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Uniqueness of the Fair Premium for Equity-Linked Life Insurance
Contracts

Abstract

An equity-linked life insurance contract combines an endowment life insurance and an invest-

ment strategy with a minimum guarantee. The bene�t of this contract is determined by the

guaranteed amount plus a bonus equal to a call on the portfolio. This bonus is similar to an

Asian option.

We analyze the relationship between the periodic insurance premium and its proportional share

invested into the portfolio. For a general model of the �nancial risks we show the existence

and uniqueness of an insurance premium. Furthermore the premium is strictly increasing and

convex as a function of the share invested.

Keywords

Asian Option, Forward Risk Adjusted Measure, Life Insurance, Monte Carlo Simulation, Stochas-

tic Interest Rates.
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1 Introduction

An equity-linked life insurance contract combines in a particular way an endowment1 life insur-

ance and a portfolio investment stategy. The life insurance component guarantees in the case of

maturity of the contract or the death of the insured his or her heirs a �xed amount of money,

the so called guaranteed amount. This guaranteed amount may be constant for the term of the

contract, or may be an initially speci�ed function of time. Especially in combination with an

investment strategy the insured person may choose a decreasing guaranteed amount in time.

In this case the insured, or his or her heirs would bene�t from a relatively high guaranteed

amount in the case of an unexpected death within the �rst period of the contract. The decrease

of this insured guaranteed amount over time would then be compensated by the value of the

investment strategy. A variety of di�erent contracts are described in Ekern and Persson [1995].

In particular this idea underlies an equity-linked life insurance. In addition to the life insurance

component a proportion of the typically periodic premium is invested into a mutual fund. In

the case of death of the insured or at maturity of the contract the bene�t is determined by the

maximum between the guaranteed amount and the market value of the portfolio. The payo� of

the contract equals the guaranteed amount plus a non negative bonus. This bonus corresponds

to a call option on the portfolio value with an exercise price equal to the guaranteed amount.

Via the return of the investment strategy the insured participate in the economic growth of

the particular fund. Existing equity-linked life insurance contracts are based on interest rate,

equity indexes or real estate portfolios. Thus the bonus of the insurance contracts is not as such

related to the acquisitions of the insurance company. In addition the portfolio value, i.e. the

�nancial risk is insured with a lower value equal to the guaranteed amount. For an equity-linked

life insurance contract the exercise of this �nancial insurance component is conditioned on the

death of the insured. The contracts take into consideration the technical life insurance risk as

well as �nancial risks.

In this paper we will analyse a contract with periodic premium payments2. At each premium

date the insurance company invests a certain fraction of the premium in a speci�c mutual fund.

The guaranteed amount will be a function of time and the periodic premium. The bonus has

similarities to an Asian option with the underlying asset consisting of what currently have been

invested in the fund at the premium payment dates. The exercise price for this Asian{like

option is the guaranteed amount. The development in the �nancial marked which consists of

the speci�ed fund and bonds will be described by Itô processes. The model for the contract is

very 
exible as we through the choice of the share of the premium invested in the security and

the composition of the guaranteed amount can create many di�erent pro�les for the possible

cash 
ow of insurance contracts. For given contractual conditions we will analyse methods to

the determination of the fair premium, which creates equality between the cost of the contract

and the market value of bene�t.

In the literature single and periodic equity-linked contracts have been analysed in Brennan

and Schwartz (1976, 1979); Delbaen [1990]; Aase and Persson [1994]; Persson (1993); Bacinello

and Ortu (1993a, 1993b, 1994); and Nielsen and Sandmann [1995]. However it is only in Bacinello

1As an alternative pure endowment or term contracts could have been analysed. The methodology developed

in this paper would be valid for these contracts as well.
2The analysis covers the situation with a single initial premium payment. This case is much easier to solve

than the periodic premium case as the path dependence introduced through the periodic investment in the mutual

fund is eliminated.
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and Ortu [1994] and Nielsen and Sandmann [1995] that the theory is extended to cover stochastic

interest rate dynamics in the periodic premium case. Taking into consideration that the usual

term of these insurance contracts is equal to 12 to 30 years it is necessary to incorporate a

stochastic behaviour of the term structure of interest rates. In Nielsen and Sandmann [1995]

we analysed in detail, applying Monte Carlo simulation, the case where the guaranteed amount

was a function of just the periodic premium, and from the simulations some conjectures were

raised. These conjectures will in this paper be analysed on a theoretically basis and extended

to allow for guaranteed amounts depending as well on the time. The results will be supported

by simulation experiments and concerning the speci�c Asian option analysis comparisons will

be made to statements in the literature on the pricing of such assets.

The content of the paper is as follows. In Section 2 the notation and the speci�cation of

the contract we analyse are presented. Section 3 is devoted to an analysis of the stochastic

model underlying the equity and bond markets. In Section 4 the fair premium problem is stated

and a number of theorems are presented. In the theorems we develop the interrelationships

between the fair premium, the functional speci�cation of the guaranteed amount and the share

of the premium deemed to be invested in the fund at each premium payment date. Then in

Section 5 we apply approximation techniques in pricing Asian options and discuss their validity

for the insurance situation. Section 6 contains numerical results based on simulations and on

the approximation by Vorst [1992]. In Section 7 we �nally conclude.

2 Notation and de�nition of the contract

An equity-linked life insurance contract is an agreement between a buyer and a seller, where

the buyer is committed to pay, typically at periodic intervals and until the maturity of the

contract or the death of the buyer whichever comes �rst, a predetermined premium to the seller.

At maturity or death of the buyer, the seller is committed to deliver a payment in accordance

to the agreement settled when the contract was written. This payment, the bene�t, is the

maximum of 1) a function depending on the periodic premium and on the history of the spot

price of the underlying mutual fund from the date of settlement to the expiration date of the

contract and 2) a non-random guaranteed amount also depending on the periodic premium. To

precisely de�ne the insurance contract we apply the following notation:

The value of the mutual fund at time t is denoted by

S(t) Relative to the value S(t) the payo� of the equity-linked life insurance will be

calculated at time t.
The equity-linked life insurance contract includes the speci�cation of

K the periodic premium paid by the insured,

a the share of the periodic premium invested in a mutual fund, 0 � a � 1;

ti the set of premium payment dates, i = 0; 1; 2; :::; n� 1; t0 = 0;

tn the maturity date, tn = T; and

g(t;K) the guaranteed amount. The guaranteed amount is assumed to be a non{stochastic

function of the periodic premium K and the time t:
The reference portfolio
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relative to which the �nal payo� is calculated is de�ned as the portfolio obtained

by investing an amount a �K at each of the dates ti; i = 0; 1; 2; :::; n� 1, in the

fund with price process S(t). The market value of the reference portfolio at time

ti equals

aK

iX
j=0

S(ti)

S(tj)
:

The bene�t

from the insurance contract payed at time t if the contract terminates at this date

is therefore determined by:

g(t;K) + V (t; t; K) = g(t;K) +

"
a �K �

n�(t)�1P
i=0

S(t)
S(ti)

� g(t;K)

#+
with n�(t) := min fjj tj � tg and [X � g(t;K)]+ := maxfX � g(t;K); 0g:

The fair periodic premium

K� is de�ned as the periodic premium K for which the value at date t0 of the bene�t

equals the value at the same date of the premium payments, where the latter

could also be denoted the cost of the insurance contract.
The term structure of interest rates is determined by

r(t) the instantaneous risk free rate of interest at time t, and

D(t; t0) the price at date t of a zero coupon bond with maturity date t0; t � t0:

The bene�t is the proceeds from a �nancial contract and its price at time t0 will be found

in accordance to the absence of arbitrage opportunities in the �nancial market. The share a is

one of the parameters which should be negotiated when the contract is settled. The size of aK

determines together with the sequence of prices of the mutual fund the value of the reference

portfolio through which the obligations of the insurance company are given. However it should

be pointed out that the insurance company has no obligation to invest the amount aK in the

mutual fund at each premium payment date. The company3 will of course invest not only aK

but K in accordance to a strategy which takes into account the overall interests of the company

and as an extreme situation this could mean that it have no investment in the mutual fund at

all.

3 The Stochastic Model

In order to analyze an equity-linked life insurance contract we have to model three sources of

uncertainty which will a�ect the premium of such a contract. First we have to consider the

death probability. Usually the death { and survival distribution is determined by the insurer

using historical data. We assume that the death distribution is stochastically independent from

the �nancial risks which we will discuss in more detail shortly4. Furthermore we assume that

the insurer is risk neutral with respect to mortality. Since the death distribution depends on

the age of the insured person we implicitly assume that the insurer can perfectly diversify the

death uncertainty within each group. For standard endowment life insurance contracts this is a

3No administrative costs are included in the analysis.
4More precisely, we assume that the death- resp. survival distribution is stochastically independent from the

distribution of the mutual fund and the zero coupon bonds under the forward risk adjusted measure which will

be introduced in this section.
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usual and acceptable assumption. Looking at equity-linked life insurance contracts, we have at

least to remember that the total amount of contracts is much smaller than those of the standard

case, and it is not obvious that the law of large numbers can be applied5.

While the death distribution determines the payment date, the two further sources of risk,

�rstly the price risk of the underlying mutual fund and secondly the interest rate risk, determine

the size of the bene�t, if the contract terminates. Moreover we will argue that these �nancial

risks are only responsible for the bonus part of the insurance contract, i.e. the ex ante uncertain

payment which the insurer will pay in addition to the guaranteed amount. Clearly the stochastic

development of the underlying mutual fund will not a�ect the guaranteed amount, but since we

have to consider the discounted value of the total payments, i.e. a pathwise discounting of the

payments, it is not obvious that the interest rate risk only in
uences the bonus part of the

contract. In order to clarify this we now explicitly model the two �nancial markets.

Let (
; IF; P �) be a �ltered probability space. For the �nancial markets a continuous time

and complete market framework is assumed. More speci�c the mutual fund and the interest

rate market are given by Itô processes of the form

dS(t) = r(t)S(t) dt+ �1(t)S(t) dW
�
1 (t) + �2(t)S(t) dW

�
2(t) (1)

dD(t; t0) = r(t)D(t; t0) dt+ �(t; t0)D(t; t0) dW �
1 (t) 8t0 8t � t0 (2)

where fW �
1 (t)gt and fW �

2 (t)gt are independent one-dimensional Brownian motions under the

measure P �. In order to exclude arbitrage possibilities we have to assume certain regularity

conditions. First note, that the volatility functions �1(t) and �2(t) for the mutual fund and

�(t; t0) 8t0 8t � t0 are not necessarily deterministic. Repeating the arguments of El Karoui,

Lepage, Myneni, Roseau and Viswanathan [1991] the interest rate market has to satisfy the

following regularity assumption

Assumption 1 For any maturity t0 2 [0; T ] we assume that the volatility process f�(t; t0)g0�t�t0
of the default free zero coupon bond D(t; t0) satis�es the following conditions:

i) f�(t; t0)g0�t�t0 is a continuous and adapted process with �(t0; t0) = 0.

ii) The partial derivative with respect to maturity @�(t;t0)
@t0

is a continuous and adapted process

8t � t0:

iii) EP �

h
exp

n
1
2

R t0
0 �(t; t0)2dt

oi
<1:

iv) EP �

����@�(t;t0)@t0

���2� is bounded on f(t; t0)j0 � t � t0; 2 [0; T ]g:

v) There exists a predictable process fA(t)gt with EP �

�
A(t)2

�
< 1 and EP �

hR T
0 A(t)2dt

i
<

1 such that ����@�@t0 (t; t0 + �)� @�

@t0
(t; t0)

���� � A(t) � � 8t � t0 8� > 0

5Alternatively we could include so called loading factors, i.e. consider di�erent survival and death distributions.

This would not change our theoretical analysis, but the quantitative results on which we report in section 6 would

indicate higher premium values.
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With Assumption 1 the discounted zero coupon bond price processes are martingales under the

measure P �, i.e P � is the risk neutral or equivalent martingale measure. The solution of the

stochastic di�erential equation (2) is given by

D(t; t0) = D(t0; t
0) � exp

�Z t

0

r(u)du� 1

2

Z t

0

�(u; t0)2du+

Z t

0

�(u; t0)dW �
1 (u)

�
: (3)

The spot rate process fr(t)gt is determined by the bond price processes, i.e.

r(t0) = �@D(t0; t
0)

@t0
+
1

2

Z t0

0

�
@

@t0
�(u; t0)2

�
du+

Z t0

0

�
@

@t0
�(u; t0)

�
dW �

1 (u): (4)

Assumption 2 For the volatility processes of the mutual fund we assume:

i) f�1(t)gt and f�2(t)gt are one-dimensional, continuous and adapted processes.

ii) EP �

h
exp

nR t
0
�21(u) + �22(u)du

oi
<1 8t � T:

iii) EP �

�
�21(t) + �22(t)

�
is bounded for t 2 [0; T ]:

iv) There exists a predictable process fA(t)gt with EP �

�
A(t)2

�
< 1 and EP �

hR T
0 A(t)2dt

i
<

1 such that

j�1(t+ �) + �2(t + �)� �1(t)� �2(t)j � A(t) � � 8t 8� > 0:

The Assumptions 1 and 2 are su�cient for the combined mutual fund and interest rate market to

be arbitrage free. Uniqueness of the measure P � implies the completeness of the combined bond

and mutual fund market. Furthermore the arbitrage price of a �nancial contract is determined

as the expected discounted value under the risk neutral measure P �. The independency between

the Brownian motions fW �
1 (t)gt and fW �

2 (t)gt implies that the volatility process f�S(t)gt of the
mutual fund is given by

�2S(t) := �21(t) + �22(t); (5)

which is not necessarily deterministic. Furthermore f�1(t)gt and f�2(t)gt determine the corre-
lation process between the mutual fund and the zero coupon bond D(t; t0) as

�(t) :=
�1(t)

�S(t)
8t0; 8t � t0: (6)

Vice versa, for a given speci�cation of the volatility process of the underlying mutual fund and

the correlation process f�(t)gt with �(t) 2 [�1; 1] a.s. 8t 2 [0; T ] the processes f�1(t)gt and
f�2(t)gt are determined by:

�1(t) := �(t) � �S(t) and �2(t) :=
p
1� �(t)2 � �S(t): (7)

Under the risk neutral measure P � the pricing of a �nancial contract is done by calculating its

expected discounted value. Since the discounting is stochastic, this implies a pathwise consid-

eration, even if the value of the contract is path independent. As shown by Jamshidian (1989,

91) and Geman, El Karoui and Rochet [1995] this can be simpli�ed by a change of measure

technique, i.e. by using a zero coupon bond with maturity T as a numeraire for the stochastic
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processes S(t) and D(t; t0), t0 � T . By Itô's Lemma we can rewrite the stochastic di�erential

equations (1) and (2).

d

�
S(t)

D(t; T )

�
=

S(t)

D(t; T )
( [ �1(t)� �(t; T ) ] dWT

1 (t) + �2(t) dW
T
2 (t)); (8)

d

�
D(t; t0)

D(t; T )

�
=

D(t; t0)

D(t; T )
[ �(t; t0)� �(t; T ) ] dWT

1 (t); (9)

where (dWT
1 ; dW

T
2 ) := ((dW �

1 (t) � �(t; T ))dt; dW �
2(t)) are standard Brownian motions under

the so called T{forward risk adjusted measure PT given by the Radon-Nikodym derivative

dPT

dP �
= exp

8<
:

TZ
t0

�(t; T )dW �
1 (t)�

1

2

TZ
t0

�2(t; T )dt

9=
; : (10)

This change of measure technique implies that the arbitrage price of a �nancial contract with

payment at T is equal to the discounted expected value under the PT measure. In particular

the market value V (t0; T;K) at time t0 of the bonus payable at time T equals

V (t0; T;K) := D(t0; T ) �EPT

2
4
"
a �K

n�1X
i=0

S(T )

S(ti)
� g(T;K)

#+35 : (11)

Furthermore the solution of the stochastic processes (8) and (9) implies that

S(T )

S(t)
=

D(t0; t)

D(t0; T )
� exp

8<
:

tZ
t0

(�(u; t)� �(u; T ))dWT
1 (u)

9=
;

exp

8<
:

TZ
t

(�1(t)� �(u; T ))dWT
1 (u) +

TZ
t

�2(t)dW
T
2 (u)

9=
; (12)

exp

8<
:�1

2

tZ
t0

(�(u; t)� �(u; T ))2du� 1

2

TZ
t

�
(�1(t)� �(u; T ))2+ �2(t)

2
�
du

9=
; :

So far we have not restricted the volatility processes of the mutual fund and the term structure of

interest rates to be deterministic. If we would do so, the mutual fund according to (1) would be a

log-normal di�usion and the term structure model would belong to the Gaussian framework. As

a consequence of this speci�c structure the ratio S(T )
S(t) would be log-normally distributed under

the T -forward risk adjusted measure. The theoretical results in Section 4 are not restricted to

this speci�c case. But, it is this special distributional assumption which allows us in Section 5 to

discuss di�erent numerical techniques to approximate the solution of the fair premium problem.

4 The Fair Premium

De�nition 3 Consider an equity-linked life insurance contract determined by the time to ma-

turity T , the age x of the insured person, his or her death distribution �x, and the guaranteed

amount g : [0; T ]� IR+ ! IR+. A periodic premium K� at dates ti; i = 0; :::; n� 1 is called a fair

premium if the expected discounted value of the sum of the periodic premiums under the death
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distribution �x is equal to the expected bene�t of the contract under the death distribution, i.e if

K� is a solution to

0 = K�

n�1X
i=0

D(t0; ti)

�
1�

Z ti

t0

�x(t)dt

�
(13)

�
Z T

t0

D(t0; t)g(t;K
�)�x(t)dt�D(t0; T )g(T;K

�)

�
1�

Z T

t0

�x(t)dt

�

�
Z T

t0

V (t0; t; K
�)�x(t)dt� V (t0; T;K

�)

�
1�

Z T

t0

�x(t)dt

�
;

where
V (t0; t; K

�) = D(t0; t)EP t

2
4
2
4aK�

n�(t)�1X
i=0

S(t)

S(ti)
� g(t;K�)

3
5
+3
5 (14)

n�(t) = min fjj tj � tg :

The equations (13) and (14) explain the in
uence on the fair premium of the stochastic nature

of the �nancial market and the death distribution. The pricing principle expressed in (14) shows

that the price of a contingent claim is equal to the discounted expected value of its uncertain

cash 
ow in the future, where the expectation has to be taken with respect to the forward risk

adjusted measure. This pricing principle is valid when the share as well as the bond market is

uncertain. Assume now that the bond market had a deterministic development. Then a similar

pricing principle would be valid with the expectation taken under the risk neutral measure,

P �. It means that the in
uence of a stochastic versus a deterministic developing short term

interest rate can be explained as the di�erence in pricing obtained through the application of

the operators EP t and EP � . The di�erence between the two expected values of the Asian-like

option gives us although in an implicit form the market price of interest rate risk. Denote the

original/real probability measure by P . Assume again that the bond market is deterministic.

Then the pricing principle similar to (14) but with the application of EP instead of EP � would

lead to prices where all components of market price of risk are neglected. The attention is

next turned towards equation (13). It is through (13) that the interplay between the death

distribution and the riskiness of the �nancial market enters the analysis. Had we used (13) and

(14) with EP t relpaced by EP then the fair premium would have been determined in accordance

to the classical principle of equivalence.

The fair premium will in the following sequence of Propositions and Theorems be analysed to

restrict the interrelationships between the share a; the periodic premium K and the function of

the guaranteed amount g(t;K): First note that the martingale property of the ratio S(t)
S(u)8u � t

under the t-forward risk adjusted measure P t implies

EP t

2
4n�(t)�1X

i=0

S(t)

S(ti)

3
5 =

n�(t)�1X
i=0

D(t0; ti)

D(t0; t)
; (15)

Proposition 1 Let �x(t) be the density function of the death distribution then

Z T

t0

0
@n�(t)�1X

i=0

D(t0; ti)

1
A�x(t)dt+

 
n�1X
i=0

D(t0; ti)

!�
1�

Z T

t0

�x(t)dt

�

=
n�1X
i=0

�
D(t0; ti)(1�

Z ti

t0

�x(t)dt)

�
:

7



Proof:

Z T

t0

0
@n�(t)�1X

i=0

D(t0; ti)

1
A�x(t)dt =

n�1X
i=0

Z ti+1

ti

0
@ iX

j=0

D(t0; ti)

1
A�x(t)dt

=
n�1X
i=0

D(t0; ti)

Z T

ti

�x(t)dt =
n�1X
i=0

D(t0; ti)

��
1�

Z ti

t0

�x(t)dt
�
�
�
1�

Z T

t0

�x(t)dt
��

�

Proposition 1 and equation (15) imply that the fair premium in the case of a guaranteed

amount g(t;K) = 0 8t8K is the solution of

0 = (1� a)K�

n�1X
i=0

D(t0; ti)
�
1�

Z ti

t0

�x(t)dt
�
;

i.e. 8a 2 [0; 1[ the value K� = 0 is the unique fair premium, and for a = 1 any K is a fair premium

in this situation. Let us now consider conditions on the functional form of a guaranteed amount

which are su�cient for the existens of a unique solution K� for the fair premium problem de�ned

by equation (13) if the guaranteed amount is not identical to zero. In Nielsen and Sandmann

[1995] we have derived the existence of a unique fair premium in the case of a time independent

guaranteed amount g(K) and a speci�c duration type Gaussian term structure model. In the

general model for the �nancial markets we can now extend this to the multiplicative separable

time dependent case, i.e. where

g(t;K) = F (t) � h(K): (16)

In the remaining part of this paper it is assumed that g(t;K) can be separated in this form. To

ease the economic interpretation of our expressions some simpli�ed notation will be introduced.

The fair premium problem (13) for a separable guaranteed amount consists basically of three

terms which are di�erently related to the distributional assumptions discussed in the previous

section.6

� The �rst term denotes the cost of the contract, i.e. the market value of the sum of

the periodic premiums under the death distribution, which depends only on the death

distribution and can be expressed by K �H , where H is de�ned as

H :=
n�1X
i=0

D(t0; ti)

�
1�

Z ti

t0

�x(t)dt

�
: (17)

� The expected bene�t of the contract can be separated in two terms. First the expected

discounted guaranteed amount under the death distribution, which depends on the speci�c

functional form of the guaranteed amount. Due to the separability assumption (16) we

can reformulate this as the function a �K � L
�
h(K)
a�K

�
with

L(y) := y

�Z T

t0

D(t0; t)F (t)�x(t)dt+D(t0; T )F (T )

�
1�

Z T

t0

�x(t)dt

��
: (18)

6The notation will also be helpful in several of the proofs to follow.

8



The second part is the expected discounted bonus under the death distribution. This term

is directly related to the reference portfolio and therefore depends on both types of the

�nancial risks. Under the separability assumption (16) we can reformulate this bene�t

term as the function a �K � U
�
h(K)
a�K

�
, with

U(y) :=

Z T

t0

c(t0; t; y)�x(t)dt+ c(t0; T; y)

�
1�

Z T

t0

�x(t)dt

�
; (19)

c(t0; t; y) := D(t0; t)EP t

2
4
2
4n�(t)�1X

i=0

S(t)

S(ti)
� F (t) � y

3
5
+3
5 8t > t0:

The expected bene�t of the contract under the death distribution is therefore determined

by the sum of the functions de�ned by (18) and (19) and can be written as a �K �R
�
h(K)
a�K

�
;

with

R(y) := L(y) + U(y): (20)

With this notation and the separability of the guaranteed amount, the �rst formulation of

fair premium problem (13) is equivalent to

f

�
h(K�)

a �K�

�
= 0 (21)

if we assume that a 6= 0 and K 6= 0, where the function f(�) is de�ned by

f(y) :=
H

a
�R(y) =

H

a
� L(y)� U(y): (22)

Observe that H is independent of K; a and g, and that the function c(t0; t; �) ful�ls the following
conditions

1. c(t0; t; y) is continuous and strictly decreasing in y:

2. From equation 15 we know that c(t0; t; 0) =
Pn�(t)�1

i=0 D(t0; ti):

3. limy!+1 c(t0; t; y) = 0:

4. No arbitrage and the absolute continuity of the t-forward risk adjusted measure P t with

respect to the Lebesgue measure 8t imply that

c(t0; t; y1)� c(t0; t; y2) < (y2 � y1)F (t)D(t0; t) for y1 < y2

from where we obtain, that U(y1)� U(y2) < L(y2)� L(y1) for y1 < y2:

Theorem 2 Suppose that the death distribution is determined by the density function �x(t)

and that the stochastic processes fS(t)gt2[0;T ] and fD(t; t0)gt2[0;t0]8t0 2 [0; T ] are satisfying the

Assumptions 1 and 2.

There exists a unique fair premium K� for a 2 ]0; 1[ if the guaranteed amount g(t;K) can

be decomposed such that

g(t;K) = F (t) � h(K)

where

9



i) F (t) is a non-negative continuous and bounded function on [0; T ]

ii) ~h = h(K)
K

is a continuous and bijective function from IR+ to IR+.

Proof: Under the assumption made on ~h(�) it is su�cient to prove that there exists a unique y�
with f(y�) = 0: The function f(�) ful�ls

1. limy!+1 f(y) = �1

2. for y1 < y2 : f(y2)� f(y1) = �(L(y2)� L(y1)) + U(y1)� U(y2) < 0

where the last inequality is obtained through the application of property 4 for the function

c(t0; t; �). The inequality implies that f(y) is a strictly decreasing in y.

3. By equation 15 we have that f(0) = ( 1
a
� 1) �H > 0 8a 2]0; 1[:

Thus f(y) is a continuous and strictly decreasing function in y and by the mean value theorem

there exists a unique y� > 0 with f(y�) = 0: �

No arbitrage opportunities and a setting of equilibrium make it reasonable to introduce the

condition on the g function that g(t;K) = F (t)�h(K) = F (t)�� �K where � is a positive constant

and F (t) is a continuous and bounded function on [0; T ]. It means that the guaranteed amount

is assumed to be homogeneous of degree one in the periodic premium. Typical examples of this

form are

g(t;K) = expf��tg� �K or g(t;K) =

n�(t)�1X
i=0

exp f�(t� ti)g� �K (23)

where � > 0 is an internal discounting rate respectively growth rate guaranteed by the insurer

and � > 0 is a constant. If now K� is a fair premium and the function g(t;K) is homogeneous

of degree one in K then 2K� is the fair premium for the situation where the guaranteed amount

is multiplied by two. At a �rst glance Theorem 2 cannot be applied to this situation, but a

reinterpretation of the Theorem immediately yields:

Corollary 3 Under the assumptions of Theorem 2 and for a continuous and bounded function

F (t) : [0; T ] ! IR+ there exist for each a 2]0; 1[ a unique non-trivial �� > 0; the shape of the

guaranteed amount, such that any non-negative premium K is a solution of the fair premium

problem (21) with the guaranteed amount

g(t;K) = F (t) � �� �K:

Proof: A special case of Theorem 2 is the choice of the guaranteed amount g(t;K) = F (t) � �g
for some �xed �g > 0: The fair premium is de�ned as the unique K� which solve the equation

f( �g
aK�

) = 0. Denoting �� = �g
K�

> 0 we have the wanted result. �

The Corollary implies, that given the function F (t), there exist for each death distribution

(age) a unique function for the guaranteed amount which is homogeneous of degree one in the

periodic premium. For these functions of the guaranteed amount the coe�cient �� has to be

estimated. Given the value of �� the fair premium of an equity-linked life insurance contract

with a guaranteed amount F (t) � �g is just K� = �g
��
, where of course the value of �� depends on

all parameters of the life insurance contract and the distributional assumptions. We now can

conclude the following qualitative result with respect to the shape � of the guaranteed amount:

10



Proposition 4 Let the guaranteed amount of an equity-linked life insurance contract be equal

to g(t;K) = F (t) �� �K where F : [ 0; T ] �! IR+ is a continuous and bounded function. Suppose

that the solution of the fair premium problem (21), ��(a) as a function of the share a 2]0; 1[, is
di�erentiable, then the ratio

��(a)
a

is a decreasing function in a.

Proof: See the appendix.

The basic problem in estimating �� from equation (21) is that we �rst have to approximate

the options

EP t

2
4
2
4a n

�(t)�1X
i=0

S(t)

S(ti)
� F (t)�

3
5
+3
5

for all t 2 [0; T ] as a function of � and then secondly have to solve a zero point problem. As the

above options can be interpreted as modi�ed Asian options, we know that there exist no closed

form solutions even if we would restrict the analysis to the situation under deterministic volatility

functions. In Nielsen and Sandmann [1995] we have considered the pricing of these options by

modifying two approximation methods for Asian options suggested by Turnbull and Wakeman

[1991] and Vorst [1992]. Comparing these approximations with a Monte Carlo simulation we

reached the conclusion that neither of the methods are appropriate to estimate the coe�cient �

respectively to estimate the fair premium K�. On the other hand the Monte Carlo simulation

technique implies that we not only have to simulate all option values but in addition have to

solve the zero point problem with respect to all simulated paths of the sums
Pn�(t)�1

i=0
S(t)
S(ti)

. This

implies a serious computational problem. To avoid this problem the zero point problem (21)

can be turned into the following dual problem:

Theorem 5 Consider the function

a : IR+ �! [ 0; 1] with a(b) :=
H

R(b)

then �� = a(b) � b is the unique solution for the fair premium problem (21) with guaranteed

amount g(t;K) = F (t) � �� � K and the share a(b) invested in the fund at each premium

payment date. Furthermore a(b) is decreasing and 1
a(b) is convex in b.

Proof: Note �rstly that for a(b) as de�ned above, �� = a(b) � b is a solution to equation (21).

Secondly by equation 15 we know that a(0) = 1 and limb!+1 a(b) = 0 . Furthermore consider

the denominator of the function a(b). Di�erentiating with respect to b yields as in the proof of

Proposition 5 that the denominator is strictly increasing. Di�erentiating a second time gives

that the denominator is also a convex function. Thus a(b) 2]0; 1[ 8 b 2 IR+ . By Corollary 3

we furthermore know that the solution �� = a(b) � b is unique. �

Theorem 5 expresses that if �� = a � b is a solution of the problem (21) for some given

b 2 IR+ , then a must be equal to the value de�ned by a(b). On the reverse for a = a(b) we

know that the �� that solves equation (21) must be equal to a(b) � b. Thus we can interpret

a(b) as the fair share. The advantage of this formulation is that the function a(b) is much easier

to calculate than the solution of the zero point problem (21). Furthermore the limits of the

function a(b) are quite intuitive since

1) a(0) = 1 implies that �� = a(0) � 0 = 0 . This corresponds to a contract situation with

no guaranteed amount. As we already know, the fair premium in this case is a K� which

satis�es 0 = (1� a) �K �H . For a = 1 this is true 8K.

11



2) limb!+1 a(b) = 0 implies, that we consider an equity-linked life insurance contract with

no investment in the portfolio. In this situation we know that the �� satisfying equation

(21) is just equal to

�� =
H

TR
t0

D(t0; t) F (t) �x(t) dt+ F (T ) D(t0; T ) (1�
TR
t0

�x(t) dt)

which is by l'Hopital's rule just equal to the limit limb!1 a(b) � b.

Finally we get the following theorem

Theorem 6 Suppose that the guaranteed amount of an equity-linked life insurance contract is

equal to g(t;K) = F (t) � �g for some �xed �g > 0 and F : [0; T ] �! IR+ be a continuous and

bounded function. Under the distributional assumptions of Theorem 2 the fair premium K� as

a function of the share a is strictly increasing and convex.

Consequently for a �xed periodic premium K and a guaranteed amount g(t;K) = F (t)����K
the shape ��; as a function of the share a, is decreasing and concave.

Proof: See the appendix

5 Approximation Techniques in a Standard Gaussian Frame-

work

We now address the numerical question of calculating the fair premium. As we have pointed out

in Section 4 the fair premium K� with separated guaranteed amount is obtained by calculating

the function of the fair share a(b) = H
R(b) :

The numerical procedure which we are going to apply essentially consists of two steps.

First we calculate the values of a(bi) for a grid of values bi 2 fb1 < b2 < � � �g and second,

we approximate by interpolation the function a(b): More precisely the procedure is as follows:

Suppose that for a �xed �a 2]0; 1[ we have bi < bi+1 such that

ai+1 := a(bi+1) < �a < a(bi) =: ai:

The function a(b) we approximate on this interval by the following decreasing function

x̂(�b) :=
aiai+1 (bi+1 � bi)

2�p
ai+1 [bi+1 � �b] +

p
ai [�b� bi]

�2 for �b 2 [bi; bi+1]: (24)

The inverse function7

x̂�1(�a) =

p
aiai+1 [bi+1 � bi]�

p
�a
�p

ai+1 bi+1 �
p
ai bi

�
p
�a
� p

ai � pai+1
� for �a 2 [ai+1; ai] (25)

determines for a given share �a the approximation of �b. The fair premium of an equity-linked

life policy with a guaranteed amount g(t;K) = F (t) � �g ; �g � 0 and the share equal to the

interpolated value �a is then approximated by

K̂�(�a) =
�g

�a � �b: (26)

7Note that the function 1
x̂(�)

is convex in b.
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Given this two step procedure it remains to calculate the function a(b) at su�ciently many

points bi, which implies the calculation of the function R(�) as de�ned by (20) at these points.

As R(�) has many similarities in common with an Asian option we will as an initial step apply

the approximation techniques known for these options to calculate the function R(�): Up to

now we have not used any speci�c distributional assumption, i.e. the present results are valid

for any speci�cation of the dynamics for the mutual fund and the term structure of interest

rates as long as the regularity conditions (Assumption 1 and 2) are satis�ed. Since all known

methods to approximate the arbitrage price of an Asian option are restricted to the case of a

deterministic and moreover constant volatility structure we will from now on restrict ourself to

the most simple situation, i.e.

�1(t) = �18t
�2(t) = �2 > 0 8t (27)

�(t; t0) = � � (t0 � t) 8t 2 [0; t0]; 8t 2 [0; T ]; � > 0:

As a consequence the fund follows a standard geometric Brownian motion and the term structure

model is speci�ed as the continuous time limit of the Ho and Lee [1986] model.

In Nielsen and Sandmann [1995] we have considered three di�erent methods concerned with

this problem: the Fast Fourier Transformation (FFT), the Turnbull and Wakeman [1991] and the

Vorst [1992] approximation technique. We have shown that all of the three mentioned methods

are for di�erent reasons not suitable for the situation we are considering here. Firstly, due to

the assumption of stochastic interest rates, the FFT technique cannot be applied. Secondly, the

Turnbull and Wakeman [1991] approximation leads to a completely unusable approximation of

the density of the arithmetic average

A(t) =
1

n�(t)

n�(t)�1X
i=0

S(t)

S(ti)
(28)

given that the time to maturity of the insurance contract exceeds 5 years. Although we have

generalized the Turnbull and Wakeman approximation to the case of stochastic interest rates 8

we must strongly reject this approximation in the case of an equity-linked life insurance policy

(see also Figures 2 and 3). Thirdly, the Vorst [1992] approximation turns out to be a little bit

more robust, but compared with the results from a Monte Carlo simulation in Section 6 also

this approximation is not suitable for the determination of the fair premium. To clarify this we

consider the Vorst approximation in more detail. De�ne in addition to the arithmetic average

the geometric average by

G(t) =
n�(t)

vuutn�(t)�1Y
i=0

S(t)

S(ti)
� A(t): (29)

The relationship between these averages implies

D(t0; t)EP t[[G(t)� Y ]+] � D(t0; t)EP t[[A(t)� Y ]+] (30)

� D(t0; t)EP t[[G(t)� Y ]+] +D(t0; t) (EP t[A(t)]�EP t [G(t)]) :

8For more details see Nielsen and Sandmann [1995]. The generalized algorithmus for the �rst four central

moments are also given there.
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Under the assumption of a log-normally distributed mutual fund and a Gaussian term structure

model the geometric average G(t) is log-normally distributed under the t-forward risk adjusted

measure P t. This implies that the t-forward value of the option on the geometric average is

determined by

EP t[maxfG(t)� Y; 0g] = expfmG(t) +
1

2
�2G(t)g N(d)� Y N(d� �G(t)) (31)

with d =
mG(t)� ln Y + 1

2
�2G(t)

�G(t)
;

mG(t) = EP t [lnG(t)] and �2G(t) = VP t [lnG(t)] ;

where N(�) denotes the standard normal distribution. In the case of a Gaussian term structure

model Vorst [1992] provides us with upper and lower bounds for the Asians options which do

imply lower and upper bounds for the fair premium. Furthermore Vorst suggest the following

approximation for the t-forward value of an Asian Option:

EP t [[A(t)� Y ]+] � expfmG(t) +
1

2
�2G(t)g N(z)� ~Y �N(z � �G(t)) (32)

with ~Y = Y � (EP t [A(t)]�EP t [G(t)]) and z =
mG(t)� ln ~Y + 1

2�
2
G(t)

�G(t)
:

The Vorst approximation implies that the value of an Asian option is approximated by the value

of an option based on the geometric average, where the log-normal distribution of the geometric

average has a support [EP t[A(t)]� EP t [G(t)];+1[. Remember that the unknown distribution

of the arithmetic average has the support IR+. Therefore the di�erence between the expected

arithmetic and geometric average under the t-forward measure determines the approximation

error. From equation 15 we already know that EP t [A(t)] = 1
n�(t)

Pn�(t)
i=0

D(t0;ti)
D(t0;t)

which for a 
at

initial term structure with D(t0; ti) = expf�rtig; r > 0 is strictly increasing. In this situation

we can calculate the expected value of the geometric average by

Theorem 7 If the stochastic processes fS(t)gt2[0;T ] and fD(t; t0)gt2[0;t0]8t0 2 [0; T ] are solutions

of the stochastic di�erential equations (8) resp. (9) with constant volatility coe�cients then the

expected value of the geometric average G(t) under the t-forward risk adjusted measure is equal

to

EP t[G(t)] = exp

�
mG(t) +

1

2
�2G(t)

�
with

mG(t) =
1

n�(t)

n�(t)�1X
i=0

�
ln

�
D(t0; ti)

D(t0; t)

�

�1

2

�
(�21 + �22)(t� ti) + (�2ti � �1�)(t� ti)

2 +
1

3
�2(t� ti)

3
��

;

�2G(t) =
�21 + �22
n�(t)2

n�(t)�1X
i=0

(i+ 1)2(ti+1 � ti)�
�1�

n�(t)2

n�(t)�1X
i=0

(i+ 1)2(ti+1 � ti)[2t� ti+1 � ti]

+
2�1�

n�(t)2

n�(t)�2X
i=0

2
4
0
@n�(t)�1X

j=i+1

(j � i)(tj+1 � tj)

1
A (i+ 1)(ti+1 � ti)

3
5

+
�2

3n�(t)2

n�(t)�1X
i=0

(i+ 1)2
�
(t� ti)

3 � (t� ti+1)
3
�
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+
�2

n�(t)2

n�(t)�2X
i=0

2
4
0
@n�(t)�1X

j=i+1

(j � i)(tj+1 � tj)

1
A

2

(ti+1 � ti)

3
5

� �2

n�(t)2

n�(t)�2X
i=0

2
4
0
@n�(t)�1X

j=i+1

(j � i)(tj+1 � tj)

1
A (i+ 1)(ti+1 � ti)[2t� ti+1 � ti]

3
5 :

For a constant discretization of the time axis, i.e. �t = ti+1 � ti; t = tn�(t)�1 + �t and a 
at

initial term structure this can be simpli�ed to:

EP t

�
G(t)

�
= exp

�
1

2
rt

n(n+ 1)

n2

�
� exp

�
��

2
1 + �22
12

t
n2 � 1

n2

�

� exp
�
�1�

24
t2
(n� 1)(3n2 + 7n+ 4

n3

�

� exp
�
� �2

720
t3

48n4 + 75n3 � 10n2 � 75n� 38

n4

�
:

Proof: See the Appendix

Remarks:

� Consider a deterministic term structure, i.e. � = 0. In this situation the expected value

EP t [G(t)] is strictly decreasing in the volatility �S =
p
�21 + �22 of the underlying mutual

fund. If furthermore we assume a 
at initial term structure and an equidistant time grid

we have

lim
�t!0

EP t [G(t)] = expf 1
12
(6r� �2s )tg

which is either decreasing (if r < 1
6�

2
S which is usually not the case) or increasing (if r >

1
6�

2
S) in the maturity t of the insurance contract.

� If the interest rate is stochastic, i.e. � > 0 the properties of the expected geometric average

are di�erent. Consider the situation of a 
at initial term structure and an equidistant

time grid �t. For a �xed volatility �S =
p
�21 + �22 of the underlying mutual fund the

expected geometric average is strictly increasing in the correlation � = �1
�S
. In addition for

t > 1 the expected geometric average is a strictly decreasing function of the interest rate

volatility � > 0, i.e. a volatile interest rate market reduces the expected geometric average.

Furthermore the expected geometric average converge towards zero in the maturity t of

the insurance contract if � > 0 and n�(t) > 1 independent of the initial interest rate r.

� The expected arithmetic average is independent of the volatility functions �1(�); �2(�) and
�(�) whereas the expected geometric average is strongly depending on these functions. For

a 
at initial term structure we know that

EP t[A(t)] =
1

n�(t)

n�(t)�1X
i=0

expfr(t� ti)g

which for an equidistant time grid yields

lim
�t!0

EP t [A(t)] =
1

t � r
�
ert � 1

�
�! +1 8t ! +1:
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Thus the expected arithmetic average increases whereas the expected geometric average

approach zero for time to maturity t going to in�nity. In addition we can conclude from

Theorem 7 that

lim
�t!0

VP t [G(t)] =

�
expf� 48

120
�2t4g

�2�
expf� 12

360
�2t4g � 1

�
�! 0 8 t!1 and � > 0:

This implies that we expect, for an approximation method based on the geometric average,

a systematic error for the pricing of the Asian option if the time to maturity is large. As

a consequence we expect a systematic error in the pricing of the bonus of an equity-linked

life insurance policy and the fair premium. Figure 1 summarizes some of the mentioned

properties of the expected geometric and arithmetic average.

Expected arithmetic versus geometric mean

(a)

(b)

(c)

Exp. arith. average (a)
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1.4

1.5

1.6

1.7

Time to maturity Corr(Interest, Underlying)

Mean

Exp. geo. average (b)
Exp. geo. average / det. interest (c)

Figure 1: Expected arithmetic average A(t) and geometric average G(t) under the t - forward

measure as a function of the maturity t and the correlation � for a 
at initial term structure

with D(t0; t) = expf�0:0582 � tg; �s = 0:25; � = 0:1 and �t = ti+1 � ti =
1
12 �

6 Numerical Results

In this section we apply a Monte Carlo simulation to delineate our theoretical results in Sections

4 and 5. We will compare the results obtained by the Monte Carlo simulation with those

derived by adopting the Vorst approximation. The life insurance policies, which we consider are

characterized by maturities of 12, 15 and 18 years. As functions of the guaranteed amount we

restrict ourself to two special types of a separable form (23), i.e.

Model 1 g(t;K) = expf��tg� �K for � = 0; 0:02 or 0:035; (33)

Model 2 g(t;K) =

n�(t)�1X
i=0

expf�(t� ti)g� �K for � = 0:025; 0:035 or 0:045:

In all the simulation we use a 
at initial term structure with D(t0; t) = expf�0:0582 � tg and

assume a monthly payment frequency for the periodic premium. The death distribution is chosen
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to satisfy the Makeham formula (see e.g. F.Delbaen [1990]), i.e.

�x(ti) =
lx+ti � lx+ti+�t

lx
(34)

=̂ probability that a life-aged-x will survive ti years and die

within the following �t years,

where lx = b � sx � gex ;
s = 0:99949255 ; g = 0:99959845 ;

c = 1:10291509 ; b = 1000401:71 ;

and the age is �xed by x = 30 years. We assume that if the insured person dies at time

t 2 [ti; ti+1[ where we �xed �t = ti+1 � ti =
1
12

then the insurer pays the guaranteed amount

plus the bonus at time ti+1. Therefore the estimation equation can be discretized with respect to

the death distribution. As variance reduction we use an antithetic and control variate technique

with the geometric average option as the control variate. The stochastic process of the under-

lying mutual fund and the zero coupon bonds are speci�ed by the following simple volatility

speci�cations

�1 = 0; �2 = 25% and �(t; t0) = 0:01(t0 � t);

i.e. we concentrate on a situation where the correlation between the interest rate market and

the mutual fund is equal to zero. The calculation of the fair premium based on a Monte Carlo

simulation is determined by the two step procedure introduced in Section 5. Thus we simulate

the function a(�) de�ned in Theorem 5 by

â(b) =
H

R̂(b)
(35)

R̂(b) = b

 
n�1X
i=0

D(t0; ti+1)F (ti)�(ti) + F (tn)D(t0; tn)

 
1�

n�1X
i=0

�(ti)

!!
(36)

+
n�1X
i=0

ĉ(t0; ti; b)�(ti) + ĉ(t0; tn; b)

 
1�

n�1X
i=0

�(ti)

!
;

ĉ(t0; t; b) =
D(t0; t)

2M

2MX
m=1

2
4
2
4n�(t)�1X

j=0

Sm(t)

Sm(tj)
� F (t) � b

�+

� n�(t) �

2
64 n�(t)

vuuutn�(t)�1Y
j=0

Sm(t)

Sm(tj)
� F (t) � b

n�(t)

3
75
+
3
775

+ n�(t) �D(t0; t) �EP t

"�
G(t)� F (t) � b

n�(t)

�+#

where M denotes the number of paths 9 and the value of the geometric average option is given

by Equation (31). We set �t = ti+1 � ti =
1
12 which implies that n is equal to 144; 180 or

216 depending on the maturity of the insurance contract (12, 15 or 18 years). Note that we

have to simulate between 144 and 216 option values for the mentioned maturities. To compare

the Monte Carlo results we determine the boundary solutions and the approximation for Asian

9Using the antithetic technique this yields in total 2 �M paths.
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options suggested by Vorst [1992]. Instead of estimating the function a(b) we solve the zero

point problem (21) directly applying the closed form solutions for the related geometric average

option as discussed in Section 5.
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Figure 2: Approximation of the p.d.f. for the arithmetic average A(t) after 3 years. Equity-

linked life insurance contract with monthly payment frequency; 
at initial term structure, age

of the insured person = 30 years; �1 = 0; �2 = 0:25; � = 0:1; Monte Carlo Simulation with

M = 6000:
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Figure 3: Approximation of the p.d.f. for the arithmetic average A(t) after 9 years. Equity-

linked life insurance contract with monthly payment frequency; 
at initial term structure, age

of the insured person = 30 years; �1 = 0; �2 = 0:25; � = 0:1; Monte Carlo Simulation with

M = 6000.

Figures 2 and 3 show the di�erent approximations of the p.d.f. of the arithmetic average.

As already mentioned in Section 5 the Turnbull and Wakeman [1991] method leads to a com-

pletely unreasonable approximation. The Vorst [1992] approximation seems to be more valid if

we consider a time to maturity equal to 3 years. For the case of 9 years we recognize the shift of
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the density support measured by the di�erence between the expected arithmetic and geometric

average. The p.d.f. for the geometric average represents the lower bound for the arithmetic

average. The Vorst approximation seems to systematically overestimate the probability distri-

bution. We therefore expect that the approximation of the fair premium based on the Vorst

method will systematically underestimate the Monte Carlo result.
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Figure 4: The function a(b) in Model 1 with � = 0:0% and di�erent times to maturity for

an equity-linked life insurance contract with monthly payment frequency; age 30 years, �1 =

0; �2 = 0:25; � = 0:1; M = 6000; and a 
at initial term structure.
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Figure 5: The function a(b) in Model 1 with time to maturity 18 years and di�erent value for

the internal interest rate � for an equity-linked life insurance contract with monthly payment

frequency; age 30 years, �1 = 0; �2 = 0:25; � = 0:1; M = 6000; and a 
at initial term structure.

In Figures 4 and 5 we show the approximation of the function a(b) de�ned in Theorem 5 for

di�erent parameter situations. For a �xed share �a = a(b) the value of b is increasing in time

to maturity. This implies a lower premium of the insurance contract if the time to maturity

increases. Furthermore if the discount rate � increases the fair premium for an otherwise equal
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life insurance contract decreases. A discount rate � > 0 in Model 1 implies that the guaranteed

amount decreases in time, whereas � = 0 indicates a time independent guaranteed amount.
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Figure 6: The function a(b) in Model 2 with � = 4:5% and di�erent times to maturity for

an equity-linked life insurance contract with monthly payment frequency; age 30 years, �1 =

0; �2 = 0:25; � = 0:1; M = 6000; and a 
at initial term structure.
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Figure 7: The function a(b) in Model 2 with time to maturity 18 years and di�erent values for

the internal growth rate � for an equity-linked life insurance contract with monthly payment

frequency; age 30 years, �1 = 0; �2 = 0:25; � = 0:1; M = 6000; and a 
at initial term structure.

The situation for Model 2 is di�erent. The function of the guaranteed amount is increasing

in time and in the internal growth rate �. If the growth rate is �xed (say 4:5%) as in Figure

6 the fair premium depends on two opposite e�ects. As the time to maturity of the insurance

contract increases the fair premium will decrease due to the expected delay in the payment of

the bene�t. On the other side, if the time to maturity increases the guaranteed amount will

increase which on its own implies a higher premium. As Figure 6 indicates these two e�ects adds

up in such a manner that the function a(b) is nearly independent of the time to maturity. It

20



Table 1: Fair premiums in Model 1 with a �xed guaranteed amount of 10.000 at time 0

maturity 12 18

delta 0.0% 2.5% 3.5% 0.0% 2.5% 3.5%

G(T;K) 10000.00 7408.1822 6570.4682 10000.00 6376.2815 5325.9180

a = 0.3 55.5872 41.3973 36.8048 32.2516 20.9222 17.6232

(0.5219) (0.3887) (0.3455) (0.7864) (0.5101) (0.4297)

a = 0.35 57.6269 42.9188 38.1585 33.4705 21.7139 18.2905

(0.6312) (0.4701) (0.418) (0.9521) (0.6177) (0.5203)

a = 0.4 59.9791 44.6741 39.7205 34.816 22.5875 19.0268

(0.7508) (0.5592) (0.4972) (1.1319) (0.7344) (0.6186)

a = 0.45 62.7108 46.7122 41.5343 36.3037 23.5546 19.8422

(0.8831) (0.6578) (0.5849) (1.3279) (0.8615) (0.7258)

a = 0.5 65.8899 49.0836 43.6442 37.9633 24.6325 20.7509

(1.031) (0.768) (0.6829) (1.5429) (1.0011) (0.8433)

a = 0.55 69.6356 51.8801 46.1333 39.8243 25.8423 21.7712

(1.1985) (0.8929) (0.794) (1.7804) (1.1553) (0.9733)

a = 0.6 74.1361 55.2377 49.1215 41.9256 27.2064 22.9207

(1.3919) (1.0371) (0.9223) (2.0447) (1.3268) (1.1178)

a = 0.65 79.5795 59.3016 52.7386 44.3083 28.7557 24.2274

(1.6186) (1.2062) (1.0727) (2.341) (1.5193) (1.28)

a = 0.7 86.3402 64.3469 57.2291 47.0475 30.5352 25.7278

(1.8912) (1.4094) (1.2535) (2.6769) (1.7374) (1.4639)

a = 0.75 94.9961 70.8121 62.9852 50.2187 32.5954 27.4648

(2.2293) (1.6617) (1.4781) (3.0615) (1.9871) (1.6743)

a = 0.8 106.6261 79.4971 70.7178 53.9374 35.0115 29.502

(2.6689) (1.9898) (1.7701) (3.5074) (2.2767) (1.9184)

a = 0.85 123.4692 92.0944 81.9388 58.366 37.8902 31.9301

(3.2833) (2.449) (2.1789) (4.0325) (2.6179) (2.2061)

The number in parentheses is the standard deviation

means that the fair premium for these contracts are very similar to each other. If the maturity

of the contract is �xed as in Figure 7 the functions a(b) are decreasing in the internal growth

rate �: This implies that the fair premium is increasing in the growth rate. This makes sense,

if everything else remains equal these contracts di�er in a monotone manner in the size of the

guaranteed amount. In addition to these direct e�ects of the growth rate, there is an indirect

e�ect, since an increase in the guaranteed amount implies a decrease of the bonus and therefore

the value of the weighted options will decrease. This indirect e�ect will on average decrease the

fair premium, and may be responsible, as Figure 6 suggests, for the small di�erence between the

simulated functions a(b) across di�erent internal growth rates.

Table 1 and 2 show within Model 1 simulated values for the fair premium obtained by the

Monte Carlo simulation. Since Model 1 implies a decreasing guaranteed amount if the internal

growth rate � exceeds zero we can either consider a �xed guaranteed amount at maturity of

the contract (Table 1) or at the beginning of the contract (Table 2). In both cases the fair

premium is an increasing function of the share a which is in accordance with Theorem 6. This
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Table 2: Fair premiums in Model 1 with a �xed guaranteed amount of 10.000 at time T

maturity 12 18

delta 0.0% 2.5% 3.5% 0.0% 2.5% 3.5%

G(0; K) 10000.00 13498.5881 15219.6156 10000.00 15683.1219 18776.1058

a = 0.3 55.5872 55.8805 56.0155 32.2516 32.8126 33.0895

(0.5219) (0.5246) (0.5259) (0.7864) (0.8001) (0.8068)

a = 0.35 57.6269 57.9343 58.0758 33.4705 34.0542 34.3425

(0.6312) (0.6346) (0.6361) (0.9521) (0.9687) (0.9769)

a = 0.4 59.9791 60.3037 60.4531 34.816 35.4243 35.7249

(0.7508) (0.7549) (0.7568) (1.1319) (1.1517) (1.1615)

a = 0.45 62.7108 63.0549 63.2136 36.3037 36.9409 37.2559

(0.8831) (0.888) (0.8902) (1.3279) (1.3512) (1.3627)

a = 0.5 65.8899 66.2559 66.4249 37.9633 38.6315 38.9621

(1.031) (1.0367) (1.0394) (1.5429) (1.57) (1.5835)

a = 0.55 69.6356 70.0308 70.2131 39.8243 40.5289 40.8778

(1.1985) (1.2053) (1.2085) (1.7804) (1.8119) (1.8275)

a = 0.6 74.1361 74.5631 74.761 41.9256 42.6681 43.0361

(1.3919) (1.4) (1.4037) (2.0447) (2.0809) (2.0989)

a = 0.65 79.5795 80.0488 80.2662 44.3083 45.098 45.4896

(1.6186) (1.6282) (1.6326) (2.341) (2.3827) (2.4034)

a = 0.7 86.3402 86.8593 87.1005 47.0475 47.8887 48.3067

(1.8912) (1.9025) (1.9078) (2.6769) (2.7248) (2.7486)

a = 0.75 94.9961 95.5864 95.8611 50.2187 51.1198 51.5682

(2.2293) (2.2431) (2.2496) (3.0615) (3.1164) (3.1437)

a = 0.8 106.6261 107.3098 107.6297 53.9374 54.9089 55.3933

(2.6689) (2.686) (2.694) (3.5074) (3.5705) (3.602)

a = 0.85 123.4692 124.3144 124.7077 58.366 59.4237 59.9524

(3.2833) (3.3058) (3.3163) (4.0325) (4.1056) (4.1421)

The number in parentheses is the standard deviation

is a general property within the di�usion framework considered. In addition the fair premium

decreases remarkable with the discount rate � if the guaranteed amount is �xed in the beginning.

This is perfectly in line with the contract speci�cations in Model 1. If instead the guaranteed

amount is �xed at the maturity of the contract an internal growth rate � > 0 implies that the

guaranteed amount at time t0 increases in �. Thus in the case of the death of the insured person

the insurer guarantees a higher amount as with � = 0 . This results as Table 2 shows in an

increasing premium. Nevertheless we have to note that this increase is of quite small magnitude.

The reason is that a premature payment is not likely under the chosen death distribution and

the fair premium is mainly determined by the payment at maturity, which in Table 2 is �xed

for all contracts.

Tables 3 and 4 concentrate on the in
uence on the fair premium of the internal growth rate

�. As shown by Theorem 6 the fair premium is an increasing function of the share a. For a

�xed guaranteed amount at time t0 the monthly fair premium is an increasing function of the

internal growth rate. Since we already know that mainly the terminal payment at maturity

22



Table 3: Fair premiums in Model 2 with a �xed guaranteed amount of 10.000 at time 0

maturity 12 18

delta 2.5% 3.5% 4.5% 2.5% 3.5% 4.5%

G(T;K) 15170.0106 16175.6904 17271.952 24017.8275 26515.9529 29359.9221

a = 0.3 82.9338 88.4044 94.3666 74.7204 82.409 91.1558

(0.7787) (0.83) (0.886) (1.8219) (2.0093) (2.2226)

a = 0.35 85.9634 91.634 97.8138 77.5416 85.521 94.5984

(0.9416) (1.0038) (1.0714) (2.2059) (2.4328) (2.6911)

a = 0.4 89.457 95.3572 101.789 80.6594 88.9595 98.4032

(1.1199) (1.1937) (1.2742) (2.6224) (2.8923) (3.1993)

a = 0.45 93.5132 99.6819 106.4051 84.1041 92.7606 102.6081

(1.3169) (1.4038) (1.4985) (3.0763) (3.3929) (3.7531)

a = 0.5 98.243 104.7239 111.7879 87.9511 97.0049 107.3055

(1.5372) (1.6387) (1.7492) (3.5744) (3.9424) (4.361)

a = 0.55 103.802 110.65 118.1138 92.2614 101.7604 112.5683

(1.7866) (1.9045) (2.0329) (4.1246) (4.5493) (5.0324)

a = 0.6 110.4935 117.7834 125.7292 97.1423 107.1478 118.5311

(2.0746) (2.2115) (2.3606) (4.7376) (5.2256) (5.7807)

a = 0.65 118.5912 126.4187 134.9505 102.6721 113.2477 125.2813

(2.4121) (2.5713) (2.7448) (5.4246) (5.9834) (6.6191)

a = 0.7 128.662 137.1568 146.4167 109.038 120.2741 133.06

(2.8182) (3.0042) (3.207) (6.2041) (6.8434) (7.5709)

a = 0.75 141.5566 150.9113 161.1079 116.4222 128.4242 142.0857

(3.3219) (3.5414) (3.7807) (7.0974) (7.8291) (8.6619)

a = 0.8 158.9174 169.4251 180.8776 125.0941 137.9992 152.684

(3.9777) (4.2407) (4.5273) (8.1344) (8.9736) (9.9285)

a = 0.85 184.0775 196.2225 209.5478 135.4379 149.4225 165.3376

(4.8949) (5.2178) (5.5723) (9.3575) (10.3237) (11.4233)

The number in parentheses is the standard deviation

contributes to the fair premium this indicates in addition that the bonus at the maturity of the

contract can on average not compensate for the higher guaranteed amount. In other words on

average the embedded option ends out of the money for higher internal growth rates. The value

of the embedded option is therefore small and does not e�ect the value of the premium in any

signi�cant manner.

If the guaranteed amount is �xed at the maturity of the contract a higher internal growth

rate implies a lower guaranteed amount at the intermediate times. This should result in a lower

premium, but as Table 4 shows this premium reduction is rather small. Again this is mainly

based on the relative small contribution of the death distribution to the premium. In addition

given the low guaranteed amount during the starting period of the contract we can expect that

the value of the reference portfolio is likely to exceed the guaranteed amount, i.e. even in the

case of a premature death of the insured person the payment will be quite similar for the di�erent

internal growth rates �.

For a homogeneous guaranteed amount of the type g(t;K) = F (t)�� � K Figures 8 and
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Table 4: Fair premiums in Model 2 with a �xed guaranteed amount of 10.000 at time T

maturity 12 18

delta 2.5% 3.5% 4.5% 2.5% 3.5% 4.5%

G(0; K) 659.1963 618.2116 578.9734 416.3574 377.1315 340.6004

a = 0.3 54.6696 54.6527 54.6357 31.1104 31.079 31.0477

(0.5133) (0.5131) (0.513) (0.7586) (0.7578) (0.757)

a = 0.35 56.6667 56.6492 56.6316 32.285 32.2527 32.2202

(0.6207) (0.6205) (0.6203) (0.9184) (0.9175) (0.9166)

a = 0.4 58.9697 58.9509 58.9331 33.5831 33.5494 33.5162

(0.7382) (0.738) (0.7378) (1.0919) (1.0908) (1.0897)

a = 0.45 61.6435 61.6245 61.6057 35.0174 34.983 34.9484

(0.8681) (0.8679) (0.8676) (1.2808) (1.2796) (1.2783)

a = 0.5 64.7613 64.7415 64.7222 36.6191 36.5836 36.5483

(1.0133) (1.013) (1.0127) (1.4882) (1.4868) (1.4854)

a = 0.55 68.4258 68.4051 68.3847 38.4137 38.3771 38.3408

(1.1777) (1.1774) (1.177) (1.7173) (1.7157) (1.714)

a = 0.6 72.8368 72.8151 72.7938 40.4459 40.4088 40.3717

(1.3676) (1.3672) (1.3668) (1.9725) (1.9707) (1.9689)

a = 0.65 78.1747 78.1535 78.1328 42.7483 42.7093 42.6708

(1.59) (1.5896) (1.5892) (2.2586) (2.2565) (2.2545)

a = 0.7 84.8134 84.792 84.7714 45.3988 45.3592 45.3203

(1.8577) (1.8572) (1.8568) (2.5831) (2.5809) (2.5787)

a = 0.75 93.3135 93.2951 93.2772 48.4732 48.4328 48.3944

(2.1898) (2.1893) (2.1889) (2.9551) (2.9526) (2.9503)

a = 0.8 104.7576 104.7406 104.7233 52.0838 52.0438 52.0042

(2.6221) (2.6216) (2.6212) (3.3868) (3.3842) (3.3817)

a = 0.85 121.343 121.3071 121.3226 56.3906 56.3519 56.314

(3.2267) (3.2257) (3.2262) (3.8961) (3.8934) (3.8908)

The number in parentheses is the standard deviation
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9 represent the guaranteed amount at maturity of the contract as a function of the monthly

premium for di�erent values of the share a.
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Figure 8: The guaranteed amount in Model 1 at the maturity of 18 years as a function of the

periodic premium. Equity-linked life insurance contract with monthly payment; age 30 years,

�1 = 0; �2 = 0:25; � = 0:1; M = 6000; and a 
at initial term structure.
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Figure 9: The guaranteed amount in Model 2 at the maturity of 18 years as a function of the

periodic premium. Equity-linked life insurance contract with monthly payment; age 30 years,

�1 = 0; �2 = 0:25; � = 0:1; M = 6000; and a 
at initial term structure.

For a �xed periodic premium K the guaranteed amount is shown to be a decreasing function

of the share a which results from the decrease of �� as a function of the share a. This property of

�� is by Theorem 6 satis�ed for a general di�usion framework and not restricted to the constant

volatility case we have simulated. As a consequence of this, the fair premium increases as a

function of the share a for a �xed guaranteed amount. Since ��(�) as a function of the share a

is concave the same is true for the guaranteed amount.
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Figure 10: The fair premium and bounds implied by the Vorst approximation in Model 1 with

a �xed guaranteed amount of 10.000 at the maturity of 12 years. Equity-linked life insurance

with monthly payment frequency; age 30 years, �1 = 0; �2 = 0:25; � = 0:1; M = 6000; and a


at initial term structure.
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Figure 11: The fair premium and bounds implied by the Vorst approximation in Model 2 with a

�xed initial guaranteed amount of 10.000 and a maturity of 18 years. Equity-linked life insurance

with monthly payment frequency; age 30 years, �1 = 0; �2 = 0:25; � = 0:1; M = 6000; and a


at initial term structure.

Finally Figures 10 and 11 show the fair premium as a function of the share a. In line with

Theorem 6 the fair premium is a convex function with respect to the share a. Furthermore the

upper bound for the premium, which corresponds to the lower bounds for the options given by

Vorst [1992], is very weak. This indicates that the geometric average option is not suitable to

approximate the bonus part. This result is perfectly in line with our discussion of the expected

geometric average in Section 5. As expected from Figure 3 the Vorst approximation of the

embedded options lead to a systematic overestimation of the embedded options and thus to a

systematic underestimation of the fair premium. The size of this approximation error increases
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with the invested share a, since the value of the reference portfolio a �KPn�(t)�1
i=0

S(t)
S(ti)

increases

in a and therefore the option value will increase.

7 Conclusion

An equity-linked life insurance contract combines the technical risk of a life insurance with the

�nancial risk of an investment strategy. More precisely the contract o�ers a life insurance policy

in combination with an investment strategy together with a minimum guaranteed value. From

this perspective the equity-linked life insurance contract represents an interesting contract which

could have a promising market perspective. Since the investment strategy is based on a mutual

fund, the insured person participates in the economic growth covered by the fund, whereas the

downside risk is covered by the minimum guaranteed value. On the other hand this contract

speci�cation implies a complex payo� structure.

Due to the usually long time to maturity of life insurance policies the analysis of this contract

has to take into consideration three di�erent sources of uncertainty. Beside the technical risk

speci�ed by the death distribution of the insured two di�erent �nancial risks are e�ecting the

value of the insurance premium: First, the price risk of the underlying mutual fund and second,

the interest rate risk. In the context of a general di�usion model for these �nancial risks the

rational interrelationships between the periodic premium, the share of the premium invested in

the mutual fund and the function specifying the guaranteed amount is analysed. As a main

result it was found that the fair periodic premium is an increasing and convex function of the

share invested in the mutual fund. This result is valid even if we allow for state dependent

volatility processes.

The de�nition of the fair premium is based on the independence between the death distri-

bution and the �nancial processes and, more important on the ability of the insurer to perfectly

diversify the technical insurance risk. Given the at present relatively small markets for this

contract this assumption seems to be questionable. One way to take care of this, would be to

introduce loading factors on the death distribution.

The analysis of this study was concentrated on the properties and calculation of the fair

periodic premium of an equity-linked life insurance contract. The mentioned results are obtained

by the application of the arbitrage pricing theory. As an important tool we have used the change

of measure technique and thus calculated the fair periodic premium under the forward risk

adjusted measures. Despite the theoretical elegance this approach is �rst of all concentrated on

the pricing of �nancial assets. It therefore does not directly address the hedging question which

is of principal importance. Due to the complexity of the contract there is no straightforward

answer to this problem. Like the fair premium the hedging problem, too, is related to the

technical insurance risk and the �nancial risks. Even if we concentrate only on the �nancial

risks the similarity between the insurance situation and the pricing of Asian options implies a

number of problems. Firstly, the inappropriateness for the insurance situation of those methods

traditionally used for the pricing of Asian options. The failure of these methods happens because

of the non-deterministic bond market and because of the long time to maturity of the insurance

contracts. Our simulation results have demonstrated this in the situation of a constant volatility

structure. Secondly, due to the long time to maturity of the insurance contracts we should

expect that the volatility processes are by no means deterministic. Even more problematic,
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the correlation process highly in
uences the contract. Thirdly, additional features such as the

possibility of changing the fund or the right to cancel the contract may strongly in
uence the

pricing and hedging of the contract.

We have the impression that the combination of the insurance theory and the �nance theory

is a fruitful and promising area for practical application and theoretical research. For the an

equity-linked life insurance contract with periodic premium we have discussed some relevant

aspects, but maybe unavoidable, more questions are raised than answered.

Appendix

Proof of Proposition 4

Proof: If ��(a) is a solution of f
�
��(a)
a

�
= 0 for a 2]0; 1[; then ��(a) solves

H

a
= R

�
��(a)

a

�
:

This implies that @
@a

�
R
�
��(a)
a

��
= �H

a2
< 0 and as R(y) = L(y) + U(y) we have that

@ R (y)

@ y
=

@L(y)

@y
+
@U(y)

@y

=
L(y)

y
+

TZ
t0

@

@y
c(t0; t; y) �x(t) dt+

@

@y
c(t0; T; y)

0
@1�

TZ
t0

�x(t) dt

1
A

with
@

@y
c(t0; t; y) = �D(t0; t)

Z +1

yF (t)

F (t)dQt(z) > �D(t0; t)F (t) 8y > 0

where Qt(z) is the unknown distribution function of the sum
Pn�(t)�1

i=0
S(t)
S(ti)

. Therefore

@ U (y)

@ y
> �

TZ
t0

D(t0; t) F (t) �x(t)dt�D(t0; T ) F (T )

0
@1�

TZ
t0

�x(t) dt

1
A = �L(y)

y

which implies that @ R (y)
@ y

> 0. Since

�H
a2

=
@

@a

�
R

�
��(a)

a

��
=

@

@a

�
��(a)

a

�
� @R
@y

����
y=

�� (a)

a

we obtain that ��(a)
a

is decreasing in a. �

Proof of Theorem 6

Proof: Consider the guaranteed amount g(t;K) = F (t) � �� � K where �� is a solution of

(21). Then the fair premium for the above contract is equal to K� = �g
��
. Let a1 < a2 and

a1; a2 2]0; 1[. Then there exists b1; b2 2 IR such that the function a(b) in Theorem 5 satis�es

a(b1) = a1 and a(b2) = a2. Since a(b) is a strictly decreasing function a1 < a2 implies that

b1 < b2. Furthermore we can write

K�(a2) � K�(a1) =
�g

��(a2)
� �g

��(a1)
= �g

��(a1)� ��(a2)

��(a2)��(a1)
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where ��(a1)� ��(a2) = a(b1) � b1 � a(b2) � b2:

We therefore have to prove that a(b1) � b1 > a(b2) � b2 8b1; b2, i.e. we want to prove that the
function a(b) � b is increasing in b. The condition we are looking for can then be written as

@

@b

�
a(b) � b

�
=

@

@b

�
H � b
R(b)

�
= H � R(b)� b � @R(b)
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R2(b)
> 0

() R(b)� b � @R(b)
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> 0

which indeed is the case since

R(b)� b � @R(b)
@b

= U(b)� b � @U(b)
@b

> 0 and
@U(b)

@b
< 0:

For the convexity consider for h > 0 and a 2]0; 1� 2h]

1

h
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� K�(a+ h)�K�(a)

h

�

=
�g

h2

�
1

��(a+ 2h)
� 2

��(a+ h)
+

1

��(a)

�

=
�g

h2

�
��(a)[��(a+ h)� ��(a+ 2h)]� ��(a+ 2h)[��(a)� ��(a+ h)]

��(a)��(a+ h)��(a+ 2h)

�

>
�g

h2
��(a)

�
[��(a+ h)� ��(a+ 2h)]� [��(a)� ��(a+ h)]

��(a)��(a+ h)��(a+ 2h)

�

=
��g��(a)

��(a)��(a+ h)��(a+ 2h)

�
��(a+ 2h)� ��(a+ h)

h2
� ��(a+ h)� ��(a)

h2

�

since ��(a) is decreasing in a and positive. Therefore it is su�cient to prove, that �� is a concave

function in a. As before this is equivalent to the concavity of the function a(b) � b for b 2 R�0.
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�

Proof of Theorem 7

Proof: For simplicity set n := n�(t): Due to the log-normality assumption the expected value of

the logarithmic ratio S(t)
S(ti)

is determined by:

EP t

�
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�
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6
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3�2 :

By summing up this yields the value of mG(t): The calculation of the variance involves several
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steps. First not that since the Brownian motions W t
1 and W

t
2 are independent we can write:

VP t [lnG(t)] =
1

n2
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The �rst variance term is the given by
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whereas the calculation of the second term is more complicated. Note that for W t
1(t0) = 0 we
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For the second variance term we therefore can conclude
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This implies that
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We now assume that t = tn�(t)�1+�t = n�(t) ��t where for simplicity we again set n := n�(t).
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The remaining sums are calculated as follows
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