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1. Introduction

The topic of insolvency risk in connection with life insurance companies has recently

attracted a great deal of attention. Since the 1980s a long list of defaulted life insurance

companies in Europe, Japan and the United States has been reported. A few examples

from the United States are First Farwest Corp., Integrated Resource Life Insurance Co.

and Pacific Standard Life Insurance Co. in 1989, Mutual Security Life Insurance Co. in

1990, First Executive Life Insurance Co. (this constituted the 12th largest bankruptcy

in the United States in the period 1980–2005), First Stratford Life Insurance Co., Exec-

utive Life Insurance Company of New York, Fidelity Bankers Life Insurance Co., First

Capital Life Insurance Co., Mutual Benefit Life Insurance Co. and Guarantee Security

Life Insurance Co. in 1991, Fidelity Mutual Life Insurance Co. in 1992, Summit National

Life Insurance Co., Monarch Life Insurance Co. and Confederation Life Insurance Co. in

1994, ARM Financial Group in 1999, Penn Corp. Financial Group in 2000, Conseco Inc.

in 2002 (this constituted the 3rd largest bankruptcy in the United States in the period

1980–2005)1 and Metropolitan Mortgage & Securities in 2004.2 Table 1 provides more de-

tailed information on the bankruptcy procedure and the number of days spent in default

for some exemplary bankruptcies of life insurance companies in the United States.3

In Japan, the following life insurance carriers defaulted: Nissan Mutual Life in 1997,

Chiyoda Mutual Life Insurance Co. and Kyoei Life Insurance Co. in 2000 and Tokyo

Mutual Life Insurance in 2001. In Europe, there were the following most noticeable insol-

vency cases: Garantie Mutuelle des Fonctionnaires in France in 1993, the world’s oldest

life insurer Equitable Life (in the end only saved by a House of Lords’ ruling) in the

United Kingdom in 2000 and Mannheimer Leben (failed a fair value based solvency test,

but recovered) in Germany in 2003. As the biggest corporate bankruptcy in Australia,

HIH Insurance defaulted in 2001, mainly because of the inability to correctly estimate its

liabilities (see Jørgensen (2004)).

Hence, it is worth having a close look at the bankruptcy procedures. We take the United

States’ Bankruptcy Code as an example. Similar bankruptcy laws are also applied in Japan

and in France. In the U.S. Bankruptcy Code there are two possible procedures: Chapter 7

and Chapter 11 bankruptcy. It is generally assumed that a firm is in financial distress when

the value of its assets is lower than the default threshold. With Chapter 7 bankruptcy, the

firm is liquidated immediately after default, i.e., no renegotiations or reorganizations are

1Data taken from http://www.bankruptcydata.com.
2The life insurance insolvency cases up to 1994 are taken from the 1999 Special Comment “Life After

Death” by Moody’s Investors Service, Global Credit Research, available at http://www.moodys.com. The
other cases are taken from the source mentioned in Footnote 1.

3These data are taken from Lynn M. LoPucki’s Bankruptcy Research Database,
http://lopucki.law.ucla.edu/index.htm.
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American defaulted companies Year Bankruptcy code Days spent in default

Executive Life Insurance Co. 1991 Ch. 11 462
First Capital Life Insurance Co. 1991 Ch. 11 1669

Monarch Life Insurance Co. 1994 Ch. 11 392
ARM Financial Group 1999 Ch. 11 245

Penn Corp. Financial Group 2000 Ch. 11 119
Conseco Inc. 2002 Ch. 11 266

Metropolitan Mortgage & Securities 2004 Ch. 11 n/a

Table 1. Some defaulted insurance companies in the United States.

possible. With Chapter 11 bankruptcy, first the reality of the financial distress is checked

before the firm is definitively liquidated, i.e., the defaulted firm is granted some “grace” pe-

riod during which a renegotiation process between equity and debt holders may take place

and the firm is given the chance to reorganize. If, during this period, the firm is unable to

recover then it is liquidated. Hence, the firm’s asset value can cross the default threshold

without causing an immediate liquidation. Thus, the default event is only signalled. For

the above mentioned cases from the United States for which data were available, all of the

life insurance companies filed for Chapter 11 bankruptcy and the “grace” period lasted

from 119 days up to 1669 days. Such a bankruptcy procedure with a given “grace” period

does not only exist in the United States, but also in Japan and in France. In France, a

legal 3–month observation period before a possible liquidation is systematically granted

to firms in financial distress by the courts. This period can be renewed once and can be

exceptionally prolonged in the limit of six months. As these examples show, it is important

to consider bankruptcy procedures that are explicitly based on the time spent in financial

distress and to include such a “grace” period into the model if one wants to capture the

effects of an insurance company’s default risk on the value of its liabilities and on the value

of the insurance contracts more realistically.

In the present article, we construct a contingent claim model along the lines of Briys

and de Varenne (1994, 1997) and Grosen and Jørgensen (2002) for the valuation of the

equity and the liability of a life insurance company where the liability consists only of the

policy holder’s payments. Their main contribution is to explicitly consider default risk in a

contingent claim model to value the equity and the liability of a life insurance company. In

Briys and de Varenne (1994, 1997), default can only occur at the maturity date, whereas in

Grosen and Jørgensen (2002) default can occur at any time before the maturity date, i.e.,

they introduce the risk of a premature default to the valuation of a life insurance contract4.

In order to model the default event, they build into the model a regulatory mechanism in

4Bernard et al. (2005a) recently extended this model by taking into account stochastic interest rates.
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the form of an intervention rule, i.e., they add a simple knock–out barrier option feature

to the different components of the insurance contract. The default event is defined so that

the value of the total assets of the life insurance company must always be sufficient to cover

the life insurance policy holder’s initial deposit compounded with the guaranteed rate of

return. Otherwise the firm defaults and is immediately liquidated. Absolute priority is

assumed, i.e., the holder of the life insurance contract (= liability holder) has the first

claim on the firm’s assets. This corresponds to a Chapter 7 bankruptcy procedure, where

default and liquidation times coincide.

However, as we have explained above, Grosen and Jørgensen’s (2002) approach to mod-

elling the insolvency risk does not reflect the reality well. Default and liquidation cannot

be considered as equivalent events. We therefore extend their model in order to be able

to capture the effects of the Chapter 11 (or of the other countries’ codes corresponding to

Chapter 11) bankruptcy procedure and to study the impact of a delayed liquidation on

the valuation of the insurance company’s liabilities and on the ex–ante pricing of the life

insurance contracts. We do this by using so–called Parisian barrier option frameworks.

Here we distinguish between two kinds of Parisian barrier options: standard Parisian bar-

rier options and cumulative Parisian barrier options.

Assume, we are interested in the modelling of a Parisian down–and–out option. With

standard Parisian barrier options, the option contract is knocked out if the underlying as-

set value stays consecutively below the barrier for a time longer than some predetermined

time d before the maturity date. With cumulative Parisian barrier options, the option

contract is terminated if the underlying asset value spends until maturity in total at least

d units of time below the barrier. In a corporate bankruptcy framework these two Parisian

barrier options have appealing interpretations. Think of the idea that a regulatory au-

thority takes its bankruptcy filing actions according to a hypothetical default clock. In

the case of standard Parisian barrier options, this default clock starts ticking when the

asset price process breaches the default barrier and the clock is reset to zero if the firm

recovers from the default. Thus, successive defaults are possible until one of these defaults

lasts d units of time. One may say that in this case the default clock is memoryless, i.e.,

earlier defaults which may last a very long time but not longer than d do not have any

consequences for eventual subsequent defaults. In the case of cumulative Parisian barrier

options, the default clock is not reset to zero when a firm emerges from default, but it

is only halted and restarted when the firm defaults again. Here d denotes the maximum

authorized total time in default until the maturity of the debt. This corresponds to a

full memory default clock, since every single moment spent in default is remembered and
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affects further defaults by shortening the maximum allowed length of time that the com-

pany can spend in default without being liquidated.5 Thus, in the limiting case when d is

set equal to zero (or is going to zero), we are back in the model of Grosen and Jørgensen

(2002). Our model therefore encompasses that of Grosen and Jørgensen (2002) and also

those of Briys and de Varenne (1994, 1997). Both kinds of Parisian options are of course

not new in the literature on exotic options. They have been introduced by Chesney et al.

(1997) and subsequently developed further in Hugonnier (1999), Moraux (2002), Anderluh

and van der Weide (2004) and Bernard et al. (2005b).

There are two related papers in the credit risk literature analyzing the effects of bank-

ruptcy procedures: Moraux (2003) extends the model of Black and Cox (1976) and models

the value of debt and equity of a company in a structural model of credit risk when the

default barrier is not an absorbing one. He is mainly concerned with valuing various forms

of debt and analyzes the obtained credit spreads. François and Morellec (2004) perform a

similar analysis in a time–independent framework extending Leland’s (1994) model. How-

ever, these authors are more interested in credit spreads, debt subordination or agency

conflicts. Bernard et al. (2005c) consider a model of bank deposit insurance with Parisian

options.

The remainder of this article is structured as follows. In Section 2, we briefly review

the model of Grosen and Jørgensen (2002) because we will place our model in almost the

same basic setup. Moreover, we already introduce the standard Parisian barrier feature

along the lines of Chesney et al. (1997). In the numerical analysis, in order to invert the

Laplace transforms involved, we use the procedure introduced by Bernard et al. (2005b).

Hence we are able to obtain approximate solutions for the components of the life insurance

company’s balance sheet and for the issued equity–linked life insurance contract. In the

case of the cumulative Parisian barrier feature, we deduce quasi–closed–form solutions for

the different components of the life insurance company’s liabilities and the life insurance

contract following and extending Hugonnier (1999) and Moraux (2002). In Section 3, we

perform a number of representative numerical analyses and comparative statics for both

cases in order to investigate the effects of different parameter changes on the value of the

insurance company’s equity and liability, and hence on the life insurance contract. In par-

ticular, we study the impact of the new regulation parameter d and compare it with the

old regulation parameter η which determines the barrier level. In Section 4, we calculate

the shortfall probabilities for both standard and cumulative Parisian options in order to

analyze the incentives for the customers to engage in a life insurance contract in this model

framework. Section 5 concludes.

5The real life bankruptcy procedures lie somewhere in between these two extreme cases.
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2. Model

This section mainly consists of two parts. The first part reviews the basic model of

Grosen and Jørgensen (2002) succinctly, and more importantly, the Parisian barrier option

features are introduced to describe the different default and liquidation events. Accord-

ingly, the rebate payment used by the above mentioned authors has to be altered because

it does not make sense in our framework. The remaining part of this section focuses on

the valuation of the life insurance company’s equity and liability and of the issued life

insurance contract.

2.1. Contract Specification. As in the original work of Grosen and Jørgensen (2002),

which is an extension of the early models merging default risk and life insurance contracts

of Briys and de Varenne (1994, 1997), we assume that at time t = 0 the insurance company

owns a capital structure as illustrated in the following balance sheet:

Assets Liabilities

A0 E0 ≡ (1− α)A0

L0 ≡ αA0

A0 A0

That is, for simplicity, we suppose that the representative policy holder (also liability

holder) whose premium payment at the beginning of the contract constitutes the liability

of the insurance company, denoted by L0 = αA0, α ∈ [0, 1], and the representative equity

holder, whose equity is accordingly denoted by E0 = (1− α)A0, form a mutual company,

the life insurance company. Through their initial investments in the company, both acquire

a claim on the firm’s assets for a payoff at maturity (or before maturity).

The following notations are used for the specification of the insurance contract:

T := the maturity date

LT = L0e
gT := the guaranteed payment to the policy holder at maturity, where g is

the minimum guaranteed interest rate

At := the value of the firm’s assets at time t ∈ [0, T ]

δ := the participation rate, i.e., to which extent the policy holder participates

in the firm’s surpluses at maturity.

Since an interest rate guarantee and the contribution principle which entitles the policy

holder to a participation in the insurer’s investment surpluses are common features of to-

day’s life insurance contracts, we consider the following simplified version of a participating

life insurance contract incorporating all these features. The total payoff to the holder of

such an insurance contract at maturity, ψL(AT ), is given by:
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ψL(AT ) = δ[αAT − LT ]+ + LT − [LT − AT ]+.

This payment consists of three parts: a bonus (call option) paying to the policy holder a

fraction δ of the positive difference of the actual performance of his share in the insurance

company’s assets and the guaranteed amount at maturity, a guaranteed fixed payment

which is the initial premium payment compounded by the interest rate guarantee and a

short put option resulting from the fact that the equity holder has a limited liability. In

Grosen and Jørgensen (2002), a rebate payment,

ΘL(τ) = min{L0e
gτ , Bτ} = min{1, η}L0e

gτ ,

is offered to the liability holder in the case of a premature closure of the firm, where τ

denotes the liquidation date. Analogously, the total payoff to the equity holder at maturity

ψE(AT ), is given by:

ψE(AT ) = [AT − LT ]+ − δ[αAT − LT ]+.

This payment consists of two call options: a long call option on the assets with strike

equal to the promised payment at maturity, called the residual call, and a short call option

offsetting exactly the bonus call option of the liability holder. For the equity holder a

rebate is offered, too, in the case of a premature liquidation of the firm:

ΘE(τ) = max{(η − 1), 0}L0e
gτ .

Grosen and Jørgensen (2002) model their regulatory intervention rule in the form of a

boundary, i.e., an exponential barrier Bt = ηL0e
gt is imposed on the underlying asset value

process, where η is a regulation parameter. When the asset price reaches this boundary,

namely, Aτ = Bτ with τ ∈ [0, T ], the company defaults and is liquidated immediately, i.e.,

default and liquidation coincide. If the regulatory authority chooses η ≥ 1, in the case of

a liquidation, the liability holder obtains his initial deposit plus the accrued guaranteed

interest up to the liquidation date. If an η < 1 is chosen, no such payment can be made to

the full extent. Obviously, the specified contract contains standard down–and–out barrier

options. Therefore the requirement A0 > B0 = ηL0 must be satisfied initially. It should

be noted that in the case of a liquidation, any recovered funds will be distributed to the

company’s stake holders according to the usual procedure. The liability holder enjoys ab-

solute priority, i.e., he has the first claim on the company’s assets.

The bankruptcy procedure described above where default and liquidation occur at the

same time corresponds to Chapter 7 of the U.S. Bankruptcy Code. As mentioned in the

introduction, we generalize the model of Grosen and Jørgensen (2002) in order to allow for
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Chapter 11 bankruptcy. This can be realized by adding a Parisian barrier option feature

instead of the standard knock–out barrier option feature to the model. Before we come to

this point, we have to make a small change on the rebate term of the issued contract. Both

Parisian barrier option features could lead to the result that at the liquidation time the

asset price falls far below the barrier value, which makes it impossible for the insurer to

offer the above mentioned rebate. Hence, a new rebate for the liability holder is introduced

to the model and it has the form of

ΘL(τ) = min{Lτ , Aτ},
where τ is the liquidation time. The rebate term implicitly depends on the regulation

parameter η. Because of the following inequality

Aτ ≤ Bτ = ηLτ ,

it is observed that for η < 1, the rebate corresponds to the asset value Aτ .

Correspondingly, the new rebate for the equity holder can be expressed as follows:

ΘE(τ) = Aτ −min{Lτ , Aτ} = max{Aτ − Lτ , 0},
i.e., the equity holder obtains the remaining asset value if there is any. Clearly, in the case

of η < 1, all the asset value goes to the liability holder.

In this paper, we differentiate between two categories of Parisian barrier features:

• Standard Parisian barrier feature: This corresponds to a procedure where the liq-

uidation of the firm is declared when the financial distress has lasted successively

at least a period of length d.

• Cumulative Parisian barrier feature: This corresponds to a procedure where the

liquidation is declared when the financial distress has lasted in total at least a

period of length d during the life of the contract.

It is noted that the original model by Grosen and Jørgensen (2002) is a special case in both

scenarios described above, namely when the time window d is set to 0. Observe that with

η ↓ 0, we are back in the model of Briys and de Varenne (1994), because in that situation

premature default and liquidation are impossible.

2.2. Valuation. This subsection aims at valuing the liabilities of the life insurance com-

pany and of the issued life insurance contract. In the literature, different methods have

been applied to value standard and cumulative Parisian options. The inverse Laplace

transform method originally introduced by Chesney et al. (1997) is adopted to price the

standard Parisian claims. The results of Hugonnier (1999) and Moraux (2002) and some

newly derived extensions are used to value the cumulative Parisian claims.
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In general, for the valuation framework, we assume a continuous–time frictionless econ-

omy with a perfect financial market, no tax effects, no transaction costs and no other

imperfections. Hence we can rely on martingale techniques for the valuation of the con-

tingent claim.

Under the equivalent martingale measure, the price process of the insurance company’s

assets {At}t∈[0,T ] is assumed to follow a geometric Brownian motion

dAt = At(rdt + σdWt),

where r denotes the deterministic interest rate, σ the deterministic volatility of the asset

price process {At}t∈[0,T ] and {Wt}t∈[0,T ] the equivalent Q–martingale. Solving this differ-

ential equation, we obtain

At = A0 exp

{(
r − 1

2
σ2

)
t + σWt

}
.

2.2.1. Standard Parisian Barrier Framework. Before we come to the general valuation of

standard Parisian barrier options, some special cases are considered:

• At > Bt and d ≥ T − t: In this case, it is impossible to have an excursion below Bt,

between t and T , of length at least equal to d. Therefore, the value of a Parisian

down–and–out call just corresponds to the Black–Scholes (Black and Scholes (1973))

price of a standard European call option.

• d ≥ T : In this case the Parisian option actually becomes a standard call option.

• At > Bt and d = 0: As already mentioned, this corresponds to the scenario which

Grosen and Jørgensen (2002) introduced.

Apart from these special cases, the standard Parisian option is priced as follows. In the

standard Parisian down–and–out option framework, the final payoff ψL(AT ) is only paid

if the following technical condition is satisfied:

T−
B = inf{t > 0|(t− gA

B,t)1{At<Bt} > d} > T (1)

with

gA
B,t = sup{s ≤ t|As = Bs},

where gA
B,t denotes the last time before t at which the value of the assets A hits the barrier

B. T−
B gives the first time at which an excursion below B lasts more than d units of time.

In fact, T−
B is the liquidation date of the company if T−

B < T . It is noted that the condition

in (1) is equivalent to

T−
b := inf{t > 0|(t− gb,t)1{Zt<b} > d} > T

where

gb,t := sup{s ≤ t|Zs = b}; b =
1

σ
ln

(
ηL0

A0

)
,
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and {Zt}0≤t≤T is a martingale under a new probability measure P which is defined by the

Radon–Nikodym density

dQ

dP

∣∣∣
FT

= exp

{
mZT − m2

2
T

}
, m =

1

σ
(r − g − 1

2
σ2),

i.e., Zt = Wt + mt. The following derivation enlightens this equivalence argument:

gA
B,t = sup {s ≤ t : As = Bs}

= sup

{
s ≤ t : A0 exp

{
(r − 1

2
σ2)s + σWs

}
= ηL0e

gs

}

= sup {s ≤ t : Zs = b} = gb,t.

Thereby we transform the event “the excursion of the value of the assets below the expo-

nential barrier Bt = ηL0e
gt” to the event “the excursion of the Brownian motion Zt below

a constant barrier b =
1

σ
ln

(
ηL0

A0

)
”. This simplifies the entire valuation procedure. Under

the new probability measure P the value of the assets At can be expressed as

At = A0 exp
{

σ Zt

}
exp{g t}.

It is well known that in a complete financial market, the price of a T–contingent claim

with the payoff φ(AT ) corresponds to the expected discounted payoff under the equivalent

martingale measure Q, i.e.,

EQ

[
e−rT φ(AT )1{T−B >T}

]
.

This can be rephrased as follows:

e−(r+ 1
2
m2)T EP

[
1{T−b >T}φ(A0 exp{σZT} exp{gT}) exp{mZT}

]
.

Therefore, the value of the liability of the life insurance company, i.e., the price of the

issued life insurance contract is determined by:

VL(A0, 0) = EQ[e−rT
(
δ[αAT − LT ]+ − [LT − AT ]+ + LT

)
1{T−B >T}]

+EQ[e−rT−B min{LT−B
, AT−B

}1{T−B≤T}]

= δ α e−(r−g+ 1
2
m2)T EP

[(
A0e

σZT − L0

α

)+

emZT 1{T−b >T}

]

−e−(r−g+ 1
2
m2)T EP

[
(L0 − A0e

σZT )+emZT 1{T−b >T}
]

+ EQ

[
e−rT LT1{T−b >T}

]

+EP

[
e−(r+ 1

2
m2)T−b exp{mZT−b

}min{LT−b
, AT−b

}1{T−b ≤T}
]

:= δ α PDOC[A0, B0,
L0

α
, r, g]− PDOP[A0, B0, L0, r, g] + EQ

[
e−rT LT1{T−b >T}

]

+EP

[
e−(r+ 1

2
m2)T−b exp{mZT−b

}min{LT−b
, AT−b

}1{T−b ≤T}
]
.
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It is observed that the price of this contingent claim consists of four parts: A Parisian

down–and–out call option with strike
LT

α
(multiplied by δ α), i.e., the bonus part, a

Parisian down–and–out put option with strike LT , a deterministic guaranteed part LT

which is paid at maturity when the value of the assets has not stayed below the barrier

for a time longer than d and a rebate paid immediately when the liquidation occurs.

Various approaches are applied to valuing standard Parisian products, such as Monte–

Carlo algorithms (Andersen and Brotherton–Ratcliffe (1996)), binomial or trinomial trees

(Avellaneda and Wu (1999), Costabile (2002)), PDEs (Haber et. al (2002)), finite–element

methods (Stokes and Zhu (1999)) or the implied barrier concept (Anderluh and van der

Weide (2004)). In this article, we adopt the original Laplace transform approach initi-

ated by Chesney et al. (1997). Later, in the numerical analysis, for inverting the Laplace

transforms, we rely on the recently introduced and more easily implementable procedure

by Bernard et al. (2005b). They approximate the Laplace transforms needed to value

standard Parisian barrier contingent claims by a linear combination of a number of frac-

tional power functions in the Laplace parameter. The inverse Laplace transforms of these

functions are well–known analytical functions. Therefore, due to the linearity, the needed

inverse Laplace transforms are obtained by summing up the inverse Laplace transforms of

the approximate fractional power functions. In the following, we apply this technique to

each component of the liabilities and of the issued contract.

It is well known that the price of a Parisian down–and–out call option can be described

as the difference of the price of a plain–vanilla call option and the price of a Parisian

down–and–in call option with the same strike and maturity date, i.e.,

PDOC[A0, B0,
L0

α
, r, g]

= e−(r−g+ 1
2
m2)T EP

[(
A0e

σZT − L0

α

)+

exp{mZT}1{T−b >T}

]

= BSC[A0,
L0

α
, r, g]− e−(r−g+ 1

2
m2)T EP

[(
A0e

σZT − L0

α

)+

exp{mZT}1{T−b ≤T}

]

︸ ︷︷ ︸
:=PDIC[A0,B0,

L0
α

,r,g]

.

The price of the plain–vanilla call option is obtained by the Black–Scholes formula as

follows:

BSC[A0,
L0

α
, r, g] = EQ

[
e−rT

(
AT − LT

α

)+
]

= A0N(d1)− L0

α
e−(r−g)T N(d2)

d1/2 =
ln

(
αA0

L0

)
+ (r − g ± 1

2
σ2)T

σ
√

T
=

(r − g ± 1
2
σ2)T

σ
√

T
.
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Here N(t) =

∫ t

−∞

1√
2π

e−
x2

2 dx gives the cumulative distribution function of the standard

normal distribution. Since it is valid that
L0

α
≥ B0, PDIC[A0, B0,

L0

α
, r, g] can be calcu-

lated as follows:

PDIC[A0, B0,
L0

α
, r, g] = e−(r−g+ 1

2
m2)T A0

∫ ∞

k

emy

(
eσy − L0

α

)
h1(T, y)dy

with k =
1

σ
ln

(
L0

α A0

)
= 0. The density h1(T, y) is uniquely determined by inverting the

corresponding Laplace transform which is given by

ĥ1(λ, y) =
e(2b−y)

√
2λψ(−

√
2λd)√

2λψ(
√

2λd)

with ψ(z) =

∫ ∞

0

x exp

(
−x2

2
+ zx

)
dx = 1 + z

√
2πe

z2

2 N(x),

and λ the parameter of Laplace transform.

The Parisian down–and–out put option can be derived by the following in–out–parity:

PDOP[A0, B0, L0, r, g] := BSP[A0, L0, r, g]− PDIP[A0, B0, L0, r, g].

Here BSP[A0, L0, r, g] gives the price of the plain–vanilla put option and PDIP[A0, B0, L0, r, g]

the price of the Parisian down–and–in put option. BSP[A0, L0, r, g] is derived by the Black–

Scholes formula:

BSP[A0, L0, r, g] = EQ

[
e−rT (LT − AT )+]

= L0e
−(r−g)T N(−d2)− A0N(−d1)

d1/2 =
ln

(
A0

L0

)
+ (r − g ± 1

2
σ2)T

σ
√

T
.

Due to the different possible choices of the η–value, different pricing formulas are obtained

for the Parisian down–and–in put option. An η < 1, which leads to the fact that the strike

is larger than the barrier, results in

PDIP[A0, B0, L0, r, g] = e−(r−g+ 1
2
m2)T

(∫ b

−∞
emy(L0 − A0e

σy)h2(T, y)dy

+

∫ k1

b

emy(L0 − A0e
σy)h1(T, y)dy

)

with k1 =
1

σ
ln

(
L0

A0

)
. As before, h1(T, y) and h2(T, y) are calculated by inverting the

corresponding Laplace transform. ĥ1(T, y) has the same value as before and the Laplace

12



transform of h2(T, y) is given by

ĥ2(λ, y) =
ey
√

2λ

√
2λψ(

√
2λd)

+

√
2λdeλd

ψ(
√

2λd)

(
ey
√

2λ

(
N

(
−
√

2λd− y − b√
d

)
−N(−

√
2λd)

)

−e(2b−y)
√

2λN

(
−
√

2λd +
y − b√

d

) )
.

Analogously, for the case of η ≥ 1, the Parisian down–and–in put option has the form

of

PDIP[A0, B0, L0, r, g] = e−(r−g+ 1
2
m2)T

∫ k1

−∞
emy(L0 − A0e

σy)h2(T, y)dy.

The third term in the payoff function can be calculated as follows:

EQ[e−rT LT1{T−b >T}] = e−rT LT − EQ[e−rT LT1{T−b ≤T}]

= e−rT LT

[
1− e−

m2T
2

(∫ b

−∞
h2(T, y)emydy +

∫ ∞

b

h1(T, y)emydy

)]
.

As mentioned before, in the numerical analysis, we adopt the technique developed by

Bernard et al. (2005b) to invert ĥ1 and ĥ2.

In the calculation of the expected rebate, distinction of cases becomes necessary again.

For the case of η < 1, the liability holder will get AT−b
if an early liquidation occurs.

Therefore, the expected rebate can be calculated as follows:

EP

[
e−(r+ 1

2
m2)T−b exp{mZT−b

}min{LT−b
, AT−b

}1{T−b ≤T}
]

= A0EP

[
e−(r−g+ 1

2
m2)T−b exp{(m + σ)ZT−b

}1{T−b ≤T}
]

= A0EP

[
e−(r−g+ 1

2
m2)T−b 1{T−b ≤T}

]
EP

[
exp{(m + σ)ZT−b

}
]
.

The last equality follows from the fact that T−
b and ZT−b

are independent, which is shown

in the appendix of Chesney et al. (1997). Furthermore, the corresponding laws for these

two random variables are given in Chesney et al. (1997), too. As a consequence, we obtain

EP

[
exp{(m + σ)ZT−b

}
]

=

∫ b

−∞
e(m+σ)x b− x

d
exp

{
−(x− b)2

2d

}
dx

and

EP

[
e−(r−g+ 1

2
m2)T−b 1{T−b <T}

]
=

∫ T

d

e−(r−g+ 1
2
m2)t h3(t) dt,

where h3(t) denotes the density of the stopping time T−
b . This can be calculated by

inverting the following Laplace transform

ĥ3(λ) =
exp{

√
2λb}

ψ(
√

2λd)
.

13



For the case of η ≥ 1, we obtain

EP

[
e−(r+ 1

2
m2)T−b exp{mZT−b

}min{LT−b
, AT−b

}1{T−b ≤T}
]

= A0EP

[
e−(r−g+ 1

2
m2)T−b exp{(m + σ)ZT−b

}1{T−b ≤T}1{ZT−
b
≤k1}

]

+L0EP

[
e−(r−g+ 1

2
m2)T−b exp{mZT−b

}1{T−b ≤T}1{k1<Z
T−

b
<b}

]

= A0EP

[
e−(r−g+ 1

2
m2)T−b 1{T−b ≤T}

]
EP

[
exp{(m + σ)ZT−b

}1{Z
T−

b
<k1}

]

+L0EP

[
e−(r−g+ 1

2
m2)T−b 1{T−b ≤T}

]
EP

[
exp{mZT−b

}1{k1<Z
T−

b
<b}

]
.

This can be calculated further similarly as in the case of η < 1. Inspired by Bernard et.

al. (2005b), we invert ĥ3 numerically in the same way.

For the equity holder we have the following value for his contingent claim

VE(A0, 0) = EQ[e−rT [AT − LT ]+1{T−B >T}]− EQ[e−rT δ[αAT − LT ]+1{T−B >T}]

+EQ[e−rT−B max{AT−B
− LT−B

, 0}1{T−B≤T}]

= PDOC[A0, B0, L0, r, g]− δ α PDOC[A0, B0,
L0

α
, r, g]

+EP

[
e−(r+ 1

2
m2)T−b exp{mZT−b

}max{AT−B
− LT−B

, 0}1{T−b ≤T}
]
.

It is composed of three parts: A Parisian down–and–out call option with strike LT , called

the residual claim, a short Parisian down–and–out call option with strike
LT

α
(multiplied

by δ α), i.e., the negative value of the liability holder’s bonus option and a rebate paid

immediately when the liquidation occurs. It is noted that the second component has

already been calculated above. The first component is given by the price difference of

the corresponding plain–vanilla and the Parisian down–and–in option. The price of the

plain–vanilla option is described by

BSC[A0, L0, r, g] = EQ

[
e−rT (AT − LT )+]

= A0N(d1)− L0e
−(r−g)T N(d2)

d1/2 =
ln

(
A0

L0

)
+ (r − g ± 1

2
σ2)T

σ
√

T
.

In order to calculate the relevant Parisian down–and–in option, again two cases are dis-

tinguished. For η < 1,

PDIC[A0, B0, L0, r, g] = e−(r−g+ 1
2
m2)T

∫ ∞

k1

emy(A0e
σy − L0)h1(T, y)dy

14



and for η ≥ 1,

PDIC[A0, B0, L0, r, g]

= e−(r−g+ 1
2
m2)T

(∫ b

k1

emy(A0e
σy − L0)h2(T, y) d y +

∫ ∞

b

emy(A0e
σy − L0)h1(T, y) d y

)
.

Finally, we come to the value of the equity holder’s rebate. Only in the case of η ≥ 1, he

would possibly obtain a rebate payment.

EP

[
e−(r+ 1

2
m2)T−b exp{mZT−b

}max{AT−B
− LT−B

, 0}1{T−b ≤T}
]

= A0EP

[
e−(r−g+ 1

2
m2)T−b exp{(m + σ)ZT−b

}1{T−b ≤T}1{k1<Z
T−

b
<b}

]

−L0EP

[
e−(r−g+ 1

2
m2)T−b exp{mZT−b

}1{T−b ≤T}1{k1<Z
T−

b
<b}

]
.

Further calculations can be done analogously to the derivation of the expected rebate for

the liability holder.

2.2.2. Cumulative Parisian Barrier Framework. In this case the options are lost by their

owners when the underlying asset has stayed below the barrier for at least d units of time

during the entire duration of the contract. Therefore, the options do not lose their values

when the following condition holds:

Γ−,B
T =

∫ T

0

1{At≤Bt}dt < d,

where Γ−,B
T denotes the occupation time of the process describing the value of the assets

{At}t∈[0,T ] below the barrier B during [0, T ]. The condition is equivalent to

Γ−,b
T :=

∫ T

0

1{Zt≤b}dt < d,

where b and Zt are the same value or process, respectively, as in the standard Parisian

option case. Since τ is defined as the premature liquidation date, it implies:

Γ−,b
τ :=

∫ τ

0

1{τ≤T}1{Zt≤b}dt = d.
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Consequently, we obtain the present value of the liability or of the contract issued to the

policy holder in the cumulative Parisian framework:

V C
L (A0, 0) = EQ[e−rT

(
δ[αAT − LT ]+ + LT − [LT − AT ]+

)
1{Γ−,b

T <d}] + EQ[e−rτΘL(τ)]

= EQ[e−rT
(
δ[αAT − LT ]+ − [LT − AT ]+

)
1{Γ+,b

T ≥T−d}] + EQ[e−rT LT1{Γ−,b
T <d}]

+EQ[e−rτΘL(τ)]

= e−(r−g+ 1
2
m2)T

(
EP

[
δα

(
A0e

σZT − L0

α

)+

emZT 1{Γ+,b
T ≥T−d}

]

−EP

[
(L0 − A0e

σZT )+emZT 1{Γ+,b
T ≥T−d}

] )
+ EQ[e−(r−g)T L01{Γ−,b

T <d}]

+EQ[e−rτ min{Aτ , Lτ}]
:= δα C+(0, A0,

L0

α
,B0, T − d, r − g)− P+(0, A0, L0, B0, T − d, r − g)

+EQ[e−(r−g)T L01{Γ−,b
T <d}] + EQ[e−rτ min{Aτ , Lτ}].

Here, the first equality results from the equivalence of two events, i.e., the event that the

occupation time of the asset process below the barrier is shorter than d during [0, T ] and

the event that the occupation time of the asset price process above the barrier is longer

than T − d, i.e.,

{
Γ+,b

T :=

∫ T

0

1{Zt>b}dt ≥ T − d

}
=

{∫ T

0

1{Zt<b}dt := Γ−,b
T < d

}
.

First, let us consider the cumulative Parisian down–and–out call option. According to

Hugonnier (1999) and the correction in Moraux (2002), the (r− g, m) discounted price at

time 0 of a cumulative Parisian call option with maturity T , strike
L0

α
, excursion level B0,

and window d is given by

C+

(
0, A0,

L0

α
,B0, T − d, r − g

)
= e−(r−g+ 1

2
m2)T

(
A0Ψ

+
m+σ(T, k, b, T − d)− L0

α
Ψ+

m(T, k, b, T − d)

)

with k =
1

σ
ln

(
L0/α

A0

)
and b =

1

σ
ln

(
ηL0

A0

)
. Ψ+

µ (T, k, b, T − d) takes different values for

different cases. The only interesting case for us is b < 0, i.e. B0 < A0, and in this case

Ψ+
µ (T, k, b, T − d) assumes the following value:

Ψ+
µ (T, k, b, T − d)

= e
µ2T

2

[
N

(
dΞ(µ)

(
A0, B0 ∨ L0

α
, T

))
−

(
B0

A0

)2µ/σ

N

(
dΞ(µ)

(
B2

0

A0

, B0 ∨ L0

α
, T

))]

+

∫ T

T−d

ds

∫ b

k∧b

{
eµxγ(b− x,−b, s, T − s)dx +

∫ ∞

k∨b

eµxγ(0, x− 2b, s, T − s)dx

}
, (2)
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where

Ξ(µ) =

{
+ if µ = m + σ

− if µ = m

γ(a, b, u, v) =

∫ ∞

0

(z + a)(z + b)

π(uv)3/2
exp

{
−(z + a)2

2v

}
exp

{
−(z + b)2

2u

}
dz

=
1

π

{
av + bu

(u + v)2(uv)1/2

}
exp

{
−a2

2v
− b2

2u

}
+

√
2

π

(
1

u + v

)3/2

·
(

1− (b− a)2

u + v

)
exp

{
− (b− a)2

2(u + v)

}
N

( −au− bv

(uv(u + v))1/2

)
.

Second, let us consider the embedded cumulative Parisian down–and–out put option:

P+(0, A0, L0, B0, T − d, r − g)

= A0L0

[
BSC

(
0,

1

A0

,
1

L0

, g − r

)
− C+

(
0,

1

A0

,
1

L0

,
1

B0

, d, g − r

)]
,

where the put–call–symmetry is used. Furthermore, BSC is the Black–Scholes value of

the corresponding call, i.e.,

BSC

(
0,

1

A0

,
1

L0

, g − r

)
= e(g−r)T 1

A0

N(d1)− 1

L0

N(d2)

d1/2 =
ln

(
L0

A0

)
+ (g − r ± 1

2
σ2)T

σ
√

T
.

And analogous to the call,

C+

(
0,

1

A0

,
1

L0

,
1

B0

, d, g − r

)
= e−

1
2
m2

2T

(
1

A0

Ψ+
m2+σ(T, k2, b2, d)− 1

L0

Ψ+
m2

(T, k2, b2, d)

)

with now k2 = −k1 =
1

σ
ln

(
A0

L0

)
, b2 = −b =

1

σ
ln

(
A0

ηL0

)
> 0 and m2 = 1

σ
(g − r − σ2

2
).

Hence, Ψ+
µ owns a different value, namely,

Ψ+
µ (T, k2, b2, d) =

∫ T

d

ds

∫ b2

k2∧b2

{
eµxγ(2b2 − x, 0, s, T − s)dx +

∫ ∞

k2∨b2

eµxγ(b2, x− b2, s, T − s)dx

}
.

Third, we come to the valuation of the fixed payment. With a close look, the discounted ex-

pected fixed payment under martingale measure Q is nothing but the product of e−(r−g)T L0

and the price of a cumulative binary option paying 1 at maturity if the occupation time

below the barrier is shorter than d. Hence, we can use the representation for the cumulative

binary option derived in Hugonnier (1999) to obtain:

EQ[e−(r−g)T L01{Γ−,b
T <d}]

= e−(r−g+ 1
2
m2)T L0Ψ

+
m(T,−∞, b, T − d),

where Ψ+
m(T,−∞, b, T − d) takes its value according to (2).
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Finally, we come to the derivation of the expected rebate payment:

EQ[e−rτ min{Aτ , Lτ}].

Above all, it is noted that τ can be described as the inverse of the occupation time d,

namely,

τ = Γ−1
− (d) = inf{t ≥ 0; Γ−,b

t = d}, t ≤ T.

Here two cases are distinguished: η < 1 and η ≥ 1. First, let us look at the case of

η < 1. In this case, the expected rebate is simplified to

EQ[e−rτAτ ].

It can be further calculated as follows:

EQ[e−rτAτ ] = A0EP

[
e−(r−g+ 1

2
m2)τe(σ+m)Zτ

]

= A0e
(σ+m)bEP

[
e−(r−g+ 1

2
m2)τe(σ+m)(Zτ−b)

]

= A0e
(σ+m)bEP

[
e−(r−g+ 1

2
m2)τe(σ+m)(Z∗τ )

]

= A0e
(σ+m)b

∫ 0

−∞

∫ T

d

e−(r−g+ 1
2
m2)se(σ+m)x

∫ ∞

0

|l − b|| − x + l|
π(s− d)3/2d3/2

exp

{
− (l − b)2

2(s− d)
− (−x + l)2

2d

}
dl ds dx

where Zτ∗ = Zτ − b is a P−Brownian motion with initial value −b. The first equality

results from Girsanov’s theorem, and the second and third step are done by using the

argument that the law of a Brownian motion with initial value 0 staying below a negative

barrier b should be equivalent to the law of a Brownian motion with initial value −b staying

below the barrier value of 0. The expression in the last integral gives the joint law of a

Brownian motion with initial value −b > 0, the inverse of the occupation time of length d

below 0 and the local time of this Brownian motion at the level 0, which is e.g. given as

formula 1.1.5.8 in Borodin and Salminen (1996). In addition, we applied the results given

in Chapter 6.3, Section C of Karatzas and Shreve (1991). By solving the integral with

respect to the local time, we obtain the law of the Brownian motion and the inverse of the

occupation time. Similarly, we can calculate the expected rebate payment for the case of
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η ≥ 1:

EQ[e−rτ min{Aτ , Lτ}]
= EQ

[
e−rτAτ1{Zτ <k1}

]
+ EQ

[
e−rτLτ1{k1<Zτ <b}

]

= A0EP

[
e−(r−g+ 1

2
m2)τe(m+σ)Zτ 1{Zτ <k1}

]
+ L0EP

[
e−(r−g+ 1

2
m2)τemZτ 1{k1<Zτ <b}

]

= A0e
(σ+m)b

∫ 1
σ

ln 1
η

−∞

∫ T

d

e−(r−g+ 1
2
m2)se(σ+m)x

·
∫ ∞

0

|l − b|| − x + l|
π(s− d)3/2d3/2

exp

{
− (l − b)2

2(s− d)
− (−x + l)2

2d

}
dl ds dx

+L0e
mb

∫ 0

1
σ

ln 1
η

∫ T

d

e−(r−g+ 1
2
m2)semx

·
∫ ∞

0

|l − b|| − x + l|
π(s− d)3/2d3/2

exp

{
− (l − b)2

2(s− d)
− (−x + l)2

2d

}
dl ds dx,

where k1 =
1

σ
ln

(
L0

A0

)
and b =

1

σ
ln

(
ηL0

A0

)
as before. For the equity holder we have the

following value for his contingent claim

VE(A0, 0)) = EQ[e−rT [AT − LT ]+1{Γ−,b
T <d}]− EQ[e−rT δ[αAT − LT ]+1{Γ−,b

T <d}]

+EQ[e−rτ max{Aτ − Lτ , 0}].

The value of the residual call is given by:

EQ[e−rT [AT − LT ]+1{Γ−,b
T <d}]

= C+ (0, A0, L0, B0, T − d, r − g)

= e−(r−g+ 1
2
m2)T

(
A0Ψ

+
m+σ(T, k1, b, T − d)− L0Ψ

+
m(T, k1, b, T − d)

)
.

Ψ+
µ is given in (2). Again, the value of the short bonus option can be taken from the

computations for the liability holder. Obviously, for the case of η < 1 the equity holder

does not obtain any rebate payment. Consequently, we just look at the value of the equity

holder’s rebate when η ≥ 1. Since the derivation is analogous to that for the policy holder,
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we jump to the result:

EQ

[
e−rτ max{Aτ − Lτ , 0}

]

= EQ

[
e−rτ (Aτ − Lτ , 0)1{Lτ <Aτ <ηLτ}

]

= A0e
(σ+m)b

∫ 0

1
σ

ln 1
η

∫ T

d

e−(r−g+ 1
2
m2)se(σ+m)x

·
∫ ∞

0

|l − b|| − x + l|
π(s− d)3/2d3/2

exp

{
− (l − b)2

2(s− d)
− (−x + l)2

2d

}
dl ds dx

−L0e
mb

∫ 0

1
σ

ln 1
η

∫ T

d

e−(r−g+ 1
2
m2)semx

·
∫ ∞

0

|l − b|| − x + l|
π(s− d)3/2d3/2

exp

{
− (l − b)2

2(s− d)
− (−x + l)2

2d

}
dl ds dx.

In the next section, we calculate the contract for these two kinds of Parisian barrier frame-

works numerically.

2.3. Fair contract principle. A contract is called fair if the accumulated expected dis-

counted premium is equal to the accumulated expected discounted payments of the contract

under consideration. This principle requires the equality between the initial investment

of the policy holder and his expected benefit from the contract, namely the value of the

contract equals the initial liability

VL(A0, 0) = αA0 = L0.

Alternatively, we could also take the equity holder’s point of view, since A0 = VL(A0, 0) +

VE(A0, 0). Then,

VE(A0, 0) = (1− α)A0 = E0.

Certainly, these equations hold for both standard and cumulative Parisian barrier claims.

3. Numerical Analysis

3.1. Fair Combination Analysis. According to the fair premium principle introduced

in Section 2.3, we can determine the fair premium implicitly through a fair combination

of the parameters. In this subsection, we mainly look at the fair combination of δ and g

given various parameter constellations. As before, we consider two cases: standard and

cumulative Parisian options.

3.1.1. Standard Parisian Barrier Framework. Again, two subcases are distinguished be-

cause different relations between the strike and the barrier require different valuation for-

mulas.

(a) η ∈ [0, 1] ⇐⇒ L0

α
≥ L0 ≥ B0
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Relation between the participation rate and the minimum guaranteed

interest rate for a fair contract
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Figure 1. Relation be-
tween δ and g for different σ

with parameters (case (a)):
A0 = 100; L0 = 80; α =
0.8; r = 0.05; η = 0.8; T =
12; d = 1; σ = 0.15 (solid); σ =
0.20 (dashing); σ = 0.25 (thick).
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Figure 2. Relation between δ

and g for different T with parame-
ters (case (a)): A0 = 100; L0 =
80;α = 0.8; r = 0.05; η =
0.8; σ = 0.2; d = 1; T =
12 (solid); T = 18 (dashing); T =

24 (thick).

Relation between the participation rate and the minimum guaranteed

interest rate for a fair contract
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Figure 3. Relation between
δ and g for different η with
parameters (case (a)): A0 =
100; L0 = 80; α = 0.8; r =
0.05; T = 12; σ = 0.2; d = 1; η =
0.7 (solid); η = 0.8 (dashing); η =

0.9 (thick).
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Figure 4. Relation between δ

and g for different d with parame-
ters (case (a)): A0 = 100; L0 =
80; T = 12; α = 0.8; σ = 0.2; η =
0.8; r = 0.05; d = 0.5 (solid); d =
1 (dashing); d = 2 (thick).

(b) η ∈
[
1,

1

α

]
⇐⇒ L0

α
≥ B0 ≥ L0.
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We start our analysis with four graphics for the first subcase. The relation between the

participation rate δ and the minimum guarantee g for different volatilities is demonstrated

in Figure 1. First, it is quite obvious to observe a negative relation between the partici-

pation rate and the minimum guarantee (decreasing concave curves), which results from

the fair contract principle. Similarly to Grosen and Jørgensen (2002), for smaller values of

δ (δ < 0.83), either higher values of g or of δ are required for a higher volatility in order

to make the contract fair. For higher values of δ (δ > 0.83), this effect is reversed. As

the volatility goes up, the value of Parisian down–and–out call increases, while the value

of the Parisian down–and–out put increases with the volatility at first and then decreases

(hump–shaped). The value of the fixed payment goes down and the rebate term behaves

similarly to the Parisian down–and–out put, i.e., goes up at first then goes down after a

certain level of volatility is reached. For the low values of δ, the fixed payment dominates,

therefore a positive relation between δ and σ (also g and σ) is generated. On the contrary,

the reversed effect is observed for high values of δ. Therefore, a volatility–neutral fair

combination of (δ∗, g∗) ≈ (0.83, 0.033) is observed.

Figure 2 gives the relation between δ and g for different maturity dates T . The value of

the Parisian down–and–out call rises with the time to maturity (positive effect), while the

value of the Parisian down–and–out put increases with the time to maturity for a while

then decreases (hump–shaped). For the chosen parameter values, the put value begins to

go down when the maturity time is chosen larger than 3 years. Hence, this value decreases

with T locally6 (positive effect). The expected value of the fixed payment declines when

the issued contracts have a longer duration (negative effect), while the expected rebate

payment increases (positive effect). Before a certain δ is reached, namely, δ < 0.47, the

positive effect dominates the negative one. The reversed effect is observed for δ > 0.47.

Hence, a T–neutral fair combination is also observed here. It is worth mentioning that the

magnitude of the effect of T is quite small, because the three curves almost overlap.

How δ (or g) changes with η is illustrated in Figure 3. First of all, it is noted that differ-

ent η–values lead to different values of the barrier (B0 = ηL0). In Grosen and Jørgensen

(2002), the liability holder benefits much from a higher regulation parameter η because

higher values of η provide the liability holder a better protection against losses. The same

effect can also be found here. As the barrier is set higher, the values of Parisian down–and–

out call and put decrease, so does the value of fixed payment. In contrast, the expected

value of the rebate increases with the barrier. In all, the contract value rises when the bar-

rier is set higher. This is why the solid curve (η = 0.7) lies above the thick one (η = 0.9).

However, the effect is not as large as in the case of a standard knock–out barrier option

(the distances among these three curves are not that big) because the introduction of the

6Because the three T values applied in Figure 2 are T = 12, 18 and 24, all of them are larger than
T = 3.
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Parisian barrier feature diminishes the knock–out probability (the factor d, i.e., the length

of the excursion reduces the effect caused by the magnitude of the barrier). This positive

effect of η (barrier) on the contract value becomes more obvious when the length of ex-

cursion d is smaller. Apparently, the adjustment of the parameter d has a considerable

impact on the effect of η. Therefore, the regulator controls the strictness of the regulation

by adjusting these two parameters. Later, Tables 2–4 will show a more intuitive effect of

these two parameters.

The last figure for the first case exhibits how the contract value changes with the length

of excursion d. Since it is the main concern of this paper to capture the effect of d, three

tables are listed (Tables 2–4) for this purpose. Table 2 helps to understand the following

argument. Obviously, a positive relation exists between the Parisian down–and–out call

and the length of excursion (positive effect). The longer the allowed excursion, the larger

the value of the option. In fact, the value of the call does not change much with the length

of excursion when a certain level of d is reached, i.e., the value of the Parisian down–and–

out call is a concave increasing function of d. The put option changes with the length of

excursion in a similar way. It increases with d but the extent to which it increases becomes

smaller after a certain level of d is reached. The fixed payment arises only when the asset

price process does not stay below the barrier for a time longer than d. Hence, as the size of

d goes up, the probability that the fixed payment will become due increases. Consequently

the expected value of the fixed payment rises. Its magnitude is bounded from above by

the payment LT e−rT . In contrast, the rebate payment appears only when the considered

insurance company is liquidated, i.e., when the asset price process stays below the barrier

for a time period which is longer than d. Therefore, the longer the length of excursion, the

smaller the expected rebate payment. To sum up, the entire contract value diminishes with

the length of excursion, i.e., the contract can only remain fair when a high d is combined

with a high participation rate or a high minimum interest rate guarantee.

The same figures are provided for case (b) where the barrier value is larger than L0.

Since most of the graphics are similar to those of case (a), we do not want to repeat

all the details. However, some further differences are discovered when the effect of d on

the contract value is considered. In comparison with case (a), the length of excursion d

shows a bigger effect here (the curves are more distant here). In case (b), the Parisian

down–and–out call option exhibits considerably smaller values for very small values of

d. This fact becomes especially evident for d near zero, since the barrier level is much

higher in the present case (barrier ≥ L0) than in case (a) (barrier < L0). It is well known

that higher barriers lead to lower prices for down–and–out options (negative effect). If

smaller values of d are used, this negative effect of the barrier cannot be reduced or even

offset by the positive effect of d. Second, an extraordinarily small value of the expected

fixed payment and on the contrary an extraordinary big value of the expected rebate are
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Relation between the participation rate and the minimum guaranteed

interest rate for a fair contract
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Figure 5. Relation be-
tween δ and g for different σ

with parameters (case (b)):
A0 = 100; L0 = 80; α =
0.8; r = 0.05; η = 1.2; T =
12; d = 1; σ = 0.15 (solid); σ =
0.20 (dashing); σ = 0.25 (thick).
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Figure 6. Relation between δ

and g for different T with parame-
ters (case (b)): A0 = 100; L0 =
80;α = 0.8; r = 0.05; η =
1.2; σ = 0.2; d = 1; T =
12 (solid); T = 18 (dashing); T =

24 (thick).

observed for d close to zero. Altogether, very small values of d, say close to zero, combined

with high barrier levels cause small contract values. This is the reason why a relatively

more pronounced effect of d results for the case of η ≥ 1 (c.f. Tables 3–4).

3.1.2. Cumulative Parisian Barrier Framework. As for the standard Parisian barrier op-

tions discussed above, in the cumulative Parisian option framework, a negative relation

between the participation rate and the minimum interest rate guarantee is observed. Due

to the fact that different η–values require the use of different valuation formulas, again two

subcategories can be distinguished: (a) η ∈ [0, 1] (⇔ L0

α
≥ L0 ≥ B0) and (b) η ∈ [1,

1

α
]

(⇔ L0

α
≥ B0 ≥ L0). For each of these subcategories, four figures are plotted. We illustrate

how the participation rate and the minimum interest rate guarantee (δ and g) change with

the volatility (σ), the maturity date (T ), the regulation parameter (η) and the length of

excursion (d). Since most of the results are similar to the standard Parisian option case,

we only discuss the points where we observe differences. In the following we first consider

category (a).

Overall, it is observed that in this case the resulting values for the fair participation

rate are slightly smaller than those in the standard Parisian option case. Although this

difference can hardly be seen in the graphics, it is observable in Tables 2–4. It is justified

as follows. The cumulative Parisian down–and–out call, the down–and–out put and the

fixed payment assume smaller values than the corresponding standard Parisian contingent
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Relation between the participation rate and the minimum guaranteed

interest rate for a fair contract
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Figure 7. Relation be-
tween δ and g for different η

with parameters (case (b)):
A0 = 100; L0 = 80; α =
0.8; r = 0.05; T = 12; σ =
0.2; d = 1; η = 1.1 (solid); η =
1.15 (dashing); η = 1.2 (thick).
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Figure 8. Relation between δ

and g for different d with parame-
ters (case (b)): A0 = 100; L0 =
80; T = 12; σ = 0.25; η =
1.2; r = 0.05; α = 0.8; d =
0.5 (solid); d = 1 (dashing); d = 2

(thick).

claims. This is due to the fact that the knock–out probability becomes higher in the cu-

mulative case, given the same parameters. This is quite obvious because the knock–out

condition for standard Parisian barrier options is that the underlying asset stays consecu-

tively below barrier for a time longer than d before the maturity date, while the knock–out

condition for cumulative Parisian barrier options is that the underlying asset value spends

until the maturity in total d units of time below the barrier. In contrast, the expected cu-

mulative rebate part of the payment assumes larger values, because it is contingent on the

reversed condition compared to the other three parts of the payment. Moreover, (usually)

the total effect of these other parts together dominates that of the rebate.

Figure 9 depicts how the participation rate δ (or the minimum guarantee g) varies with

the volatility. The figure is very similar to Figure 1. The fair combinations of g and δ for

different maturity dates T are plotted in Figure 10, which resembles Figure 2.

How the regulation parameter η influences the fair combination of δ and g is demon-

strated in Figure 11. In contrast to the standard Parisian case (Figure 3), η has a bigger

impact on the fair parameter combination: the differences of the three curves are more

pronounced. Intuitively, it is clear that the value of cumulative Parisian barrier options

depends more on the magnitude of the barrier than the value of standard Parisian barrier

options does.
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Relation between the participation rate and the minimum guaranteed

interest rate for a fair contract
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Figure 9. Relation be-
tween δ and g for different σ

with parameters (case (a)):
A0 = 100; L0 = 80; α =
0.8; r = 0.05; η = 0.8; T =
12; d = 1; σ = 0.15 (solid); σ =
0.20 (dashing); σ = 0.25 (thick).
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Figure 10. Relation between
δ and g for different T with
parameters (case (a)): A0 =
100; L0 = 80; α = 0.8; r =
0.05; η = 0.8; σ = 0.2; d = 1; T =
12 (solid); T = 18 (dashing); T =

24 (thick).

Relation between the participation rate and the minimum guaranteed

interest rate for a fair contract
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Figure 11. Relation between
δ and g for different η with
parameters (case (a)): A0 =
100; L0 = 80; α = 0.8; r =
0.05; T = 12; σ = 0.2; d = 1; η =
0.7 (solid); η = 0.8 (dashing); η =

0.9 (thick).
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Figure 12. Relation between
δ and g for different d with para-
meters (case (a)): A0 = 100; L0 =
80; T = 12; α = 0.8; σ = 0.2; η =
0.8; r = 0.05; d = 0.5 (solid); d =
1 (dashing); d = 2 (thick).

Figure 12 illustrates the effect of the length of excursion d on the fair combination of δ

and g. As in the standard Parisian case (c.f. Figure 4), the parameter d does not show
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Relation between the participation rate and the minimum guaranteed

interest rate for a fair contract
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Figure 13. Relation be-
tween δ and g for different σ

with parameters (case (b)):
A0 = 100; L0 = 80; α =
0.8; r = 0.05; η = 1.2; T =
12; d = 1; σ = 0.15 (solid); σ =
0.20 (dashing); σ = 0.25 (thick).
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Figure 14. Relation between
δ and g for different T with
parameters (case (b)): A0 =
100; L0 = 80; α = 0.8; r =
0.05; η = 1.2; σ = 0.2; d = 1; T =
12 (solid); T = 18 (dashing); T =

24 (thick).

Relation between the participation rate and the minimum guaranteed

interest rate for a fair contract
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Figure 15. Relation be-
tween δ and g for different η

with parameters (case (b)):
A0 = 100; L0 = 80; α =
0.8; r = 0.05; T = 12; σ =
0.2; d = 1; η = 1.1 (solid); η =
1.15 (dashing); η = 1.2 (thick).
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Figure 16. Relation between
δ and g for different d with para-
meters (case (b)): A0 = 100; L0 =
80; T = 12; α = 0.8; σ = 0.2; η =
1.2; r = 0.05; d = 0.5 (solid); d =
1 (dashing); d = 2 (thick).

a big influence (but bigger than in the standard Parisian case) on the fair combination of

δ and g. All four parts of the payment change with d similarly to the standard Parisian

27



case, namely the cumulative Parisian down–and–out call, the cumulative Parisian down–

and–out put and the expected fixed payment go up when d is increased (positive effect).

The opposite is true for the rebate part (negative effect). However, the magnitude of the

changes in the values is bigger.

Figures 13–16 are plotted for the case where η ∈ [1,
1

α
]. This parameter choice leads to a

considerably higher barrier level, which reduces the values of the cumulative Parisian down–

and–out call, the cumulative Parisian down–and–out put and of the expected payment to

a big extent and increases the expected rebate part (c.f. Tables 2–4). Since Figures 13–16

are quite similar to Figures 5–8, we do not discuss them in detail.

3.2. Value Decomposition For Fair Contracts. In the above numerical analysis, it

could be noticed that the choice of the η–parameter influences the effect of d. In the

following, the separate effect of d and η is analyzed through some tables. In Tables 2–4 it

is investigated how the fair participation rate and the different components of the liability

holder’s and the equity holder’s payoff change with the length of excursion d for different

η–values. Since we do not want to repeat the results of the last subsection, we just mention

several important aspects and concentrate on the liability holder’s claims. First, assume

that the regulation parameter is set to be zero, which results in a barrier level of zero. It

then follows that the length of excursion d has no effect on the components of the liability

holder’s payoff, because the asset price can never hit the barrier in this situation due to

the log–normal assumption of the asset dynamics. That means, the insurance company

never defaults and hence is never liquidated. Then we are back in the standard call and

put case. Therefore, we obtain the same values for the standard and cumulative Parisian

option, and also for Grosen and Jørgensen’s (2002) case. Second, except in this extreme

case, smaller participation rates result from the cumulative Parisian option framework

than from the standard Parisian modelling given the same parameters. Obviously, for the

same parameters, the cumulative down–and–out contingent claims exhibit smaller values

than the standard Parisian ones. Third, we emphasize here that the effect of η is twofold.

On the one hand, an increase in η leads to a rise of barrier level, which accelerates the

default of the company, especially when d is set to a small value. On the other hand,

a larger expected rebate results from a higher η. Finally, we summarize how different

combinations of d and η affect the different components of the liability holder’s payoff. If

small η’s (η = 0.8 or 0.9) are combined with long d’s (e.g. d = 5), the probability that

the firm defaults before the maturity date is small. Hence, very high bonus values, very

high expected fixed payments and very small rebate values are observed. As the barrier

level rises gradually, the default probability climbs up, and so does the expected rebate.

However, in the other extreme case, where high barrier levels (e.g. for the cases η = 1.1

and η = 1.2) are combined with a very short length of excursion (say d = 0.25 in a 20–year
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contract), relatively small bonus values, small fixed payments and relatively large expected

rebate payments result.

4. Shortfall Probability

Until now we have not raised the question of how attractive the issued contract is to the

liability holder. The liability holder might be interested in getting to know with exactly

what probability he will get the rebate payment at the liquidation time instead of the

contract value at the maturity date. Therefore, in this section, we would like to have a

look at the shortfall probability, i.e., the probability of an early liquidation (liquidation

occurs before the maturity date).

Obviously, it only makes sense to consider the shortfall probability under the subjective

probability measure, under which the assets are assumed to evolve as follows:

dAt = At(µ dt + σd W̃t)

where µ > 0 is the instantaneous expected return of the asset and W̃t is a martingale

under the subjective measure. In the case of the standard Parisian framework, the shortfall

probability is given by

P̃ SF = P̃ (T−
B = inf{t > 0|t− gA

B,t1{At<Bt} > d} ≤ T )

= e−
m̃2T

2

(∫ b

−∞
h2(T, y)em̃y d y +

∫ ∞

b

h1(T, y)em̃y d y

)

with m̃ = 1
σ
(µ− g − 1

2
σ2).

In case of the cumulative Parisian framework, the shortfall probability is determined by

P̃ SF = P̃ (τ ≤ T ) = P̃


 1

T

T∫

0

1{fWu+m̃ u≤b}du ≥ d
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


= P̃


 1

T

T∫

0

1{fWu−m̃ u≤−b}du ≤ 1− d

T




= 2

∫ 1− d
T

0

{[
n(−m̃

√
T
√

1− u)√
1− u

+ (−m̃
√

T )N(−m̃
√

T
√

1− u)

]

·
[

1√
u
n

(
(−b)/

√
T + m̃

√
Tu√

u

)
+ m̃

√
Te2m̃bN

(
b/
√

T + m̃
√

Tu√
u

)]}
du.

In the above derivation, Equation (12) of Takács (1996) is applied. In Table 5, several

shortfall probabilities are calculated for both standard and cumulative Parisian frame-

works. First, apparently, shortfall occurs with a higher probability in the case of cumula-

tive than in that of standard Parisian options. This is due to the fact that the knock–out
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η = 0 ⇒ Barrier = 0
d δ BO SP CFP RL VL RC SBO RE VE

GJ 0.951 41.49 -5.39 43.90 0.00 80.00 61.49 -41.49 0.00 20.00
PA 0-T 0.951 41.49 -5.39 43.90 0.00 80.00 61.49 -41.49 0.00 20.00
CP 0-T 0.951 41.49 -5.39 43.90 0.00 80.00 61.49 -41.49 0.00 20.00

η = 0.8 ⇒ Barrier = 64

GJ 0.836 30.91 -0.03 19.84 29.28 80.00 50.91 -30.91 0.00 20.00
PA 0 0.836 30.91 -0.03 19.84 29.28 80.00 50.91 -30.91 0.00 20.00

0.25 0.888 35.60 -0.15 24.13 20.42 80.00 55.60 -35.60 0.00 20.00
0.50 0.902 36.94 -0.23 25.83 17.46 80.00 56.94 -36.94 0.00 20.00
1.00 0.917 38.38 -0.40 28.29 13.73 80.00 58.38 -38.38 0.00 20.00
1.50 0.926 39.20 -0.57 30.23 11.14 80.00 59.20 -39.20 0.00 20.00
2.00 0.932 39.75 -0.73 31.41 9.57 80.00 59.75 -39.75 0.00 20.00
5.00 0.945 41.02 -1.94 36.46 4.46 80.00 61.02 -41.02 0.00 20.00

CP 0 0.836 30.91 -0.03 19.84 29.28 80.00 50.91 -30.91 0.00 20.00
0.25 0.874 34.26 -0.09 22.75 23.08 80.00 54.26 -34.26 0.00 20.00
0.50 0.886 35.41 -0.13 23.93 20.79 80.00 55.41 -35.41 0.00 20.00
1.00 0.901 36.81 -0.22 25.59 17.82 80.00 56.81 -36.81 0.00 20.00
1.50 0.910 37.72 -0.30 26.85 15.73 80.00 57.72 -37.72 0.00 20.00
2.00 0.917 38.39 -0.40 27.90 14.10 80.00 58.39 -38.39 0.00 20.00
5.00 0.938 40.39 -1.03 32.43 8.21 80.00 60.39 -40.39 0.00 20.00

η = 0.9 ⇒ Barrier = 72

GJ 0.743 23.87 0.00 15.23 40.90 80.00 43.87 -23.87 0.00 20.00
PA 0 0.743 23.87 0.00 15.23 40.90 80.00 43.87 -23.87 0.00 20.00

0.25 0.840 31.27 -0.04 20.14 28.63 80.00 51.27 -31.27 0.00 20.00
0.50 0.865 33.44 -0.09 21.91 24.74 80.00 53.44 -33.44 0.00 20.00
1.00 0.891 35.83 -0.20 24.23 20.24 80.00 55.83 -35.83 0.00 20.00
1.50 0.905 37.23 -0.32 26.79 16.30 80.00 57.23 -37.23 0.00 20.00
2.00 0.915 38.17 -0.44 29.10 13.17 80.00 58.17 -38.17 0.00 20.00
5.00 0.940 40.52 -1.42 33.63 7.27 80.00 60.52 -40.52 0.00 20.00

CP 0 0.743 23.87 0.00 15.23 10.90 80.00 43.87 -23.87 0.00 20.00
0.25 0.814 29.11 -0.02 18.47 32.44 80.00 49.11 -29.11 0.00 20.00
0.50 0.836 30.93 -0.04 19.78 29.32 80.00 50.93 -30.93 0.00 20.00
1.00 0.862 33.19 -0.08 21.63 25.26 80.00 53.19 -33.19 0.00 20.00
1.50 0.878 34.68 -0.13 23.03 22.42 80.00 54.68 -34.68 0.00 20.00
2.00 0.890 35.80 -0.18 24.21 20.18 80.00 55.80 -35.80 0.00 20.00
5.00 0.925 39.24 -0.63 29.30 12.09 80.00 59.24 -39.24 0.00 20.00

Table 2. Decomposition of fair contracts with A0 = 100, r =

0.05, g = 0.02, α = 0.8, σ = 0.2, T = 20.
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η = 1 ⇒ Barrier = 80

d δ BO SP CFP RL VL RC SBO RE VE

GJ 0.569 14.50 0.00 10.71 54.79 80.00 34.50 -14.50 0.00 20.00
PA 0 0.569 14.50 0.00 10.71 54.79 80.00 34.50 -14.50 0.00 20.00

0.25 0.764 25.29 -0.01 16.19 38.53 80.00 45.29 -25.29 0.00 20.00
0.50 0.807 28.54 -0.02 18.40 33.08 80.00 48.54 -28.54 0.00 20.00
1.00 0.851 32.19 -0.09 20.26 27.64 80.00 52.19 -32.19 0.00 20.00
1.50 0.875 34.36 -0.18 21.95 23.87 80.00 54.36 -34.36 0.00 20.00
2.00 0.891 35.83 -0.28 25.99 18.46 80.00 55.83 -35.83 0.00 20.00
5.00 0.931 39.70 -0.93 29.68 11.55 80.00 59.70 -39.70 0.00 20.00

CP 0 0.569 14.50 0.00 10.71 54.79 80.00 34.50 -14.50 0.00 20.00
0.25 0.715 22.10 0.00 14.22 43.69 80.00 42.10 -22.10 0.00 20.00
0.50 0.756 24.77 -0.01 15.65 39.59 80.00 44.77 -24.77 0.00 20.00
1.00 0.801 28.12 -0.03 17.65 34.26 80.00 48.12 -28.12 0.00 20.00
1.50 0.829 30.36 -0.05 19.18 30.51 80.00 50.36 -30.36 0.00 20.00
2.00 0.848 32.05 -0.08 20.46 27.57 80.00 52.05 -32.05 0.00 20.00
5.00 0.906 37.44 -0.36 26.02 16.91 80.00 57.44 -37.44 0.00 20.00

η = 1.1 ⇒ Barrier = 88

GJ 0.540 9.10 0.00 6.31 64.58 80.00 22.64 -9.10 6.46 20.00
PA 0 0.540 9.10 0.00 6.31 64.58 80.00 22.64 -9.10 6.46 20.00

0.25 0.659 18.23 0.00 12.05 49.72 80.00 37.53 -18.23 0.70 20.00
0.50 0.726 22.43 0.00 14.28 43.29 80.00 42.09 -22.43 0.34 20.00
1.00 0.795 27.41 -0.02 17.32 35.27 80.00 47.26 -27.41 0.15 20.00
1.50 0.833 30.52 -0.08 19.70 29.28 80.00 50.42 -30.52 0.10 20.00
2.00 0.858 32.70 -0.18 21.73 25.57 80.00 52.64 -32.70 0.06 20.00
5.00 0.918 38.47 -0.48 28.13 13.40 80.00 58.45 -38.47 0.02 20.00

CP 0 0.540 9.10 0.00 6.31 64.58 80.00 22.64 -9.10 6.46 20.00
0.25 0.612 14.97 0.00 10.06 54.97 80.00 33.06 -14.97 1.91 20.00
0.50 0.666 18.06 0.00 11.58 50.36 80.00 36.77 -18.06 1.29 20.00
1.00 0.731 22.26 -0.01 13.72 44.03 80.00 41.44 -22.26 0.82 20.00
1.50 0.771 25.21 -0.02 15.34 39.47 80.00 44.60 -25.21 0.61 20.00
2.00 0.799 27.48 -0.03 16.71 35.84 80.00 46.99 -27.48 0.49 20.00
5.00 0.882 35.04 -0.20 22.66 22.50 80.00 54.84 -35.04 0.20 20.00

Table 3. Decomposition of fair contracts with A0 = 100, r =

0.05, g = 0.02, α = 0.8, σ = 0.2, T = 20.
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η = 1.2 ⇒ Barrier = 96

d δ BO SP CFP RL VL RC SBO RE VE

GJ 0.514 3.16 0.00 2.07 74.77 80.00 8.21 -3.16 14.95 20.00
PA 0 0.514 3.16 0.00 2.07 74.77 80.00 8.21 -3.16 14.95 20.00

0.25 0.580 12.00 0.00 8.14 59.86 80.00 27.87 -12.00 4.13 20.00
0.50 0.645 16.20 0.00 10.53 53.27 80.00 33.94 -16.20 2.26 20.00
1.00 0.737 22.18 0.00 13.65 44.17 80.00 41.09 -22.18 1.09 20.00
1.50 0.782 25.91 -0.02 16.08 38.01 80.00 45.20 -25.91 0.71 20.00
2.00 0.818 28.83 -0.09 18.42 32.75 80.00 48.32 -28.83 0.51 20.00
5.00 0.901 36.76 -0.10 24.71 18.53 80.00 56.61 -36.76 0.15 20.00

CP 0 0.514 3.16 0.00 2.07 74.77 80.00 8.21 -3.16 14.95 20.00
0.25 0.561 9.16 0.00 6.00 64.84 80.00 21.91 -9.16 7.25 20.00
0.50 0.607 12.09 0.00 7.60 60.30 80.00 26.82 -12.09 5.28 20.00
1.00 0.677 16.57 0.00 9.85 53.58 80.00 33.04 -16.57 3.53 20.00
1.50 0.725 19.96 0.00 11.56 48.48 80.00 37.28 -19.96 2.68 20.00
2.00 0.759 22.67 -0.01 13.00 44.33 80.00 40.52 -22.68 2.16 20.00
5.00 0.862 32.24 -0.10 19.27 28.59 80.00 51.33 -32.24 0.91 20.00

Table 4. Decomposition of fair contracts with A0 = 100, r =

0.05, g = 0.02, α = 0.8, σ = 0.2, T = 20.

Shortfall Probability PA Shortfall Probability CP

σ µ η d µ η d

0.06 0.08 0.9 1.1 0.5 2 0.06 0.08 0.9 1.1 0.5 2

0.10 0.013 0.000 0.000 0.000 0.000 0.000 0.018 0.003 0.010 0.093 0.004 0.002

0.15 0.125 0.052 0.092 0.240 0.068 0.035 0.159 0.070 0.124 0.318 0.085 0.053

0.20 0.289 0.180 0.251 0.403 0.222 0.132 0.347 0.227 0.308 0.507 0.259 0.184

Table 5. Shortfall probabilities for standard and cumulative Parisian

frameworks with parameters: A0 = 100, L0 = 80, g = 0.02, T = 20, µ =

0.08, σ = 0.2, η = 0.8, d = 1.

condition is less demanding for the cumulative Parisian option. All the other effects, e.g.

that the shortfall probability increases in σ and η and decreases in µ and d, are quite

straightforward. Therefore, the insurance company can offer customers with different risk

aversions (willingness to accept a certain shortfall probability) different insurance contracts

according to varying parameter choices.
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5. Conclusion

In the present article, we extend the model of Grosen and Jørgensen (2002) and investi-

gate the question of how to value an equity–linked life insurance contract when considering

the default risk (and the liquidation risk) under different bankruptcy procedures. In or-

der to take into account the realistic bankruptcy procedure Chapter 11, these risks are

modelled in both standard and cumulative Parisian frameworks. In the numerical analysis

part, we perform several sensitivity analyses to see how the fair combinations of the par-

ticipation rate and the minimum interest rate guarantee depend on the volatility of the

company’s assets, the maturity dates of the contract, the regulation parameter and the

length of excursion. In addition, due to their importance, a number of tables are given

which help to catch and to compare the effects of the two regulation parameters d and η.

Furthermore, we consider how likely it is that the liability holder will obtain the rebate

payment whose size is uncertain at the point in time when the contract is signed. Based on

the analysis in Section 4, the insurance company can offer different contracts to customers

with different willingness to accept certain shortfall probabilities.
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