Precautionary Reserves and the Interbank Market

Ashcraft, McAndrews and Skeie

38th Konstanz Seminar

Discussed by Valeriya Dinger
Idea

• What is the paper about?

<table>
<thead>
<tr>
<th>Precautionary reserves</th>
<th>Interbank market</th>
</tr>
</thead>
</table>

• Ashcraft, McAndrews and Skeie employ the concept of precautionary reserves in constructing a theoretical model that explains a number of key stylized facts about fed funds market

• The model is based on frictions of small banks’ fed funds market participation
Earlier literature

• Earlier studies have modeled banks’ fed funds market behavior with mandatory reserve requirements

• Furfine (2000) introduces payment shocks into the analysis

• The recent literature concentrates on:
 - risk aversion (Furfine, 2001; Ashcraft and Bleakley, 2006)
 - search frictions (Ashcarft and Duffie, 2007)
 - timing frictions (synchronization) (McAndrews, 2002)
Background

• Key facts about the fed funds market:
 ▪ Small banks hold large excess reserves overnight
 ▪ Small banks lend large amounts to large banks overnight
 ▪ Small banks lend smaller proportions during the day
 ▪ Fed funds lending is huge relative to bank reserves
 ▪ High fed funds rate volatility in the late afternoon

• The model explains all these by introducing a single friction in the fed funds market
Key assumptions

• Payment shocks at 3 pm and 6 pm

• The assumed friction of the fed funds market:

- Small banks only lend at 3 pm and neither lend nor borrow at 6 pm.
Model

• Bank optimization problem

• Banks define their optimal holdings of precautionary reserves at t=6 pm are defined (to avoid discount window borrowing)

• Large banks know t=3 pm is the last chance to borrow from small banks and adjust their t=3 pm borrowing accordingly

• Small banks know they will not trade at t=6 pm and behave accordingly at t=3 pm
Results

- Small banks hold large excess reserves overnight
- Small banks lend large amounts to large banks overnight
- Small banks lend smaller proportions during the day
- High fed funds rate volatility in the late afternoon
- Fed funds lending is huge relative to bank reserves
The friction

• The paper motivates the friction with 3 key observations:
 - Small banks **borrow** less than large banks in the afternoon (stylized at 3pm)
 - Small bank **borrow** much less than large banks shortly before the market closes (stylized 6pm)
 - Small bank **lend** much less than large banks shortly before the market closes (stylized 6pm)
The friction …

• Do these facts represent a friction or are themselves the results of other market frictions

• A deeper discussion of the origin of these observed features of small banks’ market participation is needed

• In particular, why do small banks behave different from large banks in the late afternoon?
 ▪ higher perceived credit risk
 ▪ fixed costs of late market participation
 ▪ cooperation with correspondent banks
Minor comments

• A few times in the paper “size” is not actual banks size (total assets) but is proxied by:
 - the percentile of average send orders
 - the max t=6 pm payment shock size

• These are reasonable proxies but may confuse terminology: a ”small” bank may actually be a large one that does not exclusively rely on the federal payment system (although Fedwire is a major system but private alternatives exist: CHIPS)
...minor comments

- $F_3^s > M_3^s + M_3^l$ can partially explain why fed funds overnight lending can be multiples of the amount of aggregate reserve balances

- $F_3^s > M_3^s + M_3^l$ is derived by negative M_3^l

- The question is: is M_3^s high enough to justify the 2.3 trill daily fed funds lending relative to the 17.3 bill average aggregate reserves
...Fed funds borrowing

Probability of borrowing for Smallest Banks

Probability of borrowing for Largest Banks
...Fed funds lending