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1. Introduction.

The interest rate level depends on the length of time on which it applies. For example,

short term borrowing and lending is done at a di�erent rate than for intermediate and long

term loans. Such a di�erentiation of interest rates is called the term structure of interest

rates or the yield curve.

Assume for a moment that there is no uncertainty about the future behaviour of inter-

est rates. Then any dynamical equilibrium is characterized by the no arbitrage condition

which builds the relationships between the consecutive yield curves. For example, the for-

ward curve tomorrow must be the same as the forward curve today but shifted to the left

by one day.

The uncertainty about the future interest rates, reected by their volatility, is respon-

sible for changes in the shape of the yield curve. There are many ways to introduce the

uncertainty into the term structure dynamics. Several approaches have been suggested in

the literature (cf. [1,2,3,4,6,7,8,9] and the references therein).

In this paper we introduce uncertainty to the processes of forward returns and to the

corresponding discount factors. It turns out that the dynamics obtained that way lead

to the di�erent expectation hypotheses formulated and analysed in the very lucid paper

by Cox{Ingersoll{Ross [1]. Contrary to their �nding that only the Local Expectation

Hypothesis is compatible with a Rational Expectation Equilibrium we show in this paper

that also the Unbiased Expectation and the Return to Maturity Hypotheses can be used

to describe the arbitrage{free dynamics of the term structure, depending on whether we

look at the dynamics of the spot or the x{forward economy. The relations between these

dynamics are studied in section 3 using the FX{analogy.

2. Expectation hypotheses.

We adopt the notation of the term structure model proposed by Musiela [10]. Let

r(t; x) denote the spot forward rate at time t for time x forward, i.e., r(t; x) is the contin-

uously compounded rate prevailing at time t for a forward contract over the time interval

[t + x; t + x + dt]1). On date t = 0 the initial term structure is given by the forward

curve r(0; x) = r0(x). If there is no volatility on the time interval [0; t], then on date t the

term structure will be given by r(t; x) = r0(x + t). Otherwise an investor could realize an

arbitrage pro�t through trading in bonds. Therefore, assuming r0 is a C1 function, in a

1) Note that the traditionally analysed spot forward rate at time t for time x, denoted
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world without uncertainty the development of the term structure over time is completely

described by the initial forward curve r0 and the condition

(1)

�
@

@t
�

@

@x

�
r(t; x) = 0 ; 8t � 0 ; 8x � 0 :

To introduce uncertainty into the term structure movements Musiela [10] assumes

that the family of rates fr(t; x); t � 0; x � 0g is de�ned on the probability space

(
; fFt; t � 0g;P) and that, for each x � 0,

(2) dr(t; x) = �(t; x)dt + � (t; x) � dW (t) ;

where W is an n�dimensional Brownian motion and the dot denotes scalar product. The

�ltration fFt; t � 0g is the P�augmentation of the natural �ltration of W . The process

f�(t; x); t; x � 0g is locally bounded Ft�adaped with values in R. The volatility process

f� (t; x); t; x � 0g indexed by the time variable t and the space variable x represents the

risk related to borrowing and lending at various maturities along the yield curve. It is

Ft�adapted bounded on R2
+ � 
 with values in Rn.

It is di�cult to assert however that one can observe the instantaneous rates r(t; x),

and their risk parameters � (t; x) in the market place. What at best we may observe are

forward returns based on forward rates for some intervals [t; t+ x], which we denote by

(3) R(t; x) = exp

�Z x

0

r(t; u)du

�
:

Alternatively we can look at the discount factors (or zero coupon bond prices)

(4) D(t; x) = exp

�
�

Z x

0

r(t; u)du

�
= R(t; x)�1 ;

which reect the same observations. It seems therefore more natural to describe the dy-

namics and uncertainty of the term structure in terms of the observables R(t; x) or D(t; x).

Clearly, by Ito's lemma there will always be a one-to-one correspondence between the dy-

namics of the processes r;R and D. But some approaches are more natural or give more

economic insight than others. The aim of this paper is to clarify the implications of di�erent

dynamical speci�cations for r;R and D and analyse their relationships.

by f(t; x), and our r(t; x) are not equal. However, there is the following obvious relationship

r(t; x) = f(t; t + x):
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Under certainty (1) and (3) imply that, for any x � 0,

d logR(t; x) =
dR(t; x)

R(t; x)
=

�
r(t; x) � r(t; 0)

�
dt

or, equivalently,

d logD(t; x) =
dD(t; x)

D(t; x)
=

�
r(t; 0) � r(t; x)

�
dt :

There are now three di�erent ways to introduce uncertainty to the observables R(t; x)

and D(t; x) by means of the volatility process f�(t; x); t; x � 0g in analogy to the rate

process (2). Depending which of the above (so far equivalent) processes we consider we

obtain the following dynamics:

(5i)

d logR(t; x) =

�
r(t; x) � r(t; 0)

�
dt+ �(t; x) � dW (t) ;

d logD(t; x) =

�
r(t; 0) � r(t; x)

�
dt� �(t; x) � dW (t) ;

(5ii)
dR(t; x)

R(t; x)
=

�
r(t; x) � r(t; 0)

�
dt+ �(t; x) � dW (t) ;

and

(5iii)
dD(t; x)

D(t; x)
=

�
r(t; 0) � r(t; x)

�
dt� �(t; x) � dW (t) :

As before the volatility process f�(t; x); t; x � 0g describes the risk related to bor-

rowing and lending for various time intervals of length x along the yield curve, but now it

refers to the observables R(t; x) and D(t; x). For all x � 0 the processes

�
�(t; x); t � 0

�
;

�
@

@x
�(t; x); t � 0

�
;

�
@2

@x2
�(t; x; ); t � 0

�

are assumed Ft�adapted and locally square integrable. Moreover, for all t � 0

�(t; 0) = 0 :

Proposition 1: The dynamics (5i� 5iii) imply that r(t; x) satis�es

(6) dr(t; x) = �(t; x)dt +
@

@x
�(t; x) � dW (t) ;
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where the drift term is given, respectively, by

(6i) �(t; x) =
@

@x
r(t; x) for (5i) ;

(6ii) �(t; x) =
@

@x

�
r(t; x) �

1

2
j�(t; x)j2

�
for (5ii) ;

(6iii) �(t; x) =
@

@x

�
r(t; x) +

1

2
j�(t; x)j2

�
for (5iii) :

Proof. Relation (3) implies that r(t; x) = @
@x

logR(t; x) what immediately gives

dr(t; x) =
@

@x
(r(t; x)dt + �(t; x) � dW (t))

for dynamics (5i). By Ito's lemma

dr(t; x) =
@

@x
d logR(t; x) =

@

@x

�
dR

R
�

1

2

1

R2
d < R >

�

=
@

@x

�
r(t; x)dt + �(t; x) � dW (t)�

1

2
j�(t; x)j2dt

�

and (6ii) follows. The relation r(t; x) = � @
@x

logD(t; x) leads to (6iii).

Comment: Comparing the coe�cients in dynamics (2) and (6) leads to

�(t; x) =

Z x

0

� (t; u)du :

That has an obvious interpretation. The volatility of the return on forward rates over the

interval [t; t+x] is the sum of the volatilities of the instantaneous forward rates. Proposition

1 shows that from a mathematical point of view there is no di�erence between modelling

the forward rates as in the HJM-approach [4] or modelling the returns on forward rates, but

the latter seem to be more natural market parameters. Moreover looking at the market

rates may lead to signi�cant simpli�cation of the term structure models. In the HJM

framework, even if we have exposure to one rate only, say over a six month period, we

still need to consider all the intantaneous forward rates covering that period. Therefore
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to model a \one-dimensional" situation we need to use an \in�nite dimensional" family of

rates (cf. also Musiela [9,10]).

Proposition 1 shows that the di�erence in the dynamics (5i� 5iii) lies in the drifts of

the processes r(t; x). Dynamics (iii) gives \higher" forward rates as dynamics (ii), with

dynamics (i) lying in between.

Proposition 2: Processes (5i � 5iii) satisfy, respectively,

(7i) logR(t; x) =

Z t+x

t

E

�
r(s; 0)jFt

�
ds ;

(7ii) R(t; x) = E

�
exp

�Z t+x

t

r(s; 0)ds

�
jFt

�
;

(7iii) D(t; x) = E

�
exp

�
�

Z t+x

t

r(s; 0)ds

�
jFt

�
:

Remark: Using the familiar notation B(t; T ) = D(t; T � t) for a zero-bond maturing at

T , f(t; T ) = r(t; T � t) for the forward rate and rt = r(t; 0) for the spot rate, it is easily

seen that relations (7i� 7iii) are equivalent to the following relations:

B(t; T ) = exp

�
�

Z T

t

E[rsjFt]ds

�
(8i)

, f(t; s) = E[rsjFt] 8t � s

(= Unbiased Expectation Hypothesis),

(8ii) B(t; T ) =

 
E

"
exp

 Z T

t

rsds

!
jFt

#!
�1

(= Return to Maturity Expectation Hypothesis),

(8iii) B(t; T ) = E

"
exp

 
�

Z T

t

rsds

!
jFt

#

(= Local Expectation Hypothesis).
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Hence the three di�erent dynamics correspond to the three di�erent expectation hy-

potheses for the continuous time term structure models (cf. Cox, Ingersoll, Ross [1],

Ingersoll [5], ch. 18). As is well known the three hypotheses are not compatible under

uncertainty, since Jensen's inequality implies

B(t; T )(iii) > B(t; T )(i) > B(t; T )(ii) :

Proof of Proposition 2: Assume (5i) holds, then by Proposition 1

dr(t; x) =
@

@x

�
r(t; x)dt + �(t; x) � dW (t)

�
;

and thus also (cf. [3])

r(t; x) = r(0; x + t) +

Z t

0

@

@x
�(s; x + t� s) � dW (s) :

For each T > 0 the process f(t; T ) = r(t; T � t); 0 � t � T; satis�es

f(t; T ) = r(t; T � t) = f(0; T ) +

Z t

0

@

@x
�(s; T � s) � dW (s) ;

and therefore it is a martingale. This in turn leads to (8i) and hence also to (7i).

For �xed x, de�ne T = t + x and consider the process B(t; T ) = D(t; T � t); 0 � t � T .

Then the dynamics (5iii) implies that

dB(t; T )

B(t; T )
= r(t; 0)dt � �(t; T � t) � dW (t) :

De�ne for 0 � t � T

Y (t; T ) = B(t; T ) exp

�
�

Z t

0

r(s; 0)ds

�
:

Then
dY (t; T )

Y (t; T )
= ��(t; T � t) � dW (t) ;

what implies that Y (t; T ); 0 � t � T; is a martingale and hence Y (t; T ) = E(Y (T; T )jFt).

Substituting for Y (T; T ) gives

B(t; T ) exp

�
�

Z t

0

r(s; 0)ds

�
= E

"
exp

 
�

Z T

0

r(s; 0)ds

!
jFt

#
:
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Consequently

D(t; x) = E

�
exp

�
�

Z t+x

t

r(s; 0)ds

�
jFt

�
;

what proves (7iii).

A similar argument applied to the processes R(t; T � t); 0 � t � T; proves (7ii).

Remark: The idea of the proof of (7iii) stems from Jamshidian [6], Lemma 1, Appendix

1. See also Cox, Ingersoll, Ross [1], p. 775, footnote 10.

Proposition 2 clari�es the relationship between di�erent intuitively plausible dynamics

for a term structure model and their underlying expectation hypotheses. As it is well

known, only the Local Expectation Hypothesis is consistent with an arbitrage-free model

of the term structure, and hence only the dynamics (5iii) is acceptable, thus the \correct"

drift in (6) is

�(t; x) =
@

@x

�
r(t; x) +

1

2
j�(t; x)j2

�
;

which was already shown by Musiela [10] using a di�erent approach. If (8iii) holds for all

0 � t � T <1 then there is no arbitrage possible between the zero coupon bonds B(�; T )

of all maturities T > 0 and the savings account (cf. [4,10]). The martingale representation

theorem allows to represent every integrable contingent claim as a sum of its expectation

and of a stochastic integral with respect to the Brownian motionW . The integrand in the

stochastic integral (i.e., derivative of the claim with respect to W in the Ito integral sense)

permits to derive a self �nancing hedging strategy. Thus the expectation is the arbitrage

free price of the claim.

While there is nothing wrong with working under other expectation hypotheses1),

one must be aware that the prices obtained by such models are not consistent across

maturities2) and may give rise to arbitrage opportunities.

1) For a recent study of a bond price dynamics corresponding to the Return-to-

Maturity Hypothesis see Platen [11]

2) Such models are still quite popular, see e.g. the Black model in pricing caplets and

bond options and its many variants used by practitioners. For a review of such models see

Rady-Sandmann [12].
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3. FX analogy.

Note that D(t; x) can be interpreted as the \spot" price at time t of $1 available at

time t + x. Thus, for any x, the process D(t; x) behaves like an exchange rate between

the spot market (dollars delivered at time t), and the x�forward market (dollars delivered

at time t+ x), which is illustrated by the following diagram.

t+x
r(t,x)dt

t+x+dt

D(t+dt,x)

t+dt
r(t,0)dt

t

D(t,x)

Hence D(t; x) is t{time price of the asset "one dollar at time t + x". But this asset

has the continuous dividend yield r(t; x). Assume that D(t; x) is an Itô{process with drift

�(t; x), i.e.

d D(t; x)

D(t; x)
= �(t; x)dt � �(t; x) � dW (t)

Then under the risk{neutral measure the "asset" D(t; x) must have the same rate of return

as the riskless asset "one dollar at time t", namely r(t; 0). Hence no arbitrage implies

�(t; x) + r(t; x) = r(t; 0)

or

(9)
d D(t; x)

D(t; x)
= (r(t; 0) � r(t; x)) dt� �(t; x) � dW (t):

This argument, which is analogous to that used in pricing FX{options or options on

stocks with continous dividend yields, leads directly to the dynamics (5iii) resp. (6iii)

as the arbitrage{free dynamics for our term structure model. It also shows that the term
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structure model can be viewed as the classical foreign exchange rate model (with an in�nite

dimensional manifold of exchange rates).

For all x � 0 let P x be the probability measure de�ned by

P x(A) =

Z
A

E(�Nx(T ))dP

where for 0 � t � T

E (�Nx(t)) = exp

�
�Nx(t)�

1

2
< Nx > (t)

�
;

Nx(t) =

Z t

0

�(s; x) � dW (s):

From the Girsanov theorem it follows that the process

W x(t) =W (t) +

Z t

0

�(s; x)ds

is a Brownian motion under P x.

Let R(t; x) = D(t; x)�1 be the price of 1 dollar in the spot market in dollars of the x{

forward market (i.e. the exchange rate where the domestic economy is the x{forward

market and the foreign is the spot market). From (9) and Ito's formula it follows that

(10) dR(t; x) = R(t; x) ((r(t; x) � r(t; 0)) dt+ �(t; x) � dW x(t))

Hence the measure P x is the arbitrage free measure or the "foreign economy", i.e. of the

x{forward market.

We could have obtained the arbitrage{free dynamics (10) of R(t; x) directly by the same

FX{analogy used before, but now looking at the "foreign economy" under the martingale

measure P x, observing that in this economy r(t; x) plays the role of the "domestic" interest

rate, whereas r(t; 0) is now the "foreign" rate. Note, however, that according to Proposition

(2ii) the solution of (10) is

R(t; x) = Ex[exp

�Z t+x

t

r(s; 0)ds

�
jF ]

where Ex denotes expectation under P x. But this means that No{Arbitrage (NA) in the

"foreign economy" is equivalent to the Return to Maturity Hypothesis (RTMH), and no
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longer to the Local Expectation Hypothesis (LEH). This is an important observation since

it shows that on has to be quite careful by claiming that NA is equivalent to LEH. In fact

LEH in the "spot" market is equivalent to RTMH in the "x{forward" market when viewed

under the corresponding martingale measures P and P x.

Let �(t; x) =
R x
0
� (t; u)du, then the arbitrage free dynamics (6iii) of fr(t; x); t � 0; x � 0g

is given by

dr(t; x) =

�
@

@x
r(t; x) + � (t; x) � �(t; x)

�
dt+ � (t; x) �W (t)

De�ne the process

ry(t; x) = S(y)r(t; x) = r(t; x + y);

where S(y) is a semigroup of left shifts. Then

dry(t; x) = d (S(y)r(t; x)) = S(y)dr(t; x)

= S(y)

��
@

@x
r(t; x) + � (t; x) � �(t; x)

�
dt+ � (t; x) � dW (t)

�

=

�
@

@x
ry(t; x) + � (t; x + y) � �(t; x + y)

�
dt+ � (t; x + y) � dW (t)

=

�
@

@x
ry(t; x) + � (t; x + y) � (�(t; x + y)� �(t; y))

�
dt

+� (t; x+ y) � (dW (t) + �(t; y)dt) :

But the process

W y(t) =W (t) +

Z t

0

�(s; y)ds

is a Brownian motion under P y and

�(t; x + y) � �(t; y) =

Z x+y

y

� (t; u)du =

Z x

0

� (t; u+ y)du:

Therefore under P y we can write that

dry(t; x) =

�
@

@x
ry(t; x) + (S(y)� (t; x)) �

Z x

0

(S(y)� (t; u)) du

�
dt

+(S(y)� (t; x)) � dW y(t);

which describes the arbitrage free dynamics of ry(t; x).
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We have shown that for all y � 0 in the y{forward market the forward rates ry(t; x) and

their volatilities ry(t; x) are given by

ry(t; x) = S(y)r(t; x) = r(t; x + y)

�y(t; x) = S(y)� (t; x) = � (t; x + y):

In particular it follows for r(t; x) = rx(t; 0) that

dr(t; x) = S(x)dr(t; 0) =
@

@x
r(t; x)dt + � (t; x) � dW x(t)

=
@

@x
r(t; x)dt +

@

@x
�(t; x) � dW x(t)

Thus the dynamics of r(t; x) in the x{forward market corresponds to the dynamics (5i)

in the spot market. But as shown before this dynamics corresponds to the Unbiased

Expectation Hypothesis. Indeed the proof of Proposition (2i) gives immediately that

(11) r(t; x) = Ex[r(t + x; 0) j Ft] ;

i.e. the x{forward rate is equal to the expected spot rate in the x{forward economy. In

this sense also the Unbiased Expectation Hypothesis is compatible with No{arbitrage, a

result already observed for the "forward" measure by EL Karoui [2] and Jamshidian [7].

Note, however, that (11) is no longer equivalent to (7i), which is the Yield{to{Maturity

Expectation Hypothesis (YTM{EH), since integrating (11) leads to

log R(t; x) =

t+xZ
t

Es[r(s; 0) j Ft]ds ;

i.e. expected spot rates now depend on forward time s. (cp. also Miltersen [8]).

4. Stochastic equations in in�nite dimensions.

One of the main advantages of the new parametrization (i.e., r(t; x) rather than f(t; T )

of HJM) is the possibility to analyse equations (6i � 6iii) describing the term structure

dynamics as equations in in�nite dimensions. The state space in which the processes evolve

is the space of all forward curves. If we write r(t) and �(t) to represent fr(t; x); x � 0g
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and f�(t; x); x � 0g (i.e., random vectors with values in appropriate function spaces),

then equations (6i� 6iii) take the following form

dr(t) = A

�
r(t)dt + �(t) � dW (t)

�
(9i)

dr(t) = A

�
(r(t) �

1

2
j�(t)j2)dt+ �(t) � dW (t)

�
(9ii)

dr(t) = A

�
(r(t) +

1

2
j�(t)j2)dt+ �(t) � dW (t)

�
;(9iii)

where A = @
@x
. Equations (9i� 9iii) are analysed in greater detail in [3].
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