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Abstract

Viewing binomial models as a discrete approximation of the respective continuous models,

the interest focusses on the notions of convergence and especially \fast" convergence of

prices. Though many authors were proposing new models, none of them could successfully

explain better performance for their models, since they all lacked a measure of convergence

speed. In the case of the european call option Leisen and Reimer[96] examined conver-

gence speed by the order of convergence in a rigorous framework. However the analysis

could not be transformed to the case of american put options. For the model of Cox, Ross

and Rubinstein[79] Lamberton[95] addressed the same problem. For american put options

he derived that the error is bounded by suitable sequences with order of convergence 1=2

from above and by 2=3 from below. However the simulation results of Broadie and De-

temple[96] suggest order one. One aim of this paper is to improve this result and extend

it to di�erent lattice approaches. We establish the result that the model of Cox, Ross and

Rubinstein[79] converges with order one. From a general theorem follows for the models

of Jarrow and Rudd[83] and Tian[93] that the error is bounded by order one from above

and 1=2 from below. Thus none of these three models performs better in comparison

to the other. In a further step an error representation is derived using the concept of

order of convergence. This allows an error analysis of extrapolation. Moreover we study

the Control Variate technique introduced by Hull and White[88]. Since the investigation

reveals the need for smooth converging models in order to get smaller initial errors, such

a model is constructed. The di�erent approaches are then tested: simulations exhibit up

to 100 times smaller initial errors.

Keywords

binomialmodel, option valuation, order of convergence, smoothing, extrapolation, Control

Variate technique



1. Introduction

In their celebrated work Black and Scholes[73] introduced a new framework into the the-

ory of option valuation using the notions of hedging and arbitrage{free pricing. Later

Harrison and Kreps[79] and Harrison and Pliska[81] developed the concept of equivalent

martingale measure. This concept gave an elegant technique to express and solve pricing

problems. Bensoussan[84] and Karatzas[88] transformed this technique to the case of the

american put option. In this context the price is determined by an optimal stopping prob-

lem; the price{process can be described as the smallest supermartingale majorant to the

discounted payo� (\Snell enveloppe"). This problem was already studied by McKean[65]

and transformed into a free boundary problem. Moreover he represented the stopping time

in terms of the so called early{exercise boundary and the option price as a function of

this boundary. Van Moerbeke[76] derived properties of the boundary. After McKean[65]

many authors were dealing with representations of the price in terms of the boundary;

a very intuitive in our eyes was given recently by Carr, Jarrow and Myneni[92]. For an

overview of the state{of{the{art in continuous time we refer the reader to Myneni[92].

Though the american put option is of great interest in practice, up to now no closed{form

or analytical solution to the price nor to the boundary is known, yet. Therefore there is

an abundance of numerical work on this subject.

A straightforward approach is dealing with analytic approximations. The best known of

these are quadratic approximations which were developed by MacMillan[86] and extended

by Barone{Adesi and Whaley[87]. However such approximations cannot be made arbi-

trarily accurate.

Another approach starts from a discretization of the partial di�erential equation describ-

ing the free boundary problem. This method of �nite di�erences was originally proposed

by Brennan and Schwartz[77]. Using variational inequalities the algorithm was justi�ed

completely only recently by Jaillet, Lamberton and Lapeyre[90].

This paper sticks to the broad �eld of binomial models, of which the �rst was proposed

by Cox, Ross and Rubinstein[79] (CRR). They are constructed in such a way that if the

time between two trading dates shrinks to zero, convergence (weakly in distribution) to

their continuous counterpart is achieved. In these models american put options can be

priced very easily by the Bellman principle of dynamic optimization, which is justi�ed

very intuitively from arbitrage arguments.

Though in the case of european call and put options convergence of prices is ensured very

easily from weak convergence of the processes, things are much more complicated in the

case of the american put option, since in general convergence of maxima over expectations

on functionals on the processes | which are the prices | cannot be derived from weak

convergence only (see Aldous[81]). However a proof can be deducted from Kushner[77] in

a sligthly di�erent context and more recently in Lamberton and Pag�es[90].

There are numerous binomial approaches and extensions. One mainstream is dealing with
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\better" stock price approximations in comparison to CRR. Jarrow and Rudd[83] (JR)

adjusted their model to account for the local drift term. Tian[93] argued that match-

ing discrete and continuous local moments should yield \better" convergence. Actually,

though these works worry about better convergence, none of them resolved it fully for the

lack of a proper de�nition.

These problems were addressed by Leisen and Reimer[96]. They de�ned the speed of

convergence by the concept of order of convergence. It was shown a general theorem for

determining this in the case of the european call option. Using this they concluded that

in this sense the presented models of CRR, JR and Tian are equal; they all converge with

order one. In a second step a model with higher order two was constructed.

In this paper we �rst give a short introduction to the (discrete and continuous) models

and the basic notation (section 2). In a next step we will then extend the theorem de-

rived by Leisen and Reimer[96] to the case of the american put option. This allows to

determine order of convergence one for the models of CRR and one from above resp. 1=2

from below for the models of JR and Tian (section 3). The information about the type

of convergence is then used for an error representation. This allows to analyze in detail

two ad hoc improvements common in practice: Richardson extrapolation and the Con-

trol Variate technique introduced by Hull and White[88]. Since the analysis reveals the

need for smoothing the convergence behaviour of price calculations, we construct a new

model for calculating european put option prices (section 4). Though this model is very

simple, it yields order two by extrapolation. In section 5 we present a numerical analysis

of di�erent binomial models for the american put option. It turns out that extrapolation

yields initial errors that are up to 100 times smaller than previous binomial models.

2. The Framework

Throughout the following paper we suppose to be given a constant interest rate r � 0

and a constant volatility � > 0. Continuous capital markets are modelled by a stock price

process (St)t�0 following geometric Brownian motion, i.e.:

dSt = rStdt+ �StdWt

where (Wt)t�0 is a standard Wiener process on some probability space (
;F ; P ): Please
note, that here we immediatly introduced the risk{neutral probability measure P accord-

ing to Harrison and Pliska[81].

In this theory the price Put e(t; S) of a european put with strikeK when time{to{maturity

equals T � t and the stock{value equals S is the well known Black{Scholes formula:

Put e(t; S) = K � e�r(T�t)N (�d2)� S � N (�d1)

d1;2 =
ln(S=K) + (r � 1

2
�2)(T � t)

�
p
T � t
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where N (�) is the cumulative standard normal distribution function.

Things get complicated when dealing with american put options. Suppose we are given a

�xed american put with strike K and maturity date T .

Denote the price function by Put a(t; S). FromVan Moerbeke[76] it follows that there exists

a critical stock price Bt, below which the option should always be exercised (Put a(t; S) =

(K�S)+ for S � Bt) and above which it should never be exercised (Put
a(t; S) > (K�S)+

for S > Bt). The function t 7! Bt is a smooth, nondecreasing function of time t which

terminates in the strike price (BT = K). It is called the (early{exercise) Boundary.

The Boundary separates the domain D = [0; T ]� IR+ into the continuation region C :=

f(t; S) 2 DjS > Btg and the stopping region S := f(t; S) 2 DjS � Btg.
Binomial models are a description of discrete asset price dynamics. They specify a number

n of trading dates. Trading occurs only at the equidistant spots of time tn
i
2 T n := f0 =

tn0 ; � � � ; tnn = Tg with tn
i+1 � tn

i
:= �tn := T

n
(i = 0; : : : ; n � 1). In order to achieve

a complete market model, the one{period returns Rn;i (i = 1; : : : ; n) are modelled by

two point iid binomial random variables

Rn;i =

(
un with probability p

n

dn with complementary probability 1 � p
n
� q

n

on a suitable probability space (
;F ; P ). Therefore the discrete asset price dynamics is

(Sn;k)k where the price Sn;k at time tk is described by

Sn;k = S0 �
kY

i=1

Rn;i

The speci�cation of the one{period returns is a complete description of the discrete dy-

namics Sn. We call such a �nite sequence Rn = (Rn;i)i=1;::: ;n a lattice (tree).

In the sequel we will suppose always that there is given a whole sequence of lattices. One

should think of it as a triangular array

R1;1

R2;1 R2;2

R3;1 R3;2 R3;3

...
...

...
. . .

where each row represents a lattice.

A method which assigns to each re�nement n a lattice is called a lattice approach.

In order to compare it with the continuous model denote for any n 2 IIN for i = 1; : : : ; n

by Rn;i the continuous return between times tn
i
and tn

i+1. For n �xed they are iid random

variables on (
;F ; P ) such that Stn
k
= S0

Q
k

i=1Rn;i 8k = 0; : : : ; n.
3



Several di�erent lattice{approaches have been proposed. The model of CRR takes

un = exp
n
�
p
�tn

o
dn = exp

n
��

p
�tn

o
Moreover they take into account that the risk{neutrality argument of Harrison and Pliska[81]

requires that the expected one{period return E[Rn;1] must equal the one period return of

the riskless bond rn = expfr�tng. This amounts to setting p
n
= un�rn

un�dn .

The risk{neutrality argument amounts to matching discrete and continuous �rst moment.

Tian's parameter selection requires the second and third moments to be equal, too:

un =
rnvn

2

�
vn + 1 +

p
v2
n
+ 2vn � 3

�
dn =

rnvn

2

�
vn + 1 �

p
v2
n
+ 2vn � 3

�
where vn = exp f�tng

JR argue in terms of the gross{return. Adding the local drift{term �0�tn yields:

un = exp
n
�
p
�tn + �0�tn

o
dn = exp

n
��

p
�tn + �0�tn

o
where �0 = r � �2

2

Moreover they have p
n
= 1

2
.

3. Characterization of errors

Now suppose we are given some �xed stock S0 and a contingent claim. Denote its contin-

uous time price by p1. Moreover suppose we study a lattice{approach yielding a sequence

(Rn)n of lattices. From this sequence we can calculate a sequence (pn)n of discrete prices.

We know from Kushner[77] and Lamberton and Pag�es[90] that discrete american put

prices converge to the continuous price p1. That means, if we denote by en := jp1 � pnj
the error each lattice produces, we have limn!1 en = 0.

A straightforward way to measure convergence speed is by comparing it with those of

the sequences
�
1
n

�
n
;
�
1
n2

�
n
; : : : . That is, we use the mathematical concept of \order of

convergence". Restated in our speci�c case here, we adopt the following

De�nition 3.1:

Let (Rn)n a sequence of lattices. A sequence of prices (pn)n calculated from the lattices

converges with order � > 0 if there exists a constant � > 0 such that

8n 2 IIN : en �
�

n�

In the sequel we will often write shortly en = O( 1
n�
) for this, too.
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Figure 3.1. typical pattern with bounding error functions resulting from

american put option price calculations with the CRR-Model and the fol-

lowing selection of parameters: S = 100; K = 105; T = 1; r = 0:05; � =

0:2; n = 10; : : : ; 200

Please note that convergence of prices is implied by any order greater than 0. Moreover

we remark that higher order means \quicker" convergence. Thus the theoretical concept

of order of convergence is not unique: a lattice approach with order � has also order ~� � �.

Though the concept of order of convergence may seem very theoretical, it is very easy to

observe in actual simulations. Because of log �

n�
= log � � � log n the bounding function

�

n�
becomes a straight line with slope equal (��) and shift � on a log{log{scale. So when

plotting en on a log{log{scale, determining the order of convergence consists in looking

for the slope of a suitable bounding straight line (see �gure 3.1).

Leisen and Reimer[96] were looking for factors of the lattice approach under consideration

that determine the order of convergence for european call options. The following (pseudo{

)moments turned out to ful�ll this.

De�nition 3.2:

For a sequence of lattices (Rn)n2IIN we call for all n 2 IIN:

m
1
n

:= E
�
Rn;1 � 1

�
� E [Rn;1 � 1]

m
2
n

:= E
h�
Rn;1 � 1

�2i� E
�
(Rn;1 � 1)2

�
m
3
n

:= E
h�
Rn;1 � 1

�3i� E
�
(Rn;1 � 1)

3�
moments and

pn := E
h�
ln Rn;1

� �
Rn;1 � 1

�3i
pseudo{moment

These moments are mainly the di�erence between the ordinary moments of discrete and

continuous approach. Therefore they represent a generalisation of the ordinary moments.

The form of the pseudo{moment is of technical nature as it resulted from the proof of
5



the following theorem 3.1. Please note that m1
n
= 0 from the risk neutrality argument of

Harrison and Pliska[81].

In the case here, where we have a discrete approximation of a continuous framework, it

turns out that the order of convergence is determined by the di�erence of the ordinary

moments, that is by that of our moments. This is exactly what theorem 3.1 stated and

proven in Leisen and Reimer[96] says.

Theorem 3.1:

Let (Rn)n2IIN be a sequence of lattices and m2
n
;m3

n
; pn its respective (pseudo{) moments.

The order of convergence in calculating european call option prices is the smallest order

contained in m
2
n
;m3

n
and pn reduced by 1, but not smaller than 1, i.e.:

9 �(S0;K; r; �; T ) : en � � �
�
n �
�
m
2
n
+m

3
n
+ pn

�
+

1

n

�

Theorem 3.2:

Under the assumptions of theorem 3.1 the same results hold for european put options.

Proof. This is an immediate consequence of put{call parity.

Proposition 3.1:

The lattice{approaches of CRR, JR and Tian ful�ll:

m
2
n

= O
�
1

n2

�

m
3
n

= O
�
1

n2

�

pn = O
�
1

n2

�

Proof. see the Appendix in Leisen and Reimer[96]

Theorem 3.2 and Proposition 3.1 immediatly yield the following result:

Corollary 3.1:

European put option prices calculated using the lattice{approaches of CRR, JR and Tian

converge with order one.

The question may now arise, wheather it would be possible to strengthen the result of

theorem 3.2 in order to prove higher order. We now state a theorem which says that this

bound is actually best achievable. The idea and the proof are from David Heath.

Theorem 3.3:

Given a sequence (Rn)n2IIN of lattices with un=dn = 1 + O(
p
�tn ), there always exists

a strike price K such that the prices calculated for this european put option have error

en � c�=n for a suitable constant c� 2 IR.

6



Proof. The price Put e of a european put is a strictly convex function in its strike price K.

Therefore, for su�ciently high re�nement n, we can always �nd some C > 0;K1 < K2

such that:

@2Put e(K)

@K2
� C; for all K 2 [K1;K2]

Let K� = K1+K2

2
and In denote the intervall between successive terminal stock prices

which contain K�.

Then:

jInj �
�
un

dn
� 1

�
K�

Put e
n
is a linear function in the strike price K on the interval In.

Therefore:

@2Put e(K)

@K2
= 0 on In

Let en(K) := Put e(K)� Put e
n
(K) denote the error depending on the strike price K.

Then:
@2en

@K2
=

@2Put e(K)

@K2
� C on In � [K1;K2]

Integrating twice yields

sup
K2In

jenj �
jInj2
16

inf
K2In

����@2en@K2

���� � C � jInj2
16

� C � jK�j2
16

�
un

dn
� 1

�2

� C�

n

for a suitable constant C�.

Obviously the lattice{approaches of CRR, JR and Tian ful�ll the condition un=dn =

1 +O(
p
�tn ) in theorem 3.3. The following two theorems will state a result similar to

that of the european put option for the american put option.

Theorem 3.4:

Let (Rn)n2IIN be a sequence of lattices and m2
n
;m3

n
; pn its respective (pseudo{) moments.

There exists a positive constant �u(S0;K; r; �; T ) such that:

Put a(0; S0)� Put a(0; S0) � �u �
�
n �
�
m
2
n
+m

3
n
+ pn

�
+

1

n

�

Proof. Denote by (
̂; F̂; P̂ ) the product space of (
;F ; P ) and (
;F ; P ). For all n 2 IIN

and k = 0; : : : ; n let An;k = �(Sn;iji � k) denote the information structure.

From Carr, Jarrow and Myneni[92] we know that the price of the american put can be

decomposed into the price of a european put and the early{exercise premium �, which

takes the form:

� = rK

Z
T

0

e�rt
0N (b2;0(S0; t

0))dt0

7



where b2;0(x; t
0) =

lnBt=x�(r��
2

2
)t0

�

p
t0

.

Lemma 2 in the Appendix tells us that stopping the discrete process (Sn;k)k=0;:::;n accord-

ing to the rule rule (Bt
n
k
)k=0;:::;n yields the premium:

�B

n
= Ê

"
n�1X
k=0

e�rt
n
k �K(1� e�r�t) � P̂

h
Sn;k < Bt

n
k

��� An;k

i#
+O(�t)

The optimal stopping policy, however, yields the higher premium �n.

Therefore we have according to Lemma 5 in the Appendix:

9 �u(S0;K; r; �; T ) : � � �n � �u�t

Since

jPuta(0; S0) � Put a
n
(0; S0)j � jPut e(0; S0)� Put e

n
(0; S0)j+ j� � �nj

the theorem now follows immediatly from theorem 3.1.

Theorem 3.5:

Let (Rn)n2IIN be a sequence of lattices and m2
n
;m3

n
; pn its respective (pseudo{) moments.

There exists a negative constant �l(S0;K; r; �; T ) such that:

Puta(0; S0)� Puta(0; S0) � �l �
�
n �
�
m
2
n
+m

3
n
+ pn

�
+

1p
n

�

Moreover for CRR we have:

Puta(0; S0)� Puta(0; S0) � �l �
�
n �
�
m
2
n
+m

3
n
+ pn

�
+

1

n

�

Proof. According to Lemma 6 in the Appendix:

O(�t) = Ê
�
Put a(tn

k
; Sn;k)� Puta

n
(tn

k
; Sn;k)

�
8



According to Lemma 1 in the Appendix this equals:

Ê
h
Put e(tn

k
; Sn;k) + rK

Z
T

t
n
k

e�r(t�t
n
k
)N (b2;tn

k
(Sn;k; t))dt� Put e

n
(tn

k
; Sn;k)

�K
�
1 � r�1

n

� nX
i=k

e�r(t
n
i
�tn

k
)P̂
�
Sn;i � Bn;i

� i
+O(�t)

= Ê
�
Put e(tn

k
; Sn;k)� Put e(tn

k
; St

n
k
)
�

+ Ê
�
Put e(tn

k
; St

n
k
)
�

| {z }
=Pute(0;S0)

� Ê
�
Put e

n
(tn

k
; Sn;k)

�
| {z }

=Puten(0;S0)

+rK

Z
T

t
n
k

Ê
�
e�r(t�t

n
k
)N (b2;tn

k
(Sn;k; t))

�
dt�K

�
1� r�1

n

� nX
i=k

Ê
�
e�r(t

n
i
�tn

k
)Sn;i � Bn;i

�
+O(�t)

= Ê
�
Put e(tn

k
; Sn;k)� Put e(tn

k
; Stn

k
)
�

+Puta(0; S0)� Puta
n
(0; S0)

�rK
Z

t
n
k

0

e�rtN (b2;0(S0; t))dt+K
�
1 � r�1

n

� kX
i=0

e�rt
n
i Ê

�
Sn;i � Bn;i

�
+O(�t)

The proof of theorem 1 in Leisen and Reimer[96] contains as a special case the estimation

of

Ê
�
Put e(tn

k
; Sn;k)� Put e(tn

k
; Stn

k
)
�
= O

�
n �
�
m
2
n
+m

3
n
+ pn

�
+

1

n

�

Now the assertion follows immediatly with Lemma 8 in the Appendix.

Theorem 3.4 and 3.5 together with proposition 3.1 immediatly imply the following two

corollaries:

Corollary 3.2:

American put option prices calculated using the lattice{approach of CRR converge with

order one.

Corollary 3.3:

American put option prices calculated using the lattice{approaches of JR and Tian con-

verge with order one from above and order 1=2 from below.

These results improve on that of Lamberton[95] who proved for the lower bound an order

of 2=3 and for the upper bound of 1=2 for CRR. Moreover our results apply to general

lattice{approaches.
9



4. How to decrease errors properly

Actually error pictures like �gure 3.1 and simulations performed by Broadie and De-

temple[96] suggest that the order of convergence is one for JR and Tian, too. We will

subsequently assume that this holds for JR and Tian. Then the results in the previous

section tell us that for a certain class of models, calculating either american or european

put option prices, the error en is of the form
�1(n)

n
+ higher terms for a suitable bounded

function �1.

To take advantage of this information, let us suppose in a �rst approximation that

pn =
�1

n
+ p1. For any given re�nement n this equation contains two unknowns: the con-

stant �1 and the correct value p1. In order to resolve this, we need a pair of re�nements

(n1; n2) with n2 > n1 and corresponding prices (pn1 ; pn2). Denoting the approximation

for p1 by p(n1;n2) we have the following system of equations:

�1

n1
+ p(n1;n2) = pn1

�1

n2
+ p(n1;n2) = pn2

Resolving yields:

p(n1;n2) = pn2 �
(pn1 � pn2)n1

n2 � n1

=
n2pn2 � n1pn1

n2 � n1

We will refer to this as the extrapolation rule.

Unless otherwise stated, we take the pair (n; 2n). This is commonly referred to as Richard-

son extrapolation (see Kloeden and Platen[92]).

The above analysis needs to be re�ned for two reasons. The �rst stems from the fact that

in general the constant will depend on the re�nement, whereas above, we replaced the

function �1(n) by a constant �1. The second stems from the higher order terms, since

these may distort extrapolation, such that our rule may no longer optimal. Therefore a

detailed analysis of the error e(n1;n2) = p(n1;n2) � p1 prevails:

Proposition 4.1:

Suppose en =
�1(n)

n
+ �2(n)

n2
where �1; �2 : IIN! IR are suitable functions.

Then:

e(n1;n2) =
�1(n2)� �1(n1)

n2 � n1
+

n1�2(n2)� n2�2(n1)

n1n2(n2 � n1)

10



Proof. It is obvious that extrapolation yields the error:

e(n1;n2) =
n2e2 � n1e1

n2 � n1

=
n2

�
�1(n2)

n2
+ �2(n2)

n
2

2

�
� n1

�
�1(n1)

n1
+ �2(n1)

n
2

1

�
n2 � n1

The statement of the proposition follows immediatly from this.

From corollary 3.2 in the previous section is clear, that for the lattice{approaches of CRR

ba
l
:= lim infn!1 �1(n) and ba

u
:= lim sup

n!1 �1(n) exist and are �nite. For JR and Tian

it follows from corollary 3.3 only that ba
u
is �nite. However, according to the assump-

tion at the beginning of this section, we assume that ba
l
is �nite, too. The proposition

tells us that in �rst order the absolute error resulting from extrapolation is bounded by

je(n1;n2)j �
b
a
u�bal

n2�n1 . For Richardson Extrapolation we get that the error je(n;2n)j < b
a
u�bal
n

. It

means, that extrapolation replaces the constant jba
u
j _ jba

l
j by jba

u
� ba

l
j. Therefore extrap-

olating makes sense only if jba
u
� ba

l
j < maxfjba

u
j; jba

l
jg and our aim in constructing new

models should be to get models with very little jba
u
� ba

l
j.

Please note that this observation explains the (obvious) fact that for the CRR model

extrapolation does not make sense, since there we typically have ba
l
< 0 < ba

u
yielding

jba
u
� ba

l
j > ba

u
. The same holds for the JR and Tian model.

Actually there is an optimal case, in which ba
u
= ba

l
. If �2 is bounded, an immediate

consequence of Proposition 4.1 is that extrapolated prices converge with order of two.

Whereas in general we need to select n2 such that n2�n1 = O(n1) in order to get a series

of extrapolated prices converging to the true price p1, in this special case it is possible to

select n2 such that n2�n1 = const: and still getting prices converge. Under the additional

assumption that �2 = const: we even get the scheme converging with order two. This

is very interesting since the extra amount of computation time needed for extrapolation

relatively becomes comparable to those needed for calculating the price for n1. We shall

therefore try to construct new models with ba
u
= ba

l
. For these models the error picture

looks \smooth". We will therefore loosely speak of smoothing options when constructing

better performing models.

Another major approach for improving results is the Control Variate technique (CV) pro-

posed by Hull and White[88]. This technique uses the same lattice with re�nement n to

calculate the price approximations Put a
n
of the the american and Put e of the european put.

It is inspired by the observation that the order of convergence is the same for the european

and american put. Then assume that errors to the true prices are approximately equal, i.e.:

Puta(0; S0)� Puta
n
(0; S0) � Put e(0; S0)� Put e

n
(0; S0)

) Puta
n
(0; S0) � Put a

n
(0; S0) + Put e(0; S0)� Put e

n
(0; S0)

However looking closely on the errors we immediatly get the following
11



Proposition 4.2:

Suppose ea
n
=

�
a
1
(n)

n
, ee

n
=

�
e
1
(n)

n
where �a1; �

e

1 : IIN! IR are suitable functions.

Then:

eCV
n

=
�a1(n)� �e1(n)

n

The price calculated using the CV{technique will be good only if good and bad price ap-

proximations follow at the same rhythm for european and american puts. However in gen-

eral this will not hold. To perform a similar analysis as for extrapolation we deduce from

theorem 1 of Leisen and Reimer[96] (see Theorems 3.1 and 3.2) that be
l
:= lim infn!1 �1(n)

and be
u
:= lim sup

n!1 �1(n) exist and are �nite. Then:

jeCV
n
j � (jba

u
j _ jbe

u
j)� (jba

l
j ^ jbe

l
j)

n

Therefore the CV{technique replaces the constant jba
u
j_jba

l
j by (jba

u
j_jbe

u
j)�(jba

l
j^jbe

l
j) and

all the conclusions drawn from proposition 4.1 for extrapolation carry over to the CV{

technique. Especially we have the same task to get better performing models: smooth

the option, i.e. to reduce price oscillations as much as possible. In the sequel we will stick

to extrapolation only and show up a way how to smooth the option at least partially.

We have according to Carr, Jarrow and Myneni[92] and Lemma 1 in the Appendix:

Put a(0; S0) = Put e(0; S0) +rK
R
T

0
e�rtP [St � Bt]

Put a
n
(0; S0) = Put e

n
(0; S0) +rK

P
n

j=0 e
�rtnkP

�
Sn;j � Bn;j

�
+O(�t)

This means that errors result both from approximating the European Put component

as well as the early exercise premium, whereas the errors in the early exercise pre-

mium component result from approximating the value of the cash{or{nothing options

P [St � Btnj
]� P

�
Sn;j � Bn;j

�
.

With barrier option valuation, Derman, Kani, Ergener and Bardhan[95] argue that price

oscillations result from the fact, that a speci�c lattice under consideration implicitly de-

termines the class of possible option contracts which can be priced, since exercise is only

possible at nodes in the tree grid. They call this the \quantization error". More specif-

ically, in the case of the european call option, Leisen and Reimer[96] determined as the

origin of these errors the following: when taking a close look at terminal nodes especially

at the nodes around the strike price K we see that with varying n, nodes shift upwards

and downwards. Since they contain the whole probability mass, this causes the distor-

tions.

Improving results for cash{or{nothing options is di�cult, since we do not know the exer-

cise Boundaries B, resp. B. However we can pro�t from this observation in constructing

a model which improves at least the european put component. This can be done by en-

suring that the strike always lies �xed at a speci�c node, the center of the tree. In order

to do this consistently we must assume that n is even, too. Therefore, suppose we are

given a re�nement n with n even and un; dn according to CRR, that is un = expf�
p
�tn g,

12



dn = 1=un. Remember JR who adjusted the local drift{term to match the continuous

drift{term. We are interested in �xing the strike at the center of the tree at maturity.

Thus the new parameter selection u0
n
; d0

n
should ful�ll:

u0
n

= un � ecn

d0
n

= dn � ecn

S0 � (u0n � d0n)n=2 = K

The third equation tells us cn =
lnK=S0

n
. The equivalent martingale measure is obtained

by setting p0
n
= rn�d0

n

u0

n�d0

n
.

In the sequel this model will be denoted by SMO.

In �gure 4.1 is represented the error for the CRR and SMO models in calculating european
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SMO
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Extra2
1/(x*x)

Figure 4.1. comparison of the CRR lattice approach with the SMO

lattice approach and two extrapolations using the SMO lattice{approach for

the case of the european put option: example with the following selection of

parameters: S = 100; K = 105; T = 1; r = 0:05; � = 0:2; n = 10; : : : ; 1000

even

put option prices where n is always taken even. Moreover they are compared to the

following two extrapolations of SMO: EXTRA1 uses the pair (n; 2n), while EXTRA2

uses the pair (n; n + 40). Actually we see that the SMO model performs bad, i.e. it

always yields higher errors than CRR. This stems from the fact that we did not care for

implementing the local{variance properly.

It would be possible to construct smooth models which behave much better. However

we preferred this approach for its very simple and intuitive construction. Moreover here

we see very drastically the e�ects of extrapolation, since the \slow" convergence speed

of SMO is completely o�set: When comparing it with the function 1=x2 we see that

both extrapolations converge with order two in the long run. That is, we see completely
13



justi�ed our remarks made after proposition 4.1, which told us that it is possible to win

one order in the convergence and even with the simple EXTRA2.

For the american put option we may not expect to get smooth results, but at least

smoother ones, replacing the constant by a much more little one. This means that we

are starting with lower initial error, which means in turn, that a lower tree{re�nement

already yields the same precision level. A comparison of di�erent lattice{approaches for

the american put will be studied in more detail in the next section.

5. Numerical Evaluation

To evaluate properly the additional time needed for extrapolation, we stick to an analysis

suggested by Broadie and Detemple[96]. There, within one analysis several methods using

a large sample of randomly selected parameters are compared simultaneously over re�ne-

ments with measurement of computation speed and approximation error. Computation

speed is expressed by the number of option prices calculated per second. Since we stick to

tree models with identical structure except for the tree parameters, we need not care on

tuning our computer implementation of methods. The approximation error is measured

by the relative root{mean{squared (RMS) error. RMS{error is de�ned by

RMS =

vuut 1

m

mX
i=1

e2
i

where ei = (ĉi� ci)=ci is the relative error, ĉi ist the estimated option value and ci ist the

true option value. The true option value is calculated using CRR with a re�nement of

15000.

We chose the following distribution of parameters for the whole sample. Volatility is

distributed uniformly between 0:1 and 0:6. Time to maturity is, with probability 0.75,

uniform between 0:1 and 1:0 years and, with probability 0:25, uniform between 1:0 and

5:0 years. We �x the strike price at K = 100 and take the initial asset price S � S0 to be

uniform between 70 and 130. Relative errors do not change if S and K are scaled by the

same factor, i.e., only the ratio S=K is of interest. The riskless rate r is, with probability

0:8, uniform between 0:0 and 0:10 and, with probability 0:2, equal to 0:0. Each parameter

is selected independently of the others. This selection of parameters matches the choice

of Broadie and Detemple[96] except for dividends which we donot regard here.

To make relative error meaningful, that is to avoid senseless distortions because of very

small option prices, options with ci � 0:50 did not enter the sample.

We tested the CRR model with the SMO model and its extrapolation. Moreover we

tested it in comparison to the PP model suggested by Leisen and Reimer[96] and its ex-

trapolation, too. This model was constructed using the works of Pratt[68] and Peizer and

Pratt[68] on inverted normal approximations such as to yield order of convergence two

for the european put option.
14



To account for di�erent behaviour with long/short maturities respectively in/out{of{the

money options we splitted the whole sample into 4 subsamples.

The �rst two �gures (5.1 and 5.2) deal with options with short time{to{maturitiesT � 0:2.

More speci�cally the �rst �gure deals with out{of{the{money options (S � 100). We see

that SMO yields results that are 3 times worse than CRR, whereas PP yields 10 times

better results than CRR. Surprisingly, however, extrapolating SMO and PP yields re-

sults that are again approximately 10 times better than PP, i.e. in total they have 100

times lower initial error than CRR. Moreover we see immediatly that extrapolation has a

tremendous e�ect on the error since using it in a 200 step (together with a 400 step) tree

exceeds already the precision level of a CRR tree with a re�nement of 15000, such that

we could have dropped higher extrapolations.

The second �gure deals with in{the{money options (S � 100). Here the e�ects of extrap-

olation are still astonishing. Although extrapolating the PP and SMO models yields only

3 times better results than PP, this yields 10 times better results than CRR. Thus we are

winning 30 in total in comparison to CRR.

The last two two �gures (5.3 and 5.4) deal with options with long time{to{maturities

T � 0:2. In the case of out{of{the{money options (�gure 5.3) we see that PP performs

3 times better than CRR and that extrapolating PP and SMO improves this by a factor

of 3 in comparison to PP, yet. Therefore it performs approximately 10 times better than

CRR. In the case of in{the{money options (�gure 5.4) extrapolation of PP and SMO

improves by a factor of 2 in comparison to CRR, whereas PP shows only an improvement

of 1.5 .

Generally spoken, out{of{the{money options converge much smoother and therefore yield

much better convergence results with extrapolation. Moreover we want to remark, that

extrapolation with n = 24 actually ensures in all cases that the error is less than 0.01.

This means that it already yields a su�cient precision level, since in practice discrete and

continuous models can no longer be distinguished.

15
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Figure 5.1. testing e�ciency of binomial models for out{

of{the{money American put options (S � 100) with ni =

f24; 50; 100; 200; 300; 400; 500; 600; 700; 800; 900; 1000g and time{to{

maturity T � 0:2 (subsample of 89 options)

0.01

0.1

1

10

100

1000

1e-06 1e-05 0.0001 0.001 0.01

S
pe

ed

RMS-error

CRR
SMO

SMO_extra
PP

PP_extra

Figure 5.2. testing e�ciency of binomial models for in{

the{money American put options (S � 100) with ni =

f24; 50; 100; 200; 300; 400; 500; 600; 700; 800; 900; 1000g and time{to{

maturity T � 0:2 (subsample of 150 options)
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Figure 5.3. testing e�ciency of binomial models for out{

of{the{money American put options (S � 100) with ni =

f24; 50; 100; 200; 300; 400; 500; 600; 700; 800; 900; 1000g and time{to{

maturity T � 0:2 (subsample of 427 options)
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Figure 5.4. testing e�ciency of binomial models for in{

the{money American put options (S � 100) with ni =

f24; 50; 100; 200; 300; 400; 500; 600; 700; 800; 900; 1000g and time{to{

maturity T � 0:2 (subsample of 450 options)
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6. Conclusion

In this paper we examined the convergence and more detailed the order of convergence

for the american put option. The results of Leisen and Reimer[96] were extended to

the american put option. It was thus shown that the models of CRR, JR and Tian are

similar. In a next step we used this for an extrapolation rule and its error analysis. Here

we saw the astonishing e�ects that a proper extrapolation may have. Actually although

the approach we have taken here is rather simple it already yields up to 100 times better

results. Better smoothing should be able to improve this further up to yielding one order

as in the case of the european put option.
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Appendix

Let C :=
�
(n; k) j k = minfijBt

n
i
< Bn;ig if this set is not empty

	
, Dn;k := fS0ujndn�jn

j0 �
j � kg, and n denote the density of the normal distribution function.

For i = 0; : : : ; n we will call In;i :=
n
tn
k
2 T njS0uindn�in

� Bt
n
k
< S0u

i+1
n

d
n�(i+1)
n

o
a domain.

Domains are disjoint intervalls, i.e. In;i = [ln;i; rn;i[ for suitable ln;i < rn;i. Obviously we

have ln;0 < rn;0 = ln;1 < : : : < rn;i

Lemma 1:

�n = Ê

"
n�1X
k=0

e�rt
n
k �K(1 � e�r�t) � P̂

h
Sn;k � Bn;k

��� An;k

i#
+O(�t)

Proof. For the cases Sn;k � Bn;k, unSn;k > Bn;k+1 we have:

Put a;B
n

�
tn
k+1; Rn;k+1 � Sn;k

�
= f

�
Rn;k+1 � Sn;k

�
+O

�p
�t
�

since un � 1 = O
�p

�t
�

) Ê
h�
K � Sn;k

�+ � e�r�tPuta
n

�
tn
k+1; Rn;k+1 � Sn;k

�
j An;k

i
= O

�p
�t
�
K
�
1� r�1

n

�
= O

�p
�t

3
�

since 1 � r�1
n

= O(�t)

If Sn;k � Bn;k, unSn;k � Bn;k+1:

Ê
h
(K � Sn;k)

+ � e�r�tPut a
n
(tn

k+1; Rn;k+1 � Sn;k)
��� An;k

i
= Ê[(K � Sn;k)� e�r�t(K �Rn;k+1 � Sn;k) j An;k]

= (K � Sn;k)� e�r�t(K � er�tSn;k)

= K
�
1� e�r�t

�
From the arguments of Harrison and Pliska[81] follows:

�n = Put a
n
(0; S0)� e�rT Ê[(K � Sn;n)

+]

= Put a
n
(0; S0)� e�rT Ê

h
Put e

n
(T; Sn;n)| {z }

=Putan(T;Sn;n)

i

= Ê

"
n�1X
k=0

e�rt
n
k Ê

h
Puta

n
(tn

k
; Sn;k)� e�r�tPuta

n
(tn

k+1; Sn;k+1)
��� An;k

i#
19



This implies according to the above case study:

Ê
h
Puta

n
(tn

k
; Sn;k)� e�r�tPut a

n
(tn

k+1; Sn;k+1)
��� An;k

i
= Ê

h
1
Sn;k�Bn;k

�
�
(K � Sn;k)

+ � e�r�tPut a
n
(tn

k+1; Sn;k+1)
� ��� An;k

i
= Ê

h
1
Sn;k�Bn;k

�K
�
1� e�r�t

� ��� An;k

i
+O

�p
�t

3
�

= P̂
h
Sn;k � Bn;k

��� An;k

i
�K

�
1 � e�r�t

�
+O

�p
�t

3
�

Since:

P̂
�
Sn;k � Bn;k; unSn;k > Bn;k+1

�
= O

�
1p
k

�

)
nX

k=1

P̂
�
Sn;k � Bn;k; unSn;k > Bn;k+1

�
= O

�
1p
�t

�

the assertion follows.

Lemma 2:

Stopping the discrete process (Sn;k)k=0;:::;n according to the rule rule (Btn
k
)k=0;:::;n yields

the premium:

�B

n
= Ê

"
n�1X
k=0

e�rt
n
k �K(1 � e�r�t) � P̂

h
Sn;k < Btn

k

��� An;k

i#
+O(�t)

Proof. Follows exactly as those of Lemma 1.

Lemma 3:

N (b2;0(S0; t
n

k
))� P̂ [Sn;k � Bn;k] = O(�t) +N (b2;0(S0; t

n

k
))�N (z2;0(S0; t

n

k
))

where z2;0(S0; t
n

k
) =

lnBn;k=S0 � n ln dn

(lnun � ln dn)�k
� npn

�k
+

1

�k

and �k =
p
kp

n
(1� p

n
)

Proof.

P̂
�
Sn;k � Bn;k

�
= P̂

"
kY

j=1

Rn;j �
Bn;k

S0

#

= P̂

"
kX

j=1

lnRn;j � ln
Bn;k

S0

#

Moreover:
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Bn;k = S0u
jk
n
dn�jk
n

) Bn;k

S0
= ujk

n
dn�jk
n

) ln
Bn;k

S0
= jk lnun + (n� jk) ln dn

= jk(lnun � ln dn) + n ln dn

) jk =
ln

Bn;k

S0
�n ln dn

lnun�ln dn

Obviously �k is the variance of
P

k

j=1 lnRn;j and z2;0(S0; t
n

k
) =

jk�npn
�k

+ 1
2�k

.

Let z1;0(S0; t
n

k
) = �npn

�k
� 1

2�k
.

Then, according to Prohorov and Rozanov[69] we have:

N (b2;0(S0; t
n

k
))� P̂

�
Sn;k � Bn;k

�
= N (z2;0(S0; t

n

k
))�N (z1;0(S0; t

n

k
))� P̂

�
Sn;k � Bn;k

�
| {z }

=O(�t)

�N (z1;0(S0; t
n

k
)) +N (b2;0(S0; t

n

k
)) +N (z2;0(S0; t

n

k
))| {z }

=O(�t2)

Lemma 4:

9� 2 IR : N (b2;0(S0; t
n

k
))� P̂ [Sn;k � Btn

k
] � ��t

Proof. Denote z02;0(S0; t
n

k
) = b2;0(S0; t

n

k
)� npn

�k
+ 1

�k

Similarly to Lemma 3 we have:

N (b2;0(S0; t
n

k
))� P̂ [Sn;k � Btn

k
] = O(�t) +N (b2;0(S0; t

n

k
))�N (z02;0(S0; t

n

k
))

The assertion follows immediatly from the observation b2;0(S0; t
n

k
) � z02;0(S0; t

n

k
)

Lemma 5:

9� 2 IR : � � Ê

"
n�1X
k=0

e�rt
n
k �K(1� e�r�t) � P̂

h
Sn;k < Btn

k

��� An;k

i#
� ��t

Proof. From a series expansion of the exponential function we get K(1�e�r�t) = Kr�t+

O(�t2). Since N (b2;0(S0; t
n

k
))�N (z2;n(S0; t

n

k
)) � 0 it follows from Lemma 3 immediately

that this is lower than:

O (�t) + rK

n�1X
k=0

e�rtkN
�
b2;0(S0; t

n

k+1)
�
�t

where b2;0(x; t) =
ln(Bt=x)�(r��2

2
)t

�
p
t

.

The summation{term can be viewed as an approximation to the respective integral. From
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the trapezoidal formula of numerical integration we get immediately that it equals for a

suitable � 2 [0; T ]:

rK

TZ
0

e�rtN (b2;0(S0; tk+1)) dt+�t2 � N (b2;0(S0; �)) +O (�t)

Since the normal{function is bounded, we have proven the Lemma.

Lemma 6:

9�8(n; k) 2 C : E[Puta(tn
k
; Sn;k)� Put a

n
(tn

k
; Sn;k)] � ��t

Proof. Let �0 := n(B0)=S0.

For S 2 Dn;k (n 2 IIN; 0 � k � n) denote

�e

n;k
(S) := Put e(tn

k
; S)� Put e

n
(tn

k
; S)

�p

n;k
(S) := �(tn

k
; S)� �n(t

n

k
; S)

According to Leisen and Reimer[96]:

9�1 2 IR8n 2 IIN8 0 � k � n8S 2 Dn;k : �1 �
�
n �
�
m
2
n
+m

3
n
+ pn

�
+

1

n

�
� j�e

n;k
(S)j

Now take (n; k) 2 C.
Since Btn

k
< Bn;k we have:

�e

n;k
(Bn;k) + �p

n;k
(Bn;k) � 0

This implies:

�1 �
�
n � (m2

n
+m

3
n
+ pn) +

1
n

�
� �e

n;k
(Bn;k)

� ��0�p

n;k
(Bn;k)

) ��1

�0
�
�
n � (m2

n
+m

3
n
+ pn) +

1
n

�
� �p

n;k
(Bn;k)

) �e

n;k
(Bn;k) + �e

n;k
(Bn;k) �

�
�1 � �1

�0

�
�
�
n � (m2

n
+m

3
n
+ pn) +

1
n

�

Lemma 7:

There exists � 2 IR such that for (n; k) 2 C and i 2 IIN with In;i � [0; tn
k
] we have:

kX
i=0

N (z2;0(S0; t
n

k
))�N (b2;0(S0; t

n

k
)) � �

Proof. We denote:

� by Bl

n;i
:= Bln;i

; Br

n;i
:= Brn;i

.
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� by gn;i : In;i ! [0;1] the function

gn;i(t) := lnBl

n;i
+ �n;i � (t� ln;i))

where �n;i :=
lnBr

n;i
� lnBl

n;i

rn;i � ln;i

� by �n;i :=
rn;i�ln;i

�t
the number of discrete time{points in In;i.

� by Bn;k := max
�
S 2 Dn;kjS � Bt

n
k

	
the highest node below Bt

n
k

� by �n(k) the number of up{steps necessary to reachBn;k, i.e. Bn;k = S0u
�n(k)
n d

k��n(k)
n .

Take (n; k) 2 C and i 2 IIN and In;i � [0; tn
k
]. Let us assume in the sequel that Br

n;i
=

S0u
i+1
n

d
n�(i+1)
n and Bl

n;i
= S0u

i

n
dn�i
n

. This yields an error of order O(�t).

On In;i B is alternately equal to S0u
i

n
dn�i
n

and S0u
i�1
n

d
n�(i�1)
n . Therefore for ln;i + j�t 2

In;i (, 0 � j � �n;i) we have:

ln gn;i(ln;i + j�t)

B
=

(
(lnun)

j

�n;i
j even

(lnun)
j

�n;i
+ ln 1

dn
j odd

This implies:

X
t
n
j 2In;i

ln gn;i(ln;i + j�t)=Bn;j

�
p
�t

� 1 =

�n;iX
j=0

j

�n;i
+

�n;i

2
� �n;i

=
�n;i(�n;i + 1)

2�n;i
� �n;i

2

=
1

2

Since un = expf+�
p
�tg we have jIn;ij = O

�p
�t
�
.

Moreover we have according to the mean value theorem for each t 2 In;i a suitable

�t
n;i
2 In;i such that:

Bt = Brn;i
+B0(�t

n;i
)(t� rn;i)

= Brn;i
+B0(rn;i)(t� rn;i) + (B0(�t

n;i
)�B0(rn;i))(t� rn;i)

Since B is continuously di�erentiable (see Myneni[92], McKean[65], Van Moerbeke[76]),

B0 is uniformly bounded on [0; T ] by a suitable �1 2 IR. Thus:

X
tnj 2In;i

lnBtnj
=Bn;j

�
p
�t

� 1 �
X

tnj 2In;i

lnBtnj
=Bn;j

�
p
�t

� 1

=
X

tnj 2In;i

ln gn;i(ln;i + j�t)=Bn;j

�
p
�t

� 1 + 2�1

=
1

2
+ 2�1
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Since z2;0(S0; t
n

k
) � b2;0(S0; t

n

k
) = O

�p
�t
�
we have:

N (z2;0(S0; t
n

k
))�N (b2;0(S0; t

n

k
)) =

�
n(b2;0(S0; rn;i)) +O

�p
�t
��
� (z2;0(S0; tnk) � b2;0(S0; t

n

k
))

= n(b2;0(S0; rn;i)) � (z2;0(S0; tnk)� b2;0(S0; t
n

k
)) +O

�p
�t
�

The assertion follows now from the fact that
p
�t

P
n

i=0

p
rn;i

�1 is uniformly bounded.

Lemma 8:

rK

Z
t
n
k

0

e�rtN (b2;0(S0; t))dt�K
�
1� r�1

n

� kX
i=0

e�rt
n
i Ê

�
Sn;i � Bn;i

�
= O(�t)

Proof. Lemmata 3 and 7 and 1 � r�1
n

= O(�t)
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