possible to achieve an interim
Pareto-improvement by pure transfers of commodities, the allocation is called
exchange e¢cient. More formally, we give the following de…nition of exchange
e¢ciency in a setting with capital.

De…nition 8 An allocation (x¤; k¤) is exchange e¢cient (given initial capital
ek) if there is no other feasible allocation (bx;k¤) which improves upon (x¤; k¤) in
the sense of De…nition 2.

Note that the …xed level of initial capital stock is not so important here since
capital remains …xed anyway. Necessary and su¢cient conditions for exchange
e¢ciency are usually given by imposing restrictions on the curvature of indi¤er-
ence surfaces or the production technology. A su¢cient condition for exchange
e¢ciency can be derived if the following assumption about the curvature of the
utility functions is ful…lled.

De…nition 9 An interior competitive equilibrium (x¤; k¤; p¤) satis…es the non-
vanishing Gaussian curvature condition if there exists a ½> 0 such that for al l
feasible allocations (bx; k¤)

u¾ (bx (¾)) ¸ u¾ (x (¾))

=)
X

¾02¾+

±2 (¾0; ¾) ¸ ¡±1 (¾) + ½
(±1 (¾))2

p (¾)
8¾ 2 §

3 Note that due to the the strict monotonicity of preferences and the properties of the
technology equilibrium prices will be strictly positive.

9



where ±1 (¾) = p (¾) ¢ [bx (¾;¾) ¡ x¤ (¾; ¾)] and ±2 (¾0; ¾) = p (¾0) ¢
[bx (¾0;¾) ¡x¤ (¾0; ¾)] for ¾0 2 ¾+: ½ is called the lower curvature coe¢cient.

Note that in the case without uncertainty, the non-vanishing Gaussian cur-
vature condition is imposing a lower bound on the curvature of the indi¤erence
curve by approximating it from below by a quadratic polynominal.

Remark 10 The assumption of non-vanishing Gaussian curvature is not very
restrictive. This can be seen in many applications. It will be ful…lled if the
preferences are identical across nodes, satisfy the other assumptions made in this
paper and the competitive equilibrium allocation (x¤; k¤) is uniformly bounded
away from 0 and alternative allocations (bx; k¤) are restricted to a neighborhood
of (x¤; k¤) : i.e. kx¤ (¾) ¡ bx (¾)k < · for some · su¢ciently small, where
k:k denotes the euclidian norm. Then our assumptions about preferences imply
non-vanishing Gaussian curvature. Note that restricting the allocation (bx; k¤) to
neighborhoods of (x¤; k¤) is without loss of generality when considering whether a
Pareto-improvement exists, given the strict quasiconcavity of preferences and the
convexity of technology. The same applies for the bounded Gaussian curvature
de…ned next.

De…nition 11 An interior competitive equilibrium (x¤; k¤; p¤) satis…es the boun-

ded Gaussian curvature condition if there exists a ½ > 0 such that for all feasible
al locations (bx;k¤)

p (¾) ¢ [bx (¾) ¡x¤ (¾)] < 0 and
X

¾02¾+

±2 (¾0; ¾) ¸ ¡±1 (¾) + ½
(±1 (¾))2

p (¾)

imply u¾ (bx (¾)) ¸ u¾ (x (¾))

where ±1 (¾) = p (¾) ¢ [bx (¾;¾) ¡ x¤ (¾; ¾)] and ±2 (¾0; ¾) = p (¾0) ¢
[bx (¾0;¾) ¡x¤ (¾0; ¾)] for ¾0 2 ¾+: ¹½ is called the upper curvature coe¢cient.

In order to characterize exchange e¢ciency we need some more de…nitions.
Given a subtree ¡b¾; a weight function is a function ¸¡b¾ : ¡b¾ ! [0;1] such
that

P
¾02¾+\¡b¾

¸¡b¾ (¾0) = 1 for all ¾ 2 ¡b¾: Given a pair (¡b¾; ¸¡b¾ ) the induced

weight function, denoted b̧¡b¾ : ¡b¾ £ ¸¡b¾ ! [0; 1] ; is de…ned as b̧¡b¾ (b¾) = 1;
b̧¡b¾ (¾) = ¸¡b¾ (¾) ¢ b̧¡b¾ (¾¡1) for ¾¡1 2 ¡b¾: Now we can restate a simpli…ed
form of a result due to Chattopadhyay and Gottardi (1999).4

4 The result in Chattopadhyay and Gottardi (1999) is proved under somewhat weaker as-
sumptions. Under their assumptions, the necessary and su¢cent conditions do not coincide
(see Theorem 1 and 2 in Chattopadhyay and Gottardi (1999) for the more general statement).
We chose our stronger assumptions in order to simplify the exposition.
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Theorem 12 Let (x¤; k¤; p¤) be an interior competitive equilibrium which is
bounded below, satisfying the non-vanishing Gaussian curvature condition and
the bounded Gaussian curvature condition. Then a necessary and su¢cent con-
dition for the allocation not to be (interim) exchange e¢cient is that there exists
a subtree ¡b¾, a weight function ¸¡b¾ and a …nite number A such that for every
path ¾1 (¡b¾) in the subtree

1X

t=t(b¾)

b̧¡b¾ (¾1
t )

p (¾1
t )

· A

4 Characterizing Interim Pareto Optimality

In this section, we present our …rst main result. It gives a characterization of
interim Pareto optimality in a stochastic OLG model with production. Com-
pared to pure exchange, a setting with production allows for the analysis of
many real world problems as they often involve capital accumulation. In par-
ticular, it allows us to analyze the interplay between capital accumulation and
a redistributive transfer scheme like PAYG social security and its risk sharing
opportunities. Other applications include the role of government debt or the
role of monetary policy as insurance. A priori, it is not clear how the rich ad-
ditional redistributional possibilities (compared to a pure exchange setting) of
an economy with production in‡uence the characterization of interim Pareto
optimality.

Theorem 13 Let (x¤; k¤; p¤) be an interior competitive equilibrium which is
bounded below. Assume that both the non-vanishing and bounded Gaussian cur-
vature assumptions hold as well as the elasticity assumption on the production
function holds. Then a necessary and su¢cent condition for the competive equi-
librium allocation not be interim Pareto-optimal is that here exists a subtree ¡b¾,
a weight function ¸¡b¾ and a …nite positive number A such that for every path
¾1 (¡b¾) in the subtree

1X

t=t(¾)

b̧¡b¾ (¾1
t )

p (¾1
t )

· A: (5)

Therefore exchange e¢ciency and interim Pareto optimality are equivalent.

Proof. See the Appendix.
The main idea of the proof is to show that a competitive equilibrium is

exchange e¢cient if and only if there is no possibility of Pareto improvement
by joint feasible deviations (lower consumption and investment of the young)
of the initial competitive consumption-investmemt plan.
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Remark 14 Our result implies as a special case the equivalence of Pareto op-
timality, exchange e¢ciency and dynamic e¢ciency in an econmy without un-
certainty under the curvature assumptions on preferences and technology made
above (Bose (1975), Bose and Ray (1993)). To see this, note that under cer-

tainty the condition in theorem 13 reduces to
1P

t=1

1
pt

= 1; because the degenerate

date-event tree is the only subtree of itself. But this condition is equivalent to
both exchange and dynamic e¢ciency (see Balasko and Shell (1980) and Cass
(1972)).

Remark 15 It should be noted that the e¢ciency characterization also carries
over to monetary competive equilibria as can easily be seen from the proof. This
was also used to characterize the e¢ciency of monetary equilibria by Balasko
and Shell (1981) and Bose and Ray (1993) under certainty.

Note that the characterization in the theorem was derived for an economy
without a social security system. The previous remark, however, shows that
the theorem also applies to a model where money is a pure store of value. An
alternative interpretation of money can be given in terms of a redistributive
scheme like PAYG social security (or government debt). The reason for this
is that monetary and …scal policy are equivalent in this class of models. This
was already noted by Balasko and Shell (1981). This equivalence carries over
to models with uncertainty under the interim Pareto optimality criterion.

Thus our result indicates the scope for a Pareto-improving role for PAYG
social security under uncertainty. If the condition for exchange e¢ciency is
violated, a well designed social security system may improve the allocation of
risk relative to the pure market outcome (or to some initially given social security
system). In the special case of certainty, the corresponding characterization
of interim Pareto optimality also indicates a Pareto-improving role for social
security. There, however, the role for social security is restricted to simple Ponzi
schemes which roll over debt in…nitely into the future. The condition for Pareto
optimality then exactly rules out this kind of schemes. Under uncertainty, social
security may additionally serve as a means of intergenerational risk sharing.
The contributions and bene…ts of the social security system may have to be
conditioned on the di¤erent realizations of uncertainty to achieve this goal. That
there are risk sharing opportunities left in the competitive equilibrium does not
derive from some sort of market incompleteness, but from the dynamic structure
of the economy. The crucial point is that these risk sharing opportunities do
not derive from the fact that markets are incomplete, but from the dynamic
structure of the economy. In particular, we are not considering risk sharing
against the state in which an individual is born. This kind of risk sharing is ruled
out by the choice of our criterion of interim Pareto optimality combined with our
assumption that markets are complete once an individual is born (sequentially
complete markets). Thus risk sharing in our model works through a mechanism
that closely resembles a Ponzi scheme, but is more sophisticated. Instead of
rolling over debt, we can interpret our scheme as one that collects contributions
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and then rolls over an insurance contract in exchange for the contributions.
Therefore we use the term dynamic risk sharing.

Three things are remarkable about this insurance scheme in the Diamond
model under uncertainty. First, the condition under which such an insurance
contract is feasible is the same as in a model without production (as in Chat-
topadhyay and Gottardi (1999)). In particular this means that extending a
pure exchange model to production does not improve the possibilities of risk
sharing. This is surprising because, in comparison to a pure exchange model,
the redistributional possibilities considerably improve by introducing joint (con-
sumption and investment) deviations from a competitive equilibrium as a source
of Pareto-improvements.

Second, this kind of social security scheme provides an insurance that cannot
be replicated in a capital market. In fact, social security may provide insurance
against macroeconomic risk which is often considered to be uninsurable. To be
more precise, it provides insurance against the aggregate productivity risk in
the second period of life (old age).

Third, contrary to the pure exchange case, we can relate this theoretical
possibility of insurance against aggregate risk to an empirically testable e¢-
ciency criterion, namely dynamic e¢ciency. This is important because real
world economies are usually considered to be dynamically e¢cient (Abel, Sum-
mers, Mankiw and Zeckhauser (1989)). Thus simple Ponzi schemes are not
a feasible source of Pareto-improvements. The question is then whether the
described dynamic risk sharing possibilities, which we interpreted above as so-
phisticated Ponzi schemes, are relevant in real world economies or whether they
are ruled out by the fact that simple Ponzi schemes are infeasible. We answer
this question in the next section.

5 Dynamic E¢ciency versus Interim Pareto Op-
timality

In this section we provide our second main result. We demonstrate that under
uncertainty dynamic e¢ciency is not su¢cient for interim Pareto optimality in
a competitive equilibrium, but it is a strictly weaker e¢ciency benchmark.

Theorem 16 In a stochastic OLG model with production, dynamic e¢ciency
does not rule out (interim) Pareto-improvements in a competitive equilibrium.
Thus, even under dynamic e¢ciency, there may be a Pareto-improving role for
a government by introducing a well designed social security system.

Proof. In the following example we construct a generic competitive equi-
librium allocation that is dynamically e¢cient without being exchange e¢cient
respectively interim Pareto optimal. Consider an economy with two possible
shocks each period of time. Let (®i)

1
i=0 be a sequence of real numbers 0 < ®i < 1

with the property
1Q

i=0
®i > 0; which is equivalent to

P1
i=0 (1 ¡®i) < 1:
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Suppose there is a sequence of shocks (µt)
1
t=0 with µt 2 At for all t such

that ®i = qi (µi jµi¡1; :::; µ0 ) : In other words, there exists a path in the tree
which has strictly positive probability. Suppose further that along the path

¾1 = (µ0; µ1; :::) we have Ã (¾i) = 3i and hence
1P

i=0

1
Ã(¾i) < 1: For every node

¾ in the tree there exists a path e¾1 with ¾ 2 e¾1 such that
1P

i=0

1
Ã(e¾i )

= 1:

Clearly the economy described above is not dynamically ine¢cient although

the series
1P

i=0

1
Ã(¾i) converges (and is therefore in this case uniformly bounded)

on a set of strictly positive measure, since there is no node in the tree at which
a dissaving is possible without a later decrease in consumption.

However, there is a interim Pareto-improving pure redistribution possible.

We clearly have
tQ

i=0
®i ¢Ã (¾t) ¸

µ
TQ

i=0
®i

¶
¢ (1 ¡ ")t¡T ¢Ã (¾t) for every " > 0 and

some T when t > T: Since for an " su¢ciently small we have
P1

t=T+1

1
(1¡")t¡T

Ã(¾t) =
P1

t=T+1

1
(1¡")t¡T

3t < 1 the claim follows immediately by choosing the degenerate
subtree consisting of the path ¾1 and by applying Theorem 16 .

To make the example more concrete, suppose that preferences of the con-
sumers along the convergent path ¾1 consumers have preferences of the form
u¾t (x (¾)) =

p
x (¾; ¾) + b (¾t) ¢ ®t

p
x (¾t;¾ 0

1t) + b (¾t) ¢ (1 ¡ ®t)
p

x (¾t;¾0
2t);

where b (¾t) is a positive real number. Let the technology be given by

f (k; µ) = a (µ) ¢ k¯

where ¯ will be chosen to satisfy a certain condition and 0 < ¯ < 1:
This technology clearly satis…es the elasticity conditions (4). Suppose the

individual born in ¾t faces given interest rates of 3 and 1
3 in the two possible

events in his second period of life. The individual’s problem is then

max
p

x (¾;¾) + b (¾t) ¢ ®t

q
x (¾t; ¾0

1t) + b (¾t) ¢ (1 ¡ ®t)
q

x (¾t;¾0
2t) (6)

s:t: x (¾; ¾) + s (¾t) = w (¾t)

x (¾t;¾0
1t) =

1
3

¢ s (¾t)

x (¾t;¾0
2t) = 3 ¢ s (¾t)

A computation shows that s (¾t) = c(¾t)
1+c(¾t)

¢w (¾t), where c (¾t) = (b (¾t))
2 ¢

³
®t

q
1
3 + (1 ¡ ®t)

p
3
´2

: We want c (¾t) to be independent of the node ¾t and
equal an arbitrarily chosen positive real number c: Given the savings decision
s (¾t) ; in order for 3 and 1

3 to be equilibrium interest rates we must have

f 0 (s (¾t) ; µ1) = a (µ1) ¢ ¯ ¢ (s (¾t))¯¡1 =
1
3

(7)

14



f 0 (s (¾t) ; µ2) = a (µ2) ¢ ¯ ¢ (s (¾t))
¯¡1 = 3

We know w (¾t) = (1 ¡ ¯) ¢ a (µ) ¢ (k (¾t¡1))
¯ where ¾t = (µ; ¾t¡1) : Thus

s (¾t) =
c (¾t)

1 + c (¾t)
¢ (1 ¡¯) ¢ a (µ) ¢ (k (¾t¡1))¯

The function f (x) = c
1+c ¢ (1 ¡¯) ¢ a (µ) ¢ x¯ has for …xed a (µ) a nonzero

…xed point, which we call k¤: We can now solve, for an arbitrary given k¤; for
the corresponding a, which is given by a = 1+c

c ¢ 1
1¡¯ ¢ (k¤)1¡¯ : Plugging k¤ for

s (¾t) and 1+c
c ¢ 1

1¡¯ ¢ (k¤)1¡¯ for a (µ1) into (7), k¤ cancels out and the resulting
condition for ¯ is

1 + c
c

¢ ¯
1 ¡¯

=
1
3

or equivalently

¯ =
1
3 ¢ c

1+c

1 + 1
3 ¢ c

1+c
:

If we choose a (µ2) = 9 ¢ a (µ1) ; the second equation above is also satis…ed.
Up to now we have constructed a k¤; so that if along the path ¾1 the same

shock always occurs, a capital stock of k¤ is maintained. It is clear from our
construction that once we deviate from this path, agents have a higher wage
income. Hence if the c (which determines the savings behavior together with
the wage) remains …xed, households save more. This implies that if the same
shocks occur each period, higher capital stock means higher wages and therefore
higher savings etc. Thus, as long c remains …xed, the capital stock o¤ the path
will never fall below k¤: Furthermore, by a (µ2) ¢ k¯ = k () k = a (µ2)

1
1¡¯ ; an

upper bound on the maximal possible capital stock is given. Since a (µ1) and
therefore a (µ2) depend on the choice of k¤ as described above, k¤ can be chosen
su¢ciently large to ensure a (µ2) ¢ ¯ ¢ a (µ2)

¯
1¡¯ ; the lowest possible interest rate

when the ”high” shock a (µ2) occurs, to be strictly larger than 1. Given this
lower bound on interest rates, it is possible to determine bounds on b (¾t) if we
…x the probabilities of shocks o¤ the path equal to

¡1
2 ; 1

2

¢
:On the path we have

®t ! 1; and therefore b (¾) will converge along the path to a constant.
Overall, the examples display all the features described in the …rst few para-

graphs of this section. The Gaussian curvature assumptions are satis…ed since
the values of the b (¾t) are in a bounded intervall. This is so because in the
expression for c (¾t), under the assumptions made, the values of the second
bracket is in a intervall, so that to keep c (¾t) constant the b (¾t) can also be
chosen from an intervall. Since interest rates are bounded above and below and
consumption along ¾1 is constant, the overall equilibrium consumption levels

15



are a subset of a compact set. All of this implies the curvature assumptions.
Further, the consumption along the path ¾1 is uniformly bounded away from
zero5.

The basic idea, why under uncertainty dynamic e¢ciency is weaker than
exchange e¢ciency and also Pareto optimality becomes clear if one realizes that
under uncertainty dynamic e¢ciency is a very coarse e¢ciency benchmark. The
reason for this can be seen by comparing dynamic e¢ciency and exchange e¢-
ciency under certainty to the case of uncertainty. Under certainty both dynamic
e¢ciency and exchange e¢ciency reduce to the same criterion and therefore rule
out Ponzi schemes. Therefore the e¢ciency characterizations coincide. Under
uncertainty, dynamic e¢ciency essentially rules out a reduction in savings at
one node and a (weak) increase in aggregate consumption in all successor nodes
(not just along one path succeeding the node where savings were reduced). The
crucial point is that an attempt to lower savings at one node will a¤ect capital
accumulation in all succesor nodes, even those which lie on e¢cient paths when
these paths are viewed in isolation. This means that the instrument of savings
adjustments cannot be …nely tuned in the sense that only one (ine¢cient) path
along a subtree can be adjusted. But this is exactly what exchange e¢ciency
requires. Exchange e¢ciency rules out that there is even a single path in the
tree along which a Ponzi scheme can be played. This highlights the di¤erence
between e¢cient capital accumulation and risk sharing. E¢cient risk sharing
rules out even sophisticated Ponzi schemes, i.e. schemes which roll over debt
along isolated paths in a subtree without a¤ecting other paths in the subtree.

Summing up, we showed that sequentially complete markets do not rule
out risk sharing even in the presumably empirically relevant case of dynamic
e¢ciency. This result can be interpreted as justi…cation for a well designed
PAYG social security system as insurance against macroeconomic risks during
old age.

6 Su¢cient condition for Interim Pareto Opti-
mality

As for the case under certainty (see Balasko and Shell (1980), Okuno and Zilcha
(1980)), it is possible to derive a stronger su¢cient condition for Pareto optimal-
ity. This stronger criterion has the advantage that it does not require curvature
assumptions on preferences and technology. Under certainty the criterion re-
quires liminf

t!1
kptk = 0; if the resources of the economy are bounded. What the

criterion essentially achieves is making the economy ”quasi-…nite”, by putting
a low weight, in form of a low value, on the future (or at least parts of the
future). This fact allows one to use again the simple revealed preference proof

5 For the sake of a simpler presentation we assumed in the theorems that allocations are
uniformly bounded away from zero. In fact, we only need the consumption to be uniformly
bounded away from zero along the subtree at which the condition on the sum of weighted
prices holds (see Chattopadhyay/Gottardi (1999), Theorem 2).
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of the …rst welfare theorem from standard Arrow-Debreu-economies. So with
this assumption, the reason for the failure of the …rst welfare theorem in OLG
models, namely that prices do not necessarily form a linear functional on the
commodity space, which means that the value of a certain commodity bundle
is not necessarily …nite,6 does not have severe consequences in this case. In
particular, economies with land (see Rhee (1991), Homburg (1991)), or more
generally, economies with non-negligible consumers (see Geanakoplos and Pole-
marchakis (1991)) display equilibrium prices satisfying this property. We state
now the corresponding assumption under uncertainty and prove the …rst welfare
theorem. The assumption is similar to one given by Demange (1998).7

liminf
t!1

X

¾2§t

p (¾) = 0 (8)

Under the condition (8) and under standard assumptions on preferences and
technology, i.e. under the assumptions made in the paper with exception of the
curvature assumptions, we may state:

Proposition 17 Suppose preferences and production technology satisfy stan-
dard assumptions. If (8) holds at a competitive equilibrium, the equilibrium
allocation is interim Pareto-e¢cent.

Proof. Suppose not. Then there exists an alternative feasible allocation³
bx; bk

´
which interim Pareto improves in comparison with the competitive allo-

cation (x¤; k¤) : Since the consumers maximized their utility given the budget
constraint in the competitive equilibrium, we must have

p (¾) ¢ bx (¾;¾) +
X

¾02¾+

p (¾ 0) ¢ bx (¾0;¾) ¸ p (¾) ¢ x¤ (¾;¾) +
X

¾02¾+

p (¾0) ¢ x¤ (¾0;¾)

(9)

with strict inequality for at least one ¾ 2 §: Let e¾ 2 § denote such a node.
Further, since …rms maximize expected pro…ts in the competitive equilibrium
X

¾02¾+

p (¾0) ¢ f (k¤ (¾) ; µ) ¡ p (¾) ¢ k¤ (¾) ¸
X

¾02¾+

p (¾0) ¢ f
³
bk (¾) ; µ

´
¡ p (¾) ¢ bk (¾)

(10)

Let " = p (e¾)¢ bx (e¾; e¾)+
P

¾02e¾+

p (¾ 0) ¢ bx (¾0;e¾)¡p (e¾) ¢x¤ (e¾; e¾)+
P

¾02e¾+

p (¾0) ¢

x¤ (¾0; e¾) > 0:
6 As consequence of this OLG economies can exhibit a ”lack of market clearing at in…nity”

(see for example Geanakoplos and Polemarchakis (1991))
7 A related result in a model with exogenous stochastic development of wages and interest

rates can be found in Richter (1993).
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Let ¡e¾ denote the subtree that contains all successor nodes of e¾: Now …x
some T > t(e¾) : Summing form 0 to T over all nodes in the tree ¡ gives

X

¾2¡\([t·T §t)
p (¾) ¢ bx (¾;¾) +

X

¾02¾+

p (¾0) ¢ bx (¾0;¾) (11)

¡
X

¾2¡\([t·T ¡1§t)

X

¾02¾+

p (¾0) ¢ f
³
bk (¾) ; µ

´
+ p (¾) ¢ bk (¾) >

X

¾2¡\([t·T §t)
p (¾) ¢ x¤ (¾; ¾) +

X

¾02¾+

p (¾0) ¢ x¤ (¾ 0; ¾) ¡

X

¾2¡\([t·T ¡1§t)

X

¾02¾+

p (¾0) ¢ f (k¤ (¾) ; µ) + p (¾) ¢ k¤ (¾)

where the di¤erence between the left-hand and right hand expression is is
at least " > 0: Forming the same sum with the exception of not including the
successor nodes of §T; by feasibility of both allocations, taking di¤erences we
get

X

¾2§T +1

p (¾) ¢ bx (¾; ¾¡1) >
X

¾2§T+1

p (¾) ¢ x¤ (¾; ¾¡1) (12)

with the di¤erence again being at least ": But by assumption (8) and the
boundness of the economy this is a contradiction.

The e¢ciency of an economy with land is now a corollary of this result. We
de…ne land as an object which pays a …xed amount of the single commodity at
each time in each state, which we denote by D: Note that this more restrictive
than necessary and done for notational simplicity. Under certainty (see Rhee
(1991), Homburg (1991)), it is only necessary that the income share of land does
not vanish asymptotically. Given the boundness of our economy it would there-
fore su¢ce to assume that the return from land is across all nodes bounded away
from zero.In equilibrium, the value of land must be …nite, i.e. R¢ P

¾2§
p (¾) < 1.

This clearly requires (8). Thus we can state:

Corollary 18 A competitive equilibrium in an economy with land is always
interim Pareto optimal.

Remark 19 It can also be shown that the su¢cient condition for interim Pareto
optimality stated in terms of a condition on the ratio of (net) dividends and the
value of the market portfolio in Abel, Mankiw, Summers and Zeckhauser (1989)
implies (8).
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7 A Second Welfare Theorem
In exchange OLG models, it is possible to prove a version of the second wel-
fare theorem, namely that Pareto optimal allocations can be supported as a
competitive equilibrium. In our setup this is generally not possible, since the
de…nition of competitive equilibrium with production requires that the young
generation earns income only by selling their endowment (one unit of labor)
and that the old generation owns the capital. To support any interim Pareto
optimal allocation, we must therefore allow for transfers.

De…nition 20 A competitive equilibrium with transfers (given ek) is a tuple
(x¤; k¤; p¤; T¤) such that

1. (x¤; k¤) is feasible given ek
2. given the price system p¤; (1) is solved by k¤ (¾) 8¾ 2 §:

3. households solve

max
(x(¾;¾);(x(¾0 ;¾))¾0 2¾+ )2R1+S(¾)

+

u¾
¡
x (¾;¾) ; (x (¾0;¾))¾02¾+

¢
(13)

s:t: p (¾) ¢ x (¾; ¾) +
X

¾02¾+

p (¾0) ¢ x (¾0;¾) · w (¾) +
X

¾02¾+

R (¾0)

+T¤ (¾; ¾) +
X

¾02¾+

T ¤ (¾; ¾0)

4. T¤ (¾; ¾) + T¤ (¾¡1; ¾) = 0 8¾ 2 §

To prove the second welfare theorem, we want to characterize optimal allo-
cations by …rst-order conditions and for this we need some boundary conditions
on the utility functions. A precise statement is given in the following remark.

Remark 21 We say that utility functions satisfy boundary conditions
if for all ¾ 2 § the corresponding utility functions u¾ (:) satis…es

lim
x(¾;¾)!0

@u¾

³
x(¾;¾);(x(¾0;¾))¾0 2¾+

´

@x(¾;¾) ! 1 for al l (x (¾0;¾))¾02¾+ 2 RS(¾)
++ and

lim
x(¾¤;¾)!0

@u¾

³
x(¾;¾);(x(¾0;¾))¾02¾+

´

@x(¾¤;¾) ! 1 for ¾¤ 2 ¾+ for all x (¾; ¾) ;

(x (¾0;¾))¾02¾+nf¾¤g 2 RS(¾)
++ :

With this slightly modi…ed concept of equilibrium a second welfare theorem
can be proved.

Proposition 22 Under the boundary conditions on utility functions, any inte-
rior interim Pareto optimal allocation can be supported as a competitive equilib-
rium with transfers.
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Proof. Let (x¤; k¤) be the given interior interim Pareto optimal allocation.
If we de…ne an Arrow-Debreu price system by using (2) and construct Ã (¾) re-
cursively using k¤ from the given allocation, optimality conditions for the …rm
imply that given these prices k¤ is pro…t maximizing. Give the consumer ¾ the
…nal income p (¾)¢x¤ (¾; ¾)+

P
¾02¾+

p (¾0)¢x¤ (¾0;¾) by constructing an appropri-

ate transfer scheme. First-order conditions for interim Pareto optimality imply
that consumer ¾ chooses indeed x¤ (¾;¾) ; (x¤ (¾ 0; ¾))¾02¾+ : Since the allocation
(x¤; k¤) is by de…nition also feasible, the desired result follows.

8 Conclusions

We have given a complete characterization of interim Pareto optimality in a
stochastic OLG model with production and social security. We have shown
that the risk sharing possibilities in a model with production do not improve
compared to a pure exchange model, although the redistributional possibilities
improve. Our …rst main result gives a characterization of interim Pareto opti-
mality. In a competitive equilibrium, interim Pareto optimality is equivalent to
intergenerational exchange e¢ciency, which in turn implies dynamic e¢ciency.
Our characterization subsumes also equilibria with PAYG social security system.
If the condition for exchange e¢ciency is violated, there is a Pareto-improving
role for a PAYG social security system. Our second main result shows that dy-
namic e¢ciency does not rule out a Pareto-improving role for a social security
system to act as insurance against aggregate productivity risk in the second
period of life (old age) through dynamic risk sharing. Furthermore, this kind
of risk sharing cannot be replicated on the capital market as it insures against
aggregate (macroeconomic) risk. We have also provided a stronger su¢cient
criterion for interim Pareto optimality and showed that economies with land
ful…ll this criterion. Moreover, we have proved a second welfare theorem for our
economy.

It is important to note that the fact that there may be risk sharing possibil-
ities in a competitive equilibrium of our economy are not derived from market
incompleteness but from the dynamic structure of the economy. We have in-
terpreted this kind of risk sharing as sophisticated Ponzi scheme as it involves
collecting contributions from the young but rolls over an insurance contract
rather than debt from generation to generation. The importance of our results
stems from the fact that dynamic e¢ciency is an empirically testable criterion
which implies that Ponzi are schemes infeasible. Therefore, if it holds, a wide
range of Pareto-improving policies are ruled out. Our results, however, show
that this testable criterion is not su¢cient to guarantee even the weak notion
of interim Pareto optimality of a pure market allocation.

Our results can be extended in several directions. First, it would be in-
teresting to derive conditions for dynamic e¢ciency and Pareto optimality of
competitive allocations that can easily be veri…ed empirically as, for example,
the su¢cient condition for dynamic e¢ciency and interim Pareto optimality
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in Abel, Summers, Mankiw and Zeckhauser (1989). Second, one can hope to
…nd simpler e¢ciency characterizations for stationary economies. This is at
least true for pure exchange models and is likely to carry over to a model with
capital (Demange and Laroque (2000)).

Appendix: Proof of Theorem 13
Proof. Clearly, if the above conditions holds, then the allocation is not ex-

change e¢cient and therefore not interim Pareto optimal. For the converse recall
that the characterizing condition for dynamic e¢ciency was sup

¾12¡b¾

P1
t=¿

1
Ã(¾t)

;

¾t = (µ0; :::; µt) not being bounded in every subtree ¡b¾: Since p (¾t) = Ã (¾t) ¢Qt
i=0 qi (µij¾i¡1) · Ã (¾t) exchange e¢ciency implies dynamic e¢ciency. To

see this consider every subtree and then choose the induced weight functions
on it to be equal to the probability of reaching the node. The condition for dy-
namic e¢ciency follows from the previous remark and the fact that each node
is reached with strictly positive probability. To prove the result of the theorem
it therefore remains to be shown that joint deviations from the equilibrium al-
location cannot be Pareto-improving. The proof is completed by the following
three steps:

Step 1: We will show that it is never optimal to increase savings at any
point of time at any node in the tree. Suppose there is an increase in savings at
node ¾ = (µ0; :::; µt)(at time t) and node ¾ is among the …rst nodes (in terms
of time) at which there is an increase in saving. Consider the individual born
at this node with utility function u¾ (x (¾)) : Then there must be a decrease
in the youth consumption of this individual which is de…ned by the amount
of increase in saving. So let bx (¾; ¾) denote the youth consumption in node
¾ after the increase in saving and let x¤ (¾; ¾), as de…ned above, denote the
equilibrium consumption when young. Since the new allocation is supposed to
be Pareto-improving, we must have by the non-vanishing Gaussian curvature
condition

X

¾02¾+

±2 (¾0; ¾) ¸ ¡±1 (¾) + ½
(±1 (¾))2

p (¾)
(14)

Rewriting this using the relation between Ãt+1; Ãt and p we get

X

µ2At+1

qt+1 (µj¾t) ¢ Ãt (¾)
f 0 (k¤ (¾) ; µ)

¢ [bx (¾0;¾) ¡ x¤ (¾0;¾)] ¸ (15)

¡Ãt (¾) ¢ (bx (¾; ¾) ¡ x¤ (¾;¾)) + ½
(Ãt (¾) ¢ (bx (¾;¾) ¡x¤ (¾;¾)))2

Ãt (¾)

Noting that bk (¾) ¡ k¤ (¾) = ¡ (bx (¾;¾) ¡x¤ (¾;¾)) > 0; replacing Ãt with
Ãt+1=f 0; neglecting the last term on the right hand side and averaging with
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weights gives
X

µ2At+1

qt+1 (µj¾t) ¢ Ãt+1 (¾0) ¢ [bx (¾0; ¾) ¡ x¤ (¾0;¾)] > (16)

X

µ2At+1

qt+1 (µj¾t) ¢ Ãt+1 (¾) ¢ f 0 (k¤ (¾) ; µ) ¢
h
bk (¾) ¡ k¤ (¾)

i

i.e. that due to the strict concavity of the production function, the value
of the necessary increase in tomrrow’s consumption is strictly larger than the
increase in tomorrow’s production induced by the increase in saving.

This result shows that a Pareto-improving new allocation can never begin
with an increase in saving.

Step 2: Suppose now ¾ = (µ0; :::; µt)(at time t) is among the …rst nodes
in time at which there is a decrease in saving. Consider the individual born
at this node with utility function u¾ (x (¾)) : Let us, as in the preceding para-
graph, denote the new allocation by ab: So suppose in this case bk (¾) ¡ k¤ (¾) =
¡ (bx (¾;¾) ¡ x¤ (¾;¾)) < 0: The argument is now similar to the one before.
Again, by non-vanishing Gaussian curvature

X

¾02¾+

±2 (¾0; ¾) ¸ ¡±1 (¾) + ½
(±1 (¾))2

p (¾)
(17)

Note that
P

¾02¾+
±2 (¾0; ¾) · 0 and ¡±1 (¾) < 0 in this case, so that

¡
X

¾02¾+

±2 (¾0; ¾) < ±1 (¾) (18)

Writing out the expressions and substituting as in the argument before
X

µ2At+1

qt+1 (µjµt) ¢ Ãt+1 (¾0) ¢ [x¤ (¾0;¾) ¡ bx (¾0;¾)] < (19)

X

µ2At+1

qt+1 (µjµt) ¢ Ãt+1 (¾) ¢ f 0 (k¤ (¾) ; µ) ¢
h
k¤ (¾) ¡bk (¾)

i

i.e. the value of reduction in output at the sucessor nodes of ¾ is larger
than the maximal possible reduction in value of consumption that leaves the
individual indi¤erent.

These two facts together imply that if there is an interim Pareto-improving
allocation it must be of the following form. At the …rst node where it di¤ers
from the initial allocation there is either a pure redistributive transfer (which
necessarily involves a positive transfer for the old generation) or a decrease in
saving which gives the amount less saved as consumption to the old generation
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, or there is a combination of both. This fact along with the quasi-concavity
of utility functions and strict convexity of the technology imply that there will
never be an increase in saving at any node in the tree.

Step 3: Assume a Pareto improvement is possible. Consider the following
identity, which follows from the resource constraint x (¾0;¾)+x (¾0;¾0)+k (¾0) =
f (k (¾) ; µ) 8¾0 = (µ;¾) 2 ¾+

¢x (¾0; ¾) +¢x (¾0;¾0) + ¢k (¾0) = ¢f (k (¾) ; µ) (20)

where ¢x (¾0;¾) = (bx (¾0;¾) ¡x¤ (¾0; ¾)) etc. if (x¤; k¤) is the initial com-
petitive equilibrium allocation and

³
bx;bk

´
is the new interim Pareto-improving

allocation. Equivalently

¡¢x (¾0;¾0) ¡ ¢k (¾0) = ¢x (¾0; ¾) ¡ ¢f (k (¾) ; µ) (21)

If we de…ne ¢" (¾0) = ¡¢k (¾0) as the dissaving at node ¾ 0 when changing
to the new allocation, which is by the argument made above always nonnega-
tive, and ¢a (¾0;¾0) = ¡¢x (¾0;¾0) as the decrease in youth consumption when
changing to the new allocation, we have ¢a (¾0;¾0) +¢" (¾0) > 08

¢a (¾0;¾0) + ¢" (¾0) = ¢x (¾0;¾) ¡¢f (k (¾) ; µ) (22)

Consider all nodes ¾0 2 ¾+ for which ¢a (¾0;¾0)+¢" (¾0) > 0: Since the im-
proving allocation

³
bx; bk

´
must at some node e¾ be di¤erent from the initial one,

by the arguments made above we must have ¢a (e¾; e¾) + ¢" (e¾) > 0: Consider
now the successor nodes of e¾ for which ¢a

¡
¾";¾"

¢
+ ¢"

¡
¾"

¢
> 0; ¾" 2 e¾+: It

is easy to see that if we continue this way we inductively de…ne a subtree, called
¡e¾: Multiplying with contingent prices p (¾0) and summing over ¾0 2 ¾+ \ ¡e¾
gives

X

¾02¾+\¡e¾

p (¾ 0) ¢ [¢a (¾0;¾0) + ¢" (¾0)] =
X

¾02¾+\¡ e¾

p (¾0) ¢ [¢x (¾0;¾) (23)

¡¢f (k (¾) ; µ)]

Next, we state a technical lemma which follows from the elasticity assump-
tion (4) and gives a quadratic term lower bound for changes in the value of
production due to changes in investment behavior similar to the non-vanishing
Gaussian curvature assumption for the utility functions. We omit a proof of
this lemma. It follows from standard arguments (see Zilcha (1990)).

Lemma 23 Given assumption (4) on the production function and the bounded-
ness of the economy, the following holds for all 0 < ± < k (¾) <

8 It is well possible that there is an increase in youth consumption at some later node,
however the sum ¢a (¾0 ;¾ 0) +¢" (¾ 0) cannot become zero or negative, since such increases in
youth consumption just cancel out with the decrease in saving.
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sup
µ2[t¸0At

fk jf (k; µ) = kg for all ¾ 2 § and a price system p consistent with

k (¾) as de…ned in (2)

X

¾02¾+

p (¾0) ¢ [f (k (¾) ; µt+1) ¡ f (k (¾) ¡ ±; µt+1)] ¸ p (¾) ¢ ± + c ¢ (p (¾) ¢ ±)2
p (¾)

Using now the non-vanishing Gaussian curvature condition for preferences
and the lemma above for production functions, we get9

X

¾02¾+\¡e¾

p (¾0) ¢ [¢x (¾0; ¾) ¡¢f (k (¾) ; µ)] ¸ (24)

¡±1 (¾) + ½
(±1 (¾))2

p (¾)
+ p (¾) ¢ ¢" (¾) + c ¢ (p (¾) ¢ ¢" (¾))2

p (¾)

where ±1 (¾) is de…ned as above.
Replacing ¢x (¾0;¾) ¡¢f (k (¾) ; µ) by ¢a (¾0;¾ 0) + ¢" (¾0) gives

X

¾02¾+\¡e¾

p (¾0) ¢ [¢a (¾0;¾0) + ¢" (¾ 0)] ¸ ¡±1 (¾) + ½
(±1 (¾))2

p (¾)
+ p (¾) ¢ ¢" (¾)

+c ¢ (p (¾) ¢ ¢" (¾))2

p (¾)
(25)

Like Chattopadhyay and Gottardi (1999) we de…ne a function ¸¡e¾ : ¡e¾ !
[0;1] by

¸¡e¾ (¾ 0) =
p (¾0) ¢ [¢a (¾ 0; ¾0) + ¢" (¾0)]P

¾02¾+\¡e¾

p (¾0) ¢ [¢a (¾0;¾0) +¢" (¾0)]
(26)

Note that given the way ¡e¾ is constructed, ¸¡e¾ is well de…ned, strictly pos-
itive and satis…es

P
¾02¾+\¡e¾

¸¡e¾ (¾0) = 1:

Now we consider an arbitrary path ¾1 (¡e¾) in the subtree. De…ne ° =
min

©
c; ½

ª
: Equation (25) can now be written as

1
¸¡e¾ (¾0)

¢ p (¾0) ¢ [¢a (¾0;¾ 0) + ¢" (¾0)] ¸ (27)

p (¾) ¢ ¢a (¾;¾) + °
(p (¾) ¢ ¢a (¾;¾))2

p (¾)
+ p (¾) ¢ ¢" (¾) + °

(p (¾) ¢ ¢" (¾))2

p (¾)

9 Note that the inequality in (24) holds if we sum the left-hand side over ¾+ and therefore
also holds by summing over the nonnegative terms, what is done in (24).
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Inverting both sides of this equation we obtain

¸¡ e¾ (¾0)
p (¾0) ¢ [¢a (¾0;¾0) +¢" (¾0)]

· (28)

1

p (¾) ¢ ¢a (¾;¾) + ° (p(¾)¢¢a(¾;¾))2

p(¾) + p (¾) ¢ ¢" (¾) + ° (p(¾)¢¢"(¾))2

p(¾)

for all ¾ 2 ¡e¾:
This is equivalent to

¸¡ e¾ (¾0)
p (¾0) ¢ [¢a (¾0;¾0) +¢" (¾0)]

· (29)

1
p (¾) ¢ [¢a (¾; ¾) +¢" (¾)]

¢

0
@1 ¡

°
p(¾) ¢

h
(p (¾) ¢ ¢a (¾;¾))2 + (p (¾) ¢ ¢" (¾))2

i

p (¾) ¢ ¢a (¾; ¾) + ° (p(¾)¢¢a(¾;¾))2
p(¾) + p (¾) ¢ ¢" (¾) + ° (p(¾)¢¢"(¾))2

p(¾)

1
A

Further algebraic manipulations on the right-hand side give

¸¡ e¾ (¾0)
p (¾0) ¢ [¢a (¾0;¾0) +¢" (¾0)]

· (30)

1
p (¾) ¢ [¢a (¾;¾) + ¢" (¾)]

¡ 1
(p(¾)¢[¢a(¾;¾)+¢"(¾)])2

°
p(¾) ¢[(p(¾)¢¢a(¾;¾))2+(p(¾)¢¢"(¾))2] + p (¾) ¢ [¢a (¾;¾) + ¢" (¾)]

so that we …nally obtain

¸¡ e¾ (¾0)
p (¾0) ¢ [¢a (¾0;¾0) +¢" (¾0)]

· (31)

1
p (¾) ¢ [¢a (¾;¾) + ¢" (¾)]

¡ °
p (¾)

1
[¢a(¾;¾)+¢"(¾)]2

(¢a(¾;¾))2+(¢"(¾))2 +¢a (¾; ¾) + ¢" (¾)

We want to show next that the expression [¢a(¾;¾)+¢"(¾)]2

(¢a(¾;¾))2+(¢"(¾))2 +¢a (¾; ¾) +
¢" (¾) ; which by the assumptions made on the subtree ¡e¾ strictly positive,
is also bounded above. By the resource constraint and the assumption that
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the economy is bounded, ¢a (¾;¾) +¢" (¾) is clearly bounded above. Rewrite
[¢a(¾;¾)+¢"(¾)]2

(¢a(¾;¾))2+(¢"(¾))2 as

(¢a (¾; ¾))2

(¢a (¾; ¾))2 +(¢" (¾))2
+

2¢a (¾;¾)¢" (¾)
(¢a (¾;¾))2 + (¢" (¾))2

+
(¢" (¾))2

(¢a (¾; ¾))2 +(¢" (¾))2

(32)

The …rst and the third term are bounded above by 1 and so is the middle
term because

2¢a (¾;¾)¢" (¾)
(¢a (¾;¾))2 +(¢" (¾))2

=
2

¢a(¾;¾)
¢"(¾) + ¢"(¾)

¢a(¾;¾)

(33)

and the function x + 1
x is bounded below on the positive real line.

So there is a constant K > 0 such that [¢a(¾;¾)+¢"(¾)]2

(¢a(¾;¾))2+(¢"(¾))2 + ¢a (¾;¾) +
¢" (¾) · K: Inserting this into (31) gives

¸¡ e¾ (¾0)
p (¾0) ¢ [¢a (¾0;¾0) +¢" (¾0)]

· 1
p (¾) ¢ [¢a (¾;¾) + ¢" (¾)]

¡ °
p (¾)

1
K

(34)

If we now iterate this inequality along ¾1 (¡e¾) starting with e¾; we obtain

¸¡e¾ (¾1
T ) :::¸¡e¾

³
¾1

t(e¾)

´

p (¾1
T ) ¢ [¢a (¾1

T ; ¾1
T ) + ¢" (¾1

T )]
+

°
K

T¡1X

t=t(e¾)

¸¡e¾ (¾1
t ) :::¸¡e¾

³
¾1

t(e¾)

´

p (¾1
t )

· 1
p (e¾) ¢ [¢a (e¾; e¾) +¢" (e¾)]

(35)

so that lim
T!1

PT¡1
t=t(e¾)

¸¡ e¾(¾1
t ):::¸¡ e¾(¾1

t(e¾))
p(¾1

t ) as being increasing in T must con-
verge to a positive real number, call it A: So in the case that an interim Pareto
improvement were possible, a subtree ¡e¾; a weight function ¸¡ e¾ and a …nite
number A would exist such that (5) would hold. This completes the proof.
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