
Applied Data Analytics

Basic Python

Dictionaries

Hans-Martin von Gaudecker and Aapo Stenhammar

1 / 6

Contents
Creating dictionaries

What can go in a dict

Accessing elements in dictionaries

Advantages of labelled data structures

1 / 6

Dictionaries
Map a set of keys to a set of values
Creation by curly braces and : to
separate keys and values
mutable: Can add or overwrite entries
Order is preserved (since Python 3.6)

>>> a = {"a": 1, "b": 2, "c": 3}
>>> type(a)
<class 'dict'>

>>> a["b"]
2

>>> a["c"] = 42
>>> a

{'a': 1, 'b': 2, 'c': 42}

>>>a["d"] = 4
{'a': 1, 'b': 2, 'c': 42, 'd': 4}

1 / 6

What can go in a dict?

Keys need to be hashable, for example

strings
ints
tuples thereof

Values can be absolutely anything

If values are dicts we get nested
dictionaries

>>> nested = {
>>> 1: {"bla": "blubb"},
>>> "two": {"foo": "bar"},
>>> }

1 / 6

Accessing elements

Elements are accessed with square
brackets

Chained access for nested dictionaries

>>> flat = {"bla": "blubb"}
>>> nested = {
>>> 1: flat,
 "two": {"foo": "bar"}
>>> }

>>> flat["bla"]
'blubb'

>>> nested[1]
{'bla': 'blubb'}

>>> nested[1]["bla"]
'blubb'

1 / 6

When to use dictionaries
Dictionaries provide label based access

Lists provide position based access

Label based access is more readable and less error prone!

1 / 6

