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Abstract

Let M(X) be a family of all equivalent local martingale measures

for some locally bounded d-dimensional process X, and V be a positive pro-

cess. Main result of the paper (Theorem 2.1) states that the process V is a

supermartingale whatever Q 2M(X), if and only if this process admits the

following decomposition:

Vt = V0 +

Z
t

0

HsdXs � Ct; t � 0;

where H is an integrand for X, and C is an adapted increasing process. We
call such a representation the optional because, in contrast to Doob-Meyer
decomposition, it generally exists only with an adapted (optional) process C.

We apply this decomposition to the problem of hedging European and
American style contingent claims in a setting of incomplete security markets.

Keywords: Doob{Meyer decomposition, optional decomposition, martin-
gale measure, stochastic integral, semimartingale topology, incomplete
market, hedging, options

JEL classi�cation: G13
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1 Introduction

The famous Doob-Meyer decomposition states that each positive supermar-

tingale V = (Vt)t�0 de�ned on a �ltered probability space

(
;F ;F = (Ft)t�0; P ) has the following representation:

V =M �A;(1.1)

where M = (Mt)t�0 is a local martingale, M0 = V0, and A = (At)t�0 is

an increasing process. Moreover, there exists a decomposition involving a
predictable process A, with Eq.(1.1) being a unique representation in this
case.

Now let Q = fQg be a family of equivalent probability measures on
(
;F ;F), and let V be a positive supermartingale with respect to each mea-

sure Q 2 Q. We are interested in decomposition of the form (1.1), with M

being a Q-local martingale for all Q 2 Q. Even simple examples show that
we can generally hope to obtain such a representation only with an adapted
(optional) increasing process A. With this notation and following El Karoui
and Quenez [7], this decomposition will be referred to as optional decompo-
sition of positive supermartingale V with respect to the family of measures

Q.
Note that, in general, such an optional decomposition does not exist.

As an example we take Q to be the family of all equivalent supermartingale
measures for process Xt = �t�t, t � 0. Here � is a Poisson process under the
reference probability measure P . We assume that �ltration F is generated

by this Poisson process: F = F�. Then one can show that, whatever Q 2 Q,
all local martingales with respect to Q are constants. Therefore the process

X which is a Q-supermartingale for all Q 2 Q can not be represented as

a di�erence between a local martingale with respect to all Q 2 Q and an
increasing process.

The main result of the paper (Theorem 2.1) states that the optional
decomposition exists provided that Q is a family of all equivalent local mar-

tingale measures for some locally bounded d-dimensional process X. More
exactly, in this case process V which is a positive supermartingale with re-

spect to each measure Q 2 Q, admits the representation as follows:

Vt = V0 + (H �X)t � Ct; t � 0;
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whereH is an integrand for X, (H�X)t =
R
t

0
HsdXs is the stochastic integral

of H with respect to X, and C is an adapted increasing process.

In �nance such a decomposition leads to a convenient supermartingale

characterization of wealth and consumption portfolios. We apply this char-

acterization to the problem of hedging European and American style contin-

gent claims in a setting of incomplete security markets. This enables us to

describe the capital evolution for the corresponding minimal hedging port-

folios. The results obtained extend the solutions derived in El Karoui and

Quenez [7] for the case when X is the solution of a stochastic di�erential

equation governed by Brownian motion. In addition, they can be considered
as a \dynamic" version of Theorem 5.7 in Delbaen and Schachermayer [4].
This theorem implies the existence of hedging portfolio with initial wealth
equal to the upper bound for arbitrage-free option prices at time t = 0. On

the contrary, Theorems 3.2 and 3.3 below imply the existence of such a hedg-
ing portfolio whose capital at each time instant t is equal to the upper bound
of arbitrage-free option prices at that time.

The proofs in El Karoui and Quenez [7] are mainly based on Girsanov's
transformation of probability measures. Apparently this approach can not

be extended to the general setting under consideration. Instead, we apply
the arguments based on the Hahn-Banach theorem. The main source for the
results presented here was an important paper of Delbaen and Schachermayer
[4].

2 Main results

Let (
;F ;F = (Ft)t�0; P ) be a �ltered probability space which satis�es the

conventional conditions of general theory of stochastic processes, i.e., the

�ltration F is right-continuous (Ft = Ft+) and �-�eld F0 contains all null

sets from F . For simplicity hereinafter the initial �-�eld F0 is assumed to be

the trivial one, i.e., it contains only sets with measure zero or one.
On this �ltered probability space, we consider an RCLL (right-continuous

with left limits) d-dimensional random process X = (X i)i�d. We assume that

X is a locally bounded process, i.e., there is a sequence of stopping times

(�n)n�1 on (
;F ;F) such that the variables �n converge to 1 almost surely

as n tends to 1, and jX i

t
j � n for t � �n and 1 � i � d.

A probability measure Q is called a local martingale measure, if it is
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equivalent to P and the process X is a Q-local martingale. By M(X) we

denote the set of all local martingale measures for process X. We suppose

that M(X) is not empty. Because all further concepts are invariant with

respect to equivalent changes of measure, hereinafter we assume that P 2

M(X).

The main result of the paper is the following theorem.

Theorem 2.1 (Optional decomposition) Let V = (Vt)t�0 be a positive

process. Then V is a supermartingale for each measure Q 2 M(X) if and

only if there exist an X-integrable predictable process H = (H i)1�i�d and an
adapted increasing process C such that

Vt = V0 + (H �X)t � Ct; t � 0;(2.1)

where (H �X)t =
R
t

0
HsdXs is the stochastic integral of H with respect to X.

Because the process H �X mentioned above is uniformly bounded below,
it is a local martingale with respect to all measures Q 2 M(X), see �Emery
[9] and Ansel and Stricker [1]. Therefore, the Eq.(2.1) is indeed an optional

decomposition of V with respect to the familyM(X). The proof of Theorem
2.1 see in Section 5.

Theorem 2.1 generalizes the following result of Jacka [10] and Ansel and
Stricker [1].

Theorem 2.2 (Jacka, Ansel and Stricker) Let M = (Mt)t�0 be a posi-

tive process. Then M is a local martingale for each measure Q 2 M(X) if

and only if there exists an X-integrable predictable process H = (H i)1�i�d
such that

Mt =M0 + (H �X)t t � 0:

We now consider the question of uniqueness for decomposition (2.1).
We denote by Xc the continuous martingale part of X with respect to P ,

< X
c
;X

c
> means the quadratic variation of Xc, [X;X] corresponds to the

quadratic variation of X, and g[X;X] designates the compensator of [X;X]
with respect to P . For simplicity of notation we formulate the result for the

case of d = 1.
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Lemma 2.1 Assume that there is a positive predictable process

h = (ht(!))t�0 such that

g[X;X]
t
(!) =

Z
t

0

hs(!)d < X
c
;X

c
>s (!)

almost surely. Then the processes H � X and C in decomposition (2.1) are

uniquely de�ned.

Proof Let H and G be predictable X-integrable processes, and A and B be

adapted RCLL processes of bounded variation such that

H �X +A = G �X +B := V:

We must show that H �X = G �X or, equivalently,

HIfjHj � Ng �X = GIfjGj � Ng �X;(2.2)

whatever N � 1.

Because the continuous martingale part of V equals

V
c = H �Xc = G �Xc

;

we deduce that Z 1

0

(Hs �Gs)
2
d < X

c
;X

c
>= 0:

Then the condition of the lemma implies:Z 1

0

(Hs �Gs)
2
d g[X;X] = 0;

and Eq.(2.2) follows from the Doob inequality for locally square integrable
martingales. 2

Remark 2.1 The condition of the lemma is invariant with respect to equiv-

alent change of measure P .

Finally, we state the result that links the \optional" decomposition with

\predictable" decomposition of Doob and Meyer.
Let V be a bounded below Q-supermartingale for all Q 2 M(X). We

denote by B the set of predictable increasing RCLL processes B, such that

B0 = 0 and V +B is a Q-supermartingale for all Q 2M(X). We introduce
an ordering � on B indicating that A is less than B (A � B) if B �A is an

increasing process.

5



Lemma 2.2 The maximal element bB in the ordered set B exists and is

unique.

Proof We start with an intermediate claim.

Claim Let A and B be the elements of B. Then there exists C 2 B such

that C �A and C �B are increasing processes.

Hahn's decomposition for increasing predictable processes (see Jacod and

Shiryaev [12] Chapter I, Proposition 3.13) implies the existence of a pre-

dictable process h with values in f�1; 1g such thatZ
t

0

jdAs � dBsj =

Z
t

0

hs(dAs � dBs); t � 0:

Denote

Ct =
1

2

�Z
t

0

(1 + hs)dAs +

Z
t

0

(1� hs)dBs

�
; t � 0:

Then the processes C � A and C � B are increasing processes. Moreover,

because

V + C =
1

2

�Z
t

0

(1 + hs)d(Vs +As) +

Z
t

0

(1� hs)d(Vs +Bs)

�
; t � 0

and processes V + A and V + B are supermartingales with respect to all

Q 2 M(X), we deduce that V + C is a supermartingale with respect to all
Q 2M(X) and, therefore, C 2 B. The claim is proved.

Now let b = sup
B2BEB1 and (Bn)n�1 be a sequence in B such that

the expectations EBn

1 tend to b as n tends to 1. Using the claim, we

can construct this sequence so as make the processes Bn+1 � B
n increasing

whatever n � 1. Then the sequence (Bn)n�1 converges to a process bB in

[0;+1] uniformly. It can be easily seen that bB 2 B. Finally, the claim

above and the fact

bB1 = b = sup
B2B

EB1

imply that bB is the unique maximal element in B. 2

Remark 2.2 WhenM(X) is a singleton, the process bB is exactly the process

that appears in Doob{Meyer decomposition.
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3 Applications in �nance

1. In �nance the process X = (X i)i�d is interpreted as a discounted price pro-

cess of d assets in a security market. As above, we assume that X is a locally

bounded RCLL process and that the set M(X) of local martingale measures

for X is not empty. This corresponds to the absence of arbitrage opportuni-

ties on the security market, see recent paper of Delbaen and Schachermayer

[4] for precise statement.

We remind that a wealth and consumption portfolio can be described as a

triple � = (v;H;C), where v is an initial wealth of the portfolio, H = (H i)i�d
is a predictable X-integrable process of numbers of assets, and C = (Ct)t�0
is an adapted increasing right-continuous process of consumption. A capital
process V = (Vt)t�0 of portfolio � equals

Vt = v +

Z
t

0

HsdXs �Ct; t � 0:(3.1)

This equation has a clear economic interpretation: changes in the portfolio
wealth are caused by changes in assets prices and by consumption. In par-
ticular, when C � 0 the Eq.(3.1) means that the portfolio � is developing in
a self-�nancing way. Portfolio � is called an admissible strategy if Vt � 0,
t � 0. Theorems 2.1 and 2.2 immediately lead to the following important

characterization of admissible portfolios.

Theorem 3.1 Let (Vt)t�0 be a positive process. Then

(i) V is a capital of self-�nancing portfolio if and only if V is a local mar-

tingale with respect to all Q 2M(X).

(ii) V is a capital of wealth and consumption portfolio if and only if V is a

supermartingale with respect to all Q 2M(X).

2. Let now f be a positive random variable on (
;F). We interpret f

as the value of contingent claim or as the payment of European option with
maturity at time T =1. An admissible strategy � with wealth V is called
the hedging portfolio for f if V1 � f . Moreover, hedging portfolio b� with

wealth bV is called the minimal hedge for f if bVt � Vt almost surely, whatever

t � 0 and hedging strategy � with wealth V .
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The supermartingale property of the wealth V of hedging strategy �

implies that

Vt � ess sup
Q2M(X)

EQ [V1 j Ft] � ess sup
Q2M(X)

EQ [f j Ft] ; t � 0:(3.2)

The following theorem states that the lower bound in (3.2) is achieved and

equals to the wealth of the minimal hedge. For continuous price processes

this result was proved in the paper of El Karoui and Quenez [7].

Theorem 3.2 Let f be a positive random variable such that
sup

Q2M(X)
EQf < 1. Then the minimal hedging strategy b� = (bv; bH; bC)

exists and its wealth bV equals

bVt = bv + ( bH �X)t � bCt = ess sup
Q2M(X)

EQ [f j Ft] :

Proof The proof follows from Theorem 3.1 above and from the fact that
process (ess sup

Q2M(X)
EQ [f j Ft])t�0 is a supermartingale for allQ 2M(X),

see Proposition 4.2 in Section 4. 2

If � is a �nite stopping time, i.e. P (� < +1) = 1, and f is a F� -

measurable function, then from Theorem 3.2 we deduce that bV1 = f . We

notice that for general F = �
�S

t�0 Ft

�
-measurable claims f this equality

does not hold. To demonstrate, we use the following simple example.

Example 3.1 Let (
;F ;F; P ) be a �ltered probability space with a Wiener
process W . We set X � 1 and de�ne claim f as f = I(� < 1), where

stopping time � equals

� = inf
�
t � 0 : Wt � e

t
	
:

In this case M(X) is the set of all probability measures equivalent to P . It

can be easily seen that P (� <1) < 1, and

bVt = ess sup
Q2M(X)

Q(� <1 j Ft) = 1; t � 0:

Therefore, bV1 = 1 > I(� < +1) with positive probability.
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The question of particular interest is to know whether the minimal hedg-

ing strategy b� is a self-�nancing portfolio. This is connected with the prob-

lem of attainability of contingent claims, see papers of Jacka [10], Ansel and

Stricker [1] and Delbaen and Schachermayer [5]. From these papers we de-

duce that the minimal hedge b� with wealth bV is a self-�nancing strategy

if and only if there is a measure Q 2 M(X) such that bV is a Q-uniformly

integrable martingale on [0;+1[.

3. Let now f = (ft)t�0 be an adapted positive process. We interpret f as

the reward process of an American type option. The wealth and consumption

portfolio � = (v;H;C) with capital process V = (Vt)t�0 is called a hedging
strategy for f if

Vt � ft; t � 0:

The portfolio e� = (ev; eH; eC) with capital process eV = (eVt)t�0 is termed

the minimal hedging portfolio if

Vt � eVt � ft;

whatever t � 0 and hedging portfolio � with capital V .
The following theorem can be considered as generalization of the results

of Bensoussan [2] and Karatzas [13] to a setting of incomplete markets.
Denote by Mt the set of stopping times � with values in [t;+1[.

Theorem 3.3 Let f = (ft)t�0 be an adapted positive process such that

sup
�2M0

sup
Q2M(X)

EQf� < +1:

Then the minimal hedging portfolio e� = (ev; eH; eC) exists, and its capital at

time t � 0 equals

eVt = ev + ( eH �X)t � eCt = ess sup
Q2M(X); �2Mt

EQ[f� jFt]:

Proof The proof follows from Theorem 3.1 and from the fact that pro-
cess (ess sup

Q2M(X); �2Mt
EQ[f� jFt])t�0 is a supermartingale whatever Q 2

M(X), see Proposition 4.3 in Section 4. 2
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4 Auxiliary facts and results

1. First we recall some facts and de�nitions from the theory of stochastic

integration, for which we refer to Dellacherie and Meyer [6], Protter [16] and

Jacod and Shiryaev [12].

Suppose X is a real-valued process; then the maximal function (X)�
t
is

de�ned as sup
0�s�t j Xs j.

Suppose X and Y are semi-martingales; then the �Emery distance between

X and Y equals

D(X;Y ) = sup
jHj�1

 X
n�1

2�nE [min(j (H �X)n j; 1)]

!
;

where sup is taken over the set of all predictable processes H bounded by
1. For this metric the space of semi-martingales is complete, see �Emery [8].
The corresponding topology is called a semi-martingale or �Emery topology.

In particular, if A and B are predictable processes of bounded variation,
the �Emery distance between A and B equals

D(A;B) =
X
n�1

2�nE

�
min(

Z
n

0

j dAs � dBs j; 1)

�
;

where
R
n

0
j dAs � dBs j is the total variation of A � B on [0; t]. This is a

consequence of the following Hahn decomposition: there exists a predictable
process h with values in f-1,+1g such thatZ

t

0

j dAs � dBs j=

Z
t

0

hs(dAs � dBs); t � 0;

see Jacod and Shiryaev [12] Chapter I, Proposition 3.13.

Now let H be a predictable process, and X be a semi-martingale. The
process H is called X-integrable if there exist a local martingale M and a

process A of bounded variation such that X =M +A and

1. process
R
t

0
j Hs jj dAs j has a bounded variation,

2. increasing process
�R

H
2

s
d[M;M ]s

�1=2
is locally integrable, where

[M;M ] is the quadratic variation of the local martingale M .
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In this case, H � A is a Lebesgue{Stieltjes integral; the stochastic integral

H �M exists as a stochastic integral with respect to a local martingale, and

is a local martingale. The stochastic integral H �X equals H � A+H �M

and does not depend on a particular choice of M and A.

If a predictable process H is locally bounded, this process is integrable

with respect to all semi-martingales. If H is unbounded, then by Theorem 1

in Chou, Meyer and Stricker [3] process H is X-integrable if and only if the

sequence HIfj H j� ng �X, n � 1, converges in semi-martingale topology.

Moreover, in this case the limit of the sequence equals H �X.

An X-integrable process H is called the admissible integrand if there
exists a constant a such that a+ (H �X)t � 0, t � 0. A counter-example in
�Emery [9] shows that a stochastic integral with respect to a local martingale
can be not local martingale. However, if M is a local martingale and H is

an admissible integrand for M , then H �M is a local martingale, see Ansel
and Stricker [1].

A semi-martingale X is called a special semi-martingale if it can be de-
composed as X =M+A, whereM is a local martingale and A is a predictable
process of bounded variation. Then such a decomposition is unique. For the

sequel we need the following proposition on special semi-martingales. For the
proof we refer to Chou, Meyer and Stricker [3], where this result was called
the Jeulin theorem.

Proposition 4.1 Let X be a special semi-martingale with a canonical de-
composition X =M +A, and H be a predictable X-integrable process. Then
H �X is a special semi-martingale if and only if

1. H is M-integrable in the sense of stochastic integrals of local martin-

gales,

2. H is A-integrable in the sense of Lebesgue{Stieltjes integrals.

In this case, the canonical decomposition of H � X is given as H � X =

H �M +H �A.

We will also need a technical lemma whose formulation is taken from the

paper of Memin [15].

11



Lemma 4.1 Let X be a semi-martingale, such that the quadratic variation

[X;X]
1=2

1 belongs to L
p(
;F ; P ) for p � 1. Then X is a special semi-

martingale, and there exists a universal constant ap such that

k[A;A]1=21 kLp � apk[X;X]1=21 kLp;

k[M;M ]1=21 kLp � (ap + 1)k[X;X]1=21 kLp;

where X =M+A is a canonical decomposition of X; in particular, for p = 2

we can take a2 = 1.

2. Let now X be a locally bounded martingale, and f be a positive func-
tion on (
;F ; P ). We denote by M(X) the set of local martingale measures
for X. The following proposition is adapted from the paper of El Karoui and

Quenez [7].

Proposition 4.2 Let f be a positive variable such that sup
Q2M(X)

EQf <

+1. There is an RCLL process V = (Vt)t�0 such that

Vt = ess sup
Q2M(X)

EQ[f j Ft]; t � 0:

The process V is a Q-supermartingale whatever Q 2M(X).

The proof of Proposition 4.2 is similar to the proof of the following propo-

sition used in the proof of Theorem 3.3. We denote byMt the set of stopping
times � with values in [t;+1].

Proposition 4.3 Let f = (ft)t�0 be a positive adapted RCLL process such

that

sup
Q2M(X); �2M0

EQf� < +1

There is an RCLL process V = (Vt)t�0 such that for all t � 0

Vt = ess sup
Q2M(X); �2Mt

EQ[f� jFt]:

The process V = (Vt)t�0 is a Q-supermartingale whatever Q 2M(X).

12



Proof For each time instant t we de�ne variable eVt as
eVt = ess sup

Q2M(X); �2Mt

EQ[f� jFt]:(4.1)

We have to show that process eV = (eVt)t�0 is a Q-supermartingale for all

Q 2M(X) and that eV admits an RCLL modi�cation.

Let probability measure P be an element of M(X). By Zt we denote the

set of processes z = (zt)t�0 such that

1. z is the density process of some measure Q 2M(X) with respect to P ,

2. zs = 1; s � t.

The Eq.(4.1) can be rewritten as

eVt = ess sup
z2Zt; �2Mt

E[f�z� jFt];

where E is the expectation with respect to measure P .
Let us �x positive numbers s and t, s < t, and show that

E[eVtjFs] = ess sup
z2Zt; �2Mt

E[f�z� jFs]:(4.2)

First we have

E[eVtjFs] = E[ess sup
z2Zt; �2Mt

E[f�z� jFt]jFs] � ess sup
z2Zt; �2Mt

E[f�z� jFs]:(4.3)

To prove the reverse inequality we take the sequence

(yn; �n)n�1 in (Zt;Mt) such that

eVt = sup
n�1

E[f�ny
n

�n
jFt]:

Using this sequence we construct a new sequence (zn; �n)n�1 as follows

(z1; �1) = (y1; �1)

and for n � 1

(zn+1
; �n+1) =

�
(zn; �n); if E[f�nz

n

�n
jFt] � E[f�n+1y

n+1

�n+1
jFt]

(yn+1
; �n+1); if E[f�nz

n

�n
jFt] < E[f�n+1y

n+1

�n+1
jFt]

:
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We have (zn; �n)n�1 � (Zt;Mt) and

E[f�nz
n

�n
jFt] = max

k�n
E[f�ky

k

�k
jFt] " eVt:

Now from the theorem on monotone convergence we deduce

E[eVtjFs] = E[ lim
n!1

E[f�nz
n

�n
jFt]jFs] = lim

n!1
E[f�nz

n

�n
jFs]

� ess sup
z2Zt; �2Mt

E[f�z� jFs]:

Together with inequality (4.3) this proves Eq.(4.2).

Since Zt � Zs, Mt � Ms for s � t, the equality (4.2) implies the

supermartingale property for the process eV :
E[eVtjFs] � eVs; s � t:

To �nish the proof of Proposition 4.3 we must show that the process eV
admits an RCLL modi�cation. According to Theorem 3.1 in Liptser and

Shiryaev [12], this is the case if and only if the function (E eVt)t�0 is right-
continuous.

When s = 0, the equality (4.2) takes the form

E eVt = sup
z2Zt; �2Mt

E[f�z� ]:(4.4)

Let t, (tn)n�1 be positive numbers such that tn # t, n ! +1, and tn <

t+ 1, n � 1. Because eV is a supermartingale, we have

E eVt � lim
n!1

E eVtn :(4.5)

To prove the reverse inequality we �x � > 0 and choose stopping time
� = �(�) from Mt and process z = z(�) from Zt such that

E eVt < Ef�z� + � and P (� > t) = 1:(4.6)

This is possible by Eq.(4.4) and right-continuity of the process f .
Now for n � 1 we de�ne stopping time �n 2 Mtn and process zn 2 Ztn

as

�n =

�
�; � � tn

t+ 1; � < tn
; z

n

t
=

�
zt=ztn; � � tn and t � tn

1; � < tn or t < tn
:

14



We have �n ! � and z
n

�n
! z� almost surely as n tends to 1. Now we

deduce from Fatou's lemma and (4.4) and (4.6) that

E eVt � lim
n!1

Ef�nz
n

�n
+ � � lim

n!1
E eVtn + �:

Because � is an arbitrary positive number and by eq.(4.5) we have that the

function (E eVt)t�0 is right-continuous. This completes the proof of Proposi-

tion 4.3. 2

3. The next proposition is a slight modi�cation of Theorem 5.7 in Delbaen
and Schachermayer [4] and we only sketch the proof. We use the notations
of Proposition 4.2.

Proposition 4.4 Let � and � be stopping times on (
;F ;F; P ) such that
� � �, and f be a bounded F�-measurable random variable. Denote V� =
ess sup

Q2M(X)
EQ[f j F� ]. There is an admissible integrand H such that

(H �X)t = 0; t � �; and V� + (H �X)� � f:

Proof For simplicity we consider the case � = 0 and � =1.
Following Delbaen and Schachermayer [4] we de�ne the sets:

K0 = fV0 + (H �X)1 : H is an admissible integrandg ;

C0 = K0 � L
0

+
;

C = C0

\
L
1
;

where L0

+
and L1 are the sets of positive and bounded random functions on

(
;F ; P ) respectively.

We need to prove that f 2 C. We proceed on a well known path. By The-
orem 4.2 in Delbaen and Schachermayer [4] (see also remark after corollary
1.2) the set C is �(L1; L1)- closed. Therefore, if f 62 C, by the Hahn{Banach

theorem there is a signed measure R 2 L
1 such that

sup
g2C

ERg < ERf:

This inequality and construction of the set C imply thatR is positive measure

such that ER(H � X)1 = 0, if H and �H are admissible processes. If we

15



normalize the measure R as R(
) = 1, we obtain that R is an absolutely

continuous probability such that X is a local R-martingale. Therefore for

each � > 0 measure R� = �P + (1� �)R belongs to M(X). We easily deduce

that

sup
g2C

ER�g = V0 = sup
Q2M(X)

EQf � ER�f:

Therefore

ERf = lim
�!0

ER�f � V0 � sup
g2C

ERg

and we come to a contradiction. 2

4. Finally we prove a technical lemma to be used later in several occasions.

This lemma can be considered as an extension of Lemma A 1.1 from Delbaen
and Schachermayer [4] to the setting of increasing processes.

Suppose A is a family of random processes; then the notation B 2 convA
means that the process B is a �nite convex combination of elements in A.

Lemma 4.2 Let (An)n�1 be a sequence of positive increasing adapted pro-
cesses on a �ltered probability space (
;F ;F; P ). There exist a sequence
B

n 2 conv (An
; A

n+1
; . . .), n � 1, and a [0;+1]-valued increasing process B

such that
Bt = lim

�!0

lim sup
n!1

B
n

t+�
= lim

�!0

lim inf
n!1

B
n

t+�

If there are T > 0 and � > 0 such that for all n: P (An

T
> �) > �, then

P (BT > 0) > 0.

Proof Let (ti)i�1 be a dense subset of [0;+1[. Application of Lemma A 1.1
from Delbaen and Schachermayer [4] and diagonalization procedure results
in a sequence Bn 2 conv (An

; A
n+1

; . . .), n � 1, such that for all i � 1 the

sequence (Bn

ti
)n�1 converges almost surely to a [0;+1]-valued variable B 0

ti
.

We now de�ne process B = (Bt)t�0 as

Bt = inf
ti>t

B
0
ti
:

It can be easily seen that the sequence (Bn)n�1 and the process B are the
processes required by the lemma.

Finally, if P (An

T
> �) > � then

E (BT ^ 1) � lim inf
n!1

(EBn

T
^ 1) � lim inf

n!1
(EAn

T
^ 1) > �

2

and the result follows. 2
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5 Proof of the main theorem

We start with two auxiliary lemmas.

We are in the setting of Theorem 2.1. Let V be a positive supermartingale

for allQ 2M(X). By C we denote the set of increasing processes C such that

C0 = 0 and the process V + C is a supermartingale for all Q 2 M(X). We

introduce an order relation � on C saying that C1 is less than C2 (C1 � C2)

if C2 � C1 is an increasing process.

Lemma 5.1 There exists the maximal element bC on the ordered set C.

Proof Kuratowski's lemma (see Kelley [14] th.25, page 33) implies the exis-

tence of a maximal chain eC 2 C. Denote
a = sup

C2eC

EC1:

If C 2 C, the process V + C is a P -supermartingale, and hence

EC1 � E(V1 + C1) � V0:

It follows that a < +1.
Now we �nd an ordered sequence (Cn)n�1 in eC such that expectations

EC
n

1 tend to a as n tend to 1, and de�ne the process bC as the limit:

C
n " bC, n!1. Notice that the convergence here is uniform on [0;+1].

It is easy to see that bC 2 C. Moreover, since eC is the maximal chain in
C, the process bC is the maximal element of C i� it is the maximal element ofeC. Let C 2 eC. Because all elements of eC are comparable between each other,

there are two possibilities:

1. C � C
n0 for some n0 and then C � bC,

2. Cn � C for all n � 1 and then bC � C. However the theorem on
monotone convergence implies that

E bC1 = lim
n!1

EC
n

1 = a � EC1:

Therefore bC1 = C1 and hence bC = C.
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The proof of the Lemma 5.1 is �nished. 2

Let bC be the maximal element of C given by Lemma 5.1. De�ne the

process U = (Ut)t�0 by

Ut = Vt + bCt; t � 0:

Let also T be a positive number, and T be a dense subset of [0; T ].

Lemma 5.2 Let (Gn)n�1 be a sequence of admissible integrands, and (An)n�1
be a sequence of adapted increasing processes such that An

0
= 0, n � 1, and

U0 + (Gn �X)t � �a; t 2 [0; T ]; n � 1 for some a � 0

and

lim sup
n!1

jU0 + (Gn �X)t �A
n

t
� Utj = 0; t 2 T ;

where process U and set T are de�ned before the formulation of the lemma.
Then

1) variables An

T
tend to 0 in probability as n tends to 1

2) maximal functions (U0+G
n �X �U)�

T
tend to 0 in probability as n tends

to 1.

Proof 1) Assume that there exist an increasing sequence (nk)k�1 and a posi-
tive number � such that P (Ank

T
> �) > �, k � 1. Then Lemma 4.2 implies the

existence of a sequence Bk 2 conv (Ank ; A
nk+1 ; . . .), k � 1 and of increasing

adapted process B such that P (BT > 0) > 0 and

Bt = lim
�!0

lim sup
k!1

B
k

t+�
= lim

�!0

lim inf
k!1

B
k

t+�
; t � 0:

We come to a contradiction with the maximality of bC, if show that B0 = 0 and
the process U +B is a supermartingale on interval [0; T ] for all Q 2M(X).

By H
k we denote the convex combination of (Gnk ; G

nk+1 ; . . .) obtained

with the same weights as Bk 2 conv (Ank ; A
nk+1 ; . . .). We have

lim sup
k!1

jU0 + (Hk �X)t �B
k

t
� Utj = 0; t 2 T

18



and

U0 + (Hk �X)t � �a; t 2 [0; T ]; k � 1:

Now we �x t � 0 and de�ne a sequence (tl)l�1 in T such that tl # t, l!1.

We deduce

Ut +Bt = lim
l!1

lim inf
k!1

(Utl
+B

k

tl
) = U0 + lim

l!1
lim inf
k!1

(Hk �X)tl:

If t = 0, Fatou's lemma and the supermartingale property of Hk �X imply

that

B0 = EB0 = E lim
l!1

lim inf
k!1

(Hk �X)tl

� lim inf
l!1

lim inf
k!1

E(Hk �X)tl � 0:

Since B � 0, it follows that B0 = 0.
Further, for t > 0, s 2 T , s < t and Q 2 M(X) Fatou's lemma and the

supermartingale property of Hn �X imply

EQ[Ut +BtjFs] � U0 + lim inf
l!1

lim inf
k!1

EQ[(H
k �X)tl jFs]

� U0 + lim inf
k!1

(Hk �X)s

= lim inf
k!1

(Us +B
k

s
) � Us +Bs:

Because the set T is dense in [0; T ], we deduce that the process U +B is
a supermartingale on [0; T ] for all Q 2M(X) and come to the contradiction.
The �rst assertion of the lemma is proved.

2) We must prove that maximal functions ((Gn � G
m) � X)�

T
tend to 0

in probability as n and m tend to 1. If this was not the case, we could �nd
two increasing sequences (ik; jk)k�1 and a positive number � such that

P ( sup
0�t�T

((Gik �G
jk ) �X)t � �) > �; k � 1:

We de�ne stopping time �k as

�k = inf
�
t � 0 : ((Gik �G

jk) �X)t � �
	
:

We have �
! : sup

t�T

((Gik �G
jk ) �X)t � �

�
= f! : �k(!) � Tg :

19



Therefore

P (�k � T ) � �; k � 1:(5.1)

Now for k � 1 we de�ne integrand L
k and increasing process Ck as

L
k = G

ikIft � �kg+G
jkIft > �kg;

C
k = ((Gik �G

jk ) �X)�kI[�k;+1[:

We have

(Lk �X)t � C
k

t
= (Gik �X)tI[0;�k[ + (Gjk �X)tI[�k;+1[:

It follows that

U0 + (Lk �X)t � �a; t 2 [0; T ]; k � 1:

Part 1) of the lemma implies that variables Aik

T
and A

jk

T
tend to 0 in

probability as k tends to 1. Passing to a subsequence we can suppose that
this convergence holds almost surely. Then

lim sup
k!1

(jU0 + (Gik �X)t � Utj+ jU0 + (Gjk �X)t � Utj) = 0; t 2 T

and therefore

lim sup
k!1

jU0 + (Lk �X)t � C
k

t
� Utj = 0; t 2 T :

Now we deduce from the part 1) of the lemma that variables Ck

T
tend to 0

in probability as k tends to 1. But

C
k

T
� �If�k�Tg

and we come to the contradiction with (5.1). 2

Proof (of Theorem 2.1) Let bC be a maximal element of C given by Lemma
5.1. By U = (Ut)t�0 we denote process

Ut = Vt + bCt; t � 0:

To prove Theorem 2.1 we have to construct an admissible integrand L such
that

Ut = U0 + (L �X)t; t � 0:
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Notice that it is su�cient to prove this representation only for any �nite time

interval [0; T ]. Indeed, if there are admissible integrands Ln such that

Ut = U0 + (Ln �X)t; 0 � t � n;

then we can de�ne the desired integrand L as

L =

+1X
n=1

L
n
Ifn� 1 � t < ng:

In the sequel we consider the case when t belongs to [0; 1]. To make the proof
more readable we divide it on a number of steps.

Step 1 There are admissible integrands (Kn)n�1 such that

lim sup
n!1

(U0 + (Kn �X)s � Us)
�
1

= 0;(5.2)

U0 + (Kn �X)t � 0 ; t 2 [0; 1]; n � 1(5.3)

sup
n�1

[Kn �X;Kn �X]1 < +1;(5.4)

where all relations hold almost surely.

Proof First we construct the sequence of admissible integrands (Gn)n�1 such
that

lim sup
n!1

(U0 + (Gn �X)s � Us)
�
2

= 0;(5.5)

U0 + (Gn �X)t � 0 ; t 2 [0; 2]; n � 1:(5.6)

The desired sequence (Kn)n�1 will be obtained later as the sequence of ap-
propriate convex combinations of (Gn)n�1.

By T (n) we denote the set of numbers of the form i�2�n, 0 � i � 2n+1. We

have that T (n) � T (n + 1) and that the limiting set T (1) =
S

n�1 T (n) is
dense in [0; 2]. For n � 1 we de�ne process Un = (Un

t
)t�0 as U

n

t
= min(Ut; n).

It is clear that Un is a Q-supermartingale for all Q 2M(X).
For n � 1 and 0 � i � 2n+1 � 1 Proposition 4.4 implies the existence of

an admissible integrand Gni such that

(Gni �X)t = 0; t � i � 2�n
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and

U
n

i�2�n + (Gni �X)(i+1)�2�n � U
n

(i+1)�2�n:

Now we de�ne integrand Gn and increasing process An as

G
n =

2
n+1�1X
i=0

G
ni
Ifi � 2�n < t � (i+ 1) � 2�ng;

A
n =

2
n+1�1X
i=0

�
U
n

i�2�n + (Gni �X)(i+1)�2�n � U
n

(i+1)�2�n

�
I[(i+1)�2�n;+1[:

We have

U
n

0
+ (Gn �X)i�2�n �A

n

i�2�n = U
n

i�2�n; 0 � i � 2n+1
:(5.7)

The process Gn as a �nite sum of admissible integrands is an admissible
integrand. Therefore Gn �X is a supermartingale. Since

U
n

0
+ (Gn �X)2 = U

n

2
+A

n

2
� 0;

we deduce that Un

0
+ (Gn �X)t � 0, t 2 [0; 2]. This proves inequality (5.6).

Further, because maximal functions (Un�U)�
2
tend to 0 almost surely as

n tends to 1, we deduce from (5.7) that

lim sup
n!1

sup
t2T (n)

jU0 + (Gn �X)t �A
n

t
� Utj = 0:

Now part 2) of Lemma 5.2 implies the convergence of maximal functions (U0+

(Gn �X)s � Us)
�
2
to 0 in probability. Passing, if necessary, to a subsequence,

we can suppose that this convergence holds almost surely. It follows that the
Eq.(5.5) for the sequence (Gn)n�1 takes place.

Since (U)�
2
< +1, we deduce from Eq.(5.5) that

sup
n�1

(Gn �X)�
2
< +1:

Therefore, the probability of stopping time

�m = inf
n�1

inf ft � 0 : j(Gn �X)tj � mg
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being below 2 tends to 0 as m tends to 1. Accounting for the supermartin-

gale property of Gn �X we obtain that

E
�
U0 + (Gn �X)�

�m

�
� m+ E [U0 + (Gn �X)�m ] � m+ U0:

Now the Davis inequality implies the existence of constant Dm < +1 such

that

E [Gn �X;Gn �X]
1=2

�m
� Dm:

According to Lemma 4.2 there are a sequence of increasing processes Cn 2

conv
�
[Gn �X;Gn �X]1=2 ; [Gn+1 �X;Gn+1 �X]

1=2
; . . .

�
, n � 1, and an in-

creasing process C such that

Ct = lim
�!0

lim sup
n!1

C
n

t+�
= lim

�!0

lim inf
n!1

C
n

t+�
; t � 0:

From Fatou's lemma we deduce that

EC1I(�m � 2) � lim inf
n!1

EC
n

�m
I(�m � 2) � Dm:

Since limm!1 P (�m � 2) = 1, we have that C1 < +1 almost surely and
therefore sup

n�1 C
n

1
< +1.

Now we de�ne the desired sequence (Kn)n�1 as the sequence of convex
combinations of (Gn)n�1 obtained in much the same way as the sequence

(Cn)n�1 was obtained from
�
[Gn �X;Gn �X]1=2

�
n�1

. Now the proof of Step

1 follows from (5.5), (5.6), and the \Minkowski" inequality:

[Kn �X;Kn �X]1=2
1

� C
n

1
(see Dellacherie and Meyer [6] Chapter VII,

Eq.(54.1)). The proof of Step 1 is �nished. 2

If the sequence ([Kn �X;Kn �X])
n�1 is bounded not only in probability

but in L2

Q
-norm for some measure Q 2M(X):

sup
n�1

EQ [K
n �X;Kn �X]

1
< +1;

then by standard arguments we can �nd a sequence

L
n 2 conv (Kn

;K
n+1

; . . .), n � 1, such that martingales (Ln �X)
n�1 con-

verge in the space M2(Q; [0; 1]) of square integrable martingales. The limit-
ing martingale has the form L � X for some integrand L (see, for example,

Jacod [11] Chapter 4), and we �nish.
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Under more weak condition (5.4), the construction of desirable integrand

L is much more complex. We proceed on a similar way as in Delbaen and

Schachermayer [4].

Denote � = sup
n�1 [K

n �X;Kn �X]
1
, and de�ne probability R on (
;F)

such that
dR

dP
=

e
��

Ee��
:

Then the inequality (5.4) in Step 1 implies that R � P .

The process X is a locally bounded P -martingale. Therefore, it is a

special semi-martingale with respect to measure R. Let X = M +A be the
canonical decomposition of X, where M is an R-local martingale and A is a

process of R-integrable variation. Because the de�nition of stochastic integral
is invariant with respect to equivalent changes of measure, the stochastic
integral Kn �X exists on (
;F ;F; R) and is a semi-martingale. Since

ER sup
n�1

[Kn �X;Kn �X]
1
< +1;(5.8)

Lemma 4.1 and Proposition 4.1 imply thatKn�X is a special semi-martingale
on [0; 1] with canonical decomposition

(Kn �X)t = (Kn �M)t + (Kn �A)t; 0 � t � 1:

Step 2 There is a sequence Ln 2 conv (Kn
;K

n+1
; . . .), n � 1, such that the

sequence (Ln �M)n�1 converges in semi-martingale topology on [0; 1].

Proof Lemma 4.1 and Eq.(5.8) imply that sup
n�1 ER [K

n �M;K
n �M ]

1
<

+1. Therefore the sequence (Kn �M)n�1 is bounded in the space

M2(R; [0; 1]) of square integrable martingales. Hence there is a sequence

L
n 2 conv (Kn

;K
n+1

; . . .), n � 1, such that R-martingales (Ln �M)
n�1

converge inM2(R; [0; 1]) and therefore converge also in the semi-martingale
topology on [0; 1]. 2

Step 3 The sequence (Ln �A)
n�1, where integrands (Ln)n�1 are given in

Step 2, converges in semi-martingale topology on [0; 1].

Proof The proof of Step 3 follows the same lines as the proof of Lemma
4.11 in Delbaen and Schachermayer [4]. We have to show that variancesR
1

0
jLn

t
� L

m

t
jjdAtj tend to 0 as n and m tend to 1. If this was not the case,
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we could �nd two increasing sequences (in; jn)n�1 and a number � > 0 such

that P (An

1
> �) > �, n � 1, where An

t
= 1

2

R
t

0
jLin

s
� L

jn
s
jjdAsj.

Hahn's decomposition for increasing predictable processes implies the ex-

istence of predictable processes hn with values in f�1; 1g such that

A
n

t
=

1

2

Z
t

0

h
n(Lin � L

jn)dA:

We de�ne integrand Gn as

G
n =

1

2

�
L
in + L

jn + h
n(Lin � L

jn)
�
:

We have

G
n �X =

1

2
(Lin + L

jn) �X +A
n
:

Because Ln is a convex combination of integrands (Kn
;K

n+1
; . . .) given in

Step 1, we deduce that

lim sup
n!1

(U0 +G
n �X �A

n � U)�
1
= 0:(5.9)

By construction of hn and because

(Gn � L
in) �A =

1

2
(hn � 1)

�
L
in � L

jn
�
�A;

(Gn � L
jn) �A =

1

2
(hn + 1)

�
L
in � L

jn
�
�A;

we deduce that processes (Gn � L
in)�A and (Gn � L

jn)�A are the increasing
processes. Moreover, since

(Gn � L
in) �M =

1

2
(hn � 1)

�
L
in � L

jn
�
�M

and because processes (Lin � L
jn)�M tend to 0 in semi-martingale topology

on [0; 1], we deduce that maximal functions ((Gn � L
in) �M)

�

1
tend to 0 in

probability. The same holds for ((Gn � L
jn) �M)

�

1
. Taking, if necessary, a

subsequence, we can suppose that these maximal functions converge almost

surely. Then stopping times �n de�ned as

�n = inf
m�n

infft � 0 : (Gm �M)t < max
�
(Lim �M)t; (L

jm �M)t
�
� 1g
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form an increasing sequence such that

lim
n!1

I(�n < 1) = 0:(5.10)

For t < �n and m � n we have

(Gm �X)t = (Gm �A)t + (Gm �M)t � max((Lim �A)t; (L
jm �A)t)

+max((Lim �M)t; (L
jm �M)t)� 1 � max((Lim �X)t; (L

jm �X)t)� 1:

At time �n the jump �(Gm � X) is either �(Lim � X) or �(Ljm � X), and
hence the inequality

(Gm �X)t � max((Lim �X)t; (L
jm �X)t)� 1

holds for t � �n and m � n. Because Ln is a convex combination of the
variables (Kn

;K
n+1

; . . .) given in Step 1, we deduce that

U0 + (Gm �X)t � �1; 0 � t � �n; m � n:

Now we de�ne integrand H
n as Hn = G

n
I[0;�n]. We obtain that Hn is an

admissible integrand on [0; 1]:

U0 + (Hn �X)t � �1; 0 � t � 1:

Moreover, Eqs. (5.9) and (5.10) imply that

lim sup
n!1

(U0 + (Hn �X)s �A
n

s
� Us)

�
1
= 0:(5.11)

Now Lemma 5.2 implies that variables An

1
tend to 0 in probability as n tend

to1, and we come to the contradiction. The proof of Step 3 is �nished. 2

Now we are able to �nish the proof of Theorem 2.1. Steps 2 and 3 imply

the existence of a sequence of admissible integrands (Ln)n�1 such that the

sequences (Ln �M)
n�1 and (L

n �A)
n�1 converge in semi-martingale topology

on [0; 1]. Therefore, the sequence of stochastic integrals (Ln �X)
n�1 also

converges in the semi-martingale topology on [0; 1]. Now Memin's theorem

(see Memin [15] implies the existence of predictable process L such that

integrals Ln �X converge to L �X in the semi-martingale topology on [0; 1].

In particular, maximal functions (Ln �X�L�X)�
1
tend to 0 in probability as
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n tends to1. Because Ln is a convex combination of the variables (Km)m�n
given in Step 1, we deduce that

Ut = U0 + (L �X)t; 0 � t � 1

and �nish the proof of Theorem 2.1. 2
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