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Abstract

In Brennan and Schwartz (1976, 1979), the rational insurance premium on an equity
- linked insurance contract was obtained through the application of the theory of
contingent claims pricing. The premium was determined in an economy with the
equity following a geometric Brownian motion, whereas the interest rate was assumed
to be constant. Further considerations with deterministic interest rate have been
discussed in Aase and Persson (1992) and in Persson (1993). Bacinello and Ortu (1993)
allow for interest rate risk by assuming an Ornstein - Uhlenbeck process implying a
closed form solution of the single premium endowment policy.

This paper presents a model for the multi premium case in the context of a stochastic
interest rate process. It is shown that the insurance contract includes an Asian -
like option contract. No closed form solution will be obtained. We discuss different
numerical approaches and apply Monte Carlo simulations with a variance reduction
technique.
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2 2 NOTATION AND DEFINITION OF THE CONTRACT

1 Introduction

In Brennan and Schwartz (1976, 1979) the rational insurance premium on an equity-
linked insurance contract was obtained through the application of the theory of con-
tingent claims pricing. The premium was determined in an economy with the equity
price following a geometric Brownian motion, whereas the interest rate was assumed
to be known and constant throughout the entire life of the insurance contract consid-
ered. Further considerations on equity-linked contracts have been discussed in Aase
and Persson (1992) and in Persson (1993), but also in these papers the interest rate is
assumed to be deterministic. Bacinello and Ortu (1993) allow for interest rate risk as
they model the development in the short term interest rate and the underlying fund
with an Ornstein-Uhlenbeck process and a closed form solution of the single premium
endowment policy.

The purpose of this paper is to present a model for the multi-premium case in the
context of a stochastic interest rate process. It is shown that the insurance contract
includes an Asian-like option contract. No closed form solution will be obtained, but
different numerical procedures will be discussed and results with respect to Monte
Carlo simulation will be obtained.

The schedule of the paper is as follows. In section 2, the notation and the definition of
the contract as well as a description of the economy is presented. Excluding mortality
section 3 is devoted to the pricing of a call option imbedded in the life insurance con-
tract. It is shown that the call option is similar to an Asian option. In section 4, the
mortality case is investigated. A discussion of different numerical approaches is given
in section 5. Section 6 contains the simulation result. Finally, section 7 concludes.

2 Notation and definition of the contract

An equity-linked contract is an agreement between a buyer and a seller, where the
buyer is committed to pay, typically at yearly intervals and until the maturity of the
contract or the death of the buyer whichever comes first, a predetermined premium
to the seller. At maturity or death of the buyer, the seller is committed to deliver
a payment in accordance to the agreement settled when the contract was written.
This payment, the benefit, is the max. of 1) a function depending on the periodic
premium and on the history of the spot price of the underlying equity from the date
of settlement to the expiration date of the contract and 2) a non-random guaranteed
amount also depending on the periodic premium.

We will defer the problem of mortality and for now simply assume that the insured
person survives the maturity date of the contract. Then the model will structurally
be less complicated, and further on due to the assumption that the mortality process
is independent of the process describing the development in the financial market, no
point of interest will be missed when in the end we regard the possibility of an early

death.

The following notation will be applied:



K the periodic premium paid by the insured,

k a share of the periodic premium, k¥ = a - K where 0 < a < 1.
t; a premium payment date, e = 0,1,2,....n — 1.t, = 0.

th the maturity date, ¢, =T

S(t) the price of an index or a mutual fund at time ¢.

D(t,t")  the price at date t of a zero coupon bond with maturity date
<t

The reference portfolio

is defined as the portfolio obtained by investing an amount k£ = a - K at
each of the dates ¢;,1 =0,1,2,...,n — 1, in the fund with price process S(#).

g(K) the guaranteed amount. A deterministic function of the periodic premium.

n—1
V(T) + g(K) = g(K) + max {k Y (k). 0}
=0 ¢
the benefit from the insurance contract received at maturity date 1" .
Fair periodic premium

The periodic premium is fair if the value at date ¢ty of the benefit equals
the value at the same date of the premium payments, where the latter
could also be denoted the cost of the insurance contract.

r(t) the instantaneous risk free rate of interest at time t.

B(t) the bank account. B(?) is an accumulation factor corresponding to the
price of a bank account, rolling over at r(¢), with the date ¢y investment
of one unit of account.

B(t) = exp {/r(u)du} . dB(t) = r(1)- B(t)dt.

The benefit at maturity is composed of the guaranteed amount plus a call option
with exercise price g(K) and with the reference portfolio as the underlying asset. The
benefit is the proceeds from a financial contract and its price at time ¢ will be found
in accordance to the absence of arbitrage possibilities in the financial market. As g(K)
is a deterministic function its value at time #¢ is equal to g(K) - D(to,T), and as the

n—1
periodic premium is also known at date ¢y the cost of the contract is K - 3> D(to, ;).
=0

Therefore, the fair premium in the absence of mortality risk is the solution to the
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equation
n—1

K% Dt t;) = g(K) - D(to, T) + V(to)

=0
so as V(tg) is the only term missing to be determined, we will in the following con-
centrate on the call option pricing.

3 Pricing of the call option in the absence of mor-
tality risk

The fund from which the reference portfolio is created, consists of a linear combination
of traded stocks and its value S() is assumed to satisfy the differential equation?

dS(1)/S(t) = pdt + ardWy(t) + o2dWa(t)
The development of the bonds is described by
dD(t, 1)/ D(t,t") = u(t,t")dt + o(t,t")dWi(t) ,
where the time dependence is such that o(¢,#') = 0 and D(¢,t) = 1.

In a general setup we could allow for stochastic and time dependent coefficients in the
differential equations for the bonds and the fund, but as anyway we will be forced to
restrict ourselves to nonstochastic coefficients when looking for a solution the restric-
tion is introduced at once.

The absence of arbitrage in the financial market implies certain restrictions on the
w's. If there is no arbitrage in the economy considered, then there exist functions
A1(t) and Ay(¢), which are asset-independent *:

p(t,t') —r(t)
Mlt) = o(t, 1)
() = " —r(t) o p(tt) —r(t)

oy oy o(t, 1)

Denoting the objective probability measure by P an equivalent probability measure
P~ is given by

ap* [ [ L
o5 = XD {—/)\1dW1 —/Azdwz - 5/()‘% + )‘g)dt}

’In other words, we assume a Black-Scholes type behavior of the reference portfolio. This is from
the empirical point of view more robust than the assumption of lognormal distributed stocks.
3For simplicity, we assume that A;(¢) and As(¢) are independent of r(t)




and using Girsanov’s Theorem, the processes
(dWT,dW5) = (dWy + Ay(t)dt dWs + Ay (1)dt)

are standard Wiener processes under the P* - measure.

The change of probability measure has no influence on the volatility coefficients in
the differential equations whereas all the p’s are replaced by r(¢). In this artificial
economy, the expected rate of return over the next time interval of length dt will for
any asset be equal to r(?):

dS(1)/S(t) = r(t)dt + ordW (1) + oadWS(t).
dD(t,#)/D(t,1") = r(t)dt + o(t,t")dW(t)

The equations for the relative prices where the numeraire is the bank account are
especially interesting as these relative prices are martingales under the P* - measure.
Denoting the bank account at time ¢ by B(t) we have

d(S()/B(1))/(S)/B(1)) = odWi(t) + 02dW; (1)
d(D(t, 1)/ B(1))/(D(t, 1)/ B(t)) = o(t, t)dWy(t)

It follows that

S(7) T ) T T
30 " = exp {/r — 5/ o} + o3)du + /Ulde(u) + /Ugsz*(u)} )
t t t t

or

S(t) = B (1)

exp {—/Tr(u)du} -S(T)

t

However, due to the stochastic development of (%), it is not an easy task to determine
the distribution of the ratio S(7")/S(t) or to calculate the expected value in (?7?). For
this reason it will be convenient to make another change of the probability measure,
and this time to the measure under which the expected spot price is equal to the
forward price. This will cause the integral over the short term interest rate to be
replaced by the zero coupon bond price, D(¢,T'). Observe that

d(D(t,t"Y /D, T)/(D(t,t") /D, T)) = —o(t,T) (c(t,t')—o(t,T))dt
+(o(t, ') — o(t, T))dW(t).

A new equivalent PT - measure given by

Cclll;* - P {/U(th)de(t)) - %/Uz(t,T)dt}

to to

leads again through Girsanov’s Theorem to the standard PT - Wiener processes
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(W (1), dWS () = (AW} (t) = o(t, T)dt, dWS(1))
under which

d(D(t,#')/D(t,T))

Do) b=t THAWI), 2)
ASW/DLTY e
(S()/D,T)) (o1 (t,1))dW7 (1) + o2dWy (1) (3)
and
S(t) o[ ST ,
D(t,T) = B lD(T,T)] = B, [S(T)] (4)

Comparing (??) and (??7), we notice that the stochastic discounting in (??) has been
replaced by the time-t measurable discounting in (??). From (??) and (??) we derive
next that

pa,y= 2o D) {—/(a(u,t)) — o (u, T))dWT (u) %/ (u,) — o(u, T))?du}

D(to,1) J
and
T
ST 1 1

% = DT exp{ 5/ (o1 — o(u, T))? —I—Ug)du

T
(o1 —o(u,T) dWT +/02dWT( )} ,

t

and combining these expressions, we obtain

S(T) _ D(to,1) . exp {/(a(u,t) — o(u, T))dW (u)

S(t) D(to,T) J
1 17
—3 o(u,t) —o(u, T))*du — 5/ (o1 — o(u, )+ 02)du (5)
o ¢

T T
/01—0 u, T) dWT +/02dWT( )}
!

In order to make the model computationally feasible, o(,#') should be parametrised
in a suitable manner. The specific and convenient form chosen is

o(t,ty={"—1)-0o (6)



where o is constant. This parametrisation, which is the continuous time analogue of
Ho and Lee (1986) specification, allows us to reduce (?7) to

i((f)) _ g((ttooj;)) - exp {—%(T — )20t — %/tT((Ul (T —we)+ U%)du}

(7)

exp {—U(T — W) + /f(a1 — (T = u)o)dW] (u) + /UQdWZ,T(u)}

4 Mortality case

The fair premium determination will involve the modelling of an early death possi-
bility, but as already stated, the death process is assumed to be independent of the
processes ruling in the financial market. Furthermore, the insurance company is as-
sumed to behave as risk neutral concerning the mortality risk. With x(¢)dt denoting
the probability that the contract terminates in the time interval [¢,1 + dt], the value
at date ¢y of the benefit is

/Tr(t)-D(to,t)-E [ (f&)-l-max{k H:Z;I 5((;3 g(K),oH dt (8)
+(1—/T7r(t)dt)-D(to,T)-ET [g(lx —I—max{k ng )70}]

to =0

where n* = min(e|t; > t).

V(to) is determined through the application of the numerical procedure specified in
section 5. In finance, a good procedure should give the price within seconds to keep up
with the volatile market, but in the case considered here, the computer time needed
is not the limiting factor. The calculations should only be performed once when the
contract is entered.

The cost of the contract consists of

. t;
K Dlto,t:)- (1 - /r(t)dt)
i=0 i
The fair premium can now be found by an iterative approach. The value (??) of the
benefit denoted by V (fo;a, K') depends on a, the fraction of the premium invested,
and on the premium K. For a given a, the fair premium is the K satistying

Vit a, K) + g(K)-/D(to,t)w(t)dt+g([()-(1—/D(to,t)r(t)dt)

n—1 ti

= K'Y Dtot:)- (1 — /r(t)dt). (9)

=0 fo
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5 Numerical method

In order to calculate the fair premium K of the insurance contract, we first have to
calculate the arbitrage price of the average option * and secondly apply an iterative
procedure to compute the fair premium defined by (??). Under the specification of
the index process {S:}; and the interest rate of dynamics, we know that (?7) is
bivariate lognormal distributed. Thus the option pricing problem is very similar to
the one of Asian options under the assumption of a geometric Brownian motion. In
difference, the insurance contract depends on the sum of the index returns and not
on the average index realisation and more important the discounting is stochastic. So
far, there exists no closed form solution for the distribution of a sum of correlated
lognormal distributed random variables. Therefore, numeric techniques have to be
applied to approximate the option value.

Let 0 <t,.4 <t; <T =1, be two premium dates, then we can rewrite (??) into:

S(T) _ S(T) lD(to,t»)
to, i 1)

exp {%[(T )i — (T — ti)%]a?}

exp

T—u)o ) —|—02du (10)

ti—1

exp

exp { —ti-1) T(ti_l) —(T - ti)WlT(ti)]a — / (o1 — (T — u)a)dWlT(u)
{ UQdWT( )
S(T)

ST >A ot

Inserting (?7) in Z , we obtain after a slight reshuffling that

=30 [1+ AT (o, 1) [1+AT (b1, ) 14 AT (ty_s, ta) [+ AT (t_a, tr), - ]]]]
(11)

The structure of this equation is similar to the one that Turnbull - Wakeman (1991)
apply to calculate the first four central moments of the unknown distribution. Further-
more, Caverhill and Clewlow (1990) suggest to apply interactively the Fast Fourier
transformation on an expression which in structure is similar to (??). Both meth-
ods explicitly use the fact that for deterministic interest rates the elements of the

*In the case of mortality, we have to calculate a series of option prices. Remark that the forward
risk adjusted measure P depends on n*. This implies that we have to consider the change of measure
dependent on the death distribution.



sequence AT(t;_1,t;),1 = 1,2,... are stochastic independent. This is not the case in
our situation since for

X = (T =t )WHty) — (T = )W)
Vo= (T W () — (T — i)W (1)

we have

a) E[X]=E[Y]=0

b) BIX Y] = [tess — 4] - [(T =t )iy — (T = t)t] £ 0

which implies that the AT(#;_1,#;) are stochastic dependent random variables. Thus
we cannot apply the Fast Fourier transformation suggested by Caverhill and Clewlow
to our problem.

Turnbull and Wakeman (1991) suggest to approximate the unknown density p? of the
sum of lognormal distributed variables by the following Edgeworth expansion:

0 f(x)  adflx) adfl)

20 9z2 3! a3 4 Pzt (12)

p'(x) ~ flx) +

where f(x) is given by a lognormal density function, i.e.

oo Lt _(1H$—Mf)2}
fla) NI p{ 27

and

& = K200 -K(2/[)
ca = K(3,p") = K(3,f)
ci = K(4p") =K@, f) +3¢

where K(7, f) = E;[(X — E¢[X])] equals the i-th central moment with respect to
the lognormal distribution given by f, resp. K(7,p?) with respect to the unknown
distribution given by p’. To calculate these moments, the first four non - central
moments of (??7) must be computed. The paramenters y; and o are chosen such
that the first two non-central moments under both measures are identical. Given the
moments and a vanishing error term, the value of the insurance bonus at time ¢, =T
is approximated by:

L S(T)

D(to, t,) - BT [maz{k - Z: S g(K),0}]

~ k-nD(lo, t,) {eﬂﬁﬁzv(x) _ 9(‘[’)N(x o)t 2 (9(‘[’))




10 5 NUMERICAL METHOD

‘n

Mf-l-crfC —lﬂ( gIEK))

with = = and N(.) denoting the standard normal distribution.

Since the AT(ti_i,ti) in (?7) are stochastic dependent variables, it is not possible to
calculate the moments of (??) as in Turnbull - Wakeman. An alternative but much
slower algorithm is given in the Appendix. Apart from this numerical difficulty, the
applicability of this approximation to the insurance problem appears not advisable.
The usual maturity of Asian options is less than one year whereas the equity linked
insurance contract has a maturity between 10 and 35 years. Secondly, in the insurance
case, the premium dates are discrete which implies that the contract is based on a
discrete average in difference to the continuous average in the Asian option case.

In table 1 we present the four non-central moments and c-coefficients ¢3, ¢3, and ¢4 for
the Turnbull - Wakeman approximation. The data used for these calculations are: o =
8%, 01 = 10%, 05 = 15% and a flat initial interest rate curve with D(tg,t;) = (1.06)7".
As expected, the moments grow extremely with time to maturity which leads to
extreme c - coefficients. As a consequence, the correction of the lognormal distribution
suggested by Turnbull-Wakeman is without any control and leads to unreasonable
option values.
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With these remarks, it is not surprising that the comparison with Monte Carlo sim-
ulations in section 6 will strongly reject the Turnbull - Wakeman approach to this
problem.

Based on the strong relationship between the arithmetic and the geometric average,
Vorst (1992) suggests an alternative approximation of the arbitrage price for an Asian
option and furthermore derives upper and lower bounds for these prices. With the
following notation

=g o= s

the Vorst approximation and bounds on the price of the Asian option are given by

D(to, 1) (e"+276 N (dy) — Y N(dy — o))
< D(to, T)E™ [max {A(t,) — Y,0}]
~ D(to, T) (em5*376N(dy) — Y'N(dy — o)) (13)
< D(to, ) (em9T27EN(dy) — Y N(dh — 06) + ET[A(t,)] — ET[G(1,)])

where

Y' =Y — (BT[A(t,)] — ET[G(t.)])
mg = FT[n

o2 = VIn

Thus the Vorst approximation only involves the computation of the first moment for
the arithmetic mean and the mean and variance of the logarithmic geometric mean.
Inserting (??) we can directly compute

T
1 D(toati) 1 2 2 1 2 2
MG—E; 1n(m —§(T—ti)O'ti—§/((0'1—(T—u)0') +02)du

whereas the computation of the variance is more complicated. A recursive algorithm
and a formula is given in the Appendix. Inspecting (?7), we notice that the approxi-
mation is derived by transforming the probability measure of a lognormal distribution
with support R" to a lognormal distribution with support [ET[A(tn)] — ET[G(t,)], 00 [
Since the support of the random variable A(t,) is RY the distance ET[A(t,)] —
ET[G(t,)] > 0 is important for the approximation error. Again for a flat interest
rate curve, figure 1 shows the development of this distance if ¢, increases. From this
we can expect for our insurance problem that the Vorst approximation leads to an
overpricing of in the money Asian call options if the maturity increases.
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Figure 1: Arithmetic and geometric mean as functions of the time to

maturity. Flat initial term structure with constant effective rate per

annum of 0.06, ¢ = 0.08, oy = 0.10, and o3 = 0.15.

Motivated by the complexity of the problem, we apply Monte Carlo simulations to
estimate the fair premium K of the equity-linked life insurance contract, and we use
antithetic and control variate technique to reduce the variance of the estimation. As
control variate we use the corresponding geometric average option. More precisely,
the following setup is applied:

Define @ = {0 = 70 < 7y < ... < v = T} with A7 = 7,43 — 7,V as the finest
discretisation of the time axis, where 1" is the maturity of the insurance contract. The
premium K will be paid at each timet; e T with T ={0 =t < .. <t, =T} C 0O
such that there exists a number h € N with At = 1,441 —¢; = h- A7. We assume that
if the insured dies at time 7; € @\ {7} the insurance company will pay the guaranteed
amount ¢g(K') plus the bonus at time 7,41, which implies that the present value of this
payoff is given by

Y (i)

max{a-[&’-; S(t,) —9([()70}]] (14)

with v*(z) = max{j € {0,...,n}|t; < 7 }. Note that the expectation has to be formed
with respect to the 7,41 forward measure. With M being the number of Monte Carlo
simulations (2M antithetic) for each of the two Wiener processes, the value of the
bonus is estimated by

D(to,tiy1) [Q(K) + ET

C(rip1, K,a) = LZE K U*X(E)M— (K) i (15)
Ti+1, , 4 - IM — a = Sm(t]) g
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v* (i) .
where > 7‘%(7’“)

) is the realisation of the m-th simulation.
g=0 "

The time 7,41 - forward value of the European geometric average option G(7;41, ﬁ%)
9(K)

with exercise price TR ) is given by
L1 . .
GlrarY) = explma(i) 4 soA@INGE) -V N —oe(i)  (16)
—InY + mqg(7) + c&(7)
r = .
oa(i)

where mg(i) and cZ(i) are determined as before as the mean resp. variance of the
logarithmic geometric average at time 7,41, i.e.

T S

v = o I - 2 [ (5 )
- %v(@);) [hl (%) - %(Tm —t;)%%t; (17)

—% / ((01 — (Tig1 — U)U)2 + U%) du]

t]
ln 1+v*(i) U*H(Z) S(TZ+1)
7=0 S(t])

which can be calculated with a similar recursive algorithm as the central moments

oR(i) = Vo

(see Appendix). The fair premium K* is then estimated from

0 = K~ i D(to, t:) [1 . f w(rj)] (18)

N-—

— g(K) > w(r)D(to, mis1) — g(K)D(to, t,)

,_.
SN
—_
|
Mz
L
|
S
A
S—’
~—

1=

N
7(7i)D(to, Tig1) - C(7ig1, K™, a) — (1 —

1 N-1

7'('(7'2')) D(to,7n) - Cl7n, K™, a)
Due to the homogeneity of the bonus part, the right hand side is strictly monotonous

increasing in A" with a lower bound on K given by

g(K) 'S 5(m) Dlto.7i0) + g(K) Dl(tor t) (1 — 5 7(r))
K= = — = (19)
szo D(to,ti) [1 — Z F(Tj)]

7=0
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Finally, for the death distribution, we assume a mortality table adjusted with the
Makeham formula

I, = b-s" g% with (20)
s = 0.99949255
g = 0.99959845
c = 1.10291509
b = 1000401.71

which leads to

lx—l—ﬂ' - Zl’—l—ﬂ'—l—AT
l,

= the probability that a life-aged-z will survive 7; years and die within

(1) =

the following At years.

6 Simulation results

Within the Monte Carlo simulation we consider three different specifications for the
initial term structure, i.e.

Scenario I : flat initial term structure D(to,7) = (1.06)™™ ‘
Scenario Il : normal initial term structure D(to,7;) = (0.06 + (I.OZ)Tﬁ)_”
Scenario III : invers initial term structure — D(to,7:) = (2.06 — (1.02)715)"

with 7, < 15 (years). All three scenarios imply non negative forward rates at time
to = 10 = 0. For each scenario, we consider three possible maturities of the equity
linked life insurance contract, i.e. T =1, € {10 years, 12 years, 15 years} where the
payment of the premium ranges between yearly and monthly. The number of periods
per year for each insurance contract is fixed to 12 which implies at the most 180 periods
for the 15 year contract and h = 1,2, 6,12 for a yearly, % yearly, quaterly resp. monthly
payment frequency of the premium. The volatility parameters for all three scenarios
are fixed by o = 8%, 01 = 10% and o5 = 15% which implies an instantaneous correla-
tion with a zero coupon bond of dSdD(t,T) = S-D-oy0(T—t)dt = S-D-0.008(T —1t)dt
resp. with the spot rate process of dSdr = S - oyodt = 5 - 0.008dt. Within each sce-
nario, we run 10 independent Monte Carlo simulations each with M = 1000 paths®
to calculate the fair premium and the standard deviations.

Table 2 shows, for the yearly payment frequency and the flat initial term structure,
simulated initial moments and the calculated central moments applying the recursive
algorithm given in the Appendix.

>This implies 2000 paths using antithetic technique for each simulation
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1—1
Table 2: Simulated and exact central moments of X (¢;,) = >
/=0

6 SIMULATION RESULTS

S(ti)
S(ty)

ti-years | method | = B[X(t)]  E[(X(t) - E(X(t) -] E[(X(t)— p))
2 | simulated 2.183546634 0.1706166958 4.058493436E-2  1.026579508E-1
exact 2.1836 0.1707642433 4.124530528E-2  1.054905504F-1
sd 0.001518331538 0.00687513339 4.225170127E-3 1.075338954E-2

3 | simulated 3.375831403 0.6538835535 4.163553347E-1  1.792371732E0
exact 3.374616 0.6430792915 3.906301790E-1 1.674717935E0
sd 0.004456675464 0.03319292174 6.282951028E-2 3.136366746E-1

4 | simulated 4.641506035 2.082237824 3.114687107E0 2.238481570E1
exact 4.63709296 2.034940946 2.955816318E0 2.040954491E1
sd 0.009225995879 0.09360289184 3.322933273E-1 4.813023454F0

5 | simulated 5.984845155 5.873241813 2.112293044E1 2.632730035E2
exact 5.975318538 5.694434682 1.881511710E1 2.161130730E2
sd 0.01789537053 0.3361507394  4.512128473E0 9.976128190E1

6 | simulated 7.407485224 15.06282664 1.296532772E2 3.464251838E3
exact 7.39383765H 14.49150709 1.047013457E2 2.143898820E3
sd 0.04120601035 1.431960579 6.320106493E1 3.729919880E3

7 | simulated 8.929212895 36.3239221 6.773177647E2 3.567333166E4
exact 8.897467909 34.41440139 5.347491129E2 2.153554003E4
sd 0.0864395638 4.545117836 3.942398857E2 4.513553696E4

8 | simulated | 10.55897074 86.18790302 4.216454503E3 6.709244347E5
exact 10.49131598 78.17208927 2.652587666E3 2.411826806E5
sd 0.1611117614 17.48755385 4.752174780E3 1.480962452E6

9 | simulated | 12.28877093 203.876908 2.893606249E4 1.283438622E7
exact 12.18079494 173.9390581 1.363833922E4 3.422616507E6
sd 0.2629258015 71.89197513 4.803506106E4 3.294386670E7
10 | simulated | 14.20022701 558.7061554 3.283252224FE5 4.783549105E8
exact 13.97164264 388.3210822 7.848034592E4 7.242186418E7
sd 0.48662079 459.9617218 8.135383092E5 1.418065301E9

11 | simulated | 16.26914928 1561.793191 2.538766323E6 7.822533985E9
exact 15.8699412 892.1732186 5.526732855E5 2.722122064E9
sd 0.8201196074 1871.018811 6.625288800E6 2.287502045E10
12 | simulated | 18.47356137 3891.534972 1.315146373E7 7.431135011E10
exact 17.88213767 2168.52024 5.235719977E6 2.107606544FE11
sd 1.234842826 5696.180555 3.577773059E7 2.564215671E11
13 | simulated | 20.9962176 9533.295284 5.145572105E7  4.266375651E11
exact 20.01506593 5744.509457 7.264082190E7 3.739511726FE13
sd 1.947522213 13293.61606 1.260760529E8 3.698755650E13
14 | simulated | 23.76235303 22763.88996 1.972781769E8 2.483869623FE12
exact 22.27596988 17096.68302 1.574873018E9 1.651355039E16
sd 2.847674115 30694.12457 1.451536106E9 1.651106791E16
15 | simulated | 26.5110614 46683.09384 5.703046963E8 9.667355299FE12
exact 24.67252808 H8815.91308 5.596388143FE10 1.958121291E19
sd 3.713532892 59546.28867 5.540675534FE10 1.958120324E19
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As table 2 indicates, the Monte Carlo simulation implies reasonable estimations of the
moments for the first 10 years. The standard error increases with the time to maturity
and with the power of the moment. This is also true for the normal and invers initial term
structure. Given the histogram of the Monte Carlo simulation for the distribution of the
average, we can consider the difference between the probability distributions underlying the
closed form analytic approximations suggested by Turnbull-Wakeman and Vorst. As shown
by figure 2 to 5 the Turnbull-Wakeman approach already leads to an unreasonable approx-
imation for the density for a maturity of 4 years. As already observed in section 5, this is
due to the explosion of the c-coefficients. As a consequence, we get unreasonable values for
the fair premium using the Turnbull-Wakeman approach.

16 15
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Figure 4: Simulated density of the Figure 5: Simulated density of the
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at t = 10 years with flat initial term at t = 15 years with flat initial term

structure and monthly frequency. structure and monthly frequency.

On the other hand, the performance of the Vorst approximation of the density coincide
quit reasonable with the Monte Carlo simulation for maturities less than 10 years. If the
maturity is higher than 10 years, the support of the density is substantial different from the
estimation using our Monte Carlo simulation. Given that the Monte Carlo simulation over-
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estimates the first moment of the true distribution it seems that the Vorst approximation
induces a too large shift of the probability measure into high realisations if the maturity
increases. For maturities above 10 years, the lower bound derived by Vorst is closer to the
simulation result than the suggested approximation. Therefore, we expect that in terms of
the fair premium, the result obtained by the Vorst approximation underestimates the fair
premium. On the other hand, using the distribution of the geometric mean (lower bound
derived by Vorst) we expect these to be close to the Monte Carlo simulation ©. As table 3

6 SIMULATION RESULTS

shows, this is the case for all three initial term structures which we considered.

Table 3.1: Fair premium with normal initial term structure for a life aged 30 and
guaranteed amount 1000

maturity: 10 12 15
a share | method | Vorst simulated | Vorst simulated | Vorst simulated
0.40 | down 68.6516 53.3759 37.6527
appr. 68.8651 70.6797 | 53.7024 56.5781 | 38.03 41.5548
up 71.8648 57.7536 43.718
0.45 | down 69.7322 54.5246 38.6006
appr. 70.0649 72.3230 | 55.0134 58.5078 | 39.1424 43.4411
up 73.5794 59.8496 46.0786
0.50 | down 71.0617 55.8769 39.6664
appr. 71.566 74.3160 | 56.5877 60.8115 | 40.4267 45.6367
up 75.6654 62.3407 48.8596
0.55 | down 72.6825 57.4585 40.8633
appr. 73.4265 76.7379 | 58.4773 63.5548 | 41.9135 48.2176
up 78.2027 65.3252 52.1766
0,60 | down 74.6473 59.3085 42.2084
appr. 75.7298 79.6930 | 60.7532 66.8638 | 43.6481 51.2870
up 81.316 68.9362 56.1943
0.65 | down 77.0291 61.4792 43.7226
appr. 78.6019 83.3382 | 63.5261 70.8988 | 45.6916 55.0106
up 85.1739 73.3839 61.1638

6Again, the results for the normal and invers initial term structure are the same



Table 3.2: Fair premium with flat initial term structure for a life aged 30 and
guaranteed amount 1000

maturity: 10 12 15
a share | method | Vorst simulated | Vorst simulated | Vorst  simulated
0.40 | down 75.3848 61.0836 46.5138
appr. 75.6078 77.7162 | 61.4431 65.0587 | 46.9655 53.3655
up 78.7267 65.826 53.6159
0.45 | down 76.5879 62.4267 47.7266
appr. 76.9376 79.5277 | 62.9636 67.3776 | 48.374 56.2986
up 80.5899 68.1959 56.49
0.50 | down 78.0677 64.0068 49.0917
appr. 78.5973 81.7472 | 64.7883 70.1401 | 50.0022 59.7956
up 82.8595 71.0135 59.8774
0.55 | down 79.8737 65.8584 50.6293
appr. 80.6541 84.4338 | 66.9797 73.4436 | 51.8901 64.0342
up 85.6234 74.3908 63.9189
0.60 | down 82.0651 68.03 52.3622
appr. 83.2047 87.7296 | 69.6206 77.4438 | 54.0968 69.3158
up 89.0117 78.4816 68.8118
0.65 | down 84.7236 70.5823 54.3191
appr. 86.3781 91.8050 | 72.8407 82.3653 | 56.6984 76.1493
up 93.2133 83.5144 74.866

Table 3.3: Fair premium with invers initial term structure for a life aged 30 and
guaranteed amount 1000

maturity: 10 12 15
a share | method Vorst simulated | Vorst  simulated | Vorst simulated
0.40 | down 82.8088 69.9274 57.4674
appr. 83.0432 84.8639 | 70.3227 73.3564 | 58.0098 63.1250
up 86.3096 75.1077 65.8741
0.45 | down 84.1441 71.4897 59.0054
appr. 84.5131 86.7543 | 72.0801 75.7489 | 59.7846 66.0432
up 88.3375 77.7916 69.3858
0.50 | down 85.7889 73.3295 60.7406
appr. 86.3462 89.0468 | 74.1916 78.5892 | 61.8381 69.4521
up 90.8096 80.9892 73.5256
0.55 | down 87.7942 75.4886 62.6987
appr. 88.6215 91.8318 | 76.7271 81.9763 | 64.2207 73.5038
up 93.8237 84.8212 78.4654
0.60 | down 90.2321 78.0224 64.909
appr. 91.4378 95.2462 | 79.7849 86.0370 | 67.0077 78.3853
up 97.5189 89.4613 84.4518
0.65 | down 93.1954 81.0086 67.4146
appr. 94.947 99.4537 | 83.513 90.9753 | 70.2985 84.4323
up 102.1043 95.1791 91.8572

19
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In order to calculate the fair premium K* we have to solve equation (?7?). This can be
done by any iterative procedure, since the right side of (18) is strictly increasing. The
results are given in tables 4 to 6 in the Appendix. As expected, the fair premium is
monotonous in the share of the premium « invested into the index and in the age due
to the death distribution. The standard deviation increases in the time to maturity and
the frequency of the premium payment. Furthermore, the Monte Carlo simulation in-
dicates a convex behavior of the fair premium with respect to the share ¢ € [0.1].

85 85
maturity 10 years ——
80 mdmli&' 1 ¥edl> 80 flat term structure —
ity 15 normal term structure
75 maturity 1> years 75 invers term structure -
. P — .
[ [
& wF g 70
g 65 g 65 S
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E 60 E 60
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= 55 - 55
& 8
50 e 50
45 I —— 45
0 - 0 C—
0.4 0.45 05 055 0.6 0.65 0.4 0.45 05 055 0.6
share of the premium share of the premium
Figure 6: Simulated fair premium for a Figure 7: Simulated fair premium for a
life aged 30 of the insurance contract life aged 30 of the insurance contract
with a guaranteed amount of 1000 as a with a guaranteed amount of 1000 as a
function of the share a with maturities function of the share a with maturity
T = 10,12, 15 years, normal initial term T = 15, years, normal, flat and invers
structure and annual premium payment. initial term structure and annual

premium payment.

From the point of view of the insurance company, this seems to be reasonable. The in-
surer has to guarantee the contract value g(K'). If the share a is relatively high, the insurer
faces in addition to the mortality risk also the financial risk. To control this additional
financial risk, he "maximizes” the part of the premium (1 — @)K not invested into the ref-
erence portfolio in the first periods. This results in a high premium which itself leads into
an increase of the value of the reference portfolio. This implies that the Asian option will
very soon be in the money and thus the insurer is compensated by a high expected bonus if
the death event will not occur. The expected bonus at each time 7,41 can be calculated by

§ S(ria)
E7H I max{a K™ — T g(K*),0 21
(are™ Y- 28— g(K7).0) (21)
7=0
which is equal to the payment at time 7,117 minus g(K ™) in case of death between 7; and
Ti+1- Table 7 shows the result for a 12 year contract with yearly payment frequency and
normal initial term structure obtained by the Monte Carlo simulation.

0.65
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Table 7: Development of the expected bonus of a 12 year insurance contract with

guaranteed amount of 1000 for a life aged 30 , yearly premium payment
and normal initial term structure

age 30 share a
0.40 0.45 0.50 0.55 0.60 0.65
year premium | 56.58 58.51 60.81 63.55 66.86 70.9
t= bonus 0.0 0.0 0.0 0.0 0.0 0.0
sd 0.0 0.0 0.0 0.0 0.0 0.0
t =2 | bonus 0.0 0.0 0.0 0.0 0.0 0.0
sd 0.0 0.0 0.0 0.0 0.0 0.0
t=3 | bonus 0.0 0.0 0.0 0.0 0.0 0.0
sd 0.0 0.0 0.0 0.0 0.0 0.0
t =4 | bonus 0.0 0.0 0.0 0.0 0.0 0.0
sd 0.0 0.0 0.0 0.0 0.0 0.0
t=25 | bonus 0.0 0.0 0.0 0.0 0.0 0.01
sd 0.0 0.0 0.00001 0.00009 0.00054 0.00304
t=06 | bonus 0.0 0.01 0.04 0.12 0.34 0.93
sd 0.0002 0.00094 0.00365 0.01273 0.04061 0.1213
t=7 | bonus 0.17 0.44 1.03 2.24 4.57 8.93
sd 0.00868 0.02453 0.06222 0.14726 0.3298 0.70953
t=8 | bonus 1.97 3.87 7.11 12.38 20.76 33.85
sd 0.06534 0.14015 0.27904 0.53184 0.97855 1.75728
t=9 | bonus 9.03 15.1 24.0 36.74 54.77 80.2
sd 0.2057 0.37453 0.64604 1.08387 1.77719 2.87232
t = 10 | bonus 25.05 37.74 54.77 77.3 107.06 146.48
sd 0.40586 0.66715 1.05258 1.63166 2.49153 3.77408
t = 11 | bonus 51.53 72.52 99.1 132.58 174.88 228.76
sd 0.61293 0.94257 1.40327 2.0665 3.01334 4.3772
t =12 | bonus 87.9 118.04 154.78 199.58 254.55 322.78
sd 0.78635 1.15589 1.6546 2.35355 3.32683 4.69802
350 ‘ ‘
a=040 —
300 | 208
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g 20; 2206 - 1
2 200 |
% 150 |
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Figure 8: Expected bonus of a 12 year insurance contract for a life aged 30 with guaran-
teed amount of 1000, yearly premium payment, normal initial term structure, ¢ = 0.08,
o1 = 0.10, and o9 = 0.15.
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7 Conclusion

In an economy with stochastic development of the term structure of interest rates a model
for the determination of the fair premium on an equity linked life insurance contract has
been established. An essential part of the premium equation consists of a contingent claim
with a character as an Asian option. However it was shown that the stochastic interest
rate and the long time to maturity of the insurance contract prohibited the application
of the "usual” solution methods: Edgeworth expansion or Fast Fourier transform. The
approximation formula developed by Vorst (1992) exhibited a better performance than the
two just mentioned for medium term contracts. To overcome the difficulties we applied and
advocated for Monte Carlo simulations. The result obtained was compared to the Edgeworth
and Vorst approximation and found to be preferable to these. Although the Monte Carlo
simulations are more time consuming than the other methods we do not take it as a serious
critical point against simulation as the fair premium only has to be calculated once when
the contract is entered.
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Appendix

Recursive algorithms for the first four non—central moments of a sum of n lognormal dis-
tributed variables. For simplicity we only give the recursive algorithm for the forward risk

adjusted measure at time T'. Define j3; := %(% and fore=0,...,n—1
o = exp {%[(T )02+ 02) + (1i0% — 00y (T — 13)? + éfﬂ(T - ti)?’]}
1
v;; = exp {O‘(T —t;)(t; — ti)[§a(ti +t;) — 01]} forj=0,...,2
7 D(t,T)
Proposition

Vo<i<j<i<n-1 ; Vay,7€N
(a) ET[5:] = doy
(b) ET[325]) = dod)oy Vg7t 00
(¢) ETW?@W@?] _ d?d}d?af(a—l)-a‘?”ﬂ“a) -07(77_1“7”“)@3; Zaln len

Proof
Define 3; = % = p; exp{X; + Y, + Z;} with

1 2, 2 1T 2 2 -1
Wi = d;exp —§(T—ti) tio —5/ ((01—(T—u)a) —|—02) dup, = d;o;
t;

X; = —(T—ti)UWIT(ti)

T
S / (o1 — (T = w)or) dW T (u)

.

T
Z; = / aodWi (u)

.

These stochastic variables have expectation of zero and
(i) X; and Z; are in pairs stochastic independent V ¢;,¢;
(ii) Y; and Z; are in pairs stochastic independent V ¢;,¢;
(iii) X; and Y; are in pairs stochastic independent V ¢; < ¢;
Furthermore we know that V¢ < j <l
ETXY)] = E[X7— (T —t;)(t; = t)[T = t; = t;]o”
ETYY;) = B[]
E'Z:2;) = E[Z]]
ET[X,Y] = —o(T —t;) /;J(a1 (T = w)o)du

- %U(T )l = )0 (2T = s — 1) — 201]
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ad a)
1
T3] = peexp { 5otV Y1+ 2]
_ Iuloz . O_oz2 _ d?O’a(a_l)
ad b)
ETB80) = pf ] BT [exp {a(Xi +Yi + Z) + v(Xj + Y + Z))}]

= wiulor ol cexp {ay ETIX.X, + XY, + VY5 + Z:Z,]}

= d&rd)of g g0
ad c)

ET[BesIs]) = pdulp]
LT fexp{a(Xs + Yi+ Z) + v(X; + Y + Zi) + 0(Xi+ Vi + Z1)}]

2 2 2
_ a v, 1 a® 7 1
= K E 07 05 0y

exp {ayET[X:X; + XY, + YY) + Zi7)]
+an BT X, X, + X0V + V.Y, + 2, 7))
+nETX X0+ XY+ YY) + Z]Zl]}

-1 -1 -1 2 2 2
= d?d;d?af(a )7 =1) paln=1) - 2ar, oy | 2am, an 0, An

J ! P A BN B B

With the help of the following vector notation we can now give the recursive algorithms.

d(i) = (do,...,d)T e R Vi=0,...,n-1
v(i) = (v07i,...,vi_17i)T eR Vi=1,...,n—1
v(i) = (034..0i )T €RY O resp. v3(i), v'(d)

1. Moment

ET [nz_:ﬂ] = Tidi = (d(n—1),1)

2. Moment
z(0) = dicZ andfori=1,....,n—1
2(i) = a(i—1)+d?c?+2{d(i - 1),v(i))d;o?

= F

(nz::ﬂl) ] = z(n-1)
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3. Moment
z(0) := djo§ andfori=1,....,n—1
z(i) = a(i—1)+d?o?+3-(d(i—1),v(0)*)d?c® + 3 - a(i — 1,1)
where
a(0,i) := dgdiogoivg; andforj=1,...,n—1
) = a0 ¥ Bdrials

-1
(kz divk, vk )d; o7 2diotv;,

(nz::ﬁz) ] = z(n-1)

= BT

4. Moment
z(0) := diol?* andfori=1,...,n—1
(i) = a(i—1)+dlal?+4-a(i—1,0)+6-c(i— 1,4)+ 4(d(i — 1),v(0)*)dPc}?
where

D)

a(0,i) = dydiofofvy, and forj_l si—1
a(]vl) = (]_1 Z)—I_dBdU] 7 ]2+3 b(]_ljv)

7—1
+3- (Z dkvmvhi) d?dkafagvgj
k=0

where
b(0,5,1) = didjdiogoto vgjvgzv” and for j=1,...,i—1
b(k,j,i) = b(k—1,7,1 )—I—dkd d; O'k0'4 6@2]11,32@]7
k=1
2 (Z dlvl,kvl,jvl,i) dpd;d;ofotaloy jor v;,
=0
1)
«(0,i) = djdiogol®vy,; andfor j=1,...,i—1
i) = = 1)+ o ¢ (Zdww%Jdﬂ%fsz
n—1 4
= (Zﬂl) ] = z(n—1)
=0

For the second moment of the sum of the logarithmic 3; a similar algorithm can be given.
Set

Bi = G —lnp; = Xi+Yi+ 72
62 = 2lno;
vij = I

= ET[3; - 3]
ETEI] = &f

(
Y
o
_'_
=
<
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2. Moment
z(0) := 62 andfori=1,...,n—1
1—1
w(i) = w(i—1)467 +2 Y (67 4 55,)
=0
n—1 ! n—1
= v [Zlnﬁil = vt [Zﬁi] = z(n—1)
=0 =0
Alternative calculation for VI [InG(t,)] for an equidistant discretisation
1 [n—1 T
ViInG(t)] = VT 3 —a(T = t)Wy (1)i) + /(01) —(T - u)athT(u)]
_i:O t;

=
+ ﬁv ;/Uzdw2 ]

1)
1 T = ‘ 1 T = T T
vy /mw2 = v [Z oo(WE(T) — W] (ti))]
=0 4 1=
1 T = . T T
= SV oo+ DIW; (ipa) = Wy (4]
=0
1 n—1
= EU% Z(z + 1)2(1524_1 —t;)
=0
1 n—1
=0
1)
1 [n—1 T
VTS —o(T = W (1) + /(01 (T — w)o)aWE (u)
_i:O t;
1 _n—l tit1
= VT IY ot = W () + (4 1) / (01 — (T — w)o)dWE (u)
=0 i
1 _n—l tit1
= VTS oA aa W (g~ WE )+ (4 1) [ (o1 = (7 = w)o)ai ()
_i:O t1

ti41

_ Z T / (01 = (T — wo) i+ 1) — o Atai ) dWT (u)

where a, := 0 and fork=n—1,...,1 Upek =k + ap_p_1



With some standard reformulation this leads to

VIInG(t,)]

which up to some possible simplifications of the first three terms is a linear problem.

_I_

=Y (14 1)*At(of + 03)

5 i+ D2 10l(T = 1 — (T = 11 )
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