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We explore the learning process and behavior of an individual with unrealistically
high expectations (overconfidence) when outcomes also depend on an external funda-
mental that affects the optimal action. Moving beyond existing results in the literature,
we show that the agent’s beliefs regarding the fundamental converge under weak condi-
tions. Furthermore, we identify a broad class of situations in which “learning” about the
fundamental is self-defeating: it leads the individual systematically away from the cor-
rect belief and toward lower performance. Due to his overconfidence, the agent—even
if initially correct—becomes too pessimistic about the fundamental. As he adjusts his
behavior in response, he lowers outcomes and hence becomes even more pessimistic
about the fundamental, perpetuating the misdirected learning. The greater is the loss
from choosing a suboptimal action, the further the agent’s action ends up from optimal.
We partially characterize environments in which self-defeating learning occurs, and
show that the decisionmaker learns to take the optimal action if, and in a sense only if,
a specific non-identifiability condition is satisfied. In contrast to an overconfident agent,
an underconfident agent’s misdirected learning is self-limiting and therefore not very
harmful. We argue that the decision situations in question are common in economic
settings, including delegation, organizational, effort, and public-policy choices.

KEYWORDS: Overconfidence, learning, misspecified models, convergence, Berk–
Nash equilibrium.

1. INTRODUCTION

LARGE LITERATURES in psychology and economics suggest that in many situations, indi-
viduals have unrealistically positive beliefs about their traits or prospects, and researchers
have began to investigate the nature of this “overconfidence” and to study its implica-
tions for economic interactions.1 One important question concerning individuals with
overconfident or otherwise biased beliefs is how they update these beliefs when infor-
mation comes in. Indeed, classical results identify conditions under which learning leads
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1We use the term “overconfidence” to mean broadly any unrealistic beliefs, especially about ability or other
important personal characteristics, that lead a person to expect good outcomes. The same expression is often
used more specifically to denote overly narrow confidence intervals (Moore and Healy (2008)). We review
evidence for and theoretical work on overconfidence in Section 7.
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to correct beliefs (e.g., Savage (1954, Chapter 3)); more recent research explores ways in
which a biased learning process can lead to overconfident beliefs (e.g., Gervais and Odean
(2001), Chiang, Hirshleifer, Qian, and Sherman (2011), Jehiel (2017)).

In this paper, we investigate how overconfident individuals update not their overcon-
fident beliefs, but their beliefs about other decision-relevant variables. Moving beyond
existing results in the literature, we show that beliefs converge under weak conditions.
Furthermore, we identify a broad and economically important class of situations in which
an overconfident person’s inferences are self-defeating: they lead him systematically away
from the correct belief and toward lower performance. For example, if a team member is
overly full of himself and is hence disappointed by his team’s performance, he concludes
that his teammates are less talented or lazier than he thought. He responds by increasing
his control of the team, lowering team performance. He misinterprets this low perfor-
mance as reflecting even more negatively on his teammates, perpetuating the misdirected
learning further. Perversely, the greater is the loss from choosing a suboptimal action, the
further the agent’s action ends up from optimal. We partially characterize environments in
which self-defeating learning occurs, and show that the decisionmaker’s long-run behav-
ior is optimal if and only if a specific non-identifiability condition is satisfied. In contrast
to an overconfident agent, an underconfident agent’s misdirected learning is self-limiting
and therefore not very harmful.

We present our framework in Section 2.1. In each period t ∈ {1�2�3� � � �}, the agent
produces observable output qt =Q(et� a�φ)+εt , which depends on his action et , his abil-
ity or other output-relevant parameter a, an unknown fundamental φ, and a noise term
εt . We assume that Q is increasing in a and φ, and that the optimal action is increasing
in φ.2 The noise terms εt are independently and identically distributed mean-zero ran-
dom variables with a log-concave distribution that has full support on R. The agent uses
Bayes’ rule to update beliefs, and chooses the myopically optimal action in every period
(although in a special case, we analyze dynamically optimal actions as well). Crucially,
the agent is overconfident: while his true ability is A, he believes with certainty that it is
ã > A. Finally, for most of the paper we assume that the optimal action depends in weakly
opposite ways on ability and the fundamental—that is, it is weakly decreasing in ability.
This assumption is sufficient for generating self-defeating learning.

In Section 2.2, we argue that beyond team production, this reduced-form model cap-
tures a number of economically important situations in which individuals may have un-
realistic expectations. A principal may not know how intrinsically motivated his employ-
ees are, and hence what level of control or explicit incentives maximizes performance.
A person may not know how nice his partner or friend is, and hence how deferentially or
assertively he should act to elicit the best outcomes from the relationship. A student or
employee may not know the return to effort, and hence how much effort is optimal. Ad-
ditionally, a policymaker may not know the scale of underlying problems in the economy,
and hence what policy leads to the best outcomes.

Adapting Esponda and Pouzo’s (2016a) concept of Berk–Nash equilibrium to our set-
ting, in Section 2.3 we define a stable belief according to the intuitive consistency property
that—when taking the action that he perceives as optimal given his false belief—the av-
erage output the agent expects coincides with the average output he produces. Because
at a stable belief the agent has no reason to question his beliefs, it is where his beliefs can
be expected to converge. Motivated by this observation, in Sections 3, 4, and 6 we study
the properties of stable beliefs, assuming that beliefs converge there; and in Section 5, we

2As long as these effects are monotonic, the above directional assumptions are just normalizations.
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take up convergence. We assume that there is a unique stable belief, and we identify suffi-
cient conditions on the primitives for this to be the case (Proposition 1). This assumption
simplifies our statements regarding the properties of limiting beliefs, and is crucial for our
convergence proof.

In Section 3, we study the key properties of the agent’s learning process and limiting
beliefs, summarize a variety of casual evidence for our central mechanism, and discuss
economic implications. We establish that—as in the case of the overconfident team mem-
ber above—the agent’s learning process is self-defeating: if his initial action is not too
far from optimal, then the opportunity to change his action in response to what he learns
leads to more incorrect beliefs, and more suboptimal behavior, than if he could not change
his action (Proposition 2). Furthermore, limiting beliefs satisfy a surprising and perverse
comparative static: the more important it is for the agent to take the right action—that is,
the greater is the loss from a suboptimal action—the further his beliefs end up from the
truth, and the further his behavior ends up from optimal (Proposition 3). Intuitively, when
choosing a suboptimal action is more harmful, the agent hurts himself more through his
misguided learning. To develop a consistent theory of his observations, therefore, he must
become more pessimistic about the fundamental.

We also consider what happens if—similarly to a dissatisfied team member deciding
whether to replace his teammate—the agent can choose between the above task and an
outside option. Consistent with the literature on overconfidence, the agent might be too
prone to enter into and initially persist in the task. In contrast to received wisdom, how-
ever, our model predicts that the agent’s growing pessimism about the fundamental may
induce him to exit the task too easily (Proposition 4), and by implication to jump too much
between tasks. This prediction is consistent with the observation that many documented
effects of overconfidence in economic settings, such as the pursuit of mergers and innova-
tions by overconfident chief executive officers (CEOs) or the creation of new businesses
by overconfident entrepreneurs, pertain to new directions.

In Section 4, we ask what happens when our sufficient condition for self-defeating
learning—that the optimal action depends in opposite ways on ability and the funda-
mental—is not satisfied, and we argue that self-defeating learning still occurs if and only
if the optimal action depends sufficiently less on ability than on the fundamental. As a
conceptually interesting case, we show that long-run behavior is always optimal if, and in
a sense we will make precise only if, Q has the form V (e�S(a�φ))—that is, ability and
the fundamental are not separately identifiable (Proposition 5). This conclusion contrasts
with the lesson from classical learning settings that non-identifiability hinders efficient
learning. Intuitively, because ability and the fundamental do not have independent ef-
fects on output, the agent’s misinference about the fundamental can fully compensate his
overconfidence, and hence in the long run overconfidence does not adversely affect him.
If his team’s output depends on his effort and the team’s total ability, for instance, the
agent correctly infers total ability, and chooses effort optimally.

In Section 5, we show that if Q satisfies some regularity conditions, then the agent’s
beliefs converge to the stable belief with probability 1 (Theorem 1). Furthermore, un-
der the additional assumption that Q is linear in φ, beliefs converge to the stable belief
even when actions are dynamically optimal (Theorem 2). To prove convergence, we can-
not apply results from the statistical learning literature, such as those of Berk (1966) and
Shalizi (2009), where the observer does not choose actions. Worse, beliefs constitute a
function-valued process, whose transitions are, due to the endogeneity of the agent’s ac-
tion, driven by shocks that are neither independently nor identically distributed. Little
is known in general about the asymptotic behavior of the posterior distribution in such
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infinite-dimensional models when the observations are not independently and identically
distributed (i.i.d.), even when the model is correctly specified (e.g., Ghosal and van der
Vaart (2007, pp. 192–193)). To get a handle on the problem, we employ a method that to
our knowledge has not been used in the literature on learning with misspecified models.
We focus on the agent’s extremal beliefs: what levels of the fundamental does he in the
limit conclusively rule out? Given the structure of our problem, this puts bounds on his
long-run actions, which restrict his extremal beliefs further. Using this contraction logic,
we show that the agent rules out everything but a single point.

Knowing that beliefs converge with probability 1 allows us to make another economi-
cally relevant point: given that in the long run the agent correctly predicts average output,
his beliefs pass a specification test based on comparing the empirical distribution of noise
terms he estimates to the true distribution (Proposition 6). In this sense, the agent’s over-
confidence is—even with infinite data—stable.

In Section 6, we analyze variants of our framework using a simple output function of the
formQ(e�a�φ)= a+φ−L(e−φ) for a symmetric loss function L. We consider a setting
in which the agent is initially uncertain about a, and observes—in addition to output—a
noisy signal of his relative contribution to output, a − (φ − L(et − φ)). It being highly
subjective, however, the agent observes his own contribution with a positive bias. As a
result, he develops overconfidence about a, and his limiting belief about φ is identical to
that in our basic model (Proposition 7).

We also study underconfident agents (for whom ã < A), and identify an interesting
asymmetry: while an overconfident agent’s limiting utility loss from misguided learning
can be an arbitrarily large multiple of his overconfidence ã−A, an underconfident agent’s
limiting utility loss is bounded by his underconfidence A− ã (Proposition 8). To under-
stand the intuition, consider an underconfident agent who starts off with the correct mean
belief about the fundamental. Upon observing higher levels of output than he expected,
the agent concludes that the fundamental is better than he thought, and he revises his
action. The resulting utility loss, however, leads him to reassess the optimistic revision of
his belief, bringing his beliefs back toward the true fundamental. Hence, his misinference
regarding the fundamental—which with overconfidence was self-reinforcing—is now self-
correcting.

In Section 7, we relate our paper to the two big literatures it connects, that on the impli-
cations of overconfidence and that on learning with misspecified models. From a method-
ological perspective, our model is a special case of Esponda and Pouzo’s (2016a) frame-
work for games when players have misspecified models. Because we have an individual-
decisionmaking problem with a specific structure, we can derive novel and economically
important results that are not possible in the general framework. In particular, to our
knowledge our paper is the first to study the implications of overconfidence for inferences
about other decision-relevant variables, and how these inferences interact with behavior.
We are also unaware of other papers that characterize when self-defeating learning does
versus does not occur in an individual-decisionmaking context.

In Section 8, we conclude by discussing some potential applications of our framework
for multi-person situations.

2. LEARNING ENVIRONMENT

In this section, we introduce our basic framework, outline possible economic applica-
tions of it, and perform a few preliminary steps of analysis.
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2.1. Setup

In each period t ∈ {1�2�3� � � �}, the agent produces observable output qt =Q(et� a�Φ)+
εt ∈ R, where et ∈ (e� e) is his action, a ∈ R is his unchanging ability, Φ ∈ (φ�φ) is an un-
observable unchanging fundamental, and εt is random noise. Throughout the paper, we
make the following basic assumptions. First, the state Φ is drawn from a continuous prior
distribution π0 : (φ�φ)→ R>0 with finite moments and bounded positive density every-
where on (φ�φ), and we suppose that the agent has the correct prior belief π0. Second,
the εt are i.i.d. continuously distributed mean-zero random variables. Denoting their cu-
mulative distribution function by F and their strictly positive density by f : R → R>0, we
impose a version of log-concavity: the second derivative of log f is strictly negative and
bounded from below.3 Third, output satisfies some regularity properties and normaliza-
tions: Q is twice continuously differentiable, with it and its derivates having polynomial
growth inφ, and (i)Qee < 0 andQe(e�a�φ) > 0>Qe(e�a�φ) for all a�φ, (ii)Qa�Qφ > 0,
and (iii) Qeφ > 0.4 Part (i) guarantees that there is always a unique myopically optimal ac-
tion. Part (ii) implies that output is increasing in ability and the fundamental, and part (iii)
implies that the optimal action is increasing in the fundamental. As long as the effects im-
plied by parts (ii) and (iii) are monotonic, our directional assumptions on them are just
normalizations, and do not affect the logic and message of our results. Indeed, if any of
these derivatives was negative, we could change variables to reverse the orientation of a,
φ, or e, and obtain a model in which the same derivative is positive.

We assume for most of the paper that the agent chooses his action myopically in each
period, aiming to maximize that period’s expected output. This assumption is irrelevant
for our analysis of the properties of stable (point) beliefs in Sections 3, 4, and 6. We do
use the assumption for our main convergence result, although under stronger conditions
we establish convergence also when the agent optimizes dynamically.

Crucially, we posit that the agent is overoptimistic about his ability: while his true ability
is A, he believes with certainty that it is ã > A. Let Δ= |A− ã| denote the degree of the
agent’s overconfidence. Given his inflated self-assessment, the agent updates his beliefs
about the fundamental in a Bayesian way. To guarantee that the agent can always find a
fundamental that is consistent with the average output he produces, we assume that for
all e, there is a φ̃ ∈ (φ�φ) such that Q(e�A�Φ)=Q(e� ã� φ̃). Note that because Qφ > 0,
this φ̃ is unique.

We specify the agent’s belief about ability as degenerate for two main reasons. Techni-
cally, the assumption generates a simple and tractable model of persistent overconfidence,
allowing us to focus on our research question of learning about other variables. More
importantly, we view an assumption of overconfident beliefs that are not updated down-
ward as broadly realistic. Quite directly, such an assumption is consistent with the view of
many psychologists that individuals are extremely reluctant to revise self-views downward
(e.g., Baumeister, Smart, and Boden (1996)). More generally, such an assumption can be

3We think of strict bounded log-concavity as an economically weak restriction: it guarantees that an increase
in output increases the agent’s belief about the fundamental in the sense of the monotone likelihood ratio
property, and that any signal is nontrivially informative. Examples of distributions that have full support on
R and satisfy the assumption include the normal and logistic distributions. Technically, it also ensures that
subjective beliefs are well defined and have finite moments after any history (see Lemma 3 in the Appendix).

4A function J(e�a�φ) is of polynomial growth in φ if for any e�a, there are κ�k�b > 0 such that
|J(e�a�φ)| ≤ κ|φ|k + b for all φ. This assumption ensures that expected output and its derivatives exist af-
ter any history (see Proposition 9 in the Appendix).
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thought of as a stand-in for forces explored in the psychology and economics literatures
(but not explicitly modeled here) that lead individuals to maintain unrealistically positive
beliefs. To show that our model is consistent with this perspective, in Section 6.1 we allow
for the agent to be uncertain about a, and show that a biased learning process leads to a
setting essentially equivalent to ours.5

To complete the description of our model, we state a sufficient condition for self-
defeating misguided learning to occur.

ASSUMPTION 1—Sufficient Condition for Self-Defeating Learning: We have
sgn(Qea) �= sgn(Qeφ).

Note that with the normalization Qeφ > 0, Assumption 1 is equivalent to Qea ≤ 0. This
assumption plays a central role in our paper: in Section 3, we explore the implications of
misguided learning under Assumption 1, and in Section 4, we study what happens when
Assumption 1 is not satisfied. Given our results—especially the analysis and discussion in
Section 4—economically we think of Assumption 1 as allowing for two possibilities:

(i) The optimal action is almost insensitive to ability, at least relative to how sensitive
it is to the fundamental (Qea ≈ 0 �Qeφ). This is likely to be the case in many applications
in which the agent is looking to fine-tune a decision—such as the design of a public policy
or organizational incentive system—to circumstances he views as largely external to his
ability.

(ii) In small-scale economic settings, however, the optimal action may be nontrivially
sensitive to ability. Then, Assumption 1 requires that the optimal action depends in oppo-
site ways on ability and the fundamental. This assumption naturally holds for delegation,
as the optimal extent of delegation depends in opposite ways on the decisionmaker’s abil-
ity and his teammate’s ability. In contrast, the assumption does not hold if output always
depends on ability and the fundamental in similar ways, such as when it depends on a+φ.

The following two parametric examples are useful to keep in mind when developing
our results.

EXAMPLE 1—Loss-Function Specification: The output function has the form

Q(e�a�φ)= a+φ−L(e−φ)� (1)

where e=φ= −∞, e=φ= ∞, a ∈ R, and L is a symmetric loss function with L(0)= 0
and |L′(x)| < k < 1 for all x. The agent observes output in each period, but does not
observe output gross of the loss L(et −Φ) nor the loss itself. Economically, this specifica-
tion captures a situation in which the agent wants to adjust his action to some underlying
state of the world. Researchers have used similar, loss-function-based, specifications in
Crawford and Sobel (1982) and the large literature on cheap talk, expert advice, and
organizations (e.g., Alonso, Dessein, and Matouschek (2008)) following it, as well as in
Morris and Shin (2002) and the subsequent literature on coordination.

5The model in Section 6.1 replaces a misspecified point belief about a with misspecified learning about a,
and hence is also not a fully rational model. But we view the misspecified nature of the agent’s learning as
a feature, not a bug: any model in which the agent is correctly specified and keeps learning until he has the
correct belief about his ability contradicts observed widespread overconfidence among individuals who have
had plenty of opportunity to learn about themselves.
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EXAMPLE 2—Effort Specification: The output function has the form

Q(e�a�φ)= (a+ e)φ− c(e)� (2)

where e = φ = 0, e = φ = ∞, a > 0, and c is a strictly convex cost function with
c(0) = c′(0) = 0, and lime→∞ c′(e) = ∞. In this example, the action e is effort, and the
fundamental φ determines the return to effort. The agent observes output, and may also
observe output gross of the cost of effort; since he knows his level of effort, the two ob-
servations provide the same information to him.

Consistent with our motivating phenomenon of overconfidence, in describing and dis-
cussing our model and results we interpret a as ability. But more broadly, a could stand
for any variable that leads the agent to be steadfastly and unrealistically optimistic about
his prospects. For example, he may have overly positive views about his country or orga-
nization, or, as in the case of policymakers below, he may have overly optimistic beliefs
about the technology generating output.

2.2. Applications

In this section, we argue that several economically important settings fit our model in
Section 2.1. In each of these settings, other individuals are also involved, and for a full
account it is necessary to model their behavior as well. Nevertheless, to focus on a single
agent’s inferences and behavior, we abstract from the decisions of others, and model their
effect only in reduced form.

APPLICATION 1—Delegation: The decisionmaker is working in a team with another
agent and must decide how much of the work to delegate. The expected output of
the team is Q(e�a�φ) = au(e) + φv(e), where e ∈ (0�1) is the proportion of the job
the decisionmaker delegates, φ is the teammate’s ability, and a�φ > 0, u(e)� v(e) > 0,
u′(e)�u′′(e)� v′′(e) < 0, and v′(e) > 0. Then, the higher is the decisionmaker’s ability and
the lower is the teammate’s ability, the lower is the optimal extent of delegation.

APPLICATION 2—Control in Organizations: A principal is deciding on the incentive
system to use for an agent who chooses two kinds of effort, overt effort xo (e.g., writing
reports) and discretionary effort xd (e.g., helping others in the organization). The prin-
cipal can incentivize overt effort, for instance through monitoring (e.g., requiring and
reading reports) or explicit incentives written on an objective signal of overt effort. For
simplicity, we assume that the principal chooses xo directly. Consistent with the litera-
ture on multitasking starting with Holmström and Milgrom (1991), we also assume that
discretionary effort is a decreasing function of overt effort. In addition, we suppose that
discretionary effort is an increasing function of the agent’s intrinsic motivation φ. Writing
discretionary effort as xd = xd(xo�φ), the principal’s profit is R(a�xo�xd(xo�φ)), where
a is the quality of the organization, the principal’s ability, or other factor affecting overall
productivity. Supposing that the optimal overt effort is decreasing in intrinsic motivation,
this model reduces to our setting with Q(e�a�φ)=R(a�−e�xd(−e�φ)).6�7

6One simple functional form capturing our discussion is R(a�xo�xd(xo�φ)) = a + xo + xd(xo�φ), where

the discretionary effort function satisfies ∂xd(xo�φ)
∂xo

< 0� ∂x
d(xo�φ)
∂φ

> 0, and ∂2xd(xo�φ)
∂xo∂φ

< 0.
7An alternative interpretation of the same framework is that xo is the agent’s “mechanical” input into the

organization, xd is his “creative” input, and φ is his ability. In this interpretation, creative input depends on
creative effort—which is a substitute to overt effort—and ability.



1166 P. HEIDHUES, B. KŐSZEGI, AND P. STRACK

APPLICATION 3—Assertiveness Versus Deference: The decisionmaker is in a personal
relationship—such as partnership or friendship—with another individual. The output q
is how “nicely” the other person is acting, including how willing she is to comply with
the agent’s requests, how much of the unpleasant joint work she does, and so forth. The
fundamental φ is how nice the other person is, and e is how deferentially the agent acts
toward her. This action could range from being extremely deferential (high e) to being
extremely aggressive or even violent (low e). Finally, a stands for the agent’s talent or
attractiveness. Output is determined according to the loss-function specification of Ex-
ample 1: the partner tends to act more nicely if she is a nicer person, if the agent is more
talented or attractive, and if the agent’s behavior is more attuned to the partner’s niceness.

Of course, the deference or aggressiveness of an agent, or the niceness of his
partner’s behavior, are not typical outcomes studied by economists. But these are
clearly observable—with noise—to individuals, and manifestations—at least of extreme
choices—might be observable to researchers as well.8

APPLICATION 4—Work and Return to Effort: The agent is an employee or student who
must decide how hard to work at his job or school. He periodically observes the output of
his efforts, such as promotions, grades, or other rewards, but he does not know the return
to effort. Output is given by the effort specification in Example 2.

APPLICATION 5—Public Policy: A policymaker aims to maximize the performance of
some aspect of the economy, q, which depends on his policy choice e, a fundamentalφ, his
ability or his party’s or country’s potential a, and noise according to the loss-function spec-
ification in Example 1. In particular, output q could be the well-being of the population
in relation to drug-related crime, φ could be the underlying condition of the population
with respect to drug use, and e could be the degree of drug liberalization. The extent of re-
strictions must be optimally aligned with underlying conditions to minimize drug-related
crime. In a completely different example, q could represent the overall performance of
the economy, e could represent the country’s openness toward other countries in trade,
exchange of ideas, and movement of people, and φ could represent the optimal degree of
integration with the world economy.9

One may argue that since politicians are heavily scrutinized and receive a lot of feed-
back, they should learn about themselves and not be overconfident. Yet by extensively
documenting and studying overconfidence in another high-flying and heavily scrutinized
group, top CEOs, Malmendier and Tate (2005) and the literature following it have shown
that feedback does not necessarily eliminate overconfidence. Hence, while we are un-
aware of direct compelling evidence that politicians are overconfident, it is plausible that
many are. In addition, a policymaker may have unrealistic expectations not only because
of his trust in himself, but also because of his unrealistic beliefs about policy tools. He
may, for instance, have false beliefs about how much of an increase in economic growth
or reduction in crime can be achieved with the right policy.

2.3. Preliminaries

Let e∗(φ) denote the optimal action when the fundamental is φ. We define the surprise
function as

�(φ)=Q(e∗(φ)�A�Φ
)−Q(e∗(φ)� ã�φ

)
� (3)

8For instance, Card and Dahl (2011) study the role of emotions in family violence using police records.
9This example was suggested to us by Francesco Squintani.
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If the agent believes the fundamental to be φ, then he takes the action e∗(φ), and there-
fore expects average output to beQ(e∗(φ)� ã�φ). In reality, he obtains an average output
ofQ(e∗(φ)�A�Φ), so that �(φ) represents the average surprise he experiences. Applying
Esponda and Pouzo’s (2016a) Berk–Nash equilibrium—their solution concept for games
when players may have misspecified models—to our setting, yields the following defini-
tion.10

DEFINITION 1: A stable belief is a Dirac measure on a fundamental φ∞ at which the
agent is not surprised by average output, that is, �(φ∞)= 0.

Given our assumption of a full-support prior, a stable belief is the only type of point
belief that the agent may find no reason to abandon. If the agent holds a stable belief
about the fundamental, then he takes an action such that he produces on average exactly
as much as he expects, confirming his belief. In contrast, if the agent holds any other point
belief about the fundamental, then he takes an action such that he obtains a nonzero
average surprise, accumulating evidence that the fundamental is something else. As a
result, one would expect the agent’s beliefs to converge to a stable belief, if one exists.

Motivated by these observations, in the rest of the paper we perform two distinct types
of analysis. In Sections 3, 4, and 6, we study properties of the agent’s stable beliefs, assum-
ing that his beliefs converge to a stable belief. And in Section 5, we confirm in the central
case of our model that—under somewhat stronger technical assumptions—beliefs indeed
converge to a stable belief.

For our analysis, we assume that there is a unique stable belief. Although our model’s
mechanism and insights regarding the properties of stable beliefs hold more generally,
this assumption simplifies many of our statements. In addition, the assumption is crucial
for our convergence proof. We identify sufficient conditions for a unique stable belief as
follows.

PROPOSITION 1: There is a unique stable belief if any one of the following statements
holds:

(i) Derivative Qa is bounded, derivative Qφ is bounded away from zero, and overconfi-
dence (ã−A) is sufficiently small.

(ii) Output Q takes the form in Example 1.
(iii) Output Q takes the form in Example 2 and c′′′(e)≥ 0.

3. MAIN MECHANISM AND ECONOMIC IMPLICATIONS

In this section, we lay out the main forces in our model, and discuss economic impli-
cations. For this purpose, we suppose that Assumption 1 holds. Although we state our
results for general Q, throughout we use the loss-function specification of Example 1 for
illustration. For these illustrations, we normalize A=Φ= 0, and suppose that the prior
on φ is symmetric and has mean equal to the true fundamental.

3.1. Self-Defeating Learning

3.1.1. Example 1. Fixed Action

As a benchmark case, we suppose for a moment that et is exogenously given and con-
stant over time at level e= e∗(Φ)= 0. Then, average output converges toQ(e�A�Φ)= 0.

10Lemma 7 in the Appendix shows formally that a stable belief and the corresponding optimal action con-
stitute a Berk–Nash equilibrium, and that every pure-strategy Berk–Nash equilibrium is of that form.
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FIGURE 1.—Limiting beliefs with fixed action.

The agent, in turn, believes that if the state is φ, then average output is Q(e� ã�φ) =
ã+ φ− L(e− φ) = ã+ φ− L(φ). To explain an average output of zero, therefore, he
comes to believe that the fundamental is φe∞ satisfying ã+φe∞ −L(φe∞)= 0.

Figure 1 illustrates. The agent’s belief about the fundamental (φ) as well as his action
(e) are on the horizontal axis, and output is on the vertical axis. The agent’s limiting belief
is given by the intersection of the loss function through the origin and the line ã+φ: at
this point, the loss from taking the (in his mind) suboptimal action exactly explains the
average output of zero.

Clearly, φe∞ < Φ. Intuitively, the agent is surprised by the low average output he ob-
serves, and concludes that the fundamental is worse than he thought. This tendency to
attribute failures to external factors provides a formalization of part of the self-serving
attributional bias documented by Miller and Ross (1975) and the literature following it.
Indeed, one account of the bias is that individuals have high expectations for outcomes,
and update when outcomes fall short (Tetlock and Levi (1982), Campbell and Sedikides
(1999)). But while the agent’s inference about the fundamental is misguided—it takes
him away from his correct prior mean—in the current setup with a fixed action it is harm-
less or potentially even beneficial. For instance, because the agent now correctly predicts
average output, he makes the correct choice when deciding whether to choose this task
over an outside option with a given level of utility.11

3.1.2. Example 1. Endogenous Action

Now suppose that the agent chooses his action optimally given his beliefs. We illustrate
the learning dynamics in Figure 2, again putting the agent’s belief (φ) as well as his action
(e) on the horizontal axis and putting output on the vertical axis. The “average output pos-
sibilities curve” Q(e�A�Φ)= −L(e) represents true average output as a function of the
agent’s action, and the “perceived average achievable output line”Q(e∗(φ)� ã�φ)= ã+φ
represents the average output the agent believes is reachable as a function of the funda-

11As a simple implication, if the agent’s high belief about ability is due to ego utility as in Kőszegi (2006), then
misdirected learning allows him to have his cake and eat it too: he can maintain the pleasure from believing
that his ability is high, while not suffering any losses associated with incorrect beliefs.
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FIGURE 2.—Learning with endogenous action.

mental φ. Since e∗(φ)=φ, the agent’s stable belief assigns probability 1 to the intersec-
tion of the two curves. It is apparent from the figure that the limiting belief is further
than in the case of exogenously fixed actions above. Hence, learning is self-defeating in
a basic sense: the fact that the agent can optimize given his learning makes his learning
even more inaccurate, with the corresponding bad effect on his actions. In particular, the
agent’s limiting per-period utility loss relative to the optimal action can be an arbitrarily
large multiple of his overconfidence Δ.

How does the agent drive himself into such a highly suboptimal situation? We give a
heuristic argument, assuming that the agent updates his action increasingly rarely, and
pretending that his average output and beliefs reach their limit in finite time after each
update. Suppose that for a long time, the agent chooses the optimal action given his initial
beliefs, e= 0, and ends up with an average output of zero. Then, the belief φ1 he develops
about the fundamental is the same as in the case of exogenously fixed actions: it is given
by the intersection of the loss function starting at (0�0) (the higher dashed curve L(φ))
and the perceived average achievable output line.

Now suppose that the agent updates his action, and for an even longer time keeps tak-
ing the optimal action given his new belief, e = φ1. Then, he ends up with an average
output of −L(φ1). To identify the φ2 consistent with this average output, we draw a copy
of the loss function starting from his current action-average output location (the lower
dashed curve L(φ − φ1) − L(φ1)), and find the intersection of this curve with the per-
ceived average achievable output line. This is his new belief φ2 (which, therefore, satisfies
ã+φ2 − L(φ2 −φ1) = −L(φ1)). Continuing with this logic gives a sense of the agent’s
learning dynamics, and illustrates why he ends up at φ∞.
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We briefly discuss how our prediction of self-defeating learning can manifest itself in the
applications outlined in Section 2.2. In the context of manager–subordinate relationships
(an example of Application 1), Manzoni and Barsoux (1998, 2002) describe a common
problem—the “set-up-to-fail syndrome”—that is due to a dynamic similar to our mecha-
nism. When the subordinate performs below expectations, the manager reacts by increas-
ing control and assigning less inspiring tasks. This undermines the employee’s motivation,
lowering performance and eliciting further negative reactions from the manager.

In the context of organizations (Application 2), the notion of dysfunctional vicious
circles has been described in sociology (March and Simon (1958), Crozier (1964),
Masuch (1985)). Management is dissatisfied with the performance of the organization
and attempts to improve things with increased monitoring, control, or other bureaucratic
measures. These measures backfire, for instance, because they alienate employees. Man-
agement reacts by tightening bureaucratic measures further.

In the context of personal relationships (Application 3), our model provides one possi-
ble mechanism that links unrealistically high self-views to aggressive behavior. Although
it had been hypothesized that aggression is associated with low self-esteem, Baumeister,
Smart, and Boden (1996) and the subsequent literature reviewed by Lambe, Hamilton-
Giachritsis, Garner, and Walker (2018) argue that aggressive individuals tend to have high
self-esteem that is not based on compelling facts. Our model says that in this situation,
the agent comes to feel that his partner does not treat him with the respect he deserves
from a nice partner, and reacts by becoming more assertive. As a result of this misguided
reaction, he receives even less respect from his partner, leading him to react even more
strongly. The relationship deteriorates, and potentially ends up abusive and/or violent.12

Although we have not found discussions that are reminiscent of our mechanism in our
other applications, self-defeating interpretations of worse-than-expected outcomes also
seem plausible in these settings. In the context of work or study effort (Application 4),
when a person with unrealistic expectations does not obtain the rewards he expects, he
concludes that the return to talent and effort is lower than he thought, and he lowers his
effort in response. But because effort is important, this lowers his output more than he
expects, leading him to become even more pessimistic about the return to effort. As a
case in point, our mechanism may contribute to the widespread underestimation of the
returns to college education documented by Bleemer and Zafar (2018), but more research
is necessary to determine the extent and nature of its role.

In an interesting contrast to our model, existing work on overconfidence, such as
Bénabou and Tirole (2002), Gervais, Heaton, and Odean (2011) and de la Rosa (2011),
has emphasized that if ability and effort are complements, then overconfidence can bene-
fit a person by leading him to exert higher effort. Our model says that if ability and effort
have separable effects, or even if they are complements, but the complementarity is low,
then exactly the opposite is the case.

In the context of the war on drugs (an example of Application 5), a policymaker may
interpret drug problems as indicating that he should crack down on drugs, only to make
the problem worse and the reaction harsher. In the context of nationalism, policymakers
(or citizens) may react to disappointing economic outcomes by concluding that globaliza-
tion does not hold as much promise as they had hoped. This leads the country to adopt

12The mechanism that Baumeister and coauthors describe verbally is somewhat different from ours. They
hypothesize that violence serves as a way for a person to protect his unrealistically high self-views when these
views are threatened by an outsider. While this is consistent with our mechanism if we interpret a “threat”
as treating the agent with less respect than he believes he deserves, the relationship of the two mechanisms
warrants further research.
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more nationalistic and protectionist policies, exacerbating the problem and hardening the
conclusion that globalization is a failure.

3.1.3. General Q

We now state the self-defeating nature of learning formally and for general Q.

PROPOSITION 2: Suppose Assumption 1 holds. If the agent’s action is exogenously fixed
at e ≥ e∗(Φ), then his beliefs converge to a Dirac measure on a point φe∞ satisfying φ∞ <
φe∞ <Φ.

Proposition 2 implies that if the agent starts off with an action at or above the optimal
action, then the opportunity to change his action in response to his inferences leads to
more incorrect long-run beliefs than if he could not change his action. By continuity, the
same is the case if his initial action is below but close to the optimal action. Of course, the
self-defeating nature of learning also implies that if the initial action is not too far from
the optimal action, then the opportunity to update his action lowers the agent’s long-run
average utility.

We conclude this section by illustrating in the loss-function specification that the direc-
tional assumptions we have made on the effect of the fundamental on output and the op-
timal action (Qφ�Qeφ > 0) are indeed irrelevant for the logic of our results. First, suppose
that the production function is of the form Q(e�a�φ)= a−φ−L(e−φ), so that an in-
crease in the fundamental lowers expected output. As Figure 3 makes clear, this leaves the

FIGURE 3.—Learning when the fundamental lowers output.
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logic—including that the agent’s learning is self-defeating and can leave his beliefs arbi-
trarily far from the truth relative to Δ—completely unchanged: the average output possi-
bilities curve is still −L(e), and the perceived average achievable output line is now ã−φ,
so the mirror image of our previous analysis applies. Consider also the possibility that the
optimal action depends negatively on the state (Qeφ < 0):Q(e�a�φ)= a+φ−L(e+φ).
With the trivial change of variables φ′ = −φ, this is equivalent to the case above, so once
again the same analysis and the same insights result.

3.2. The Importance of Being Right

3.2.1. Example 1

Because it provides a surprising and potentially testable prediction of our model, we
consider the comparative statics of stable beliefs with respect to the loss function. An
increase in the loss function increases the agent’s incentive to act in accordance with
the fundamental. His action responds in an unfortunate way: by ending up further from
the fundamental. If the loss function shifts up, then the curve −L(e) in Figure 2 shifts
down, and the stable belief φ∞ therefore moves to the left. Intuitively, a steeper loss
function means that the agent hurts himself more through his misinferences. To develop
a consistent theory of his observations, therefore, he must become more pessimistic about
the world.

3.2.2. General Q

To generalize the above result to arbitrary production functions, we define

R(a�φ)=Q(e∗(a�φ)�a�φ
)
�

L(e�a�φ)=Q(e∗(a�φ)�a�φ
)−Q(e�a�φ)�

(4)

and observe that Q(e�a�φ) = R(a�φ) − L(e�a�φ). Intuitively, R(a�φ) is the average
achievable output given a and φ, and L(e�a�φ) is the loss relative to the achievable
output due to choosing a suboptimal action. We compare two technologies Q1 and Q2

with corresponding e∗
1, e∗

2, R1, R2, L1, and L2.

PROPOSITION 3: Suppose Assumption 1 holds, e∗
1(a�φ) = e∗

2(a�φ) and R1(a�φ) =
R2(a�φ) for all a�φ, and L1(e�a�φ) < L2(e�a�φ) for all a�φ�e �= e∗(a�φ). Then, the
agent’s stable belief is further below the true fundamental Φ under technology Q2 than under
technology Q1.

The key step in the proof of Proposition 3 is that an increase in the loss function de-
creases the surprise function. An increase in the loss function means that the agent hurts
himself more through his misinference-induced suboptimal behavior, and this must mean
that he is more negatively surprised by his average output. Additionally, a downward shift
in the surprise function lowers the agent’s stable belief.

3.3. Outside Options

In the above model, we have assumed that the agent participates in the task in every
period regardless of his beliefs. It is natural to consider an environment in which he has an
outside option, such as another task he could perform. In the manager–employee setting,
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for instance, a manager can keep working with the current employee, or he can fire the
employee and reopen or discontinue the position.

Let the utility of the outside option be u. We suppose that the agent correctly under-
stands u, and discuss the implications of relaxing this assumption below. We denote by Φ̄
the prior mean of the fundamental, and by φ̄∞ the stable belief when the fundamental
is Φ̄. Let ut = maxe

∫
Q(e� ã�ψ)πt−1(ψ)dψ be the utility the agent assigns to the task ac-

cording to the belief he holds at the beginning of period t, πt−1. The agent chooses the out-
side option in period t if and only if ut < u. We assume that Q(e∗(φ̄∞)� ã� φ̄∞) < u < u1,
which is the situation in which interesting new issues arise. As Proposition 4 below shows,
in this case the overconfident agent starts off by choosing the task, but as the prior be-
comes sufficiently concentrated, the probability that he eventually switches to the outside
option approaches 1.

There are then two cases defined by how a realistic agent behaves. If u >maxe
∫
Q(e�A�

ψ)π0(ψ)dψ, then a realistic agent would not enter the task in the first place, so an over-
confident agent’s entry into it and his initial persistence in it are both suboptimal. The
prediction that overconfident individuals—overestimating their ability to perform well—
are more likely to enter into and persist in ability-sensitive tasks is consistent with common
intuition and evidence from psychology as well as economics. Overconfidence is often in-
voked as one explanation for why many new businesses fail in the first few years, and
indeed Landier and Thesmar (2009) find that entrepreneurs of small startups have over-
confident expectations about future growth. Similarly, several studies suggest that CEO
overconfidence is associated with a higher likelihood of pursuing risky actions, such as
making acquisitions (Malmendier and Tate (2008)) and undertaking innovation (Galasso
and Simcoe (2011), Hirshleifer, Low, and Teoh (2012)). And persisting in tasks (often
for too long) is regarded as one of the main characteristics of overconfidence (McFarlin,
Baumeister, and Blascovich (1984), for example).

More novel and surprising insights emerge if u <maxe Q(e�A� Φ̄).

PROPOSITION 4: Suppose that Qφ < κφ and Q(e∗(φ̄∞)� ã� φ̄∞) < u <maxe Q(e�A� Φ̄).
As the variance of π0 approaches 0:

(i) The probability that the overconfident agent eventually switches to and then sticks with
the outside option approaches 1.

(ii) The probability that a realistic agent ever chooses the outside option approaches 0.

Given that the outside option is relatively poor, the agent should start off choosing the
task, and given that the prior variance is small, sticking with the task is likely to be the
rational strategy. Yet the overconfident agent is likely to suboptimally give up on the task.
Ironically, therefore, the agent stops performing the task because he overestimates his
ability to do well in it. Intuitively, he is more prone to exit than a realistic agent because
his negative inferences about the fundamental eventually negate his overconfidence.

Importantly, an overconfident agent is prone to overestimate not only output in the
current task, but—in as much as it depends in part on ability—also the outside option u.
Such overestimation exacerbates the tendency to exit the task, and can generate interest-
ing dynamics when there are multiple types of alternative tasks for the agent to choose.
The logic of our model suggests that the agent first seeks out another ability-sensitive task
in which he believes a different fundamental determines outcomes, and then successively
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jumps from one such task to the next. And once he runs out of these tasks, he chooses a
less ability-sensitive task and sticks with it.13

The prediction that overconfidence leads individuals to eventually quit superior tasks,
to jump too much between tasks, and to eventually prefer less ability-sensitive tasks, con-
trasts with the typical view on the implications of overconfidence. While we have not
found direct evidence for this prediction, it is consistent with the observation that many
documented effects of overconfidence in economic settings, such as the tendency of over-
confident CEOs to undertake mergers or innovations, pertain to the pursuit of new direc-
tions rather than to persistence in old directions.

Our result that an overconfident agent jumps between tasks suggests one possible rea-
son for the persistence—though not for the emergence—of overconfidence. Since the
agent often abandons tasks and prefers tasks for which previous learning does not apply,
he can keep updating mostly about external circumstances, slowing down learning about
his ability.

4. WHEN LEARNING IS NOT DETRIMENTAL

In Section 3, we have shown that self-defeating learning—whereby the agent’s response
to his misguided inferences leads to even more misguided inferences and even more sub-
optimal behavior—always occurs under Assumption 1. We now discuss what happens
when Assumption 1 is not satisfied, allowing us to partially characterize the conditions
that facilitate self-defeating learning.

Suppose, therefore, that Qea > 0, so that the optimal action is strictly increasing in
ability. To understand the key issue, suppose also that the agent starts off with a belief
that is concentrated around the true fundamental. Then, because he is overconfident
and Qea > 0, his initial action is too high. As in the rest of our analysis, the surpris-
ingly low average output he observes leads him to revise his belief about the fundamental
downward—and, as a consequence, to choose lower actions. Because his initial action was
too high, this adjustment is in the right direction. We then have two cases. It is possible
that in the limit misdirected learning increases output, so that self-defeating learning does
not occur. It is, however, also possible that misdirected learning lowers the action below
optimal, at which point the logic by which further learning occurs is analogous to that in
Section 3. Then, self-defeating learning may occur: any further negative inference about
φ leads the decisionmaker to choose lower actions, lowering output and reinforcing his
negative inference.

As a conceptually interesting question, as well as to say more about when each of the
above two cases obtains, we ask when a misspecified agent’s long-run behavior is optimal.
Call the action that is optimal given the unique stable belief the stable action.

PROPOSITION 5: The following statements are equivalent:
(i) For any A, ã, and Φ, the agent’s stable action is optimal (i.e., maximizes true expected

output).
(ii) There is a function V (e�S(a�φ)) such that (a) for any A, ã, and Φ, the agent’s

stable action is identical to that with the output function Q(e�a�φ) = V (e�S(a�φ)), and
(b) VS�Sa� Sφ > 0, and for any a, φ, and ã, there is a unique φ′ satisfying S(a�φ)= S(ã�φ′).

13A related point to ours is made in a bargaining context by Bénabou and Tirole (2009), who show that an
individual may leave a productive partnership in part because he overestimates his outside option. Our model
predicts that the agent may well exit even if he correctly understands the outside option. As a result, he may
exit even if no ability-sensitive alternative tasks are available.
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Proposition 5 says that agents with wrong beliefs about ability always (i.e., for any A,
ã, and Φ) behave optimally in the long run if and only if there is an output function that
always describes long-run behavior and that depends only on a summary statistic S of
ability and the fundamental, and not independently on the two variables. With such an
output function, the agent can in the limit correctly deduce S from average output, so
he correctly predicts how changes in his action affect output. As a result, he chooses the
optimal action. Our proof establishes that this kind of production function is not only
sufficient, but in the above sense is also necessary for learning to be optimal in the limit.

An interesting aspect of Proposition 5 is that the agent is able to find the optimal ac-
tion exactly when the problem is not identifiable—that is, when his observations of output
do not allow him to separately learn a and φ. This beneficial role of non-identifiability
is in direct contrast to what one might expect based on the statistical learning literature,
where non-identifiability is defined as a property of the environment that hinders learn-
ing. Yet it is exactly the non-identifiability of the problem that allows the overconfident
agent to choose his long-run action well: because ability and the fundamental do not have
independent effects on output, the agent’s misinference about the fundamental can fully
compensate his overconfidence regarding ability, and hence overconfidence does not ad-
versely affect him.

In the team production setting, for instance, suppose that the agent—instead of making
delegation decisions—chooses his effort level, and that output depends on effort and the
total ability of the team (i.e., output takes the form V (e�a+φ)). Then, although the agent
still underestimates his teammates, he is able to deduce the team’s total ability a+φ from
output. As a result, he chooses the optimal action.

Notice that statement (ii) of Proposition 5 implies that controlling for their ef-
fect on output, the optimal action is equally sensitive to ability and the fundamental
(e∗
a(a�φ)/Qa(e

∗(a�φ)�a�φ) = e∗
φ(a�φ)/Qφ(e

∗(a�φ)�a�φ)). This insight indicates that
if Qea > 0, then changes in the agent’s beliefs about the fundamental eventually in-
duce actions that are significantly lower than optimal—and, hence, self-defeating learning
occurs—if the optimal action is sufficiently more sensitive to the fundamental than to abil-
ity. Adding our insights from Section 3, we conclude that self-defeating learning occurs if
the optimal action either (i) depends sufficiently less on ability than on the fundamental
or (ii) depends in opposite ways on ability and the fundamental.

5. CONVERGENCE

In this section, we establish conditions under which the agent’s beliefs converge to the
stable belief. We also argue that when the agent’s beliefs converge, his overconfidence is
stable—that is, he will not realize he is wrong—in a specific sense.

5.1. Convergence With Myopic Actions

To establish convergence, we maintain the same assumptions as in Section 2.1, but im-
pose stronger conditions on some of the derivatives of Q.14

ASSUMPTION 2: We have (i) |Qe|< κe, (ii) Qa ≤ κa, 0< κφ ≤Qφ ≤ κφ, and (iii) |Qφφ| ≤
κφφ.

14Example 1 satisfies Assumption 2 as long as L′′ is bounded. Example 2 does not satisfy Assumption 2 as
stated, but it does so under economically minor modifications: that e <∞, φ<∞, and a is positive, bounded,
and bounded away from zero.
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The various bounds in Assumption 2 guarantee that the agent’s inferences from output
and his reactions to these inferences are always of comparable size.15

Our main result in this section is the following theorem.

THEOREM 1: Suppose Assumptions 1 and 2 hold. Then, the agent’s beliefs almost surely
converge in distribution to the unique stable belief φ∞, and his actions almost surely converge
to e∗(φ∞).

The interdependence between actions and beliefs—that the agent’s action depends on
his belief, and the bias in his inferences in turn depends on his action—creates several
difficulties in our convergence proof. To start, we cannot apply results from the statistical
learning literature, such as those of Berk (1966) and Shalizi (2009), where the observer
does not choose actions. Even one central necessary component of the convergence of be-
liefs, the concentration of beliefs, requires some properties of the path of actions. Indeed,
convergence does not hold in some other models with endogenous actions, such as those
of Nyarko (1991) and Fudenberg, Romanyuk, and Strack (2017), and the convergence re-
sult of Esponda and Pouzo (2016a, Theorem 3) applies only for priors close to the stable
belief and for actions that are only close to optimal. To make matters especially difficult,
beliefs constitute a function-valued process whose transitions are driven by shocks that are
neither independently nor identically distributed. In general, the asymptotic behavior of
the posterior distribution in such infinite-dimensional models when the observations are
not i.i.d. is not well understood, even when the model is correctly specified (e.g., Ghosal
and van der Vaart (2007, pp. 192–193)).

To resolve this problem, we apply a technique that to our knowledge has not been
used in the literature on learning with misspecified models. We focus on extremal beliefs:
what levels of the fundamental does the agent in the limit conclusively rule out? Given
the structure of our problem, this puts bounds on his long-run actions, which restrict his
extremal beliefs further. Using this contraction argument, we show that the agent rules
out everything but the root of �.

We explain the detailed logic of our proof in six steps.
Step 1. We show that the change in beliefs can in the long run be approximated well by

the expected change. To argue this, we use that the log-likelihood function is the average
of the log-likelihoods of the realized outputs. This is the technically most demanding step
in the proof, as—due to the endogeneity of actions—the log-likelihood is an average of
nonidentical and nonindependent random variables. We adapt existing versions of the law
of large numbers to the types of non-i.i.d. random variables our framework generates.

Step 2. We establish that if the agent is on average positively surprised by output for
belief φ, then by Step 1 the derivative of his subjective log-likelihood goes to infinity
almost surely at φ. An analogous statement holds for negative surprises.

Step 3. If the agent has realistic beliefs about ability (ã = A), then—no matter his
action—his average surprise is positive for φ < Φ, and negative for φ > Φ. By Step 2,
his beliefs converge to Φ almost surely.

Step 4. Now we turn to the overconfident agent. We define φ∞ as the supremum of
fundamentals such that in the long run, the agent almost surely convinces himself that the

15Specifically, the lower bound on Qφ ensures that the agent always makes a nontrivial inference from an
increase in output. The upper bound on Qφ bounds how much the agent learns from the output of a single
period. Similarly, the bounds on Qe and Qa ensure that changing the action or ability has a limited effect
on output. The condition on Qφφ helps us to bound the second derivative of the subjective posterior log-
likelihood.
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true fundamental is above φ∞. We define φ∞ analogously. We show that the beliefs of
an overconfident agent can be bounded—in the sense of the monotone likelihood ratio
property—relative to the beliefs of a realistic agent. Using that the beliefs of a realistic
agent converge to Φ, this means that φ∞ and φ∞ exist. And because the agent is over-
confident, his beliefs about the fundamental must in the long run be below the truth:
φ∞ ≤φ∞ ≤Φ. The goal for the rest of the proof is to show that φ∞ =φ∞ =φ∞.

Step 5. We show that the above bounds on long-run beliefs also bound long-run actions.
In particular, we know that the optimal action is increasing in the fundamental. There-
fore, in the long run the agent’s action must be on (or arbitrarily close to) the interval
[e∗(φ∞)� e

∗(φ∞)].
Step 6. Now we show by contradiction that φ∞ ≥ φ∞. Supposing that φ∞ < φ∞, we

establish that the agent’s average surprise at φ∞ is positive in the long run. To see this,
note that because φ∞ < φ∞, the average surprise is positive for the action e∗(φ∞). Fur-
thermore, since the agent overestimates ability and underestimates the fundamental (and
Qea ≤ 0�Qeφ > 0), he underestimates Qe. This implies that the agent’s average surprise is
positive for any action near or above e∗(φ∞), that is, for any long-run action. By Step 2,
in the long run the agent convinces himself that the fundamental is above, and bounded
away from, φ∞, contradicting the definition of φ∞. An analogous argument establishes
that φ∞ ≤φ∞.

5.2. Convergence With Dynamically Optimal Actions When Q Is Linear in φ

In Section 5.1, we established convergence by assuming that the agent takes the myopi-
cally optimal action. In the current section, we consider dynamically optimal actions. We
assume that the agent has discount factor δ ∈ (0�1), and in each period chooses a cur-
rent action and a (history-contingent) strategy for future actions to maximize discounted
expected output. Because et affects how much the agent learns about the fundamental,
the myopically optimal action is in general not dynamically optimal, making it difficult to
bound actions based on beliefs. For example, the agent will take an action associated with
a low payoff this period if that action reveals a lot of information about optimal future
actions. Nevertheless, we establish convergence in a special case of our model.

ASSUMPTION 3: Suppose (i) Q(e�a�φ)=φH(e�a)+G(e�a), (ii) the second derivative
of log f is bounded away from zero, (iii) the prior distribution π0 of Φ satisfies −∞< κπ ≤
(∂2/∂φ2) logπ0(φ)≤ κπ <∞ as well as φ≥ 0 and π0(φ)= 0, and (iv) et is chosen from a
bounded interval.

The substantive new assumption is (i), which says that average output is linear in φ.
The other assumptions are regularity conditions that add to Assumption 2.16

THEOREM 2: Suppose Assumptions 1, 2, and 3 hold, and the agent chooses dynamically
optimal actions. Then, the agent’s beliefs almost surely converge in distribution to the unique
stable belief φ∞, and his actions almost surely converge to e∗(φ∞).

16The output function of Example 2 is linear in the fundamental and thus the example satisfies Assumption 3
as long as e is bounded. Example 1 does not satisfy Assumption 3.
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To understand the key new idea, notice that for any et , the agent believes that

φ+ εt

H(et� ã)
= qt −G(et� ã)

H(et� ã)
�

Hence, the agent believes that the observations (qt − G(et� ã))/H(et� ã) are indepen-
dently distributed signals with mean φ, albeit with a variance that depends on et . By the
logic underlying the law of large numbers, the agent’s subjective beliefs therefore concen-
trate in the long run for any sequence of actions. This implies that the subjective expected
benefit from learning about the fundamental Φ vanishes, so the agent must eventually
choose actions that are close to myopically optimal. As a result, the logic of Theorem 1
applies.

5.3. Stability of Overconfidence

A central assumption of our paper is that the agent has an unrealistically high point
belief about his ability. In this section, we ask whether his observations might lead him to
conclude that something about his beliefs is awry, which might lead him to reconsider his
belief about ability.17 We show that if beliefs and actions converge, then there is a strong
sense in which the agent will see no reason to doubt his belief about ability, even after he
has observed infinite data.

To make our point, we construct a specification test for the agent’s beliefs that—in addi-
tion to relying on infinitely many observations—is arguably far more stringent than what
a person would realistically submit his views to. Formally, suppose that the agent’s beliefs
converge to the stable belief. Given this limiting belief, the agent looks back and extracts
the noise realizations he thinks have generated his observations: ε̃t = qt −Q(et� ã�φ∞).
Now the agent takes the infinite subsample {ε̃t1� ε̃t2� � � �} of the ε̃t , where t1� t2� � � � are
specified ex ante. Let F̂i(x) = |{i′ ≤ i|ε̃ti′ ≤ x}|/i be the empirical frequency of observa-
tions below x in the first i elements of his subsample. The agent expects this empirical
cumulative distribution to match the true cumulative distribution of εt in the long run, it
does.

PROPOSITION 6: Suppose that beliefs converge in distribution to the unique stable belief.
Then, for any sequence ti and any x, limi→∞ F̂i(x)= F(x).

Intuitively, in the long run the agent settles on beliefs that lead him to predict average
output accurately, so that he also extracts the noise terms accurately. Hence, he cannot
be surprised about the long-run distribution of noise terms.

It is worth noting the role of the convergence of actions—as distinct from the conver-
gence of beliefs—in our result. Suppose, for example, that the agent is forced to take each
of the two actions e1 and e2 > e1 infinitely many times at prespecified dates, but at vanish-
ing rates, so that his beliefs still converge to φ∞. Since ã > A and φ∞ <Φ, Qeφ > 0 and
Qea ≤ 0 imply that Qe(e�A�Φ) > Qe(e� ã�φ∞). The agent therefore underestimates the
difference in average output with e2 versus e1, and hence Proposition 6 fails in a strong
way: the empirical mean of ε̃t must be nonzero either at e1 or at e2. This example illus-
trates that the informational environment makes it possible for our specification test to

17See Gagnon-Bartsch, Rabin, and Schwartzstein (2017) for a more detailed exploration of when a person
with a misspecified model may discover that he is wrong.
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fail—but the agent takes actions under which it does not. In particular, his action does
not vary enough for him to reject his belief about ability.

Of course, one may imagine a more sophisticated specification test that hinges on the
speed of convergence of the agent’s beliefs. Unfortunately, we are unable to determine
whether the agent passes such a test, because our convergence proofs cannot say anything
about the speed of convergence, not even in the case of a realistic agent. We are skeptical,
however, that a typical economic agent would perform specification tests of such sophis-
tication.18

6. EXTENSIONS AND MODIFICATIONS

In this section, we discuss some economically relevant variants of our model. For sim-
plicity, we restrict attention to the loss-function specification of Example 1 throughout
this section. In addition, as in Sections 3 and 4, we assume that beliefs converge to the
Dirac measure on the root of the surprise function, and study only properties of limiting
beliefs.

6.1. Biased Learning About Ability

Throughout the paper, we have assumed that the agent holds a point belief about ability
that is too high, thinking of this assumption as a stand-in for forces that generate overcon-
fidence. We now show through a simple example that the mechanisms we have identified
are consistent with a setting in which overconfidence arises endogenously through biased
learning. Although the precise bias we assume is different, one can think of this exercise
as integrating Gervais and Odean’s (2001) model of “learning to be overconfident” with
our model of misdirected learning.

Suppose that the agent has continuously distributed prior beliefs about (a�φ) with full
support on the plane. In each period, he observes output qt = a+φ−L(et −φ)+ εt as
previously. In addition, he observes a noisy measure of his relative contribution to output,
rt = a− (φ−L(et −φ)+ εt)+ ε′

t +Δ′, where the ε′
t have mean zero. However, the agent

perceives his relative contribution with a bias: while he believes that Δ′ = 0, in reality
Δ′ = 2Δ.

The assumption that individuals perceive their own contribution to performance in a bi-
ased way is supported by a variety of evidence in psychology. For instance, Ross and Sicoly
(1979) find that when married couples are asked about the portion of various household
chores they perform, their answers typically add up to more than 100 percent. Babcock
and Loewenstein (1997) provide evidence that parties in a negotiation interpret the same
information differently and in a self-serving way. Summarizing the literature, Bénabou
and Tirole (2016) explain that selective attention to and recall of information, asymmetric
interpretation of information, and asymmetric updating can all contribute to individuals’
biased self-evaluations. Our model captures these possibilities in one simple reduced-
form way.

Logically, it is possible that the agent evaluates not only rt , but also qt in a biased way.
But in most situations motivating our analysis, a person’s contribution to output is more

18Similarly, if noise is not additively separable from Q, then the agent’s belief may fail a variant of the
distribution-based test in Proposition 6. Even this conclusion, however, hinges on the agent being certain about
the distribution of noise. If he is not certain, then the long-run distribution of output may lead him to make
inferences about the noise distribution rather than to conclude that his belief about ability is incorrect.
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subjective than output itself, and is hence more vulnerable to distortion. Bénabou and
Tirole (2009) make a similar distinction.

Because the agent now observes both qt and rt , we redefine his surprise function for
this two-dimensional case. If the agent believes that his ability is a and the fundamental is
φ, then he takes the action φ. We therefore write

�q(φ�a)= [
A+Φ−L(φ−Φ)]− [a+φ]�

�r(φ�a)= [
A− (

Φ−L(φ−Φ))+Δ′]− [a−φ]�
The first line is the agent’s surprise function for output, which follows the same logic
as in our basic model. The second line is the agent’s surprise function for his relative
contribution. Due to his bias, the average relative contribution the agent perceives isA−
(Φ − L(φ − Φ)) + Δ′. But because he is not aware of his bias, he expects his average
relative contribution to be a−φ. Setting both surprises to zero, adding, and rearranging
gives that the stable belief about ability must be ã∞ =A+Δ′/2 =A+Δ—exactly the point
belief that we imposed exogenously in our basic model. Plugging this into the unchanged
surprise function for output, we get that the stable belief about the fundamental must also
be the same as in our basic model.

PROPOSITION 7: There is a unique stable belief ã∞�φ∞, where ã∞ =A+ Δ= ã and φ∞
is the unique root of � defined in Equation (3).

Intuitively, the agent believes that the average of total output and his relative contribu-
tion,

∑
t(qt + rt)/2, provides an unbiased estimate of his ability. This estimator, however,

converges to A+ Δ, so that he develops overconfident beliefs over time. Given that he
becomes overconfident about ability, he is misled about the fundamental in the same way
as in our basic model.

6.2. Underconfidence

While many or most people are overconfident, some are “underconfident”—they have
unrealistically low beliefs about themselves. We briefly discuss the implications of under-
confidence for misguided learning. In Figure 4, we redraw the relevant parts of Figure 2
for underconfident beliefs (ã < A), again normalizingA andΦ to 0. As for overconfident
agents, any possible stable belief is given by the intersection of the average output pos-
sibilities curve −L(e) and the perceived average achievable output line ã+φ. If ã < A,
the two curves intersect to the right of the true fundamental: since the agent is pessimistic
about his own ability, he becomes overly optimistic about the fundamental. Furthermore,
it is apparent from the figure that in the limit the agent’s loss from underconfidence is
bounded by Δ. The formal statement follows.

PROPOSITION 8: Suppose Q takes the loss-function form in Example 1 and ã < A. Then,
there is a unique stable belief φ∞, which satisfies 0<φ∞ −Φ<Δ and L(φ∞ −Φ)< Δ.

These results contrast sharply with those in the overconfident case, where the limiting
belief is always more than Δ away from the true fundamental (Φ − φ∞ > Δ), and the
associated loss can be an arbitrarily large multiple of Δ. To understand the intuition, con-
sider again an agent who has a symmetric prior with mean equal to the true fundamental.



UNREALISTIC EXPECTATIONS AND MISGUIDED LEARNING 1181

FIGURE 4.—Limiting belief and loss with underconfidence.

Due to his underconfidence, the agent is then likely to observe some better performances
than he expects. As a result, he concludes that the fundamental is better than he thought,
and he revises his action. The resulting utility loss, however, leads him to reassess the
optimistic revision of his belief, bringing his beliefs back toward the true fundamental. In
this sense, the agent’s misinference regarding the fundamental is self-correcting—in con-
trast to the logic in the case of overconfidence, where the misinference is self-reinforcing.
Moreover, because a utility loss of Δ or more cannot be explained by a combination of
underconfidence in the amount of Δ and an unrealistically positive belief about the fun-
damental (which increases expected output), any consistent belief must generate a utility
loss of less than Δ.

7. RELATED LITERATURE

Our theory connects two literatures, that on overconfidence and that on learning with
misspecified models. While we discuss other more specific differences below, to our
knowledge our paper is the first one to study the implications of overconfidence for in-
ferences about other, decision-relevant exogenous variables. More recently, Le Yaouanq
and Hestermann (2016) study the same question, focusing on the issue of persistence,
which we cover only briefly in Section 3.3. We are also unaware of previous research that
characterizes when self-defeating learning does versus does not occur in an individual-
decisionmaking context.
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7.1. Overconfidence

Our paper studies the implications of unrealistic expectations regarding a variable for
learning about another variable. In many applications, the most plausible source of such
unrealistic expectations is overconfidence, which is the topic of an extensive literature in
economics and psychology.

A plethora of classical evidence in psychology as well as economics suggests that on
average people have unrealistically positive views of their traits and prospects (e.g.,
Weinstein (1980), Svenson (1981), Camerer and Lovallo (1999)). Recently, Benoît and
Dubra (2011) have argued that much of this evidence is also consistent with Bayesian
updating and correct priors, and thus does not conclusively demonstrate overconfidence.
In response, a series of careful experimental tests have documented overconfidence in
the laboratory in a way that is immune to the Benoît–Dubra critique (Burks, Carpen-
ter, Goette, and Rustichini (2013), Charness, Rustichini, and van de Ven (2018), Benoît,
Dubra, and Moore (2015)). In addition, there is empirical evidence that consumers
are overoptimistic regarding future self-control (Shui and Ausubel (2004), DellaVigna
and Malmendier (2006), for instance), that truck drivers persistently overestimate fu-
ture productivity (Hoffman and Burks (2017)), that genetically predisposed individu-
als underestimate their likelihood of having Huntington’s disease (Oster, Shoulson, and
Dorsey (2013)), that unemployed individuals overestimate their likelihood of finding a job
(Spinnewijn (2015)), and that some CEOs are overoptimistic regarding the future perfor-
mance of their firms (Malmendier and Tate (2005)). Moreover, in all of these domains
the expressed or measured overconfidence predicts individual choice behavior. For exam-
ple, CEOs’ overconfidence predicts the likelihood of acquiring other firms (Malmendier
and Tate (2008)), of using internal rather than external financing (Malmendier and Tate
(2005)), of using short-term debt (Graham, Harvey, and Puri (2013)), of engaging in fi-
nancial misreporting (Schrand and Zechman (2012)), and of engaging in innovative activ-
ity (Hirshleifer, Low, and Teoh (2012)). While all of these papers look at the relationship
between overconfidence and behavior, they do not theoretically investigate the implica-
tions of overconfidence for (misdirected) learning about other variables.

A number of theoretical papers explain why agents become (or seem to become) over-
confident. In one class of papers, the agent’s learning process is tilted in favor of moving
toward or stopping at confident beliefs (Gervais and Odean (2001), Bénabou and Tirole
(2002), Zábojnik (2004), Kőszegi (2006), Chiang et al. (2011), Jehiel (2017)). In other
papers, non-common priors or criteria lead agents to take actions that lead the average
agent to expect better outcomes than others (Van den Steen (2004), Santos-Pinto and So-
bel (2005)). Finally, some papers assume that an agent simply chooses unrealistically pos-
itive beliefs because he derives direct utility from such beliefs (Brunnermeier and Parker
(2005), Oster, Shoulson, and Dorsey (2013)). While these papers provide foundations for
overconfident beliefs and some feature learning, they do not analyze how overconfidence
affects learning about other variables.

Many researchers take the view that overconfidence can be individually and socially
beneficial even beyond providing direct utility.19 Our theory is not contradictory to this
view, but it does predict circumstances under which overconfidence can be extremely
harmful.

19See, for example, Taylor and Brown (1988) for a review of the relevant psychology literature, and Bénabou
and Tirole (2002) and de la Rosa (2011) for economic examples.
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7.2. Learning With Misspecified Models

On a basic level, an overconfident agent has an incorrect view of the world. Hence, our
paper is related to the literature on learning with misspecified models—that is, models in
which the support of the prior does not include the true state of the world. Closely related
to our theory, Esponda and Pouzo (2016a) develop a general framework for studying re-
peated games in which players have misspecified models. Methodologically, our model is
a special case of theirs in which there is one player.20 Building on Berk (1966), Esponda
and Pouzo establish that if actions converge, beliefs converge to a limit at which a player’s
predicted distribution of outcomes is closest to the actual distribution. Our stable beliefs
have a similar property. Because of our specific setting, we derive stronger results on
convergence of beliefs and establish many other properties of the learning process and
limiting beliefs. Esponda and Pouzo (2016b) extend the concept of Berk–Nash equilib-
rium to general dynamic single-agent Markov decision problems with nonmyopic agents.
In Section 5.2, we prove convergence to a Berk–Nash equilibrium for a forward-looking
agent. Technically, the agent’s problem with an outside option in Section 3.3 is a dynamic
single-agent Markov problem, and hence is related to Esponda and Pouzo (2016b). Our
specific context allows us to draw a number of lessons that have no parallel in their work.

Our convergence results with endogenous actions contrast with Nyarko (1991), who
provides an example in which a misspecified myopic agent’s beliefs do not converge. Fo-
cusing on the case in which the agent’s subjective state space is binary, Fudenberg, Ro-
manyuk, and Strack (2017) fully characterize asymptotic actions and beliefs for any level
of patience. Even for a myopic agent beliefs often do not converge. Furthermore, Fuden-
berg, Romanyuk, and Strack provide a simple example in which the beliefs of a myopic
agent converge, but those of a more patient agent do not. In our model the subjective
state space is continuous, and we provide conditions under which beliefs do converge.

Taking the interpretation that at most one prior can be correct, multi-agent models with
non-common priors can also be viewed as analyzing learning with misspecified models. In
this literature, papers ask how different agents’ beliefs change relative to each other, but
do not study the interaction with behavior. Dixit and Weibull (2007) construct examples
in which individuals with different priors interpret signals differently, so that the same sig-
nal can push their beliefs further from each other. Similarly, Acemoglu, Chernozhukov,
and Yildiz (2016) consider Bayesian agents with different prior beliefs regarding the con-
ditional distribution of signals given (what we call) the fundamental, and show that the
agents’ beliefs regarding the fundamental do not necessarily converge.21

Misdirected learning also occurs in some other settings in which individuals have mis-
specified models of the world. In the social-learning model of Eyster and Rabin (2010)
and in many cases also in that of Bohren (2016), agents do not sufficiently account for re-
dundant information in previous actions. With more and more redundant actions accumu-
lating, this mistake is amplified, preventing learning even in the long run. Esponda (2008)

20Technically, we differ in that we consider a continuous state space, which allows us to characterize stable
beliefs through our no-surprise condition.

21Andreoni and Mylovanov (2012) and Kondor (2012) develop closely related models within the common-
prior paradigm. In their models, there are two sources of information about a one-dimensional fundamental.
Agents receive a series of public signals, and private signals on how to interpret the public signals. Although
beliefs regarding the public information converge, beliefs regarding the fundamental do not, as agents keep
interpreting the public information differently. Relatedly, Piketty (1995) analyzes a model in which different
personal mobility experiences lead dynasties to develop different steady-state beliefs about the importance of
birth versus work in success, and hence to prefer different redistribution policies.
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studies an adverse-selection environment in which—similarly to the notion of cursed equi-
librium by Eyster and Rabin (2005)—a naive buyer underestimates the effect of his price
offer on the quality of supplied products. As the buyer learns from experience that the
quality is low, he adjusts his price offer downward, leading to an even worse selection of
products and perpetuating the misguided learning. We explore the implications of a very
different mistake than these papers.

The interaction between incorrect inferences and behavior we study is somewhat rem-
iniscent of Ellison’s (2002) model of academic publishing, in which researchers who are
biased about the quality of their own work overestimate publishing standards, making
them tougher referees and thereby indeed toughening standards. In contrast to our work,
updating is ad hoc, and the model relies on “feedback” from others on the evolution of
the publishing standard. In a similar but more distant vein, Blume and Easley (1982) ask
when traders in an exchange economy learn the information held by others through the
observation of equilibrium prices, allowing traders to entertain incorrect models. Traders
consider a finite set of models—including the true model—and use a “boundedly ratio-
nal” learning rule that ignores how learning by traders affects equilibrium prices. They
show that the true model is locally stable but also that there could be cycles or an incor-
rect model can be locally stable.

There is also a substantial amount of other research on the learning implications of
various mistakes in interpreting information (see, for instance, Rabin and Schrag (1999),
Rabin (2002), Madarász (2012), Jehiel (2005), Rabin and Vayanos (2010), Benjamin,
Rabin, and Raymond (2016), Spiegler (2016)). Overconfidence is a different type of
mistake—in particular, it is not directly an inferential mistake—so our results have no
close parallels in this literature.

Methodologically, our theory confirms Fudenberg’s (2006) point that it is often insuf-
ficient to do behavioral economics by modifying one assumption of a classical model, as
one modeling change often justifies other modeling changes as well. In our setting, the
agent’s false belief about his ability leads him to draw incorrect inferences regarding the
fundamental, so assuming that an overconfident agent is otherwise classical may be mis-
leading.

8. CONCLUSION

While our paper focuses exclusively on individual decisionmaking, the possibility of
self-defeating learning likely has important implications for multi-agent situations. For
example, it has been recognized in the literature that managerial overconfidence can ben-
efit a firm both because it leads the manager to overvalue bonus contracts and because it
can lead him to exert greater effort (de la Rosa (2011), for example). Yet for tasks with
the properties we have identified, misguided learning can also induce a manager to make
highly suboptimal decisions. Hence, our analysis may have implications for the optimal
allocation of decisionmaking authority for a manager.

Beyond how an overconfident agent operates in a standard economic environment, it
seems relevant to understand how multiple overconfident individuals interact with each
other. As a simple example, consider again our application to assertiveness in personal
relationships (Application 3), where an overconfident agent misinterprets his partner’s
actions and ends up treating her more and more assertively. This dynamic is likely to
be reinforced if the partner is also overconfident and, hence, similarly misinterprets the
agent’s actions, creating a downward spiral on both sides. Peace has a chance only if the
partners “indulge” each other’s overconfidence by holding overly positive views of each
other.
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A completely different issue is that different individuals may have different interpreta-
tions as to what explains unexpectedly low performance. For instance, a Democrat may
interpret poor health outcomes as indicating problems with the private market, whereas
a Republican may think that the culprit is government intervention. In the formalism of
our model, one side believes that output is increasing in φ, while the other side believes
that output is decreasing in φ. Similarly to Dixit and Weibull’s (2007) model of political
polarization, decisionmakers with such opposing theories may prefer to adjust policies in
different directions. Our model highlights that unrealistically high expectations regarding
outcomes can play an important role in political polarization. Furthermore, our model
makes predictions on how the two sides interpret each other’s actions. It may be the
case, for instance, that if a Republican has the power to make decisions, he engages in
self-defeating learning as our model predicts, with a Democrat looking on in dismay and
thinking that—if only he had the power—a small adjustment in the opposite direction
would have been sufficient. If the Democrat gets power, he adjusts a little in the opposite
direction, initially improving performance, but then he engages in self-defeating learn-
ing of his own. Frequent changes in power therefore help keep self-defeating learning
in check. Meanwhile, an independent who also has unrealistic expectations but is unsure
about which side’s theory of the world is correct always tends to move his theory toward
the theory of the party in opposition, as that party’s theory is better at explaining current
observations.

APPENDIX: PROOFS

A.1. Auxiliary Results

This preliminary section introduces useful notation for the main proofs, shows that
expected output and its derivative with respect to et are well defined, that output has an
intuitive influence on subjective beliefs, and applies a well known result from Berk (1966)
on the convergence of subjective beliefs with fixed actions to our setting.

We say that a probability density function f has decreasing tails if there is a εc > 0 such
that ε > ε′ > εc or ε < ε′ <−εc implies f (ε)≤ f (ε′).

LEMMA 1: Since f is log concave, it has decreasing tails.

PROOF: Log-concavity of f implies that (f ′/f ) is decreasing. Because the density has
to integrate to 1, the fact that (f ′/f ) is decreasing implies that there exists some εc such
that both for all ε > εc , one has f ′ < 0, and for all ε <−εc , one has f ′ > 0. Therefore, f
has decreasing tails. Q.E.D.

LEMMA 2: Suppose that f is bounded and has decreasing tails, and that πt−1 has positive
density everywhere. Then πt has positive density everywhere, and for any et� qt and any ν > 0,
there is a φht > 0 such that if φ>φ′ >φht or φ<φ′ <−φht , then

πt(φ)

πt
(
φ′) < (1 + ν) πt−1(φ)

πt−1

(
φ′) �

PROOF: By Bayes’ rule,

πt(φ)= f
(
qt −Q(et� ã�φ)

)
πt−1(φ)∫

f
(
qt −Q(et� ã� s)

)
πt−1(s)ds

�
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The numerator is clearly positive, and since f is bounded, the denominator is positive and
finite, so πt(φ) is positive.

We show the claim of the lemma on the positive tail; the proof is analogous for the
negative tail. Furthermore, the claim is obvious if φ is finite, so we suppose that φ is
infinite. Notice that

πt(φ)

πt
(
φ′) = f

(
qt −Q(et� ã�φ)

)
f
(
qt −Q

(
et� ã�φ

′)) · πt−1(φ)

πt−1

(
φ′) �

Now we consider two cases. First, suppose that limφ→∞Q(et� ã�φ) = q < ∞. Then
limφ→∞ f (qt − Q(et� ã�φ)) = f (qt − q). This implies that there is a φht such that if
φ�φ′ >φht , then

f
(
qt −Q(et� ã�φ)

)
f
(
qt −Q

(
et� ã�φ

′)) < 1 + ν�

completing the proof for this case.
Alternatively, suppose that limφ→∞Q(et� ã�φ) = ∞. Then there is a φht such that if

φ > φ′ > φht , then qt − Q(et� ã�φ) < qt − Q(et� ã�φ
′) < −εc . Hence, f (qt − Q(et� ã�

φ))≤ f (qt −Q(et� ã�φ′)), again completing the proof. Q.E.D.

For the following result, we first note that the existence of all moments (|E[φk]| <∞
for all k) of π0 implies the existence of all absolute moments (E[|φ|k] <∞ for all k).
Observe that for k even, |E[φk]| = E[|φ|k] and, thus, |E[φk]|<∞ ⇒ E[|φ|k]<∞. For k
odd, we have that

|φ|k ≤ max
{
1� |φ|k}≤ max

{
1� |φ|k+1

}≤ 1 + |φ|k+1 = 1 +φk+1�

Thus, E[|φ|k] ≤ 1+E[φk+1] = 1+|E[φk+1]|<∞ and the existence of the k+1th moment
implies the existence of the kth absolute moment.

LEMMA 3: The posterior belief admits a density πt and all its absolute moments are finite
after any history.

PROOF: We are going to show the result by induction over t. First, the prior π0 has a
positive density by assumption, and since it has finite moments, by the argument above
its absolute moments are also finite. We will show that if the posterior at time t − 1 has a
positive density and all its moments are finite then the posterior at time t is well defined
and all its moments are finite.

By Lemmata 1 and 2 the posterior density πt is well defined. To show that all moments
exist, we need to verify that for any k≥ 1 the absolute moment

χk�t =
∫ +∞

−∞
πt(ψ)|ψ|k dψ

is finite. To show this, first note that Lemma 2 implies that for every ν > 0, there exists a
φht such that if φ>φ′ >φht or φ<φ′ <−φht , then

πt(φ)

πt−1(φ)
< (1 + ν) πt

(
φ′)

πt−1

(
φ′) �
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It follows from this that

χk�t =
∫ +∞

−∞
πt(ψ)|ψ|k dψ=

∫ +φht

−φht
πt(ψ)|ψ|k dψ+

∫
(−∞�−φht )∪(φht �∞)

πt(ψ)|ψ|k dψ

≤ max
{
1�
∣∣φht ∣∣k}+

∫
(−∞�−φht )∪(φht �∞)

πt−1(ψ)
πt(ψ)

πt−1(ψ)
|ψ|k dψ

≤ max
{
1�
∣∣φht ∣∣k}+

∫
(−∞�−φht )∪(φht �∞)

πt−1(ψ)(1 + ν) πt
(
φht

)
πt−1

(
φht

) |ψ|k dψ

≤ max
{
1�
∣∣φht ∣∣k}+ (1 + ν) πt

(
φht

)
πt−1

(
φht

) ∫ +∞

−∞
πt−1(ψ)|ψ|k dψ

= max
{
1�
∣∣φht ∣∣k}+ (1 + ν) πt

(
φht

)
πt−1

(
φht

)χk�t−1�

Thus, the kth moment of the posterior in period t is finite if the kth moment of the
posterior in period t − 1 is finite. Q.E.D.

Recall that by assumption Q and Qe have polynomial growth, that is, |Q(e�a�φ)| +
|Qe(e�a�φ)| ≤ κ|φ|k + b for some κ�k�b > 0.

PROPOSITION 9: The expected payoff is well defined for every action e and ability a after
every history, and the expected payoff’s derivative with respect to the action is given by

∂

∂e

∫ +∞

−∞
Q(e�a�ψ)πt(ψ)dψ=

∫ +∞

−∞
Qe(e�a�ψ)πt(ψ)dψ�

PROOF: Polynomial growth implies that the expected payoff is bounded by the kth
absolute moment and, thus, is well defined:∫ ∞

−∞

∣∣Q(e�a�ψ)∣∣πt(ψ)dψ≤
∫ ∞

−∞

(
b+ κ|φ|k)πt(ψ)dψ= b+ κχk�t �

Note that |Qe(e�a�φ)| ≤ κ|φ|k + b and as |φ|k is integrable with respect to πt , the domi-
nated convergence theorem implies that

∂

∂e

∫ +∞

−∞
Q(e�a�ψ)πt(ψ)dψ=

∫ +∞

−∞
Qe(e�a�ψ)πt(ψ)dψ� Q.E.D.

Let L(x) = E[log f (x + εt)], where the expectation is taken with respect to εt . Note
that as ε1� ε2� � � � are i.i.d., this expectation is independent of t. Our first result shows that
the log-concavity of f implies that L is single-peaked, with its peak at zero. Let g(x) =
∂
∂x
(log f (x)) and let |κf | denote the bound on the absolute value of g′, that is, |κf |> |g′|.

LEMMA 4: The function L(x) is well defined for all x ∈ R. Furthermore,
(i) L(·) is strictly concave,

(ii) L′(x) > 0 for x < 0 and L′(x) < 0 for x > 0.
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PROOF: As the distribution of ε is log concave, it has finite variance σ2 = E[|εt |2] (see,
for example, Proposition 5.2 in Saumard and Wellner (2014)). Our bounded log-concavity
assumption on f implies that

∣∣log
(
f (x+ ε))∣∣= ∣∣∣∣log

(
f (x)

)+
∫ x+ε

x

g(z)dz
∣∣∣∣

=
∣∣∣∣log

(
f (x)

)+ εg(x)+
∫ x+ε

x

∫ z

x

g′(y)dy dz
∣∣∣∣

≤ ∣∣log
(
f (x)

)∣∣+ |ε|∣∣g(x)∣∣+ |ε|2
|κf |

2
�

It thus follows that ∣∣L(x)∣∣= ∣∣E[log f (x+ εt)
]∣∣≤ E

[∣∣log f (x+ εt)
∣∣]

≤ ∣∣log
(
f (x)

)∣∣+E
[|εt |]∣∣g(x)∣∣+E

[|εt |2
] |κf |

2

≤ ∣∣log
(
f (x)

)∣∣+ σ∣∣g(x)∣∣+ σ2
|κf |

2
�

where we used in the last step that by Jensen’s inequality E[|ε|] ≤ √
E[|ε|2] = σ . Thus,

L(x) is well defined for every x.
As our log-concavity assumption implies that |g| and |g′| are bounded by an integrable

function, majorized convergence yields that the derivatives of L(·) are given by

L′(x)=
∫
R

g(x+ ε)f (ε)dε�

L′′(x)=
∫
R

g′(x+ ε)f (ε)dε ∈ [κf �0)�

Since g′ < 0, L is strictly concave. To see that the peak is at zero, note that

L(x)−L(0)= E
[
log f (x+ εt)− log f (εt)

]= −E

[
log

(
f (εt)

f (x+ εt)
)]
�

The right-hand side equals minus the Kullback–Leibler divergence. By Gibb’s inequality
the Kullback–Leibler divergence is larger or equal to zero, holding with equality if and
only if both densities coincide almost everywhere (a.e.). Hence, the right-hand side is
minimized at x = 0, so that L(·) is maximized at x = 0. Finally, as L is strictly concave
and maximized at 0, it follows that L′(0) = 0, and L′(x) is thus positive for x < 0 and
negative for x > 0. Q.E.D.

Denote by �0 : R → R the subjective prior log-likelihood of the agent. By Bayes’ rule
the agent’s subjective log-likelihood �t :R → R assigned to the state φ in period t is given
by

�t(φ)=
t∑
s=1

log f
(
qs −Q(es� ã�φ)

)+ �0(φ)� (5)
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The density function πt :R → R+ of the agent’s subjective belief in period t equals

πt(φ)= e�t (φ)∫ ∞

−∞
e�t (z) dz

�

Denote by P̃t[·] = P̃[· | q1� � � � � qt] the agent’s subjective probability measure over states
conditional on the outputs q1� � � � � qt and denote by �t : R → [0�1] the cumulative distri-
bution function (cdf) of the agent’s subjective belief

�t(z)= P̃t[Φ≤ z] =
∫ z

−∞
πt(φ)dφ�

We sometimes write �t(φ;q) and πt(φ;q) if we want to highlight the dependence of
the agent’s belief on the outputs q1� � � � � qt observed in previous periods.

DEFINITION 2—Monotone Likelihood Ratio Property: A distribution with density π :
R → R+ is greater than a distribution with density π ′ : R → R+ in the sense of monotone
likelihood ratio π ′ ≤MLR π if and only if for all states φ′ ≤φ,

π ′(φ)
π(φ)

≤ π ′(φ′)
π
(
φ′) � (MLRP)

The next lemma shows that higher observed output qt in any period t leads to a higher
posterior belief in the sense of monotone likelihood ratios (MLR).

LEMMA 5—Beliefs are Monotone in Output: If q′
s ≤ qs for all s ≤ t, then πt(·;q′)≤MLR

πt(·;q).
PROOF: Condition (MLRP) is equivalent to

0 ≤ log
[
πt(φ;q)
πt
(
φ′;q)

]
− log

[
πt
(
φ;q′)

πt
(
φ′;q′)

]
= [
�t(φ;q)− �t

(
φ′;q)]− [

�t
(
φ;q′)− �t

(
φ′;q′)]�

Hence, it suffices to show that for all s ≤ t,
∂2�t(φ;q)
∂qs∂φ

≥ 0�

Taking the derivative of the log-likelihood given in Equation (5) yields that for s ≤ t,
∂2�t(φ;q)
∂qs∂φ

= −g′(qs −Q(es� ã�φ))Qφ(es� ã�φ)�

As g′ < 0 and Qφ > 0, the result follows. Q.E.D.

Our next result shows that beliefs converge when the agent takes the same action in
every period. As in this case the outputs are independent, the result follows immediately
from the characterization of long-run beliefs with i.i.d. signals in Berk (1966).



1190 P. HEIDHUES, B. KŐSZEGI, AND P. STRACK

LEMMA 6—Berk (1966): Suppose that the agent takes a fixed action e in all periods and
there exists a state φe∞ ∈ (φ�φ) that satisfies

Q(e�A�Φ)=Q(e� ã�φe∞)� (6)

Then the agent’s belief almost surely (a.s.) converges and concentrates on the unique state
φe∞.

PROOF: For fixed actions, outputs q1� q2� � � � are i.i.d. random variables. The expecta-
tion of an outside observer of the log-likelihood that the agent assigns to the state φ after
observing a single signal qt is given by

E
[
log f

(
qt −Q(e� ã�φ)

)]= E
[
log f

(
Q(e�A�Φ)−Q(e� ã�φ)+ εt

)]
=L

(
Q(e�A�Φ)−Q(e� ã�φ))� (7)

By the main theorem in Berk (1966, p. 54), the agent’s subjective belief concentrates
on the set of maximizers of (7). By Lemma 4, L(·) is uniquely maximized at zero and,
hence, (7) is maximized whenever (6) is satisfied. By assumption there exists such a point
and since Qφ > 0 it is unique. Hence, the agent’s subjective belief converges to a Dirac
measure on that point. Q.E.D.

Let us denote a Dirac measure on the state φ by δφ.

LEMMA 7: The set (e�π) is a pure-strategy Berk–Nash equilibrium if and only if π is a
stable belief δφ and e= e∗(φ).

PROOF: For a given state φ′ and action e, the Kullback–Leibler divergence between
the true distribution of signals and the distribution that the agent expects is given by

E

[
log

f (εt)

f
(
Q(e�A�Φ)−Q(e� ã�φ′)+ εt

)]=L(0)−L
(
Q(e�A�Φ)−Q(e� ã�φ′))�

By the definition of Berk–Nash equilibrium, the agent assigns positive probability only to
states that minimize the Kullback–Leibler divergence. Since, by Lemma 4, L(·) is maxi-
mized at 0, it follows that the agent’s belief is a Dirac measure on the state φ that satisfies
Q(e�A�Φ)−Q(e� ã�φ)= 0. Because the equilibrium action must be optimal given this
belief, it follows that (e∗(φ)�δφ) is a pure-strategy Berk–Nash equilibrium if and only if
φ is a stable belief. Q.E.D.

A.2. Main Results

A.2.1. Proving Properties of Limiting Beliefs

We first show that all stable beliefs are in an interval around the true state Φ if Qa and
Qφ are bounded.

LEMMA 8: Let κa ≥Qa be an upper bound on Qa and let 0< κφ ≤Qφ be a lower bound
on Qφ. Any root of � lies in the interval Iã = [Φ− κa

κφ
(ã−A)�Φ]. Furthermore, �(Φ) < 0

and �(Φ− κa
κφ
(ã−A))≥ 0, so if Iã ⊂ (φ�φ), then � has at least one root in Iã.
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PROOF: Note that for ã=A, the surprise function

�(φ)=Q(e∗(φ)�A�Φ
)−Q(e∗(φ)� ã�φ

)
has a unique root at φ =Φ since Qφ > 0. Furthermore, since Qa > 0 and Qφ > 0, when
ã > A any root of � must be less than Φ. Now for any φ<Φ,

�(φ)≥ min
e

{
Q(e�A�Φ)−Q(e� ã�φ)}

= min
e

{
Q(e�A�Φ)−Q(e�A�φ)+Q(e�A�φ)−Q(e� ã�φ)}

≥ κφ(Φ−φ)− κa(ã−A)�

Therefore, any root of � must lie in the interval Iã = [Φ− κa
κφ
(ã−A)�Φ]. Furthermore,

since A< ã, we have that �(Φ) < 0, and by the above inequality, �(Φ− κa
κφ
(ã−A))≥ 0.

It thus follows from the continuity of � that � has at least one root in Iã. Q.E.D.

PROOF OF PROPOSITION 1: Part (i). We first show that for ã−A sufficiently small, �
can have at most one root. Since e∗(φ) is implicitly defined through Qe(e

∗(φ)� ã�φ)= 0
and Q is twice continuously differentiable with Qee < 0, e∗(φ) is a continuous function
of φ and ã. By the implicit function theorem, e∗′

(φ) = −Qeφ/Qee and, hence, is also a
continuous function of φ and ã. Thus,

�′(φ)=Qe

(
e∗(φ)�A�Φ

)(
e∗)′(φ)−Qφ

(
e∗(φ)� ã�φ

)
is a continuous function of φ and ã. Since for ã=A and φ=Φ,

�′(φ)|φ=Φ�ã=A = −Qφ

(
e∗(φ)�A�Φ

)
< 0�

continuity of �′(φ) implies that there exists a pair ηA�ηΦ > 0 such that for all ã ∈ [A�A+
ηA) and φ ∈ (Φ − ηΦ�Φ], one has �′(φ) < 0. Thus, for any ã ≥ A that satisfies ã <
A+ min{ηA�ηΦ + κφ

κa
}, one has that �′(φ) < 0 over the relevant interval Iã. By Lemma 8,

all roots of � lie in Iã and, thus, for all such ã, � has a unique root. Furthermore, for
ã−A small enough, Iã ⊂ (φ�φ) and, hence, by Lemma 8, � crosses zero in (φ�φ). We
conclude that � has a unique root if overconfidence (ã−A) is sufficiently small.

Part (ii). When Q takes the form in Example 1, then e∗(φ)=φ and

�(φ)= −(ã−A)+ (Φ−φ)−L(Φ−φ)�
Since L′(x) < 1, �′(φ) < 0 and, hence, � has at most one root. Finally, as (φ�φ)= R, we
have that Iã ⊂ (φ�φ) and, hence, there exists a stable belief by Lemma 8.

Part (iii). SinceQa > 0 andQφ > 0, when ã > A any root of �must be less thanΦ. Now
φ is a root of � if and only if (A+ e∗(φ))Φ= (ã+ e∗(φ))φ, or

e∗(φ)= −A+ (ã−A)φ/(Φ−φ)� (8)

The right-hand side of this equation is increasing and convex over the interval (0�Φ),
negative at φ= 0, and approaches ∞ as φ approaches Φ.
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Furthermore, for e∗(φ) to be optimal given φ, we must have c′(e∗(φ)) = φ. This im-
plies that e∗′(φ)= 1/c′′(e∗(φ)), so that if c′′′(e)≥ 0, then e∗(φ) is concave. Furthermore
e∗(0) = 0 and e∗(Φ) is finite, so that it equals the right-hand-side of (8) at exactly one
point. Q.E.D.

PROOF OF PROPOSITION 2: By Lemma 6, if, for any fixed action e the unique solution
φe∞ to

0 =Q(e�A�Φ)−Q(e� ã�φe∞)
satisfies φe∞ ∈ (φ�φ), beliefs converge to a Dirac measure on φe∞. Since ã > A and
Qa�Qφ > 0, we have φe∞ < Φ. Let φ∞ be the state corresponding to the unique stable
belief. Since φ∞ ∈ (φ�φ) and φe∞ <Φ<φ, we have that φ∞ ≤φe∞ implies φe∞ ∈ (φ�φ).

By definition of φ∞,

�(φ∞)=Q(e(φ∞)�A�Φ
)−Q(e(φ∞)� ã�φ∞

)= 0�

Since Qa > 0 and Qφ > 0, when ã > A one has φ∞ <Φ. Furthermore, when the agent’s
belief are a Dirac measure on φ, he chooses the myopically optimal action that satisfies

Qe

(
e(φ)� ã�φ

)= 0�

By the implicit function theorem, e∗′
(φ)= −Qeφ/Qee > 0. Hence, e(φ∞) < e∗(Φ).

Since Qeφ > 0 and, by Assumption 1, Qae ≤ 0, the derivative

∂

∂e

[
Q(e�A�Φ)−Q(e� ã�φe∞)]= −

∫ ã

A

Qae(e�a�Φ)da+
∫ Φ

φe∞
Qφe(e� ã�φ)dφ> 0�

Because Q(e�A�Φ)−Q(e� ã�φe∞)= 0 and e(φ∞) < e∗(Φ)≤ e, therefore,

Q
(
e(φ∞)�A�Φ

)−Q(e(φ∞)� ã�φe∞
)
< 0 =Q(e(φ∞)�A�Φ

)−Q(e(φ∞)� ã�φ∞
)
�

Since Qφ > 0, it follows that φ∞ <φe∞. Q.E.D.

PROOF OF PROPOSITION 3: Since Qa > 0, Qφ > 0, and ã > A, the surprise function
�i is negative for all φ ≥ Φ and, hence, has a negative slope at its unique root φ∞�i.
Furthermore, when the agent’s belief are a Dirac measure onφ, he chooses the myopically
optimal action that satisfies

Qe

(
e(φ)� ã�φ

)= 0�

By the implicit function theorem, e∗′
(φ) = −Qeφ/Qee > 0 and e∗′

(ã) = −Qea/Qee ≤ 0.
Since φ∞�i < Φ and ã > A, the agent chooses a suboptimally low stable action. Be-
cause �i(φ) = Ri(A�Φ) − Ri(ã�φ) − Li(e

∗(ã�φ)�A�Φ), �1 > �2 pointwise at all but
the optimal action, the fact that the agent chooses some suboptimal action implies that
φ∞�1 >φ∞�2. Q.E.D.

LEMMA 9—Monotonicity of Stable Beliefs: The subjective φ∞ is increasing and contin-
uous in the true state Φ.
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PROOF: The stable state φ∞ is defined as the unique solution φ to

Q
(
e∗(φ)�A�Φ

)−Q(e∗(φ)� ã�φ
)= 0� (9)

Now fix a φ∞ for a given Φ. Slightly increase Φ to Φ′ > Φ. Then the left-hand side in-
creases, while the right-hand side remains unchanged, so

Q
(
e∗(φ∞)�A�Φ′)−Q(e∗(φ∞)� ã�φ∞

)
> 0�

We know that for φ>Φ′, Q(e∗(φ)�A�Φ) <Q(e∗(φ)� ã�φ). So

Q
(
e∗(φ)�A�Φ′)−Q(e∗(φ)� ã�φ

)
< 0 for φ>Φ′�

Q
(
e∗(φ∞)�A�Φ′)−Q(e∗(φ∞)� ã�φ∞

)
> 0 for φ>φ∞�

By the continuity of Q and e∗, there must be a new solution to the equation

Q
(
e∗(φ)�A�Φ′)−Q(e∗(φ)� ã�φ

)= 0

that satisfies φ ∈ (φ∞�Φ′]. Since the stable belief is unique, this implies that the stable
belief associated with the state Φ′ is greater than the stable belief associated with the
state Φ.

The continuity of the stable belief in the true state follows from the differentiability of
Q by applying the implicit function theorem to (9). Q.E.D.

PROOF OF PROPOSITION 4: Consider first the overconfident agent. Since u1 > u, the
agent chooses the task in the first period. Because by Lemma 9 the long-run belief of the
agent is increasing and continuous in the true state and, in addition, Q(e(φ̄∞)� ã� φ̄∞)) <
u, there exists a critical state Φ̂ > Φ̄ such that the agent eventually abandons the task
whenever the realized state Φ < Φ̂. By Chebyshev’s inequality, the probability that the
state is in a range where the agent does not eventually abandon the task is bounded by
the prior variance σ2

0 :

P

[
|Φ− Φ̄| ≥ 1

2
|Φ̄− Φ̂|

]
≤ 2σ2

0

(Φ̄− Φ̂)2
�

As σ2
0 → 0, the probability that Φ< Φ̂ approaches 1. Therefore, as σ2

0 → 0, the probabil-
ity that the agent eventually abandons the task approaches 1.

Now we turn to the rational agent. Since maxe Q(e�A� Φ̄) > u, Lipschitz continuity of
Q in the state implies that for a sufficiently small prior variance σ2

0 , the agent chooses
the task in the first period. Now we prove the following statement: if the agent chooses
the task in the first period, then the probability that he ever takes the outside option is
bounded by σ2

0 times a constant, and hence approaches 0 as σ2
0 → 0.

Without loss of generality, let u= 0 to simplify notation (otherwise normalize the out-
put function by subtracting u from Q). Let

mt = Et

[
Q(e1�A�Φ)

]−E1

[
Q(e1�A�Φ)

]
� (10)

Since maxe Q(e�A� Φ̄) > u = 0, it follows from the continuity of Q that for sufficiently
small σ0, it holds that E1[Q(e1�A�Φ)]> 0, that is, the agent finds it initially optimal not
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to take the outside option. Note that mt is by construction a martingale. As the agent
picks an optimal action, a lower bound on the agent’s payoff is given by the expected
payoff implied from taking the initial action e1 forever:

max
e

Et

[
Q(e�A�Φ)

]≥ Et

[
Q(e1�A�Φ)

]=mt +E1

[
Q(e1�A�Φ)

]
�

Thus, the agent refrains from taking the outside option in period t as long as |mt | is not
too large:

|mt |< E1

[
Q(e1�A�Φ)

] ⇒ 0<mt +E1

[
Q(e1�A�Φ)

]≤ max
e

Et

[
Q(e�A�Φ)

]
�

Hence, an upper bound on the probability that the agent takes the outside option before
period t is given by the probability that the absolute value of the martingale m exceeds
u1 = E1[Q(e1�A�Φ)]:

P

[
min
s≤t

(
max
e

Et

[
Q(e�A�Φ)

])≤ 0
]

≤ P

[
max
s≤t

|ms| ≥ u1

]
�

Applying the Burkholder–Davis–Gundi inequality to the martingale (mt)t yields that
there exists a constant κ such that

P

[
max
s≤t

|ms| ≥ u0

]
≤ κ× (

E
[
m2
t

]−E
[
m2

1

]︸ ︷︷ ︸
=0

)

= κ×E
[(
Et

[
Q(e1�A�Φ)

]−E1

[
Q(e1�A�Φ)

])2]
= κ×E

[(
Et

[
Q(e1�A�Φ)−E1

[
Q(e1�A�Φ)

]])2]
≤ κ×E

[
Et

[(
Q(e1�A�Φ)−E1

[
Q(e1�A�Φ)

])2]]
= κ×E

[(
Q(e1�A�Φ)−E1

[
Q(e1�A�Φ)

])2]
�

(11)

where we use Jensen’s inequality in the second inequality and the law of iterated expec-
tations in the last equality. To bound the right-hand side, we need to bound the prior
variance associated with the payoff of the initial action. As Q is Lipschitz continuous in
φ, we have that the right-hand side of (11) can be bounded by the prior variance

E
[(
Q(e1�A�Φ)−E1

[
Q(e1�A�Φ)

])2]= E
[(
Q(e1�A�Φ)−E1

[
Q(e1�A�Φ)

])2]
= E

[(
Q(e1�A�Φ)−

∫
Q(e1�A�z)π0(z)dz

)2]

= E

[(∫
Q(e1�A�Φ)−Q(e1�A�z)π0(z)dz

)2]

≤ κ2
φE

[(∫
(Φ− z)π0(z)dz

)2]

≤ κ2
φE

[∫
(Φ− z)2π0(z)dz

]
= κ2

φσ
2
0 �
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where the last inequality follows from Jensen’s inequality. Hence, there exists some con-
stant κ′ such that

P

[
sup
s≤t

|ms −m0| ≥ k
]

≤ κ′ × σ2
0 �

Thus, the probability that the agent takes the outside option before period t is bounded
by the prior variance times a constant

P

[
min
s≤t

(
max
e

Es

[
Q(e�A�Φ)

])≤ 0
]

≤ κ′ × σ2
0 �

Because the right-hand side is independent of t, the limit t to infinity of the above equa-
tion is well defined. Using independence of t, existence of the limit, and dominated con-
vergence, we conclude that

lim
t→∞

P

[
min
s≤t

(
max
e

Es

[
Q(e�A�Φ)

])≤ 0
]

= P

[
lim
t→∞

min
s≤t

(
max
e

Es

[
Q(e�A�Φ)

])≤ 0
]

= P

[
min
t

(
max
e

Et

[
Q(e�A�Φ)

])≤ 0
]

≤ κ′ × σ2
0 � Q.E.D.

PROOF OF PROPOSITION 5: (i) ⇒ (ii). Denote by φ̃(A� ã�Φ) the state corresponding
to the unique stable belief when perceived ability equals ã, true ability equals A, and the
true state equals Φ. Denote by e∗(a�φ) the optimal action when the ability equals a and
the state equals φ.

Since the action is objectively optimal for the state Φ as well as subjectively optimal
when the agent holds beliefs φ̃(A� ã�Φ), we have

e∗(A�Φ)= arg max
e
Q(e�A�Φ)= arg max

e
Q
(
e� ã� φ̃(A� ã�Φ)

)
= e∗(ã� φ̃(A� ã�Φ)) (12)

for allA, ã,Φ. Furthermore, by the definition of a stable belief, the agent gets no surprise:

Q
(
e∗(A�Φ)�A�Φ

)=Q(e∗(A�Φ)� ã� φ̃(A� ã�Φ)
)

(13)

for all A� ã�Φ.
We establish some properties of e∗(a�φ). First, we know that e∗

φ(a�φ) > 0. Second,
we show that e∗

a(a�φ) > 0 (recall that we do not assume Qea ≥ 0 in Proposition 5). To-
tally differentiating Equation (13) with respect to ã and using that Qa > 0, we get that
φ̃ã(a� ã�φ) < 0. Furthermore, by Equation (12) we have e∗(a�φ) = e∗(ã� φ̃(a� ã�φ)).
Totally differentiating this equality with respect to ã gives that e∗

ã(ã� φ̃ã(a� ã�φ)) =
−e∗

φ(ã� φ̃ã(a� ã�φ))φ̃ã(a� ã�φ) > 0. Setting ã = a and using that φ̃(a�a�φ) = φ estab-
lishes our claim that e∗

a(a�φ) > 0.
Given these properties, we can define S(a�φ) = e∗(a�φ), and this function satisfies

Sa�Sφ > 0. Furthermore, using again that e∗(a�φ) = e∗(ã� φ̃(a� ã�φ)), note that for
any a� ã�φ, the unique φ′ satisfying S(a�φ) = S(ã�φ′) is φ′ = φ̃(a� ã�φ). Now we de-
fine V (e�S) = S − L(|e − S|), where L(·) is any strictly increasing function satisfying
L′(x) < 1 everywhere. By construction, VS > 0, and because S(ã� φ̃(A� ã�Φ))= S(A�Φ),
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�(φ̃(A� ã�Φ)) = 0. Thus, the Dirac measure on φ̃(A� ã�Φ) is the stable belief and
S(ã� φ̃(A� ã�Φ))= e∗(ã� φ̃(A� ã�Φ))= e∗(A�Φ) is the stable action.

(ii) ⇒ (i). Because VS�Sa� Sφ > 0, for any action e there is a unique φ̃ such that
V (e�S(A�Φ))= V (e�S(ã� φ̃)). At this φ̃, �(φ̃)= 0, and, hence, δφ̃ = δφ∞ is a stable be-
lief. Hence the stable action e∗(φ∞) of the agent satisfies Ve(e∗(φ∞)� S(ã�φ∞))= 0, and
since Ve(e�S(ã�φ∞))= Ve(e�S(A�Φ)), the stable action is optimal if the output function
takes the form V (e�S(a�φ)). Q.E.D.

A.2.2. Belief Concentration in the Myopic Case

We now prove Theorem 1.
Step 1: In the Long Run the Expected Change Approximates the Actual Change in Beliefs.

To characterize the long-run behavior of the agent’s beliefs, we show that the change in his
beliefs in the long run can be approximated well by the expected change. To establish this,
we use the fact that the log-likelihood function is the average of the log-likelihoods of the
realized outputs. As the log-likelihood is an average of nonidentical and nonindependent
random variables, however, we need to generalize existing versions of the law of large
numbers to non-i.i.d. random variables. To do so, we use the fact that a square-integrable
martingale divided by its quadratic variation converges to zero whenever the quadratic
variation goes to infinity.

The following proposition states a law of large numbers like result for square-integrable
Martingales with bounded quadratic variation. Recall the definition of the quadratic vari-
ation of a martingale (yt)t as

[y]t =
t−1∑
s=1

E
[
(ys+1 − ys)2 |Fs

]
� (14)

where Fs denotes filtration of an outside observer who knows the state at time s, that is,
the expectation is taken with respect to all information available at time s. For brevity, we
refer to the martingale (yt)t as martingale y .

PROPOSITION 10—Law of Large Numbers: Let (yt)t be a martingale that satisfies a.s.
[y]t ≤ vt for some constant v≥ 0. We have that a.s.

lim
t→∞

yt

t
= 0�

PROOF: We first show that y is square integrable. By the law of iterated expectations,
we have that

E
[
y2
t

]= E

[
y2

1 +
t−1∑
s=1

y2
s+1 − y2

s

]
= y2

1 +E

[
t−1∑
s=1

E
[
y2
s+1 − y2

s |Fs

]]

= y2
1 +E

[
t−1∑
s=1

E
[
(ys+1 − ys)2 |Fs

]]= y2
1 +E

[[y]t]≤ y2
1 + vt�

Consequently, the martingale y is square integrable.
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In the next step we show that limt→∞
yt
t

= 0 almost surely. If the limit of the quadratic
variation [y]∞ = limt→∞[y]t exists, the martingale y converges almost surely (Theo-
rem 12.13 in Williams (1991)), and hence limt→∞

yt
t

= 0. Hence, from now on we con-
sider the remaining histories for which the quadratic variation does not converge. We can
rewrite the average value of the martingale y as

yt

t
= yt

[y]t · [y]t
t
�

Because the square quadratic variation is monotone increasing by definition, it must go
to infinity after those histories. Furthermore (as argued, for example, in Section 12.14
in Williams (1991)), for any square-integrable martingale and any history for which
limt→∞[y]t = ∞, one has that almost surely limt→∞

yt
[y]t = 0. Since 0 ≤ [y]t ≤ vt, it follows

that lim supt→∞ | yt
t
| ≤ v · lim supt→∞ | yt[y]t | = 0 almost surely. Since lim supt→∞ | yt

t
| = 0 a.s.,

limt→∞
yt
t

= 0 a.s. Q.E.D.

To apply the result of Proposition 10, we will, for every fixed beliefφ, consider the Doob
decomposition (Section 12.11 in Williams (1991)) of the derivative of the log-likelihood
process into a martingale (yt(φ))t and a previsible process (zt(φ))t , henceforth y(φ) and
z(φ).

Let mt(φ) :=Q(et�A�Φ)−Q(et� ã�φ). We define xt(φ) as

xt(φ)= −(g(mt(φ)+ εt
)−E

[
g
(
mt(φ)+ εt

) |Ft

])
Qφ(et� ã�φ)

= −(g(mt(φ)+ εt
)−E

[
g
(
mt(φ)+ εt

) | et
])
Qφ(et� ã�φ)

= −(g(mt(φ)+ εt
)−L′(mt(φ)

))
Qφ(et� ã�φ)�

(15)

where the second equality uses the fact that an outside observer who knows the true state
needs only to condition on the current action et to calculate the expected surprise in the
next period. Furthermore, we define yt(φ)=∑t

s=1 xs(φ) and zt(φ) as

zt(φ)= −
∑
s≤t

L′(ms(φ)
)
Qφ(es� ã�φ)�

LEMMA 10: For every φ, the processes (y(φ)� z(φ)) have the properties
(i) �′

t(φ)= �′
0(φ)+ yt(φ)+ zt(φ),

(ii) |xt(φ)| ≤ κφ|κf |(|εt | + σ),
(iii) yt(φ) is a martingale with [y(φ)]t ≤ t3(κφ|κf |σ)2.

PROOF: Part (i) follows immediately from the definition. Furthermore, by construction
E[xt(φ)|Ft] = E[xt(φ) | et] = 0 and, hence, y is a martingale. Using the bound on the
absolute value of the derivative of g, |κf |, part (ii) follows since∣∣xt(φ)∣∣= ∣∣g(mt(φ)+ εt

)−E
[
g
(
mt(φ)+ εt

) | et
]∣∣Qφ(et� ã�φ)

= ∣∣[g(mt(φ)+ εt
)− g(mt(φ)

)]−E
[
g
(
mt(φ)+ εt

)− g(mt(φ)
) | et

]∣∣Qφ(et� ã�φ)

≤ κφ
∣∣[g(mt(φ)+ εt

)− g(mt(φ)
)]∣∣+ κφ∣∣E[g(mt(φ)+ εt

)− g(mt(φ)
) | et

]∣∣
≤ κφ|κf ||εt | + κφ|κf |E

[|εt |]�
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and by Jensen’s inequality E[|εt |] ≤ √
E[|εt |2] = σ . Part (iii) follows from (ii) and the

definition of the quadratic variation (14):

[
y(φ)

]
t
=

t∑
s=2

E
[
x2
s |Fs−1

]≤ κ2
φ|κf |2

t∑
s=2

E
[(|εs| + σ)2]

= κ2
φ|κf |2

{
t∑
s=2

E
[|εs|2

]+ σ2 +E
[|εs|]σ

}
≤ 3κ2

φ|κf |2σ2t�
Q.E.D.

An immediate corollary from the law of large numbers given in Proposition 10 and
Lemma 10(iii) is that for every φ, the average of yt(φ) converges to zero almost surely,
that is,

lim
t→∞

yt(φ)

t
= 0�

We next want to show that this convergence is uniform in φ.
Let φ∞ be the largest number such that the agent almost always convinces himself

eventually that the state Φ is greater than φ∞ and let φ∞ be the smallest number such
that the agent is eventually convinced that the state is below φ∞, that is,

φ∞ = sup
{
φ′ : lim

t→∞
�t

(
φ′)= 0 almost surely

}
�

φ∞ = inf
{
φ′ : lim

t→∞
�t

(
φ′)= 1 almost surely

}
�

DEFINITION 3—Uniform Stochastic Convergence: The sequence (Gt(·))t converges
uniformly over [φ∞�φ∞] stochastically to zero if and only if

lim
t→∞

sup
φ∈[φ∞�φ∞]

∣∣Gt(φ)
∣∣= 0 a.s. (U-SCON)

For deterministic sequences of real-valued function, Ascoli’s theorem states that point-
wise convergence implies uniform convergence if and only if the functions are equicontin-
uous. Despite the fact that our sequence of real-valued functions is not equicontinuous for
every realization, we use a stochastic analogue—strong stochastic equicontinuity (SSE) as
defined on p. 245 in Andrews (1992)—to establish uniform convergence below.

DEFINITION 4—Strong Stochastic Equicontinuity: Let G∗
t (φ) = sups≥t |Gs(φ)|. A se-

quence (Gt(·))t is strongly stochastic equicontinuous if and only if:
(i) G∗

1(φ) <∞ for all φ ∈ [φ∞�φ∞] a.s.,
(ii) for all γ > 0, there exists δ > 0 such that

lim
t→∞

P

[
sup

φ∈[φ∞�φ∞]
sup

φ′∈Bδ(φ)

∣∣G∗
t (φ)−G∗

t

(
φ′)∣∣> γ]< γ�

The usefulness of SSE comes from the fact that almost sure convergence in combination
with SSE implies (U-SCON).
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THEOREM 3—Theorem 2(a) in Andrews (1992): IfG satisfies strong stochastic equicon-
tinuity andG converges pointwise to zero a.s., thenG converges uniform stochastically to zero.

Our next result argues that the sequence yt (·)
t

is strong stochastic equicontinuous and
thus converges uniform stochastically to zero.

LEMMA 11: The sequence ( yt (·)
t
)t converges uniform stochastically to zero.

PROOF: By Lemma 2 in Andrews (1992), strong stochastic equicontinuity of ( yt (·)
t
)t

follows if the absolute value of the derivative of xt(·) can be uniformly bounded by
a random variable Bt for all φ ∈ [φ∞�φ∞] such that supt≥1

1
t

∑t

s=1 E[Bs] < ∞ and
limt→∞ 1

t

∑t

s=1(Bs −E[Bs])= 0.
From the definition of x in Equation (15) it follows that∣∣x′

t(φ)
∣∣= ∣∣(g′(mt(φ)+ εt

)−L′′(mt(φ)
))[
Qφ(et� ã�φ)

]2

− (
g
(
mt(φ)+ εt

)−L′(mt(φ)
))
Qφφ(et� ã�φ)

∣∣
≤ ∣∣g′(mt(φ)+ εt

)−L′′(mt(φ)
)∣∣[Qφ(et� ã�φ)

]2

+ ∣∣(g(mt(φ)+ εt
)−L′(mt(φ)

))∣∣× ∣∣Qφφ(et� ã�φ)
∣∣�

Since |g′| ≤ |κf |, one has |L′′(mt(φ))| ≤ |κf |, and by Assumption 2,Qφ ≤ κφ, |Qφφ| ≤ κφφ;
using this and substituting xt(φ) yields

∣∣x′
t(φ)

∣∣≤ 2|κf |κ2
φ + ∣∣xt(φ)∣∣κφφ

κφ
≤ 2|κf |κ2

φ + κφφ

κφ
κφ|κf |

(|εt | + σ)=: Bt�

where the last inequality follows from Lemma 10(ii). As (Bt)t are i.i.d., it follows that

1
t

t∑
s=1

E[Bs] = E[B0]<∞�

Furthermore, as Bt also has finite variance, the law of large numbers implies limt→∞ 1
t
×∑t

s=1(Bs −E[Bs])= 0. Q.E.D.

Step 2: No Long-Run Surprises. The next lemma shows that if the agent is always on
average surprised by the output for some beliefs—i.e.,mt(·) is bounded away from zero—
then the absolute value of the derivative of his subjective log-likelihood goes to infinity
almost surely for those beliefs.

Let I denote an interval.

LEMMA 12: (a) If lim inft→∞mt(φ)≥m> 0 for all φ ∈ I, then there exists r > 0 such that
a.s.

lim inf
t→∞

inf
φ∈I
�′
t(φ)

t
≥ r�

(b) If lim supt→∞mt(φ)≤m< 0 for all φ ∈ I, then there exists r > 0 such that a.s.

lim sup
t→∞

sup
φ∈I

�′
t(φ)

t
≤ −r�
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PROOF: We show (a); the proof of (b) is analogous. As L′ is decreasing, we have that
for all φ ∈ I,

L′(mt(φ)
)≤L′(m)�

We use this fact and that L′(m) < 0 to bound zt(φ) for all φ ∈ I:

zt(φ)= −
t∑
s=1

L′(mt(φ)
)
Qφ(et� ã�φ)

≥
t∑
s=1

∣∣L′(m)
∣∣Qφ(et� ã�φ)≥ t · ∣∣L′(m)

∣∣κφ�
Define r = |L′(m)|κφ > 0. Using the definition of yt(φ) and zt(φ), r, and the uniform
stochastic convergence of yt/t to zero that we established in Lemma 11, respectively, we
have that

lim inf
t→∞

inf
φ∈I
�′
t(φ)

t
= lim inf

t→∞
inf
φ∈I
�′

0(φ)+ yt(φ)+ zt(φ)
t

≥
[

lim inf
t→∞

inf
φ∈I
yt(φ)

t

]
+ r

≥ −
[

lim sup
t→∞

inf
φ∈I

∣∣yt(φ)∣∣
t

]
+ r = r�

Q.E.D.

The next lemma argues that if the agent is surprised by the output for an interval of
beliefs then he will a.s. assign probability 0 to those beliefs in the long run. Intuitively, as
by Lemma 12 the absolute value of the derivative of the agent’s subjective likelihood goes
to infinity, the absolute value of the derivative of his posterior density goes to infinity.
The next lemma shows that this implies that the agent must assign probability 0 to those
beliefs.

LEMMA 13: (i) If lim inft→∞mt(φ)≥m> 0 for all φ ∈ (l�h)⊂ (φ�φ), then

lim
t→∞

P̃t

[
Φ ∈ [l�h)]= 0�

(ii) If lim supt→∞mt(φ)≤m< 0 for all φ ∈ (l�h)⊂ (φ�φ), then

lim
t→∞

P̃t

[
Φ ∈ (l�h]]= 0�

PROOF: First consider the case where mt(φ) ≥ m > 0. Lemma 12 implies that there
a.s. exists r > 0 such that for sufficiently large t for all y ∈ (l�h),

�′
t(y)≥ rt�

Let η= h− l. We have that the probability the agent assigns to state in [l + η/2� l + η]
satisfies

P̃t

[
Φ ∈ [l+η/2� l+η]]=

∫ l+η

l+η/2
πt(z)dz =

∫ l+η/2

l

πt(z)
πt(z+η/2)
πt(z)

dz

=
∫ l+η/2

l

πt(z)exp
(
�t(z+η/2)− �t(z)

)
dz
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=
∫ l+η/2

l

πt(z)exp
(∫ z+η/2

z

�′
t(y)dy

)
dz

≥
∫ l+η/2

l

πt(z)exp(rtη/2)dz = ertη/2P̃t
[
Φ ∈ [l� l+η/2]]�

As r > 0, we have that the probability assigned to the interval [l� l+η/2] is bounded by a
term that vanishes for t → ∞:

P̃t

[
Φ ∈ [l� l+η/2]]≤ e−rtη/2

P̃t

[
Φ ∈ [l+η/2� l+η]]≤ e−rtη/2�

Hence, the agent must assigned zero probability to the interval [l� l+η/2] in the long run.
Applying this argument iteratively yields that the agent assigns zero probability to the

interval [l�h). The argument in the case where mt(φ) ≤ m < 0 is completely analo-
gous. Q.E.D.

Step 3: Convergence in the Correctly Specified Case. Lemma 13 allows us to argue that
the agent’s subjective beliefs converge when her model of the world is correctly specified
(ã=A).

PROPOSITION 11: If ã=A, then the agent’s posterior belief converges to a Dirac measure
on the true state Φ.

PROOF: Fix an η> 0. We have that for all φ≤Φ−η,

mt(φ)=Q(et�A�Φ)−Q(et� ã�φ)≥ ηκφ�
Hence, by Lemma 13, we have that a.s. limt→∞�t(Φ− η)= 0 and thus a.s. φ∞ ≥Φ− η.
Taking the supremum over η yields that a.s. φ∞ ≥Φ. An analogous argument yields that
a.s. φ∞ ≤Φ. Since φ∞ ≤φ∞, we conclude that a.s. φ∞ =φ∞ =Φ. Q.E.D.

Step 4: Long-run Bounds on the Agent’s Beliefs. Building on Lemma 5, in this step we
show that the agent’s subjective belief is bounded in the long run. The next lemma shows
that φ∞ and φ∞ are well defined and that the agent’s long-run beliefs are almost surely
bounded.

LEMMA 14: We have that Φ− κa
κφ
(ã−A)≤φ∞ and φ∞ ≤Φ.

PROOF: We first show φ∞ ≤Φ. Note that as the average output increases in ability, it
follows that for every sequence of actions, the output that the agent observes is smaller
than

qt ≤ q̂t := qt +Q(et� ã�Φ)−Q(et�A�Φ)�
By construction, if the agent where to observe the outputs (q̂t) instead of (qt), he would
have the same belief as a correctly specified decisionmaker with ability ã would have if
the state equals Φ. The beliefs of such a correctly specified decisionmaker converge to Φ
almost surely for every sequence of actions by Proposition 11.

By Lemma 5, qt ≤ q̂t implies that the agent’s posterior belief is lower in the sense of
MLR than for a sequence of beliefs that converges to Φ almost surely. As MLR implies
first order stochastic dominance, it follows that φ∞ ≤Φ.
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We next show φ∞ ≥Φ− κa
κφ
(ã−A). Let Φ′ =Φ− κa

κφ
(ã−A). We will show that

qt ≥ q̂t := qt +Q
(
et� ã�Φ

′)−Q(et�A�Φ)�
We have that

Q
(
et� ã�Φ

′)−Q(e�A�Φ)=Q(et� ã�Φ′)−Q(et� ã�Φ)+Q(et� ã�Φ)−Q(et�A�Φ)
≤ −κφ

(
Φ−Φ′)+ κa(ã−A)= 0�

By construction, if the agent were to observe the outputs (q̂t) instead of (qt), he would
have the same belief as a correctly specified decisionmaker with ability ã would have if the
state equals Φ′, and hence the result follows from the same argument as above. Q.E.D.

Step 5: Bounds on the Myopically Optimal Actions. Let emt be the action that is myopically
optimal in period t:

emt = arg max
e

Ẽt−1[qt] = arg max
e

∫
(φ�φ)

Q(e� ã�φ)πt−1(φ)dφ�

We define the long-run lower and upper bound on the agent’s actions:

ě= lim inf
t→∞

emt �

ê= lim sup
t→∞

emt �

The next lemma shows that if the agent assigns subjective probability of almost 1 to the
event that the state is strictly greater (smaller) than some φ∞ (φ∞), then the myopically
optimal action is greater (smaller) than the optimal action if the agent assigns probability
1 to the state φ∞ (φ∞). Recall that e∗(φ) denotes the optimal action when the agent has
point beliefs on φ, and that e∗(φ) is increasing.

LEMMA 15: If the agent is myopic et = emt , then the long-run bounds on his actions satisfy

e∗(φ∞)≤ ě≤ ê≤ e∗(φ∞)�

PROOF: Because Q is strictly concave with positive derivative at e and negative deriva-
tive at e, the agent’s myopically optimal action is characterized by the first order condition
Ẽt−1[Qe(et� ã�Φ)] = 0.

Let φ′ = φ∞ − 2γ for some γ > 0. To show that the myopically optimal action et is
greater e′ = e∗(φ′) for large t, it suffices to show that the expected marginal output is
positive at e′ < e∗(φ∞):

Ẽt−1

[
Qe

(
e′� ã�Φ

)]=
∫
(φ�φ)

Qe

(
e′� ã�φ

)
πt−1(φ)dφ

=
∫ φ

φ′+γ
Qe

(
e′� ã�φ

)
πt−1(φ)dφ+

∫ φ′+γ

φ

Qe

(
e′� ã�φ

)
πt−1(φ)dφ�
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Recall that by Assumption 2, the derivative with respect to the action is bounded by |Qe| ≤
κe and that Qeφ > 0, and hence the above equality is greater than or equal to

∫ φ

φ′+γ
Qe

(
e′� ã�φ′ + γ)πt−1(φ)dφ− κe

∫ φ′+γ

φ

πt−1(φ)dφ

=Qe

(
e′� ã�φ′ + γ)[1 −�t−1

(
φ′ + γ)]− κe�t−1

(
φ′ + γ)�

Furthermore, by definition of e′ = e∗(φ′)≤ e∗(φ′ + γ), we have Qe(e
′� ã�φ′ + γ) > 0. As

φ′ + γ = φ∞ − γ, it follows from the definition of φ∞, which exists by Lemma 14, that
limt→∞�t−1(φ

′ + γ)= 0. Hence, taking the limit t → ∞ yields that Ẽt−1[Qe(e
′� ã�Φ)]> 0

for t large enough. Consequently, for all γ > 0, the myopically optimal action is greater
than e′ = e∗(φ∞ −2γ) for sufficiently large t. Taking the supremum over γ yields the result

ě≥ sup
γ>0
e∗(φ∞ − 2γ)= e∗(φ∞)�

The proof for the upper bound ê is analogous. Q.E.D.

Step 6. Beliefs Converge to Limiting Belief. We begin by showing that the bounds on
the myopically optimal action imply bounds on the long-run average output; then we
complete the proof of Theorem 1 by showing that beliefs a.s. converge.

The next lemma is useful for arguing that if the agent takes an action above the action
that is optimal for the state φ∞ < Φ, then the realized average output will be strictly
greater than the average output that the agent expects if the state is φ∞.

LEMMA 16: The long-run average surprise in output satisfies

lim inf
t→∞

Q(et�A�Φ)−Q(et� ã�φ∞)≥ �(φ∞)� (16)

lim sup
t→∞

Q(et�A�Φ)−Q(et� ã�φ∞)≤ �(φ∞)� (17)

PROOF: Let e′ = e∗(φ′) for some φ′. We have that

Q(et�A�Φ)−Q(et� ã�φ′)− �(φ′)
= [
Q(et�A�Φ)−Q(et� ã�φ′)]− [

Q
(
e′�A�Φ

)−Q(e′� ã�φ′)]
= −[Q(e′�A�Φ

)−Q(et�A�Φ)
]+ [

Q
(
e′� ã�φ′)−Q(et� ã�φ′)]

=
∫ e′

et

Qe

(
z� ã�φ′)−Qe(z�A�Φ)dz�

(18)

We first establish that (16) holds. To show this, we first show that (18) is nonnegative for
φ′ =φ∞ and et ≥ ě. For e′ = e∗(φ∞), Lemma 15 implies that e∗(φ∞)≤ ě, and hence the
term (18) equals∫ e∗(φ∞)

et

Qe(z� ã�φ∞)−Qe(z�A�Φ)dz =
∫ et

e∗(φ∞)
Qe(z�A�Φ)−Qe(z� ã�φ∞)dz ≥ 0�
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where the last inequality follows from the facts that Qeφ > 0 and φ∞ ≤Φ by Lemma 14,
andQea ≤ 0 and ã > A. That (16) holds follows asQ is continuous in e and lim inft→∞ et ≥
ě≥ e∗(φ∞).

We finally show that (17) holds. To show this, we first show that (18) is nonpositive for
φ′ =φ∞ and et ≤ ê. In this case, e′ = e∗(φ∞), and Lemma 15 implies e∗(φ∞)≥ ê. Hence,
the term (18) equals ∫ e∗(φ∞)

et

Qe(z� ã�φ∞)−Qe(z�A�Φ)dz ≤ 0�

where the last inequality follows from the facts that Qeφ > 0 and φ∞ ≤Φ by Lemma 14,
andQea ≤ 0 and ã > A. That (17) holds follows asQ is continuous in e and lim supt→∞ et ≤
ê≤ e∗(φ∞). Q.E.D.

Lemma 16 shows that if �(φ∞) > 0 and �(φ∞) < 0, the output will be on average
higher than the output he would expect at the state φ∞ and lower than the output he
would expect at the state φ∞. Intuitively, this should lead the agent to assign probability 0
to states around φ∞ and φ∞, which contradicts the definition of [φ∞�φ∞] as the smallest
interval to which the agent assigns probability 1 in the long run and, hence, implies that
�(φ∞)= �(φ∞)= 0. We use the next lemma to formalize this intuition.

The next lemma shows that the condition of Lemma 13 is satisfied whenever the sur-
prise function is positive at φ∞ or negative at φ∞.

LEMMA 17: (a) If �(φ∞) > 0, then there exists β�m > 0 such that a.s. for all φ ∈
[φ∞�φ∞ +β],

lim inf
t→∞

mt(φ)≥m�
(b) If �(φ∞) < 0, then there exists β�m< 0 such that a.s. for all φ ∈ [φ∞ −β�φ∞],

lim sup
t→∞

mt(φ)≤m�

PROOF: We show (a); the proof of (b) is analogous. Lemma 16 implies that almost
surely

lim inf
t→∞

mt(φ∞)= lim inf
t→∞

Q(et�A�Φ)−Q(et� ã�φ∞)≥ �(φ∞) > 0�

As 0<Qφ < κφ, it follows that mt(φ)≥mt(φ∞)− κφ(φ−φ∞)≥ �(φ∞)− κφ(φ−φ∞)
and, hence, that

mt(φ)≥ 1
2
�(φ∞)

for all φ ∈ [φ∞�φ∞ +β] with β= �(φ∞)
2κφ

. Q.E.D.

We are now ready to prove Theorem 1.

PROOF OF THEOREM 1: We first show that �(φ∞) ≤ 0. Suppose for the sake of
a contradiction that �(φ∞) > 0. By Lemma 17 there exists a β�m > 0 such that
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lim inft→∞mt(φ)≥m> 0 for all φ ∈ [φ∞�φ∞ +β]. By Lemma 13 almost surely

lim
t→∞

P̃t

[
Φ ∈ [φ∞�φ∞ +β)]= 0�

Hence, the agent assigns zero probability to the interval [φ∞�φ∞ + β) in the long run,
which contradicts the definition of φ∞. Consequently, �(φ∞)≤ 0.

An analogous argument yields that �(φ∞) ≥ 0. Since � crosses zero from above by
Lemma 8, it follows that φ∞ ≥ φ∞ and φ∞ ≤ φ∞. Since φ∞ ≤ φ∞ by definition, φ∞ =
φ∞ = φ∞. By definition of φ∞ and φ∞, beliefs a.s. converge in distribution to a Dirac
measure on φ∞. Thus, by Lemma 15, action converges a.s. to e∗(φ∞). Q.E.D.

A.2.3. Belief Concentration in the Linear Nonmyopic Case

Next, we argue that beliefs concentrate and converge in distribution to the root of the
surprise function � even when the agent is nonmyopic (i.e., experiments) if Q is linear
in φ. If Q is linear in φ, there exist functions G and H such that

Q(e�a�φ)=φH(e�a)+G(e�a)�
To satisfy the assumption that Qφ > 0, we need to assume that Φ does not change sign.
We will thus henceforth consider the case where subjectively as well as objectively Φ> 0.
As Qφ ≥ κφ > 0 by Assumption 2, it follows that H(e�a)≥ κφ > 0. We impose this linear
structure until the end of the proof of Theorem 2.

LEMMA 18: There exists constants κ� ≤ κ� < 0 and τ > 0 such that for every sequence of
signals (qs)s≤t and actions (es)s≤t and all φ

κ� · t ≤ �′′
t (φ)≤ κ� · t for t ≥ τ�

PROOF: Note that g′ ∈ [κf �κf ] by our assumption of bounded log-concavity and As-
sumption 3. The first and the second derivative of the log-likelihood function are given
by

�′
t(φ)=

∑
s≤t

−g(qs −Q(es� ã�φ))H(es� ã)+ ∂

∂φ
logπ0(φ)�

�′′
t (φ)=

∑
s≤t
g′(qs −Q(es� ã�φ))H2(es� ã)+ ∂2

∂φ2 logπ0(φ)

≤ tκfκ2
φ + κπ�

Observe that for large enough t, tκfκ2
φ + κπ < 0, which establishes that there exists a

κ� < 0 such that �′′
t (φ)≤ κ� · t < 0 for large enough t.

By essentially the same argument, �′′
t (φ)≥ t ·κfκ2

φ+κπ , and, hence, there exists a κ� < 0
such that �′′

t (φ)≥ κ� · t for large enough t. Q.E.D.

Since κf < 0, for large enough t, the agent’s posterior log-likelihood is strictly concave
for every sequence of signals, and hence there exists a unique log-likelihood maximizer
(or modal belief) of the agent when t is large enough:

φML
t := arg max

φ
�t(φ)�



1206 P. HEIDHUES, B. KŐSZEGI, AND P. STRACK

PROPOSITION 12—Concentration: There exists a constant k such that for all large
enough t,

Ẽt

[(
φ−φML

t

)2]≤ k1
t
� (19)

PROOF: We consider large enough t such that the agent’s posterior log-likelihood is
strictly concave for every sequence of signals, and hence the log-likelihood maximizer
φML
t is unique. Furthermore, because π0(φ) = 0, we have that �t(φ) = −∞. Thus, the

maximizer φML
t is interior. Since �t is strictly concave and twice differentiable, φML

t is
implicitly defined by

0 = �′
t

(
φML
t

)
�

The loss in log-likelihood relative to this maximizer is bounded from below by the squared
distance from the maximizer:

�t
(
φML
t

)− �t(φ)=
∫ φML

t

φ

�′
t(z)− �′

t

(
φML
t

)
dz

= −
∫ φML

t

φ

∫ φML
t

z

�′′
t (y)dy dz ≥ t|κ�|1

2
(
φ−φML

t

)2
�

By an analogous argument, �t(φML
t )− �t(φ) ≤ t|κ�| 1

2(φ− φML
t )2. The expected distance

of the true state from the log-likelihood maximizer is given by

Ẽt

[(
φ−φML

t

)2]=
∫
(φ�φ)

(
φML
t −φ)2 e�t (φ)∫

(φ�φ)

e�t (z) dz
dφ

=
∫
(φ�φ)

(
φML
t −φ)2 e−[�t (φML

t )−�t (φ)]∫
(φ�φ)

e−[�t (φML
t )−�t (z)] dz

dφ

≤ |κ�|
|κ�|

∫
(φ�φ)

t|κ�|√
2π

(
φ−φML

t

)2
e−t|κ�| 1

2 (φ
ML
t −φ)2 dφ∫

(φ�φ)

t|κ�|√
2π
e−t|κ�| 1

2 (φ
ML
t −φ)2 dz

= |κ�|
|κ�|2 · 1

t
�

In the last step, we use that the term above the numerator is the variance of a normal
distribution with variance 1

|κ�|t , and the term in the denominator is the integral over a
normal density (with variance 1

|κ�|t ) and, hence, is equal to 1. Q.E.D.

As a consequence for large enough t, the agent’s posterior expected squared distance
between the state and the log-likelihood maximizer decays at the speed of 1/t for any
sequence of signals he observes.
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Define φ̃t as the agent’s subjective posterior mean

φ̃t := Ẽt[φ]�
The result of Proposition 12 immediately implies that the agent’s subjective beliefs also
concentrate around his posterior mean.

LEMMA 19: There exists a constant k such that for all large enough t,

Ẽt

[
(φ− φ̃t)2

]≤ k1
t
� (20)

PROOF: The agent’s subjective posterior mean minimizes the squared distance from
the agent’s point of view, that is, for any φ̂,

0 = ∂

∂φ̂
Ẽt

[
(φ̂−φ)2

]= 2Ẽt[φ̂−φ] = 2(φ̂− φ̃t)�

Hence, the posterior variance must be less than the expected distance between the state
and the maximum likelihood estimate:

Ẽt

[
(φ− φ̃t)2

]≤ Ẽt

[(
φ−φML

t

)2]≤ k

t
� Q.E.D.

Denote by emt the action that is myopically optimal given the agent’s posterior belief:

emt ∈ arg max
e

Ẽt−1

[
Q(e� ã�φ)

]
�

Recall that we denote by e∗(φ̂) the action that is subjectively optimal when the agent
assigns probability 1 to some state φ̂. As the output function is linear in φ, the myopically
optimal action is implicitly given by the first order condition

0 = Ẽt−1[φ]He(e� ã)+Ge(e� ã)�

This immediately implies the following lemma.

LEMMA 20: The myopically optimal action emt equals the optimal action when the agent
assigns probability 1 to the state φ̃t :

emt = e∗(φ̃t−1)�

In the next step, we show that the change in the optimal action is locally Lipschitz
continuous in the subjective average belief.

LEMMA 21: For every compact interval I, there exists kI such that 0 ≤ (e∗)′(φ)≤ kI .
PROOF: As Q is concave in the action e, the optimal action e∗(φ) when the agent as-

signs a point belief to φ satisfies 0 =Qe(e(φ)� ã�φ). By the implicit function theorem,

(
e∗)′(φ)= −Qeφ

(
e∗(φ)� ã�φ

)
Qee

(
e∗(φ)� ã�φ

) > 0�
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As (e∗)′ is continuous, it follows that it is bounded on I by

kI = max
φ∈I

Qeφ

(
e∗(φ)� ã�φ

)∣∣Qee

(
e∗(φ)� ã�φ

)∣∣ � Q.E.D.

In the next step, we show that the agent’s gain from learning vanishes as t increases, and
hence the optimal action approaches the myopically optimal one. An easy upper bound
on the gain from learning is the change in payoffs when the agent uses the myopically
optimal action.

LEMMA 22: As t → ∞, the optimal action et and myopically optimal action emt converge,
that is, limt→∞(emt − et)2 = 0.

PROOF: Fix an interval of beliefs Iφ = [φ∞ − γ�φ∞ + γ] for some γ > 0 and fix a cor-
responding set of actions Ie = [e∗(φ∞ − γ)� e∗(φ∞ + γ)]. Let κee be given by

κee = sup
φ∈Iφ�e∈Ie

Qee(e� ã�φ)�

As Iφ × Ie is compact and Q is continuous with Qee < 0, it follows that κee < 0. By
Lemma 15, the myopic action will be in the interval Ie after some period Te.

Define the projection Pe of an action e to Ie by Pe= arg minê∈Ie |ê− e|. We have that
the subjectively expected contemporaneous loss in period t from taking an action e other
than the myopically optimal one is given by

Ẽt−1

[
Q
(
emt � ã�φ

)−Q(e� ã�φ)]
=
∫
(φ�φ)

{
Q
(
emt � ã�φ

)−Q(e� ã�φ)}πt−1(φ)dφ

=
∫
(φ�φ)

∫ emt

e

Qe(z� ã�φ)dzπt−1(φ)dφ

=
∫
(φ�φ)

∫ emt

e

{
Qe

(
emt � ã�φ

)−
∫ emt

z

Qee(y� ã�φ)dy
}

dzπt−1(φ)dφ

=
∫
(φ�φ)

{(
emt − e)Qe

(
emt � ã�φ

)−
∫ emt

e

∫ emt

z

Qee(y� ã�φ)dy dz
}
πt−1(φ)dφ�

Using that
∫
(φ�φ)

Q(emt � ã�φ)πt−1(φ)dφ = 0 and that the integral bounds of the second
term in curly brackets are ordered the same way, we have that

Ẽt−1

[
Q
(
emt � ã�φ

)−Q(e� ã�φ)]
=
∫
(φ�φ)

∣∣∣∣
∫ emt

e

∫ emt

z

∣∣Qee(y� ã�φ)
∣∣dy dz

∣∣∣∣πt−1(φ)dφ

≥
∫
(φ�φ)

∣∣∣∣
∫ emt

e

∫ emt

z

1{y∈Ie}
∣∣Qee(y� ã�φ)

∣∣dy dz
∣∣∣∣1{φ∈Iφ}πt−1(φ)dφ
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≥
∫
(φ�φ)

∣∣∣∣
∫ emt

e

∫ emt

z

1{y∈Ie}|κee|dy dz
∣∣∣∣1{φ∈Iφ}πt−1(φ)dφ

≥ |κee|
2

1{t≥Te}

∫
R

(
emt − Pe)2

1{φ∈Iφ}πt−1(φ)dφ

= |κee|
2

1{t≥Te}P̃t−1[Φ ∈ Iφ]
(
emt − Pe)2

�

We next derive a (rough) upper bound on the gain of learning. We calculate the upper
bound on the per-period gain by taking the difference in expected payoffs between an
agent who gets to know the state of the world perfectly minus one who learns nothing
over and above what he knows at the beginning of period t. To state the bound, we use
that by Lemma 21 e∗ is Lipschitz continuous on Iφ, and we denote the corresponding
Lipschitz constant by κo. We have

Ẽt−1

[
Q
(
e∗(φ)� ã�φ

)−Q(emt � ã�φ)]
=
∫
(φ�φ)

{
Q
(
e∗(φ)� ã�φ

)−Q(emt � ã�φ)}πt−1(φ)dφ

≤ κe
∫
(φ�φ)

1{φ∈Iφ}
∣∣e∗(φ)− e∗(φt−1)

∣∣πt−1(φ)dφ

+ κe
∫
(φ�φ)

1{φ/∈Iφ}
∣∣e∗(φ)− e∗(φt−1)

∣∣πt−1(φ)dφ

≤ κeκo
∫
(φ�φ)

1{φ∈Iφ}|φ−φt−1|πt−1(φ)dφ+ κeP̃t−1[Φ /∈ Tφ](emax − emin)�

By Jensen’s inequality, we can bound the above term by

Ẽt−1

[
Q
(
e∗(φ)� ã�φ

)−Q(emt � ã�φ)]
≤ κeκo

√∫
(φ�φ)

(φ−φt−1)2πt−1(φ)dφ+ κeP̃t−1[Φ /∈ Iφ](emax − emin)

= κeκo
√
Ẽt−1

[
(Φ−φt−1)2

]+ κeP̃t−1[Φ /∈ Iφ](emax − emin)�

As δ times the current loss must be smaller than (1 − δ) times the future gains, we have
that

δẼt−1

[
Q
(
emt � ã�φ

)−Q(et� ã�φ)
]≤ (1 − δ)Ẽt−1

[
Q
(
e∗(φ)� ã�φ

)−Q(emt � ã�φ)]
⇒ |κee|

2
1{t≥Te}P̃t−1[Φ ∈ Iφ]

(
emt − Pet

)2

≤ 1 − δ
δ

{
κeκo

√
Ẽt−1

[
(Φ−φt−1)2

]+ κeP̃t−1[Φ /∈ Iφ](emax − emin)
}
�
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Consequently, we have that for t > T ,

⇒ (
emt −Pet

)2 ≤ 1 − δ
δ

2κeκo
|κee|

√
Ẽt−1

[
(Φ−φt−1)2

]
P̃t−1[Φ ∈ Iφ]

+ 1 − δ
δ

2κe
|κee|

P̃t−1[Φ /∈ Iφ]
P̃t−1[Φ ∈ Iφ]

(emax −emin)�

By Lemma 19, the subjective posterior variance is bounded, Ẽt−1[(Φ−φt−1)
2] ≤ k/(t−1),

and thus for t > T ,

(
emt − Pet

)2 ≤ 1 − δ
δ

2κeκo
√
k

|κee|
1

P̃t−1[Φ ∈ Iφ]
· 1√
t − 1

+ 1 − δ
δ

2κe
|κee|

P̃t−1[Φ /∈ Iφ]
P̃t−1[Φ ∈ Iφ]

(emax − emin)�

(21)

As P̃t−1[Φ ∈ Iφ] converges to 1 by the definition of Iφ = (φ∞ − γ�φ∞ + γ), it follows
that the right-hand side converges to 0. By Lemma 15, the myopically optimal action emt
is strictly inside Ie. Consequently, (21) implies lim inft→∞ et and lim supt→∞ et are strictly
inside Ie, and (21) implies that limt→∞(emt − et)2 = 0. Q.E.D.

PROOF OF THEOREM 2: By Lemma 22, the limit inferior and the limit superior over ac-
tions are the same if the agent behaves strategically and if he behaves myopically. Hence,
it follows from the proof for myopic actions (Theorem 1) that the agent’s belief converges
in distribution to a Dirac measure on φ∞ and the agent’s action to e∗(φ∞). Q.E.D.

A.2.4. Further Proofs on Stable Beliefs

PROOF OF PROPOSITION 6: Analogously to F̂i defined for the perceived error in the
text, we let Fi be the empirical frequency of the true error εt at the prespecified time
periods t1� t2� � � � , that is, Fi(x)= |{i′ ≤ i|εti′ ≤ x}|/i.

For an infinite sample, the agent beliefs must equal his stable belief φ∞. Hence, once
the agent observed an infinite sample,

ε̃ti =Q(eti �A�Φ)−Q(eti � ã�φ∞)+ εti
=Q(e∗(φ∞)�A�Φ

)−Q(e∗(φ∞)� ã�φ∞
)+ εti

−
∫ e∗(φ∞)

eti

Qe(s�A�Φ)ds+
∫ e∗(φ∞)

eti

Qe(s� ã�φ∞)ds

= εti −
∫ e∗(φ∞)

eti

Qe(s�A�Φ)ds+
∫ e∗(φ∞)

eti

Qe(s� ã�φ∞)ds�

Now because Q is twice continuously differentiable and eti → e∗(φ∞), for every η > 0
there exists a t̂ such that for all ti > t̂, ε̃ti ∈ (εti − η�εti + η). Choose a time period τ
such that the fraction of observations in the sequence t1� t2� � � � the agent observed before
t̂ is less than η. Then for all t > τ, F̂t(x) ∈ (Ft(x− η)− η�Ft(x+ η)+ η). This implies
that F̂t(x)→ Ft(x) for all x, for otherwise there exists an x ∈ (0�1) and an η > 0 such
that for all τ there exists some t > τ for which F̂t(x) /∈ (Ft(x− η)− η�Ft(x+ η)+ η), a
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contradiction. Now because the true errors are i.i.d., Ft(x)→ F(x) a.s., and since F̂t(x)→
Ft(x), we conclude that F̂t(x)→ F(x) a.s. Q.E.D.

The proof of Proposition 7 was given in the text.

PROOF OF PROPOSITION 8: For the loss-function specification, the surprise function is

�(φ)= −(ã−A)+ (Φ−φ)−L(Φ−φ)�
The stable beliefs are the Dirac measure on the unique root φ∞ of �. Using that this root
φ∞ >Φ and that A> ã to rewrite �(φ∞)= 0 gives

L(φ∞ −Φ)+ (φ∞ −Φ)= |Δ|�
Thus φ∞ −Φ< |Δ| and L(φ∞ −Φ)< Δ. Q.E.D.
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