A DISCRETE TIME APPROACH FOR EUROPEAN AND AMERICAN BARRIER
OPTIONS

MATTHIAS REIMER AND KLAUS SANDMANN

ABSTRACT. The extension of the Black—Scholes option pricing theory to the valuation of barrier options
is reconsidered. Working in the binomial framework of CRR we show how various types of barrier
options can be priced either by backward induction or by closed binomial formulas. We also consider
analytically and numerically the convergence of the prices in discrete time to their continuous—time
limits. The arising numerical problems are solved by quadratic interpolation. Furthermore, the case of
American barrier options is analyzed in detail. For American barrier call options, binomial formulae
and their limit results are given. Finally, the binomial approach is applied to contracts with local and

partial barrier checks.

1. INTRODUCTION

Barrier options are very similar to standard call and put options. However, a final payoff can only occur
if during a monitoring period the price of the underlying asset has — depending on the specific contract
under consideration — either attained or failed to attain a prespecified upper or lower level, called the
”barrier”. Such contracts have indeed become the most popular types of exotic options.

Merton [1973] and in particular Conze, Viswanathan [1991] have extended the Black—Scholes model to
obtain closed formulas for the valuation of several types of barrier options in continuous time. In general,
approximate prices for options can be obtained with binomial models even in cases where it is not possible
to derive closed formulas. Here we show that prices for the whole class of barrier options can be obtained
within the binomial model, if the backward induction algorithm is suitably adjusted. Fortunately, in
many cases the application of the reflection principle allows us to obtain binomial formulas and hence to
avoid backward induction .

Similar to the limit result by Cox, Ross, and Rubinstein [1979] (CRR hereafter) for standard options
we recover the well-known continuous time formulas for the price of some barrier options as limits of
binomial formulas. The results can be seen as a justification for using a binomial model as a discrete
approximation of the continuous-time setting. However, unfortunately simulations reveal that with an
increasing refinement of the binomial lattice option prices converge in a very irregular manner. We explain
and solve this problem using quadratic interpolation.

The pricing of American options continues to be of great interest to researchers. In the case of barrier
options early exercise can be optimal even for call options because losses from the underlying hitting
a knock—out barrier can thus be avoided. Consequently, the early—exercise—feature of such contracts is
examined in detail. Exploiting special properties of the discrete—time set—up, we succeed in constructing
binomial formulas for American barrier calls. In particular, a constant early exercise level can be derived
in the discrete set—up. In the limit, we recover the formulas for European barrier call options with rebate

at the barrier.
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Finally, we briefly extend the analysis to further contract variations. Special attention should be paid to
options where the barrier is not continuously but only temporarily or locally checked, since such features,
which occur frequently in practice, can result in considerable price differences.

The first binomial option pricing model was developed simultaneously by Cox, Ross and Rubinstein [1979]
and Rendleman and Bartter [1979]. CRR presented the fundamental economic principles of option pricing
by arbitrage considerations in the simplest manner. In addition, they showed that their binomial option
pricing formula for a European call yields the Black—Scholes formula as a continuous—time limit.

The pricing of ”down-and-out” options dates back to Merton [1973]!. Cox and Rubinstein [1985] explain
how the pathdependence of a down—and—out call can be resolved in the binomial model. However, they
do not examine the more difficult case of in—options and American options. In a different but simular
context, Sondermann [1988] imposes subjective price boundaries on the price path of the underlying in
a discrete-time set—up. Using the reflection principle he obtains a binomial formula for which a limit
result is derived. Conze, Viswanathan [1991] define several barrier options and derive exact replication
and valuation formulas using the reflection principle in continuous time. In addition they derive some
results for the corresponding American type options. Rubinstein, Reiner [1991] list continuous—time
formulas for all the eight different barrier options. Recently, Boyle and Sok Hoon Lau [1994] have
pointed out the irregularities in the convergence of prices of barrier options in binomial lattices which we
mentioned above. They solved this difficulty by extracting a subset of refinements of the binomial lattice
such that convergence i1s smooth. These findings where independently put forth in Reimer, Sandmann
[1993] . However, we additionally propose a different method, because the method for computing fitting
tree refinements may fail. A quadratic interpolation method exhibits stable pricing results for arbitrary

barrier conditions and arbitrary, especially constant, tree refinements.

2. THE DISCRETE TIME MODEL

Let T = {0 =19 < t; < ... <ty = T} be the equidistant discretization of the time axis. Suppose that

S(ty) is the initial asset value at time ¢g. The stochastic behaviour of the asset is then modeled by
(1) S(ta,i) = S(to)u'd"™" Vi=1,.,n; Vi, €Tl

where S(t,,7) denotes the asset price at time ¢, after ¢ up-movements and v > d > 0, with u-d = 1,
are the time and state independent proportional asset movements per period. Furthermore assume that
the interest rate is constant during the time interval [0, T] and let r be the interest rate per period. The
binomial model is arbitrage free iff there exists a probability measure P such that the discounted asset
price process is a martingale under P. This socalled equivalent martingale measure exists and is unique
iff u > 1+ r > d where the transition probability is given by

) 14+r—d

(2) p:= PlS(tas, ) = 5 ulS(tn, ) = 5] = ————

Since the market structure is complete, the price of an Arrow—Debreu—security «(n, ) at ¢y ,which pays

one unit at time ¢, if the asset price is equal to S(to)u'd"~¢ and otherwise nothing is equal to

(3) w(n,i) == (1 Jlr r)n (?)pi(l e

The arbitrage price of any state dependent contingent claim G whose payments are only conditioned on

the asset price at time ¢y 1s therefore equal to

W o= )NEP[G<ST>]:( 1 )Ni(]Z.V)piu—p)N—iG<S<to>uidN”>

1+r 1+r P

1cp. also Ingersoll in " The New Palgrave”
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where #(.) is the unique arbitrage free price system. With barrier options, this general pricing principle
cannot be applied in a straightforward manner. Due to the barrier condition the payoff depends on the
whole price path and not only on the final asset price at time tn. To overcome this problem, one method
to calculate the arbitrage free price of European type barrier options is given by a backward induction
argument?. Consider the case of a down—and—out put or call option with barrier H. Then the following
recursive algorithm yields the arbitrage price of these barrier options. Denote by Grp(t,,¢) the value of
a down-and-out option issued at time ¢, € T and state ¢ = 0, ..., n with fixed maturity {5 = 7. Due to
the contract specification at time ¢ = 7', the value of G'p(ty,¢) must be equal to the immediate payoff
for all states ¢ = 0,..., N :

[S(to)u'd¥ " — K]* resp. [K — S(to)u'd¥ "1t if  S(to)u'd¥ ™" > H

(5) Gr(ty,1) = { 0 i S(to)u'dV " < H

and Vi, € T\ {tx}and i=0,...,n

(6) GT(tn, l) . { 1ir I—J’GT(tn+1ai + 1) + (1 - p)GT(tn+1a l)] %f S(to)ul:dn:l: > H

0 if  S(to)u'd" " < H
The backward induction is based on the martingale property of the discounted price process Gr. A similar
recursive algorithm can be applied to up—and-out put or call options. Due to the close relationship
between the different European barrier options and standard options the backward induction method
can be applied straightforward to compute the arbitrage price of all these options. Furthermore this
algorithm can be modified easily for American type down—-and—out resp. up—and—out put or call options.

For example, consider the adjustment to (6) for an American down-and-out call:
max{S(to)u'd" ™ — K o7 [pGr (tntr, i + 1) + (1 = p)Gr(tns, )]}
(6a) Gr(tn,i):= if S(to)u'd"™" > H

0 if S(to)u'd"™ < H
Again, a similar algorithm can be applied to American up—and—out put or call options. Unfortunately
we cannot deduce the price of American type ”in”— options from those of the American type ”out”—
options. To obtain a backward induction algorithm for American type ”in”— options 1t is worthwile to
consider the European case more closely.
For example, consider the down—and—in put option in more detail. Let H be the lower barrier and
assume that H 1s a possible terminal realization of the asset at time t5 = 7. Let Jg € IN such that
H = S(to)u’#dN~7#. Furthermore, since u - d = 1 the symmetry of the binomal lattice implies that
N — 2Jg is the minimum number of immediate down—movements such that the asset reaches the barrier
for the first time. Since H is a lower barrier (i.e. H < S) we have N — 2Jg > 0. Note that whenever
S(ty) = H a down—and-in option issued at time ¢, with fixed maturity {y = T is equal to a standard
European option issued at time #,. With the same notation as before the following algorithm yields the
arbitrage price of European down—-and—in put options: Vi=0,..,N
0 if S(to)u'dV=" > H

(7) Gr(ty,i) = ‘ ‘ ‘ ‘

(K — S(to)u'd" 1" if S(to)u'd" ™" < H

and Vi, €e T\ {tn}; 1=0,...,n

T PG (tntr, i+ 1) + (1= p)Grltnsr, )] if S(to)u'd" ™" # H
(8) GT(tn,i) =

N—n N—n X X + . .
( } ) S (T (1= p)N T K = S(to)ut T AN DT S(to)utd™ T = H

J

2For the case of a down—and—out—call this was already demonstrated by Cox, Rubinstein [1985].
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For the American case, the algorithm must be changed slightly. The early exercise of an in—option is
only admissible if the price path has already satisfied the ”in”—condition. The initial condition (7) is the

same as before, whereas (8) is now changed to®
Ar(tn,1) :=[K = S(to)u'd" ™" Vi=0,--- N
and Vn =N —1,---,0

Ar(tn,i) = max{K—S( 0)u L il r[pAT(th,z—l—l)—l—(l—p)AT(tn+1,i)]}

[P Gr(tngr, i+ 1)+ (1 —p) Gr(tngr,i)] if S(to)u'd” ™ > H

1
147
Az (tn, 1) if S(to)u'd"™ = H
(8a) Gr(tn, 1) =
max { K = 5(to)u'd"™" 5 2 [pGr(turr, i +1) + (1= p)Gr(tnss, )]}

if S(to)u'd"™" < H

3. CLOSED—FORM BINOMIAL FORMULAE FOR EUROPEAN BARRIER OPTIONS

As a general pricing principle, the backward induction method can be used to price European and
American type barrier options in a somehow straightforward manner. To study the convergence behaviour
of this method a closed—form binomial formula for barrier options can be constructed. Therefore we

redefine the notion of Arrow—Debreu—securities, such that the barrier is reflected.
Definition 1.
i) A down-and-in—-Arrow-Debreu-security for state S(¢n) = # is defined by the payoff at time tx

1 iff S(tx) =« and 3 ¢, € T such that S(t,) < H
(9) (v, H) = { =

0 otherwise

11) An up—and—in—Arrow—Debreu—security for state S(¢y) = x is defined by the payoff at time
) p y y the pay

10) (o, H) o= { 1 iff S(ty) =« and 3 ¢, € T such that S(t,) > H

0 otherwise

Given the arbitrage prices of such conditioned Arrow—Debreu—securities at time ¢y we can immediately

apply the argument which supports the pricing rule (4).

Proposition 1. Let H be a possible terminal realization of the asset price at time {y and Jg € H such
that H = S(to)u’7dN-7n
i) The arbitrage price mq(N, i, ) at tg of a down—and-in—Arrow—Debreu-security for state S(ty) =
S(to)u!d™~* with barrier H < S(to) is equal to

(#

) N i< g

(11) 7a(N,i, Jig) = (

2JH Z
0 if 20 < i
3With Ar(tn,?) we recursively calculate the arbitrage price of the standard American put option. For the down-and—in

call and the up—and—in call or put, similar algorithms can be applied. If the underlying asset is dividend protected, then

the early exercise for the American down—and—in call resp. up—and-in call option is not optimal (see section 5.1)
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ii) The arbitrage price my(N,4, H) at ¢y of an up—and-in—Arrow—Debreu—security for state S(ty) =
S(to)u!d™—* with barrier H > S(to) is equal to
0 if e < A
L\ N ; N—i ¢ d .
(12) (N, i, Jg) = (W) (opp_p)p' (L =p)N=" i 22 <i< Jg

N . .
(&) pa-p itz

Remark.

N . .
1. By arbitrage we have my(N,¢, H) + nq(N, i, H) > (J—r) (J;’)pZ(l — p)V=i since the payoff of the
left hand side portfolio weakly dominates the unconditional payoff for JTH <1t < 2Jg and coincides

otherwise.

2. For Jg > % ,i.e. H > S(tp) the down—and-in—Arrow-Debreu-security coincides with the uncondi-

N
25

1s equal to an unconditional Arrow—Debreu—security.

tional Arrow—Debreu—security. If Jg < i.e. H < S(tg) the up—and—in-Arrow-Debreu—security

Proof. For H < S(ty),i.e. Jg < %, the reflection principle (Feller [1968]) yields the number Z4(N, 4, Jgr)

of price paths with terminal value S(to)u’d™ =% which touch or cross the barrier H = S(to)u’#dN-7#

)y i< Jg

Za(N,i,Jw) =< () ifJg<i<2Jg  Vi=0,.,N
0 ifi>2Jp

Since the transition probability p defines the unique equivalent martingal measure P, the arbitrage price

of the down—-and—in—Arrow—Debreu-security is given by

N
mq(N,i, H) = (ﬁ) Eplga(N, i, H)]

which yields (11). With simular arguments we can derive formula (12).
|

Consequently, these conditioned Arrow—Debreu—securities can be used to compute the binomial formulae
of all European type barrier options. The following theorem summarizes this for a European down—and-

out call. The remaining formulae are given in the appendix (Proposition 2).

Theorem 1. Suppose the barrier H is a terminal knot of the binomial asset price process at time i,
i.e. 3Jg € INg such that H = S(to)u’#dN¥~7#  then the arbitrage price of an European down-and—out
call* with H < S(tg) is equal to

CalS, K, T, H] = S(to)i:ai; (JZ\,])pi(l—p)N_i—<1ir)N[(i:§:J (f)pi(l—p)N_i
(13) S > (o Jra-ee () K S (Y Jame

i=aVJg i=aVJg

4 A reasonable down barrier H < S(to) should not be too low with respect to the strike level K. If H is too small, no
asset price path that touches or crosses the barrier can reach a terminal knot that yields a positive option payoff. Formally,
2Jy > a, otherwise the down-and-out-call is equal to a standard call, i.e. the last two sums of equation (13) are by definition

equal to zero.
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where
a = inf{i € N|S(to)u'd" ™" > K},
aVJg = max{a,Jg}
o pU 14 r—d
Po=7 +r  u—d

Proof. By definition of the Arrow—Debreu-securities and the down-and-in Arrow—Debreu securities, we

have

+=0

N
CaolS, K, T, H] = Z m(N, i) [S(to)u'dV " — K]+ - Z ma(N, i, Jgr) [S(to)u'dV " — K] *
i=0

Since H := S(to)u’#d™ 7% < S(ty) we have Jg < % and by assumption Jg > 0.

d

Under the usual assumptions, these binomial formulas converge in distribution to the well known formulae

5

for European type barrier options® in continuous time. As an example consider the European up—and—out

put and down—and—out call®.

Theorem 2. Let At = % be the grid size of the binomial lattice. For u = exp{ov/At}, d = u~! and

F= %ln(l + r) (the continuously compounded interest rate) the convergence in the distribution of the
binomial formulae is given by

(14) lim Cao[S(t), K, T, H] = S{)N(z(K vV H)) — Ke " N(a(K V H) — 61/5)

tiS(t) <%> o N(y(KVv H))+ Ke™’*. <%> o N(y(KV H) —ov/s)

(15) Jlim Puo[S(t), K, T, H = Ke™ N (=2(K A H) +03/5) — SN (=2 (K A H))
—KeT <%> - N (—y(KAH)+0ys) + S(t) <%> o N (—y(K A H))
where
s = T —1 the time to maturity; KV H = max{K,H}; KA H = min{K,H}
a = g and

2(z) = (m( )+%025)~U\1/§; y(z) = (m(#j_h”%a?s) O_Lﬁ

se—Ts
Proof: see appendix.

Remark.

1. The first two terms of (14) are just equal to the arbitrage price of a standard European call option.
The remaining part of (14) corrects the price with respect to the barrier condition. This correction
term gives the arbitrage price of a down-and-in call option in the case of K > H.

2. For K < H the first two terms of (15) are equal to the arbitrage price of a standard European

put option. In this situation the correction terms corresponds to the arbitrage price of a European

up—and—in call option.

5see Cox, Rubinstein [1985] and Rubinstein, Reiner [1991]

8For completeness, the remaining limit formulae are given in the appendix (Proposition 4)
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4. BINOMIAL APPROXIMATION

The binomial formulae for barrier options cover only cases where the barrier H is exactly an endpoint
of the binomial tree. But application of the reflection principle requires nothing more than that the
barrier H is located within the tree lattice. For barrier levels at tree knots in between terminal knots,
the binomial formula remains valid if we have H = S(to)uJHdN_l_JH and the binomial coefficients in
(13) are computed with 2 - Jg 4 1 instead of 2 - Jg.
The arbitrage price computed by the binomial formulae with a fixed grid size remains constant for all
barriers H between two knot—levels of the binomial tree. Consequently, for a given parameter constellation
only with a very small number of specific tree refinements the valuation algorithm behaves properly. With
deviating refinements we cannot expect a monotonic convergence behaviour to the limit especially when
there are small grid sizes. Consider a European down—and—out option. The endpoint condition on H
requires that there exists a Ji € IN such that S(to)uJH dN—75 = H. Define the number k as the minimum
number of immediate down movements such that S(to)d* = H. Obviously we have S(to)u'd't* = H for
all . Now we can interprete the time grid or the tree refinement as a function of the number £ | i.e.
N
At:(i:—i) C}N(k’):N:%
H

The optimal refinement number for a down—and—out call with first touch after & down movements is then
defined as”

N*(k) = max{i €EIN| i< N(k)= w

(Ing)?

The following figure underlines the important role of these optimal refinement numbers.

, ¢t — k 1s an even number }

f ! ! ! ! ! !

2.5
2
15

OPTION PRICE

e e e e s

0 50 100 150 200 250 300 350
TREE REFINEMENT

Figure 1: Binomial formula for a down-and-out call with S(t¢) = 40, K = 40,r = 5%, 0 = 15%,T = 365
days, H = 39 and optimal refinement N*(k) = 35,140,315 for k = 1,2,3.

The appropriate grid size in a binomial model depends in a crucial manner on the barrier H. This is
obviously an unfortunate feature. If the discrete time framework is used to approximate the continuous
time model, in some sense ”better” or ”quicker” approximations are desirable. Although closed—form
solutions for European barrier options are known, a ”better” numerical approximation technique is useful
as a test for situations where closed—form solutions are not available or unknown.

"This has been observed by Boyle and Sok Hoon Lau [1994] in an independent study. They consider the recursive

algorithms and define the optimal refinement number in a similar way.
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In the case of a European down—and—out call the following technique appears to be very sucessful. For
a fixed number of periods N resp. grid size At and a fixed barrier H which 1s not a barrier level of the

binomial tree we can select three barriers Hy, Ho, Hsz of the binomial tree lattice such that
Hy = S(to)u’7dN~i < Hy = S(to)u’mdV 7871 < Hy = S(to)u/7 1 aN=7i~1
for Jiy = max{i € N | S(to)u'd" "< H} = H, < H < Hs
Using the binomial formula we can compute the arbitrage prices of the down—and—out call options with

these barriers. The price of a down—and—out call option with barrier H € [H;, Hs] is now simply

approximated by the Lagrange interpolation polynomium of degree 2, i.e.

(16) Cao[S, K, T, Hl ~ f(H) = Y Li(H)-CylS K, T, Hij
LiH) = [l -8/ [I#H:-H)
J#i J#i

Figure 2 gives a typical example of the success of this approximation for a fixed grid size and barriers
H between 35 and the initial asset price S. There is basically no difference between the continuous time
solution and the approximation. Actually, you cannot recognize the result, because of the precision of

the approximation.

3.5 T T T T

b T - -
25 b B U S— .
. S— Ny .
5k e N -
N
b
0 1 1 1 1
35 36 37 38 39 40

BARRIER

Figure 2: Approximation of the continuous time solution for a down-and-out call with a binomial model
of N = 200 periods with and without Lagrange interpolation. S(tg) = 40, K = 40,7 = 5%, 0 = 15% and
T = 365 days.

OPTION PRICE

5. AMERICAN BARRIER OPTIONS ON DIVIDEND PROTECTED SECURITIES

From Merton (1973) we know that a standard American type call option on a dividend protected asset
1s always more worth alive than dead, i.e. early exercise does not occur. In the case of an out barrier
option, this is not always true, since when the underlying asset reaches the barrier, the contract becomes
worthless. Thus in general, there is an incentive for early exercise just before reaching the barrier. The

following proposition extends Merton’s result to the case of barrier call options:

Proposition 5. Let the underlying security be a dividend protected security, then

a) an American down-and-in and an American up-and-in call option will never be exercised before

maturity.
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for an American up-and-out call option with barrier H > S(ty) early exercise can become optimal
if and only if H > K .
for an American down-and-out call option with barrier H < S(¢p) and continuous price paths of

the underlying security early exercise can become optimal if and only if H > K.

Proof.

ad a)

ad b)

ad ¢)

By definition, the option can only be exercised if it is already ”in”. In this situation, the barrier
option is equivalent to a standard call option for which Merton’s result applies.

If H < K a Furopean up-and-out call is worthless, and furthermore whenever the inner value
Max{S; — K,0} at time ¢t < T is greater than zero, the barrier condition implies that the contract

is already out.

Suppose H > K and that the option is still alive at time ¢ before maturity. The inner value at time

t 1s then by definition equal to

S;i— K VK<S;<H
9(S¢) = ;
0 VStZH,St<IX

Due to H > K the early exercise payoff is discontinuous at S; = H and bounded by A — K from

above. A sufficient condition for early exercise at time ¢ is therefore given by
(S; — K)e'=Y > H_K>g(Sr) V Sr
&S > He Tk (1-77T9)

i) ® First consider the situation H < K. Let ¢ € [0, 7] and assume that the option is still alive,
ie. Spx > HV 1" € [0,4]. In the case H < S; < K, there is no early exercise, since the inner
value [S; — KT is equal to zero. For H < K < S; consider the following portfolio: buy the
down-and-out call with the barrier H and time to maturity 7' — ¢, sell the underlying asset and

place the exercise price into the money account. At ¢, the portfolio is worth
CyolSt, K, T—t,H — S; + K

Now, in case the barrier is not reached until time 7', the down-and-out call yields the same

payoff as the standard call, and therefore the final payoff at time 7" is given by

KT 1) > 0 ifSp >K

Sr K + _ S 4 K F(T—t) —
[ST — K] T+ Ke Ker™=9 _ Sy > 0 ifSp < K

Now assume the barrier is reached at time ¢* € ]¢, T for the first time. Since by assumption
Sy% = H, the value of the portfolio at time t* is equal to —H + Ke™(*"=9 > 0, which can be
placed into the money account until time 7. Thus, the final payoff of this portfolio strategy
yields a non-negative payoff (even positive if » > 0) and by means of no arbitrage, this implies
a non-negative initial value of the portfolio: Cy, > S; — K

ii) Second, consider the situation H > K. Suppose that the down-and-out call is still alive at
time ¢t < T, i.e. Spx > H V t* € [0,t]. With the same portfolio argument as in case i), where
instead of K the discounted exercise price Ke~"(T=%) ig placed into the money account, we can
conclude that for the Furopean down-and-out call the following boundary conditions must be
satisfied:

CaolSt, K, T —t, H]< Sy — Ke7™T=9 it S, > H>K

8The portfolio argument and the proof of Proposition 5 part ¢ was first given by Daniel Sommer.
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and furthermore that
Cao[St, K, T—t,H| > S, — H if S;>H>K

where both bounds are tight. Since S; — K > S; — H for H > K, there are situations possible,

when early exercise is optimal for the option holder.

We can now apply these distribution free results to the special structure of the binomial model.

Theorem 3.
a) The arbitrage price of an American up-and-out call option with barrier Su/#d"¥~7/# = H > K and

a grid size At = TJ_V“J such that dH > K is equal to

Cyo'[S, K, T, H) = C"[S, K, T, dH]

N(h) . .
S h—2+42i h =242\ 5 14 i .
s (- (M e pran - )

=1

(17)

where h = 2Jg — N for H > S,p = %, and N(h) =sup{i € IN|i < W}
b) The arbitrage price of an American down-and-out call option with barrier Su/#dN-7# = [ > K

and grid size At = % such that uH < K is equal to

CS7(S, K, T,H] = CS¥"[S, K, T,uH]
N(h) . ,

S h—2+2i h=2+20\] 5 i1y 7
Z[( / )_< )]p(l_p)h i uH - K]

1 1—1

(18)

where h= N — 2Jgy for H < S.

Proof: see appendix

Remark.
1) The reason for these binomial closed—form solution is the existence of a constant early exercise

boundary. Thus American type barrier options are in some cases equivalent to European barrier

options with a constant rebate.
2) Applying the continuous time closed—form solutions for European barrier options with a constant

rebate (Rubinstein,Reiner (1991)) we have the following limit results:

lim CYM[S,K,T,H] = lim C“[S, K, T, H]

(19) At—0 At—0
H>K H>K
[ - K] [(%) N n()+ (5] N (i) + aa@]
(20) lim C4°[S, K, T, H] = lim CSV[S, K, T, H]
o o
s =K [(5) N )+ (5) ¥ (el —ao s>]

ln( s;ii’“s ) ia2s)

with o = 2’:, s =T —1; and 3/1,2(3) = ( /s

o2
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3) The argument for American put options is similar but we can’t expect to find closed form solutions
for all cases. The basic difficulty is that it can be optimal to exercise a standard put option when
the value of the underlying is small. Thus for the case of the up-and-out and up-and-in put option,
it is not possible to find a closed—form binomial expression. In the case of a down-and-out put or
down-and-in put, it is possible to find closed—form solutions for some barriers H. If the barrier
H < K is greater than the critical value $*(t) of the underlying, which indicates the early exercise
for standard put option at time ¢, then the American down-and-out put will be exercised just
before the barrier. This can be expressed by a binomial formula, which includes again a rebate of
K — H. For the American down-and-in put, a binomial formula can be constructed in the case,
where H < S*(t) < K where S*(#) is again the critical value for early exercise at time ¢ in the
standard case. In both cases, the limit result is given by the corresponding European type down

barrier puts plus a rebate of [K — H]. In all the other cases, we have to apply a recursive algorithm.

6. EUROPEAN OPTIONS WITH LOCAL OR PARTIAL BARRIER CONDITION

We consider now situations, where the barrier condition has to be satisfied only on a subset of spots,
but not on the whole time interval. We restrict the analysis to the following three basic cases, which we

define in the discrete framework.

Definition 2. Let I = {0 =t < t; < ... < iy, <inq1 < ... <ty =T} C[0,7] be an equidistant
discretization of the time axis.
a) A barrier option with maturity 7', underlying security S, and barrier H is called

i) a front partial barrier option with barrier period T(to,tn,) = {to < ... < tn,} C L, if the path
dependency of the payoff is restricted to the period Z(o,%x,) and independent of the security
realizations at times ¢ € {tn, 41 < ... <in_1}.

ii) a back partial barrier option with barrier period L(tn,,tn) = {tn, < ... < ty}, if the path
dependency of the payoff is restricted to the period I'(tx,,tx) and independent of the security
realizations at times ¢; € {{g < ... < tn,—1}.

b) A barrier option with maturity 7" is called a local barrier option with barrier times £H = {t; <
tll <. < t;} C T if the path dependency of the payoff is restricted to the set zH and independent

of the security realizations at times ¢ € z\zH

The payoff of a front partial down—and—out call option with maturity T' > ¢y, , barrier H, and barrier
period is defined by T(to,%n,) is given by

[Sp — K]t if Sy, > HVYt; € L(to,tn,)
{ 0 if 3t € L(to,tn,) with S, <H
With reference to the previous discussion we can compute a binomial formula for a partial barrier option
if we can compute the corresponding prices of partial down-and-in, resp. partial up—and-in, Arrow-
Debreu—securities. Given the binomial model for the underlying security, these prices can be computed
by applying the reflection principle (see proposition 5 in the appendix). With these prices, we can
compute the arbitrage prices of all partial down barrier options. The following theorem demonstrates

this for the partial down—and—out call option.

Theorem 4.

i) Let the barrier H be a knot of the binomial security process at time ty,, i.e. 3Jg € Ny such that
H = S(to)u?#d=7#_ The arbitrage price of a European front partial down-and-out call with
barrier period I'(to,tn,) = {to < ... < tn, } is equal to
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CIP1S, K, T, H,L(to, tn)]

(@) - <1—|—r
- (=

- (3

ii) Let the barrier H be a knot of the binomial security price process at time ¢y, i.e. 3Jg € Ng such
that H = S(to)u’/#d™~7#. The arbitrage price of a European back partial down—and—out call with

N

( ) Pl —p) [SuidN—i _ K]"‘

s

>N > (jw (N:]m (=) TS - K]
N)

)

1= JH+1 k=0V(i+Nj—

N2JH+N Ny 2JzH:/\i ( N )(N—]\H)
¥) 2Jg — k 1 —k

i= JH+1 k=(Jg+1)V(i+ Ny —

p'(1— ) su'dV - KT

barrier i, maturity 5 = T', exercise price K and barrier period T(tn,,tn) = {tn, < ... <tn}is

equal to

CIS, K, T, H,L(tn,, tx)]

(22) - (=) = (f)ﬂ(l—p)N—i[SuidN—i—Kr

1=Jgr
27 Tt =N i
~ 1 N 2JHA( i: ) Nl/\(iJ:H ) Ny N — N,
147 ) : k 2Jg —1—k
i=Jgr k=0V(i+N;—N)

1= p) T Su N — K]

As the last extension of the binomial approach, we consider the situation of local barrier options. Let
H — {t1 < ... <t} C T be a given subset of 7. For each local barrier option, there exists a recursive

algorithm to compute the arbitrage price. Consider for example a local down-and-out call with barrier H.
As in section 2 denote by Gip(t,,, ) the value of such a local down-and-out call with fixed maturity ¢ty =T
issued at time ¢, € T and state i, i.e. S(t,,7) = S(to)u'd"~*. The initial condition of the algorithm is
therefore

[Sto)uldV=t — K]+ if T=tygI"
(23) Gr(T,i) =4 [Sto)u'dVN = = K|* if ty € T" and S(to)u'd¥~! > H

0 if ty €T and S(to)uid¥~! < H

By backward induction we have C2°¥[S| K T, H,;H] = Gr(to,0) with V k = 0,... , N —1and i =
0,...,k

? PGr(tesr, 1+ 1) + (1 = p)Gr(tegr,i)] if to g T"

o0 Grn =) TEFEOT (=G e L
and S(tg, 1) > H

0 if tel”
and S(tp, 1) < H

Furthermore if we assume that H is a knot of the binomial security price process at any time ¢}, € zH
it is possible to construct a binomial formula. For simplicity let us assume that both sets T' and zH
are equidistant sets, i.e. there exists a number Ny € IN such that t’ € TH is equal to tjn, € L.

Thus t;41 —t; = At- Ny Vi; € TH, U = ilpng = IN € T and At is the grid size of the set T.

Furthermore assume that Ny 1s an even number. Let H be a termmal knot, i.e. 3 Jg € IN such that
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H = S(to)u/#d"N =% and since Ny is even, H is also a knot at time t; € zH With these simplifications

the arbitrage price of a local down—and—out call is equal to
Ca™[S, K, T, H,T"]

() e )0

i1=5g ()41 19=0V1i4+jp(2)—i; in=0Vi+jp(n)—ip_1

(25) .pzﬁzl ik (1— p)N—Eﬁzl ik [S(to)uzﬁzl i gN—Xk=1%% _ K] +

where jg(n) = Jg and jg(k) = jp(k+1) — Nz—H =Jjog—(n— k)NTH is the number of up movements
needed at time ¢ such that S(¢, jg(k) = H. Obviously this formula is only useful in situations where

the number of local checks of the barrier is small.

7. SUMMARY

Cox, Ross, Rubinstein [1979] and Rendleman, Bartter [1979] have developed a binomial model for the
pricing of European and American type standard options. For European type options they derived closed—
form binomial formulae which converge to the Black—Scholes formulae under the usual assumptions.
Within the binomial framework we have derived recursive algorithms which can be used for both European
and American barrier options. Furthermore the general argument supporting these algorithms can be
used in the case of modifications of the contract definition or/and to dividend paying securities. In analogy
to Cox, Ross, Rubinstein and Rendleman, Bartter we give binomial formulae for European barrier options
and prove the convergence towards the continuous time solutions. In addition the convergence behaviour
is analyzed and a robust approximation with Lagrange interpolation is proposed. This interpolation
method reduces the complexity of the lattice and is therefore of practical use for the implementation of
numerical procedures. Furthermore we solve the case of American barrier options explicitly and derive
closed—form solutions within the binomial and continuous time framework. The Merton (1973) result for
American type call options is extended to American barrier call options. As a consequence the binomial
approach choosen can be generalized immediately to Furopean type barrier options with rebate. Finally

barrier options with local or partial barrier condition are discussed within the binomial framework.

8. APPENDIX

Proposition 2. Suppose the barrier H is a terminal knot of the binomial asset price process at time ty; i.e.
JJg € IN such that H = S(to)uJHdN_JH. Define for a, b € IN the following binomial sums:

0 fora > b
B ,a,b = b . ]
et > )@ -pNTt fora<b< N
~ 0 fora>1b
B(p,a, b) =

YO =pNTt fora<b<2Ju

H—1
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Under these assumptions the arbitrage price of the following barrier options (where we assume H < S(%o) in the

down case and H > S(to) in the up case) is equal to
CalS, K, T,H] = S(to)-B(p,a,Ju—1)— K- B(p,a, Jy — 1)
+ S(to) - B(p,a VJg,2Jg) — K B(p, aV Jg,2J)m)
S(to)- B(p,a, Ju) — K- B(p,a, Jg)

CuolS, K, T, H]

— S(to) - B(p,a Vv ”2 ] ,Ju)+ K - B(p,aV [‘]Z—H] Tr)
CulS, K, T,H] = S(t)-B(p,aV (Ju+1),N)—K-B(p,aV (Jg +1),N)
+ S(to)- B (p,a\/[Jz-| Jw) — K ~B(p,a\/ [JZ—H],JH)
PalS, K, T,H] = K-B(p,Ju,b)— S(to) - B(p, Ju, b)
— K- B(p, Ju,2Jg Ab) + S(to) - B(p,27u A k)
PulS, K, T,H] = K-B(p,0,(Ja —1)Ab) — S(to) - B(p,0, (Jar — 1) A b)
+ K- B(p, Ju, 20 Ab) — S(to)B(p, Jur, 2T Ab)
Puo[S, K, T,H] = K-B(p,0,Ja Ab) — S(to) - B(p,0, Jar Ab)
_ kB, ”H] A Tu )+5(t0)B(p,@,bAJH)
PulS, K, T,H] = K.B(p,(JHJrl),b)—S(to) B(p, (Ju +1),b)
+ R B, ”;1 bA Ji) — S(to) B(p, [2] bA Ji)
where
a = inf{i € N|S(to)u'd" ™" > K} b:=sup{i € N|S(to)u'd" ™" < K}
B pru 14+7r—d
po= 1+7r p::ﬁ
aVJg = max{a, Ju} a A Jg :=min{a, Jz}

N 1 \Y
K= < > K.
1+

Proof of Theorem 2.
1) Consider the binomial formula (13) for the European down—and-out—call. Since for H < K < a > Jy the

first two terms coincide with the usual binomial formula for European call options for which we already

know that under the given assumptions the limit in distribution of

S(to) Yy (f)ﬂu—p)N—i_(liT) KOy (f),ﬂu—p)N—" for H < K

1=aVJgy 1=aVJgy

is given by®

S(to)N(z) — Ke " T N(z — /T — o)

o(K) = <ln <%> + %cr?(T—to)) C,Tlﬁ

For H > K it is easy to see that we only have to consider z(H) instead of z(K') as the argument of the

with

standard normal distribution. It remains to proof that under the assumption of theorem 2 the correction

term (for N sufficiently large)

(*) S(to) Y <2J5—i>”i(1_p)N_i_<1ir> KOS <2J5_l.>p"(1—p)N_i

1=aVJgy 1=aVJgy

with N > 2Jy converges in distribution to

—(a+1) 1—a
S5(to) <%> N(y(K Vv H))— Ke™"(T=9 <%> N(y(K Vv H)) —avT — to)

9See for example Cox, Rubinstein [1985] , for simplicity let 7 be the continuously compounded interest rate.
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For simplicity let us assume K > H and'® therefore ¢ > Jy. By index transformation (*) can be rewritten

K <1_p>N—2JH2JH_a
LA 2

N — i
( i)z)(N (1 -p)
=0

For sufficiently small At = TJ_VtD the martingale transition probability p can be approximated by

as

At_d

R
T ou—d 2 2

which yields

im  E, [msm] —(r— "2—2)(T—t0)

At—0 S(to)
s, g =t -n

Furthermore we have the following approximation for the ratio 7

» 14 =22 /R

1—p 1— =22 /Aq

+
- (=2
() s

= 1+2Z< —7 /2\/E>i+1+o(At)

o(At)

1
VAt ————— 4 o(At
I =n g e
e

Z( —7 /2\/5>i+o(At)

= 1+2<#>\/_+2< 0/2> At + o(At)

Observing that for small At the Taylor-expansion of the exponential function is given by

(=228 - £ (2

= 1+2<T_0/2>\/_+2< 0/2>At+o(At)

yields the approximation %p = exp {2 (ﬂ) v At}

Therefore we obtain the following results'!:

. Jer gN—Jgr ln(S(Ptlo))
i) Sto)u'rd = H = N-2/m = -~
In( < aV)
_ Sty
Tu = Tn(s)
N—2Jg
) (1 _ o2 /2 nE .1
i Jm (52) T = dim e {2 (S5 VAL il i
_ (Sgtuz) -2
H
. d\N—=2Jp _
i) lim () = Jlim exp{—20VAT Ingfls - —Lo } (S(to))
_2

ER
lim (%.%)N “H: (S(H))_

At—0

10The case H < K is similar and can be done by a change of variables.

11Now we explicitly use the assumption that H is an endpoint of the binomial tree.
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Finally we have to consider the two sums. Let J(N) be the sum of N independent binomially distributed

variables with up and down probabilities 1 — p resp. p. Thus we have

EJ(N)] = N(L=p) and V,[J(N)] = Np(1 - p).

= z (jlY)pN_i(l —p)' = prob[J(N) < 2Ju — a]

Obviously, the Central Limit Theorem can be applied. By construction we have'?

a) LBV _ In(Ey)-minsdy)

V Vel J(V)] \/VP[IH%]

2(In ot ) It _
Inz
L 2= BylI(V)] _ 2lnz-Ins(to)-Inx—cIn 2+ £, [In 2]
vV Vp[J(N)] \/Vp[ln%]
at—0  alna-Insig)-Ini4(r—o?/2)(T—t0) —

o\ /(T—to)

b) 2Jg —a =

By the Central Limit Theorem therefore we have

2Jg—a

Jim (f)pN_i(l —p)' = N(p2)

i=0
For the second sum we can use the same argument. The only change concerns the transition probability p.

The Taylor-expansion for p yields

1 1 2
pz——i——r—i—a/ VAL
22
. S o
> fim Blnsis] = (r+5) (T-0)
dm sl = 2T n)

Again, by the Central Limit Theorem we obtain
2Jg—a N
. _N—i N—i _
Jim z_; (Z.)p (1-p)" " =N(y)
- 2
2 —nS(to) — K + (v + %) (T~ to)
a (T — to)

For the case H > K the same analysis can be done. The only change concerns the summation.

with 91 =

2) In the case of a European up—and—out put, again two cases have to be considered: H > K and H < K. For
simplicity let us assume H > K and thus Jg > b =sup{i € ]I\T|S(t0)uidN_i < K}. Again we only consider
the correction term in (14) since the first two terms will converge in distribution to the Black—Scholes

formula for put options. The correction term can be rewritten as:

<1Jlrr> Y <2J5—i>pi(1_p)N_i_S(t°) > <2J;V—i>pi(l_p)N_i

i=[Jm /2] i=[Jm /2]

N—2J N 2Jg—[Ju/2]
1—p " 1 . Z NY v i
< P > <1+T> s <i>p (t=)
1=2J —b

27y —[Jm /2]
~S(te) Y ( N )pN"'(l—p)i

2Jg —1
i=2 7 —b H

Given the results in 1) we only have to consider these two sums. The first sum is equal to

Z (?)pN—i(l )i Z (?)pN—i(l —p)

i=2J —b i=2J4+1—[Jg /2]

prob[J(N) > 2Jg — b] — prob[J(N) > 2Jg — [Jx/2]]

12We use the fact that a = inf{€ IN|S(to)u'dN~* > K}.
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where J(N) is the sum of N independent binomially distributed variables with up and down probabilities
1 — p resp. p. From the definition of Jz and b we have

2Jg —b— E,[J(N)] _ 2InH —InS(to) —InK — elnu/d + E,[InSt/S(0)]
Vol J(N)] Vp[lnSr/S(to)]
At—o  2InH —InS(to) —InK + (r — 02/2)(T —t)
0'\/T — to e
20 — [Ju /2] — Ep[J(N)] _ 3/2(InH/S(to)) —1/2NInd — elnu/d + Ep[lnSt/S(t0)]
Vol J(N)] Vp[lnSr/S(to)]
At—0 . T —to
— 400 since — Nlnd =
VAt
Therefore the Central Limit Theorem yields
prob[J(N) > 2J5 — b] — prob |J(N) > 2J5 — [‘]Z—H] 220 N(—y2)
The same argument applies for the second sum where again the transition probability p has to be replaced
by p = f_l_ur

a

Proposition 4. Let At = £='2 the grid size of the binomial lattice. For u = exp{oV/At}, d = exp{—oV/At}

and ¥ = ﬁln(l + r) the convergence in distribution of the binomial formulae in theorem 1 are given by'?

a) for K > H,S>H

lim O[S, K, T.H] S - <%> o N(yi(K)) - K <%> o N(y2(K))

for K < H,S>H
Jlim Cal$, KT, H] = S[N(21(K))— N(za(H))] = KN (22(K)) = N(az(H))]

b) for K> H,S<H
lim Cuo[S, K, T, H] = 0

At—0

for K< H,S<H
lim CuolS, K, T, H] = S[N(z1(K)) = N(z1(H))] = K[N(z2(K)) — N(z2(H))]

At—0

c) for K >H, S< H
lim CoilS, K, T, H] = SN(z1(K)) = KN (z2(K))

At—0

for K< H,S<H
dim CulS, K, T, H] = SN(a1(H)) = KN(a2(H))
1

13We assume H < S(t) in all down—cases and H > S(tg) for all up—cases since otherwise the value of an out—option is

equal to zero and the value of an in—option coincides with that of a standard option.
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d) for K< H,S>H
lim PulS, K, T, H]
At—0

I
=)

for K> H,S>H
Jim PaclS, KT, H] = KON (2a(H) = N(wa(K))] = SN (s (H)) = N(ea(K))
k- (5) T W) - M)

5 ( ) TN () = N (K))]

KN(=22(K)) = SN(—21(K))

|

e) for K< H,S>H
lim Py[S, K, T, H]
At—0

for K>H,S>H
lim PulS, K, T, H] = KN(=a2(H)) = SN(=w:(H))

() IV () = N ()

—s-(5) NG - N ()]

f) for K< H,S<H
1—a
lin, Puls KT ) = K (5) 0 Nm) -5+ ()7 N ()

At—0

for K> H, S5 < H
lim PulS, K, T, H]
At—0

KN (22(H)) = N(z2(K))] = SN (21 (H)) = N(21(K))]

+K- <%> o N(—y2(H)) =5 - <%> o N(=y1(H))

where K = Ke™ ™, o= i—’;, s=T —1o and

In (L) +o2s

x172(Z) = a,\/g y172(Z) = a,\/g
Proof. The proof of the above formulae is an application of the Central Limit Theorem already demonstrated in
Theorem 2.

In (SH—Q) +0%s

e—7s

Proof of Theorem 4.

a) Let Ci'[S, K, H,T] be the arbitrage price of an American up-and-out call option which is still alive at
time ¢t. Let H > K be the barrier. By assumption H is an endpoint of the binomial tree. Thus at time
tha €l = {to < ... < ty} the option is still alive if S(¢,) = S(to)u’d" ™7 < H. There are two possible cases
of interest. First S(t,) < d*H and second S(t,,) = dH. Suppose S(t,) < d*H which implies that at time
tn41 the option is still alive. Consider now the difference between immediate exercise or exercise at time

tn41. Since we know that H > K we have

cems, K, T,H] > C[S, K, H,T] V S(tn) < d*H

> o BelS(tan) = KTF| S(t) < H] ¥ S(t) < 2 H
r
K
1+
and therefore it is not optimal to exercise the option at time ¢,.

Suppose now S(t,) = dH. Since d = exp {—a\/ At} and A > K implies that for At < (%ln%f & N >

= Max{o, S(tn) } > Max {0, S(t,)— K}
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(T - to)m the inner value dH — K is positiv. Since dH — K is also the maximum possible payoff
of the contract at time T = ty, early exercise at any time ¢, < 7' is optimal in the situation S(t,) = dH.
This implies that within the binomial setup the arbitrage price of an American up—and—out call option with
barrier H is equal to the European up—and —out call option with the barrier d H plus a rebate of dH — K
when the barrier dH is reached, assuming that the grid size is small enough such that dH > K. Define
B € IN such that Su" = H with 0 < b < N since S < H and H is an element of the binomial tree.

Furthermore since H = Su’7d~ 77 we have h = 2Jg — N. From the reflection principle we know that for

h>2
h—2+2i h—2+42i . N+2-h|
(h—Z—l—i) — ((h—l)—l—i) forz_l,...,{ 5 J =:N(h),

is equal to the number of paths which at time th_o42; € 2 end in the knot Su” 2T'd' = Su”d? = Hd? and
have not crossed or touched the barrier Su"~* = Hd. This is then equal to the number of paths which
at time tj_142; reach for the first time the knot Hd. Summing up, the arbitrage price of the American

up—and—out call with barrier H is equal to

Coo'[S, K, T, H] = CL7[5, K, T,dH]
N(h) . h—1+2i
h—2+2l — i i 1 e
4 z( l. )ﬂ Wa-p () - K
i=1
N(h) . h—142
h—24+20\ p_qq4; ; 1
> ( S >p (- (1 [ — K]

where the grid size At < (%ln%)%

b) Let C3°[S, K, T, H] with S > H be the arbitrage price of an American down—and—out call which is still
alive at time ¢. Suppose H > K, then we know that V S(t;) > Hu? immediate exercise is not optimal.
Therefore consider the situation S(ti) = uwH. Suppose that there are N1 < N periods left and define Jgz
such that (uH)uJHle_JH = Hu = 2Jg = N;. For the European down—and—out call we can now use the

binomial formulae (13) with T" = {t; < ... < tn}

C3[uH, K, T, H]

P Ny i Ny —i i N1 —¢ o
- ot - K]

I
TN
—
+
=

F) |2 (?)p"(l—p)Nl—"((uH)u"le-i—K)

- (NN1 ) (1 —p) T ((wH ) d™ T~ K)

I
TN
—
+ |~
<
N
=

> (T)p"u =) (e N - )

o N1 i—1 Ny+1—i i Ny 41— -
- 1= )M (Ha T K

Since uH > H > K and for At such that dH > K we have

ﬂ((dH)uile_i —K)> Ku'dM ™' — K  Yi>Jy
P
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and the European arbitrage price in this situation is bounded from above by

1\ [ (v
eur 7 7 _ Ny—1 TN, i g1
C¥uH, K, H,T] < <1+T> [E ( : )p (1—p)" 7 (ull - K)u'd }

1=0

= (ull — K)

which implies that early exercise is optimal in the situation S(¢;) = uH > dH > K. With this we can now

use the same counting algorithm as for the up—and—out option, where

h—24+21 h—2+4+21 N+2—-h
R T fori:l,...,{;J = N(h)
h—2+1 h—1+41 2
and Sd" = H is equal to the number of paths which at time ¢5_242; end in a knot uH for the first time.

a

Proposition 5.

i) Let H be a barrier such that there exists a Jg € IN with S(to)uJHle_JH = H. The arbitrage price of a
front partial down-and-in Arrow-Debreu-security ng(T(to, tn,),t, Jg) with payoff at time ¢y

{ 1 i Sy = Sepu'd™™" and S, < H Vi € T(to, tw,)

0 otherwise

is given by:

m'r (T(to,tNl); i, JH) -

N
<1—1|—r> (7) pl(l—p)N_l for0<i< Jy
J 2Jp At
1\ 1 N (N =N a N N-—N, : N
. 2 1_ —1
<1—|—r> ,Z (k)(z—k p> 20Ig—k)\ i—k P=7)
k=0V(i—(N—N1)) k=Jg+1

for Jg <1 < Jg + N2

S ) () o
T+r e 2T = k) ik P P
=1— —Ny

for Ju + Na <i < 2Ju + N»

0 for ¢ > 2Jg + N>
i) Let Jg € N such that S(to)uJHdN_JH = H. The arbitrage price of a back—partial down—-and-in Arrow—
Debreu-security HZP (T(tNl,tN), 1, JH) is given by

1154 (T(tNl,tNQ); i, JH) -

7

N NiA(2Jg —1)
1 N N-N i N—i
E cpt(1 —
<1+ > , (k)(zJH—i—k> P =)
E=0V(i—(N—N1))

for Jg < i <min {2Jx, Jp = 8550}

1 \Y . .
< > (N) p(1—p) N for0<i< Jy

<

0 for ¢« > min {ZJH,JH+N_2N1}
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Proof of Proposition 5.

ad i) Define KSP(O, Ni,i, Jg) as the number of paths from the origin to the knot S(to)uidN_i which reach or
cross the barrier H = S(to)uJHle_JH at least at one time ¢ € {to < ... < ¢y, }. Set N, = N — Ny, then

the following picture summarizes the arguments:

to

1
tn, IN =IN 4N,

FSuV1+ N2

—Su2JH+N2 le —2Jgy

SulV1 0

Syt N2 gN1—Jm — [y N2

FSulV2 4N

Su2JHdN1—2JH
=CSuJH dN1—JH

SuldM
-Su/HdN =/ = HdVz
-SdN1+N2
= KP(0, Nv,i, J) =
) 0<i<Jy
Jr 2T Al
Ny Ns Ny Ns .
<
2 (k)(z—k) P> <2JH—k> (z—k) T <is T N
kE=0Vi—Ny k=Jg+1
25 A
> i A Ju 4 N2 <i<2Jg + No
- 2Ju — k 1 — k
k=1—Ng
0 i > 20+ N»
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ad ii) The argument is the same in both cases. Consider now the back partial case. The problem is to compute
the number of paths KSP(Nl, N3, i, Jg) from the origin to the knot S(to)uidN_i which reach or cross the
barrier H = S(to)uJHdN_JH at least at one time ¢t € {tn; < ... < itnx}. For simplicity let N2 := N — N1 be

an even number.

1
to Ny tN =tN;+ N,

Sy N1+ N2

SulV1d0

—Su2JHdN—2JH

N
SulH dN1—JH 1 T HuN2 = Sylot gV —Iu—
- FSulV2dM

Su2JH—tgN1—2Jg+i 1 —

_— -SuidN—i
/
H = Su’/udN—7n
SuldMi
—SdN1+N2
= K'P(N1, Na,i, Jor) =
() 0<i<Ju

NyA(2Jg—1)
> <N1>< N=M ) Jr <i<min{2Jg, Jg + 22}

. kj\2Jg—i—k
E=0Vv(i—(N—=N7))
0 i > min {2, Ju + 22}

where fort < N — Ny = N ‘
N”iH" N N-N ) _ N
Pt k 2 —i—k] — \2Jg—1

No
bl
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