Applied Data Analytics

Statistics — Dispersion & concentration

Dispersion based on absolute deviations

Hans-Martin von Gaudecker and Aapo Stenhammar

Ranges

- **Range**: difference between the maximum and minimum values
- **Interdecile range**: difference between the 90th and 10th percentiles
- **Interquartile range**: difference between the 75th and 25th percentiles
- For ratio scales with strictly positive values, ratios between quantiles can be useful statistics, too

Describe a DataFrame

df.describe().round(2)

Dispersion	count	mean	std	min	25%	50%	75%	max
Small	100000	0	1	-4.27	-0.67	-0	0.67	4.43
Large	100000	-0.01	1.5	-7.07	-1.01	-0	1	6.39

Mean absolute deviation

$$s_{ ext{MAD}} = rac{1}{n}\sum_{i=1}^n |x_i - x_{ ext{MED}}|$$

Mean absolute deviation

A	A A -	4	В	B - 3
2	2	2	1	2
2	1	0	3	0
6	5	2	8	5
MAD) 1.	33	MAD	2.33