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Abstract

It is shown that a win—stay, lose—shift behavior rule with endogenous
aspiration levels yields cooperation in a certain class of games. The as-
piration level in each round equals the current population average. The
class of games includes the prisoner’s dilemma and Cournot oligopoly
and thus yields an explanation for cooperation and collusion.
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1 Introduction

Psychological research as well as introspection strongly suggest that indi-
viduals’ learning behavior depends on comparisons with the experiences of
other individuals. It seems odd, therefore, that one of the most studied
type of learning theories, reinforcement learning, depends only on one’s own
accrued payoffs. One way of reconciling reinforcement learning with social
learning is to include an aspiration level relative to which strategies are rein-
forced and to make this aspiration level dependent on the payoff experiences
of other individuals. The idea that aspiration levels should be endogenous
is not new, however most authors considered endogenous aspiration levels
that depend on individual payoff histories only (e.g. Karandikar et al., 1998;
Posch et al., 1999; or Bérgers and Sarin, 2000).!

In an interesting recent paper Dixon (2000) considers a continuum of
duopoly markets in which firms base their aspiration levels on the industry’s
average profit level. He shows that in a certain class of games that include
the prisoner’s dilemma and standard Cournot duopolies, collusion will be
the inevitable outcome of the following simple win—stay, lose—shift learning
process.?  When firms make profits that are above the average industry
profit, i.e. above their aspiration level, they are satisfied and choose the
same action again in the following period. If, however, the firm’s profit is
below its aspiration level, the firm will experiment with arbitrary actions.

In this note I simplify and generalize this insightful result by Dixon
(2000) using standard stochastic stability analysis (see e.g. Kandori, Mailath
and Rob, 1993). There are several differences to Dixon’s (2000) paper. For
example, I use a different methodology, namely stochastic stability analysis,
which assumes that all players experiment with small probability, whereas

Dixon assumes that only players below their aspiration level experiment

'"However, in their discussion, Posch et al. (1999) mention a process YESTERMAX,
which assumes an aspiration level equal to the maximum of both players’ payoffs, and
argue that this process yields efficiency in most 2 X 2 games.

2Win-stay, lose—shift learning processes were originally introduced already by
Thorndike (1911).



with different actions. An advantage of stochastic stability analysis is that
it allows (in this case) to give a very simple proof and in particular, it allows
to generalize Dixon’s result to the case of symmetric n—person games that
satisfy a similar condition as the one used by Dixon. The method also shows
that Dixon’s assumption of an infinite number of markets is not necessary
for the results to hold. Most importantly, it allows to dispense with Dixon’s
assumption that there exists already at the beginning a strictly positive mass
of markets in which the efficient outcome is being played.

Results like these show how crucial it is to be precise about who is being
imitated in learning processes. In the context of a Cournot oligopoly imi-
tation results range from perfectly competitive outcomes to collusive ones
depending on the type of imitation assumed. When the most successful
action of direct opponents is imitated, competitive outcomes may result as
shown by Vega—Redondo (1997). When the most successful actions of firms,
who are in the same role but in a different market, are imitated (with a
certain probability), then an imitation process behaves like the evolutionary
replicator dynamics and converges to the Cournot—Nash equilibrium (see
Schlag, 1998). Finally, Dixon (2000) and the current paper show that im-
itation may result in collusion if the population average is imitated in the

form of an aspiration level.

2 Aspiration learning

Consider a symmetric normal form game with player roles i = 1,....,n, a
finite action set A for each player, and payoff functions II;(a), with a € A™.
This game is played in a finite number (kK > 2) of groups, locations, or
markets by the same fixed set of players in each time period t =0,1,2, ... .

I assume that players use the following rule to determine their choice of
action. In period 0 players choose some arbitrary action. In all subsequent
periods players form an aspiration level which is given by the average payoff
in the population at time ¢, II*. If a player’s payoff in period ¢t is at least as

high as this average payoff, he is satisfied and chooses with probability 1 —e



the same action again in ¢t + 1. With some small probability € he trembles
and chooses an arbitrary action. If a player’s profit falls short of IT?, he
is unsatisfied and experiments with an action from A according to a fixed
probability distribution with full support.

Below I will consider the class of games whose joint payoff functions have
a unique, symmetric, local maximum. The joint payoff function is simply
the sum of the payoffs of all n players, II(a) := >ir; II;(a). I will say that
the joint payoff function has a unique, symmetric, local maximum a€, with

aj = aj,vi, j, if
[M(a) > I(aj,a_;),Vi and aj # a;] < a = a“. (1)

Thus, the modifier “local” refers to the requirement that the joint payoff
at each symmetric action vector (other than a®) can be improved upon
through a unilateral deviation by some player. Note that the unique local
maximum a® must also be a global maximum. Clearly, a sufficient condition
for (1) is for II(-) to be symmetric and strictly concave in a. In bi-matrix
games condition (1) simply requires that there exists a unique cell on the
diagonal in which the sum of payoffs is higher than in any other cell of its

respective row and column. For example in 2 X 2 games

ay a2
a1 |a | B
as | v |6

two types of game belong to this class. (i) Prisoner’s dilemma type games
(B>6>a>7)if 26 >+ 3 > 2a. And (ii) games with a strictly
dominant and efficient equilibrium, i.e. if & > v, 3 > §, 2a > B+. That is,
to the class belong games in which the cooperative, joint payoff maximizing
outcome is a Nash equilibrium outcome but also games in which this is not
the case.

Another fitting example is a symmetric oligopoly with profit functions
that are strictly concave in the own action a; and concave in a. Many related
games like public good games, resource extraction games etc. also satisfy

condition (1).



Proposition 1 Consider a game whose joint payoff function has a unique
local mazimum a€. Then, the limit distribution for € — 0 puts probability
one on the state s¢, in which the joint payoff mazximizing action is chosen

by all players.

Proof. The assumptions define a Markov process on a finite state space. For
€ > 0 the process is irreducible and aperiodic and, therefore, has a unique
stationary distribution. Formally, we consider the limit distribution for & —
0. For € = 0 the process may have several absorbing sets.? By standard
arguments (see e.g. Samuelson, 1994) only the members of absorbing sets of
the unperturbed process can appear in the support of the limit distribution.

I will show first that all absorbing sets other than s¢ can be destabilized
by a single tremble, which puts the process in the basin of attraction of
s¢. Then, I will show that one tremble is not sufficient to leave the basin
of attraction of s¢, which implies that s¢ is the unique stochastically stable
state.

Clearly, a state is absorbing if and only if all players receive the same
payoff, and no state in which players receive different payoffs can be part
of an absorbing set. Consider any absorbing state other than s with a
corresponding joint payoff II(a). Suppose there is a tremble by one player j

in some group to an action a;- such that

I(a}, a_;) > nll > II(a).
/.

J
payoff maximum. Thus all players in the remaining groups are below the

Such an action a’ exists due to the fact that there is a unique local joint
population average payoff. Hence, with positive probability an entire group
will switch to playing a® and subsequently all other groups must follow suit.
To leave the basin of attraction of s, however, a tremble is required in every

group because otherwise the process would return to s¢. W

3A set of states is called absorbing if there is zero probability to exit the set and a
positive probability of moving from any state in the set to any other state in the set in
finite time.
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