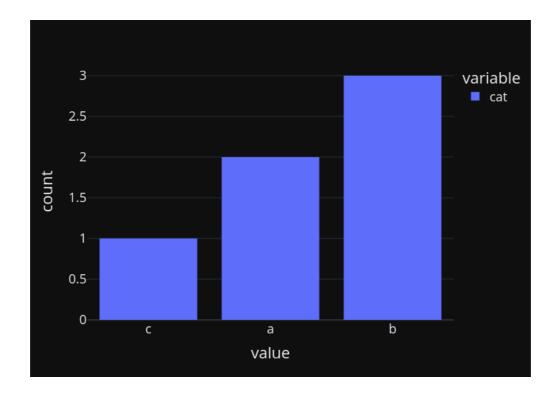
Applied Data Analytics

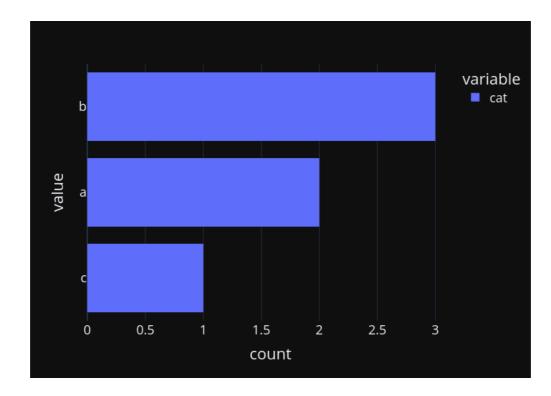
Statistics — Basics & location

Histograms

Hans-Martin von Gaudecker and Aapo Stenhammar


Frequency distributions

A frequency distribution is a table that shows the frequency of various outcomes in a sample.

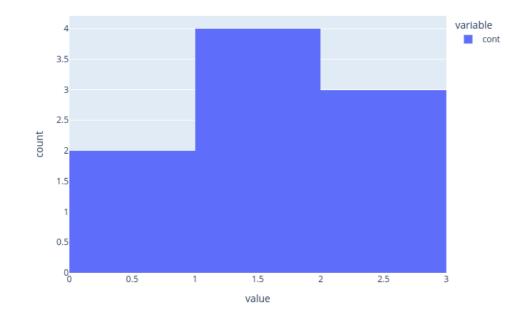

Categorical Data

Raw data		Frequency distribution		
	cat	Cã	at	count
0	С	b		3
1	а	а		2
2	b	С		1
3	а			
4	b			
5	b			

Histogram

Better (for categorical data)

Continuous data


Raw data		Frequency	Frequency distribution		
	cont	cont	count		
0	1.57	0.09	1		
1	0.09	0.35	1		
2	1	1	2		
3	2.9	1.25	1		
4	1.25	1.57	1		
5	1	2.15	1		
6	0.35	2.3	1		
7	2.3	2.9	1		
8	2.15				

Continuous data, binned

Raw data Frequency distribution

	cont	cont_binned	count
0	1.57	[0,1)	2
1	0.09	[1,2)	4
2	1	[2,3)	3
3	2.9		
4	1.25		
5	1		
6	0.35		
7	2.3		
8	2.15		

Histogram

Defining a bin

Formally, you just count observations that fulfil a certain condition:

$$ext{count} = \sum_{i=1}^N \mathbb{1}\{ ext{lb} \leq x_i < ext{ub}\}$$

where $1\{\cdot\}$ is the indicator function, i.e.,

- it is 1 when the condition is fulfilled
- and 0 otherwise

Conditions for a histogram

$$ext{count} = \sum_{i=1}^N \mathbb{1}\{ ext{lb} \leq x_i < ext{ub}\}$$

- Choose the set of all (lb, ub)-pairs so that each observation is counted exactly once, i.e.,
 - Minimum and maximum of $x_i,\,i\in\{1,...,N\}$ are included
 - Bins are non-overlapping and there are no gaps
- Equal width bins are crucial for honest communication

Discrete data, i.e., integers

- Plotly defaults to treating them as continuous data
- Prerequisite for that being sensible: Data is ordered and gaps are meaningful (e.g., age in full years)
- If you need to treat them as categorical, you first count values and then make a bar chart from the resulting Series.