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Abstract

We develop a model of multi-dimensional misspecified learning in which an overconfident

agent learns about groups in society from observations of his and others’ successes. We show that

the average person sees his group relative to other groups too positively, and this in-group bias

exhibits systematic comparative-statics patterns. First, a person is most likely to have negative

opinions about other groups he competes with. Second, while information about another group’s

achievements does not lower a person’s prejudice, information about economic or social forces

affecting the group can, and personal contact with group members has a beneficial effect that

is larger than in classical settings. Third, the agent’s beliefs are subject to “bias substitution,”

whereby forces that decrease his bias regarding one group tend to increase his biases regarding

unrelated other groups.
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1 Introduction

Individuals’ beliefs about each other are crucial determinants of social and economic behavior.

While the typical assumption in economics is that beliefs are correct given available information,

a growing literature recognizes the possibility that individuals have incorrect beliefs about others

(Bordalo et al., 2016, Heidhues et al., 2018, Bohren et al., 2019, Hestermann and Le Yaouanq, 2021,

Frick et al., 2022, Chauvin, 2023, Bohren et al., 2025). Theoretical work has begun to explore how

false social beliefs can arise because a person makes inferences using an incorrect, “misspecified”

model of the world, and empirical work documents instances of false social beliefs.1

We build on this research to develop a theory of prejudiced inter-group beliefs, making three

contributions to the economics literature. To start, we provide the first general explanation for

one of the most central stylized facts about inter-group beliefs, (relative) in-group bias — that

the average person sees his group relative to other groups too positively. Second, we allow social

beliefs to be richly multi-dimensional, uncovering connections that can help account for observed

empirical patterns. Third, we identify types of information that are effective in debiasing agents,

and types that are not.

In Section 2, we present our model. Society is composed of individuals in disjoint groups. An

agent makes many independent observations of the “recognition” — i.e., achievement, social status,

or other measure of success — of each individual, including himself. He understands that recognition

depends in part on the “caliber” — i.e., ability, work ethic, or other measure of deservingness — of

a person. But he allows for the possibility that various types of “discrimination” — i.e., attitudes,

policies, or economic forces with group-dependent impacts — affect recognition as well. Each type

of discrimination redistributes recognition between groups according to fixed proportions, which

we can think of as deriving from an underlying competition structure. While the agent knows

the proportions, he does not know the degrees of discrimination, so he does not know how much

redistribution is going on.

Crucially, to these ingredients we add a single non-classical but empirically well-founded as-

sumption. Namely, the agent holds stubborn, unrealistically positive — i.e., overconfident — views

about himself, formalized as a point belief about his caliber that exceeds the true value. Other-

wise, the agent is agnostic and rational, starting from a full-support prior about the degrees of

discrimination and others’ calibers, and updating his beliefs using Bayes’ Rule.

1 We cite relevant evidence, including for empirical claims in the introduction, when presenting our formal results
below.
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Section 3 identifies properties of the agent’s long-run beliefs, beginning with two widely docu-

mented patterns. The first derives from a force identified by Heidhues et al. (2018) and Hestermann

and Le Yaouanq (2021) in other environments: that an overconfident agent misattributes (what

appear to him) low outcomes to unfavorable external factors. In our setting, this leads him to

overestimate discrimination against and underestimate discrimination in favor of his group. Con-

sistent with opinion surveys, this implies that outsiders consider discrimination against a group as

less severe than group members do. Going further, individuals’ misestimates about discrimination

lead them to develop excessively positive opinions about other group members, and consequently

to exhibit relative in-group bias.

Beyond explaining the above basic patterns, our theory makes a rich set of comparative-statics

predictions. One set of insights centers around the effects of competition. Suppose that a new type

of discrimination pits an outside group against the agent, for instance because the group moves to

his neighborhood and he finds himself on opposite sides of a social or economic issue with them.

Because of his misestimate of the new type of discrimination, the agent’s opinion of the group

decreases. This insight helps explain why factors such as the presence of other ethnic groups in

one’s city, immigration to one’s vicinity, and perceived competition with a group increase prejudice.

More subtly, the agent’s biases regarding all groups not affected by the new type of discrimination

decrease. Intuitively, armed with a new explanation for his low recognition, the agent’s need for

other explanations diminishes. This bias substitution provides a beliefs-based mechanism for how

focusing on a competitor outside group — a common political tactic — can help unify a population

hitherto riddled with mutual prejudice. All of these effects occur even if the agent competes more

with members of his own group than with outsiders.

Another set of insights concerns the effects of information. While better information about a

group’s recognition does not lower biases, better information about a type of discrimination that

affects the agent has a range of positive effects. It lowers his bias about his own group as well

as about any group also affected by the discrimination, and it improves his opinion about the

average other group. This provides a novel perspective on the influential and well-documented

contact hypothesis (Allport, 1954), which says that contact with an individual from a different

racial group can lower prejudice. Plausibly, one main effect of such contact is that the agent learns

the caliber of the individual, giving him information about discrimination and hence lowering his

bias regarding all of the individual’s group. Hence, in a sense our model predicts a stronger positive

effect of contact than does a model of correctly specified learning. In such a conventional framework,
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information about one person often has a small effect on beliefs about a large group.

In Section 4, we consider variants of our basic model. We demonstrate that our framework’s

central mechanism can be operational even when the agent neither entertains the possibility of

systematic discrimination, nor starts off thinking of society in terms of distinct groups. Suppose

that individual j’s recognition is the sum of j’s caliber, a mean-zero common shock scaled by ψj ,

and a mean-zero idiosyncratic shock. The agent does not know the effects of the common shock, ψj ,

which could be different across individuals and could be positive or negative. He uses observations

of everyone’s recognitions to update about individuals’ calibers as well as the ψj . We show that the

agent develops a positive bias about individuals whose ψj has the same sign as his, and a negative

bias about individuals whose ψj has the opposite sign. In addition, he correctly learns the signs

but overestimates the absolute values of the ψj ’s. These results can be interpreted as saying that

endogenous in- and out-groups develop based on who is in the “same boat” with the agent, and the

agent exaggerates the importance of groups in determining outcomes. We also consider a model

in which the agent’s beliefs about his caliber are not fixed, but he interprets observations about

himself in a positively biased way. We show that he develops overconfidence, which has the same

effect on his other beliefs as in our basic model. Finally, we investigate the extent to which our

results on long-run beliefs hold in the short run.

All of the formal analysis in our paper relies on general tools we have developed for studying

learning under high-dimensional misspecified models. We explain these tools in Section 5. Due to

the lack of such tools, prior analysis of misspecified learning has typically focused on misinferences

about a single-dimensional state of the world.

We discuss related literature in Section 6. While a few theories have implications for beliefs

about groups, no previous paper derives a general relative in-group bias, makes predictions regard-

ing spillovers between multiple interdependent incorrect beliefs about others, or develops a theory

of group beliefs based on overconfidence. But our theory is of course not intended to explain all

social biases. Some prejudices are stoked by politicians (Glaeser, 2005); many stereotypes are about

less value-laden characteristics than our notion of caliber (Bordalo et al., 2016); and individuals

often also have prejudices about groups they are not in tangible competition with. We conclude in

Section 7 with a discussion of what our model of beliefs might imply for discriminatory behavior.
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2 Inferences about Individuals and Groups

Setup. There are I individuals in G disjoint groups subject to K types of “discrimination.” Indi-

vidual j ∈ {1, . . . , I} has fixed “caliber” aj ∈ R and group membership gj ∈ {1, . . . , G}, and θk ∈ R

denotes the fixed extent of discrimination of type k. We consider society from the perspective of

one member, agent i ∈ {1, . . . , I}; we will also compare the views of different agents, and analyze

average views. Agent i repeatedly observes each individual’s “recognition” qj ∈ R as well as sig-

nals ηk ∈ R of θk. In both the true model and agent i’s subjective model, these observations are

generated according to

qj = aj +

K∑
k=1

ϕgjk θk + ϵqj , j = 1, . . . , I

ηk = θk + ϵηk, k = 1, . . . ,K,

(1)

where ϕgk ∈ R is the fixed incidence of type-k discrimination on group g, and the ϵqj and ϵηk are

mean-zero normally distributed errors that are identically and independently drawn over time.2

Denoting by mg the population frequency of group g, we impose that
∑

gmgϕgk = 0 for all k, i.e.,

the effect of discrimination is redistributive.

In the true model, the vector of calibers a equals A, the vector of the levels of discrimination θ

equals Θ, and the errors ϵqj , ϵ
η
k are all independent and have variances vqj , v

η
k . In agent i’s subjective

model, gj and ϕgk are known and the same as in the true model, but others’ calibers a−i, the levels

of discrimination θ, and the covariance matrix Σ of the errors (ϵq, ϵη) are unknowns. The agent’s

prior belief regarding (a−i, θ) has support RI−1 × RK , and his prior belief about Σ conditional on

any a−i, θk is supported on all positive definite symmetric matrices whose eigenvalues are greater

than λ, where λ is chosen to be sufficiently small.3 Crucially, the agent is overconfident about

himself: his subjective model assigns probability 1 to ai = ãi > Ai. He applies Bayes’ Rule to

update his beliefs. We look for the limit of his beliefs in the long run.

Interpretation and Discussion. The caliber aj could stand for a person’s ability or general character,

and recognition qj for their income, wealth, or broader social status. Both aj and qj can be defined

in absolute as well as relative terms. The degrees of discrimination θk might capture the severity

of discriminatory behavior, strength of policies, or intensity of economic forces that affect groups

differently, while the signals ηk about θk could come from observations the agent makes in his own

2 The assumption that recognition is linear in its components is purely for tractability.
3 For a discussion of this technical assumption, an explicit formula for λ, and other specifications of the support

of the prior, see Section 5. In particular, our results are the same if the agent knows the covariance matrix.
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life, or from academic or journalistic research he hears about. For the purposes of the present

paper, the θk are exogenous.4

We think of the incidences ϕgk of discrimination on groups as being determined by an underlying

competition structure. For instance, affirmative action is perceived to harm Asians and whites due

to competition for college spaces, and a pro-immigration policy is perceived to harm low-income

natives due to competition for jobs. This perspective does not preclude — and hence our results are

consistent with — the possibility that a person competes more with in-group than with out-group

members.5 Furthermore, our assumption that the agent knows the ϕgk reflects the idea that he

can learn competition patterns from sources such as the media or public discussions, or infer them

from knowledge such as how college admissions work.

Given the above competition perspective — according to which one person’s gain from dis-

crimination comes at the expense of someone else — it is natural to assume that the effect of

discrimination is redistributive (
∑

gmgϕgk = 0). This assumption allows us to make statements

about beliefs regarding calibers averaged across multiple groups, but plays no other role.6

While we focus on limiting beliefs, by definition these approximate the agent’s beliefs after

sufficiently long finite time. Furthermore, while we assume that the agent is certain about his

caliber, the results extend to some settings in which he is slightly uncertain. Specifically, suppose

that the agent starts with a Normal prior, is uncertain about the fundamental, and knows the

covariance matrix of signals. At any fixed finite time, his beliefs with a sufficiently certain prior

about his caliber are close to his beliefs with a degenerate prior — which, after a long time, are

close to the limiting beliefs we derive. The latter is true even if the agent is correctly specified, so

he eventually learns everything correctly.

4 For presentational simplicity, we refer to qj as individual j’s recognition, but our formalism also captures the case
in which qj is a noisy signal of individual j’s recognition that is observable to agent i. Furthermore, while we present
the model and results by referring to individual j as a person, an equivalent model obtains if some observations qj
are average recognitions of groups or subgroups. For groups the agent knows little about, these observations could be
very noisy. Also note that while in reality different groups often have access to different information, our basic model
abstracts from this consideration. In a correctly specified model, differences in information do not by themselves
generate systematic disagreement.

5 To formalize, let f(g, g′) measure the (perceived) frequency or importance of competition for recognition that an
individual with group membership g faces from individuals with group membership g′. Denoting by Gk ⊂ {1, . . . , G}
the set of groups that benefit from discrimination of type k, define ϕgk =

∑
g′∈G\Gk

f(g, g′) if g ∈ Gk and ϕgk =

−
∑

g′∈Gk
f(g, g′) if g ∈ G \Gk. Intuitively, the impact of discrimination of type k on an individual is determined by

how many people he tends to compete with on the other side of the issue. The extent f(g, g) to which individuals
compete fiercely with other members of their own group does not affect ϕgk, as within-group competition does not
influence the impact of between-group discrimination.

6 More precisely, we use the assumption in Proposition 1 (all parts, except for the claim that each group over-
estimates itself relative to the truth), Proposition 2, Part III, and Proposition 3, Part IV. The other results hold
unchanged without the assumption.
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There is evidence for our main premise, overconfidence, from many aspects of life (e.g., Mal-

mendier and Tate, 2005, Landier and Thesmar, 2009, Spinnewijn, 2015, Augenblick and Rabin,

2019, Huffman et al., 2022). Furthermore, since individuals in these and other studies have had

plenty of opportunity to learn about themselves, overconfidence is stubborn: it is either not elim-

inated by learning, or it is eliminated very slowly. Our analysis of long-run beliefs is appropriate

for a person who has had sufficient scope to learn about society but has (like most individuals

observed in the empirical work) remained overconfident so far. To complement these main insights,

in Section 4.3 we discuss short-run beliefs. We note that if the agent starts with a sufficiently un-

certain (high-variance) prior, our results on his long-run biases approximate his average short-run

biases. We also show that if K = 1, the directions of the agent’s short-run and long-run biases are

identical. Otherwise, however, short-run and long-run biases can be directionally different.

3 Patterns in Beliefs

We now analyze our model. We say that agent i’s beliefs about discrimination and individuals’

calibers concentrate on (θ̃i, ãi) ∈ RK × RI if the probability he assigns to any open set around

(θ̃i, ãi) converges to one. Based on a general result in Section 5, we obtain:

Theorem 1 (Long-Run Biases). Agent i’s beliefs concentrate on a single (θ̃i, ãi) almost surely. His

long-run bias about discrimination of type k is

θ̃ik −Θk =
−ϕgikv

η
k

vqi +
∑

k′ ϕ
2
gik′

vηk′
· (ãi −Ai), (2)

and his long-run bias about the caliber of individual j ̸= i is

ãij −Aj =

∑
k ϕgikϕgjkv

η
k

vqi +
∑

k′ ϕ
2
gik′

vηk′
· (ãi −Ai). (3)

First, the direction of the agent’s bias about discrimination of type k has the opposite sign from

the effect of this discrimination on his group. Second, the direction of the agent’s bias about

an individual depends on a weighted sum of how similarly discrimination affects the agent’s and

the individual’s groups. Types of discrimination that affect the agent and individual in the same

direction contribute positively to this sum, and types of discrimination that affect the two people

in opposite directions contribute negatively. We organize and discuss economic implications in the

following subsections.

6



3.1 In-Group Bias

We start with two basic, empirically documented patterns in beliefs. Equation (2) implies that

the agent overestimates discrimination that harms him (ϕgik < 0), and underestimates discrimi-

nation that benefits him (ϕgik > 0). Intuitively, the distorted beliefs explain to the agent why his

recognition is not as high as he overconfidently expects. Though not derived formally in previous

research, such views resemble misattributions in work on learning with overconfidence (Heidhues et

al., 2018, Hestermann and Le Yaouanq, 2021) and selective attention (Schwartzstein, 2014). Fur-

ther, a person’s underestimation of beneficial discrimination can be seen as a formalization of social

dominance theory’s notion of a “legitimizing myth” — an illusion that rationalizes a “dominant”

group’s advantages over “dominated” groups (e.g., Pratto et al., 2006).

The above implies that members estimate the level of discrimination against a group as higher

than non-members who are unaffected by or benefit from the discrimination. Such contrasting

views are a common finding in opinion surveys.7 Relatedly, our theory predicts that a person is

biased about a type of discrimination only if it affects him. For example, a white male professor

may understand discrimination in policing and firm hiring, but fail to appreciate discrimination in

academia. We are unaware of evidence on this prediction.

Beliefs regarding discrimination have implications for beliefs about groups. We state our results

as averages over groups. To do so, we assume that vqi is the same for all individuals in group g,

and denote it by vqg . We also let Ag be the average caliber of group g, and ãgg′ the average opinion

of group g about (others in) group g′.

Proposition 1 (In-Group Bias). ha.

I. (In-Group Overestimation). Each group overestimates itself relative to the truth (ãgg > Ag), but

on average estimates groups correctly (
∑

g′ mg′ ã
g
g′ =

∑
g′ mg′Ag′).

II. (Absolute In-Group Bias). If groups’ calibers (Ag) are equal, then each group thinks others in

their group are better than the average (ãgg >
∑

g′ mg′ ã
g
g′).

III. (Relative In-Group Bias). On average, a group’s view of its fellow members relative to another

group’s members is positive:
∑

g,g′ mgmg′(ã
g
g − ãgg′) > 0.

Part I says that on average, an agent overestimates other members of his group relative to the

truth. Intuitively, since he overestimates discrimination hurting and underestimates discrimination

7 See, for instance, Newport (2014) on race, Pew Research Center (2017) on gender, Pew Research Center (2018)
on income, and “Weniger Respekt und wachsende Fremdenfeindlichkeit”, Frankfurter Allgemeine Zeitung, September
12, 2019, on immigrants.
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benefiting fellow group members — who are subject to the same discrimination effects as him —

he attributes too much of their recognitions to their calibers. Because the effect of discrimination

is redistributive, however, a group’s misestimates of discrimination do not bias its average estimate

of caliber in the population.

The combination of in-group overestimation and overall correct estimation generates two man-

ifestations of in-group bias. If the average calibers of groups are equal, then a person estimates his

group to be above this level, and other groups to be below it on average. Hence, he thinks that his

group is better than average (Part II). More generally, the average person estimates the average

other member of his group to be better than average (Part III).8

To connect our results to stylized facts, suppose that there are two groups. Then, if the average

calibers of the groups are equal (A1 − A2 = 0), each group believes itself to be better than the

other group. This kind of bias is the most basic stylized fact in the literature on stereotypes,

discrimination, prejudice, and racism.9 Furthermore, some evidence indicates that the bias reflects

a mistake (Bohren et al., 2019, Lambin and Palikot, 2019).

A group may, however, fail to think of itself as better if the groups’ true average calibers differ,

or, stepping slightly outside our model, there are other biases that affect views equally across

groups. In models by Frick et al. (2022) and Chauvin (2023), for instance, both a dominated

and a dominant group may underestimate the privileges of the dominant group. If (fixing other

parameters) the difference in average calibers or underestimation of privileges is sufficiently large,

then the less fortunate group will think of itself as worse than the more fortunate group.

Our theory predicts that even then, the two groups exhibit relative in-group bias: group 1

members’ opinion of group 1 relative to group 2 is more positive than group 2 members’ opinion

about the same (ã11 − ã12 > ã21 − ã22). Indeed, when researchers do not find unanimous support for

absolute in-group bias, they typically observe relative in-group bias.10 Sometimes, however, groups

do not even display relative in-group bias (e.g., Card et al., 2020), and our theory cannot account

for this evidence.

Note that in Parts II and III of Proposition 1, in-group bias holds in an average sense. In Part

II, in particular, each group overestimates itself relative to the average other group. The question

8 Related to our in-group bias, Hestermann and Le Yaouanq (2021) show that a person thinks too highly of an
outsider who receives the same outcome in the same circumstances as he does. They do not, however, explore general
implications for group-based prejudices.

9 Classics are Allport (1954) and Tajfel (1982). Mullen et al. (1992) provide a meta-analysis.
10 For instance, Shayo and Zussman (2011), Gagliarducci and Paserman (2012), Zussman (2013), De Paola and

Scoppa (2015) and Mengel et al. (2018).
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arises whether in-group bias holds pairwise in general when there are more than two groups. The

following example shows that it does not:

Example 1. G = 3, K = 1, vη1 = 1, m1 = m2 = m3 = 1/3, ϕ11 = 3, ϕ21 = −2, ϕ31 = −1, vqg = 1 for

all g, ãj −Aj = 1 for all j, and all true calibers are normalized to zero. Then, by Equation (3), we

obtain

ã32 = 1; ã33 = 1/2; ã22 = 4/5; ã23 = 2/5.

There are three groups (G = 3), and one type of discrimination (K = 1). Discrimination

benefits group 1 and hurts groups 2 and 3, but it hurts group 2 more (ϕ11 > 0 > ϕ31 > ϕ21). This

example captures one potential perception of affirmative action in college admissions. Suppose that

group 1 is blacks, group 2 is Asians, and group 3 is whites. Affirmative action, if it exists (recall that

our framework allows any type of discrimination to be non-existent or go the other way), benefits

blacks and hurts whites and especially Asians. Then, group 3 overestimates group 2 more than it

does itself, and more than group 2 overestimates itself. Hence, restricting attention to this pair of

groups, both absolute and relative in-group bias are violated. Intuitively, since members of group 3

are hurt by discrimination, they overestimate it. Furthermore, since they know that group 2 is hurt

even more by discrimination, they overestimate members of group 2 more than other members of

group 3. Nevertheless, consistent with Part II of Proposition 1, group 3 still exhibits an absolute

in-group bias relative to the average other group. Indeed, group 3 members’ view regarding group

1 is ã31 = −3/2, so their average view of other groups is negative.

3.2 The Effects of Competition

We now consider how the development of opposing interests with another group affects a group’s

views. Suppose that groups g and g′ are initially not affected by the same types of discrimination

(ϕgkϕg′k = 0 for all k). Then a new type of discrimination emerges, positioning groups g and g′

against each other: mgϕgK+1 +mg′ϕg′K+1 = 0, with ϕgK+1 ̸= 0. As a potential example, northern

whites experiencing an inflow of blacks could think that they are on opposite sides of local issues,

such as housing, schools, and jobs.

Proposition 2. The new type of discrimination:

I. (Competition Effect). Lowers the view of group g about group g′.

II. (Excuse Effect). Raises the view of group g about itself.

III. (Bias Substitution). Raises the average view of group g about groups other than g, g′.
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A member of group g overestimates discrimination in favor of or underestimates discrimination

against group g′, negatively biasing his opinion of group g′ (Part I). This effect helps explain

evidence that greater local ethnic diversity increases racial animus (e.g., Branton and Jones, 2005),

and that immigration triggers hostile reactions by natives (Tabellini, 2019). More generally, the

result says that a person has more negative views about groups he considers competitors. This

pattern is one of the cornerstones of group conflict theory (e.g., Jackson, 2011). For instance,

Stephan et al. (1999) document that the negative stereotyping of immigrants in the US is correlated

with perceived competition for jobs and social transfers. Examining the direction of causality in an

experiment, Esses et al. (1998) find that manipulating the sense of competition with an imaginary

immigrant group leads subjects to see the group in a more negative light.

By Part II, new competition raises a person’s (already too high) view of his own group. His

bias regarding the new type of discrimination provides a new excuse for his low recognition, and

means that he attributes more of group members’ recognitions to their calibers.

At the same time, Part III says that bias substitution occurs: while group g’s opinion of group

g′ decreases, its opinion of other out-groups improves. As the agent attributes his low recognition

in part to the new type of discrimination, his biases regarding the other types of discrimination

decrease. This means that he attributes more of the other groups’ recognitions to their calibers.

In an example of bias substitution, Fouka et al. (2022) document that the inflow of blacks

to northern U.S. cities reduced the (previously substantial) stereotyping of Irish and Italian immi-

grants. Bias substitution also provides one rationale for a common political tactic, focusing citizens’

attention on a competitor outside group to help unify a heterogeneous nation or constituency. In

our setting, this mitigates negative views domestic groups may hold about each other.

3.3 The Effects of Information

This subsection analyzes the effects of information on the agent’s beliefs. Note that if a correctly

specified agent has sufficient information to form confident (deterministic) beliefs — as the agent

does in our model — then those beliefs must be correct and hence impervious to additional infor-

mation. The same is not the case for a misspecified agent, leading to the natural question: can

more information mitigate such an agent’s biases about others?

Theorem 1 implies that two types of information cannot. First, since we are focusing on long-run

beliefs, access to more realizations of the same signals does not necessarily lower biases. Second,

since vqj does not appear in Equation (3), an improvement in the agent’s information about others’
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recognitions does not affect his long-run biases. Intuitively, knowing more about the successes

of other groups does not help because it does not affect the central tension driving the agent’s

biases: the gap between his overconfident self-view and his actual outcomes. These predictions

are consistent with some null effects of information on discrimination documented in the literature

(e.g., Bertrand and Mullainathan, 2004, Boring, 2017).11

Instead, consider providing information about discrimination:

Proposition 3. Suppose discrimination of type k affects agent i (ϕgik ̸= 0). An increase in the

precision 1/vηk of information about discrimination of type k:

I. (Direct Effect). Lowers agent i’s bias |θ̃ik −Θk| regarding discrimination of type k.

II. (No-Excuse Effect). Lowers his view ãigi about others in his group.

III. (Bias Substitution). Raises his bias |θ̃ik′ −Θk′ | regarding any other type of discrimination that

affects him (type k′ ̸= k for which ϕgik′ ̸= 0).

IV. (Indirect Benefit). Raises his average view
∑

g ̸=gi mgã
i
g of other groups.

V. (Bias Substitution). Raises his bias |ãig − Ag| about any group g not affected by discrimination

of type k (ϕgk = 0).

More information about discrimination of type k has both benefits and drawbacks. It directly

reduces the plausibility of a biased view about type-k discrimination, lowering the agent’s bias

on this dimension (Part I). Similarly, the information reduces the plausibility of a biased view

about overall discrimination affecting the agent, lowering his misperceptions about other in-group

members (Part II). Seeking alternative explanations for his recognition, however, bias substitution

again occurs: the agent’s biases about other types of discrimination affecting him increase (Part

III).

The effects on the agent’s views about other groups are mixed as well. Part IV says that his

average view of outside groups rises, so that he improves his opinion of at least one group. By Part

V, however, his bias regarding groups that are not affected by discrimination of type k rise. In

particular, if he harbors any unrelated prejudices, these increase.

The above results yield a novel perspective on Allport’s (1954) influential and well-documented

contact hypothesis — that contact between groups reduces prejudices (for evidence, see Pettigrew

and Tropp, 2006, Lowe, 2021, Corno et al., 2022). Consistent with the common view that a primary

11 Some studies that do find a positive effect of information, such as Kaas and Manger (2012) looking at reference
letters and Tjaden et al. (2018) looking at online reviews, involve direct information about the person’s character or
quality. We analyze such information below.
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channel is informational, we think of contact as providing information about the caliber of an out-

group member. In a model of correctly specified learning, information about one person is likely to

have a limited spillover effect on views about a large and diverse group, especially for an agent who

has plenty of information to begin with. In our model, in contrast, the spillover effect can be more

drastic. Suppose that agent i learns individual j’s caliber (so that ãij = aj), and j is subject to

only one type of discrimination, k (ϕgjk ̸= 0, but ϕgjk′ = 0 for all k′ ̸= k).12 Then, j’s recognition

qj becomes another signal of — and hence improves agent i’s information about — discrimination

θk. As a result, agent i’s bias about j’s entire group decreases.13

Unlike better information about a single type of discrimination, a balanced improvement in

information about all types of discrimination is unambiguously beneficial:

Proposition 4. A proportional increase in the precisions 1/vηk of the agent’s signals about dis-

crimination lowers all his (non-zero) biases regarding discrimination and others’ calibers.

For example, it is plausible that members of a disadvantaged group observe discrimination

with less noise. They may, for instance, see more direct evidence of discrimination, such as arbi-

trary searches by police, or they may be more attentive to the issue. Proposition 4 says that the

disadvantaged group will then have less biased beliefs.

The preceding results provide ways to distinguish our model from a “reverse-causality” alter-

native in which overconfidence derives from false beliefs about discrimination or others’ calibers,

rather than vice versa. An agent may, for instance, inherit stubborn, negatively biased beliefs about

competitor groups from his parents. Observing the recognitions of these groups, he concludes that

there is discrimination in favor of them and against his groups. Observing his own recognition,

then, he overestimates his caliber.

While sharing the basic prediction that overconfidence and false social beliefs are related, the

reverse-causality model differs in at least three ways from ours. First, it fails to predict changes in

beliefs about groups in response to information about discrimination. This is because beliefs about

groups are either stubborn (and hence do not change) or derive directly from stubborn beliefs about

discrimination. Second, similarly, the reverse-causality model does not predict bias-substitution-

type changes in beliefs about unrelated groups in response to competition with a new group. Third,

by Equation (3), our model predicts that a person’s bias about himself is greater than his bias about

12 In Appendix B, we show that the logic applies also if j is subject to more types of discrimination.
13 Some papers find that contact reduces prejudice only in specific environments, e.g., when the interaction is

cooperative (e.g. Lowe, 2021). Our theory is consistent with such findings if these environments generate more
accurate information about the out-group member, but it does not explain why this would be the case.
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his fellow group members.14 As a result, the average person overestimates himself relative to his

in-group. In the reverse-causality model, the agent’s biases about himself and his average in-group

member are identical — both equal his total bias about the types of discrimination affecting the

group.

3.4 Similarity Bias

In this subsection, we consider the special case of our model in which groups are defined by vectors of

characteristics, such as black/white and female/male. We identify sufficient (albeit not necessary)

conditions for a variant of in-group bias, similarity bias: that a person has a more positively biased

opinion about more similar others.

Suppose that individual j has characteristics cj = (cj1, . . . , cjK) ∈ {0, 1}K , where cjk = 1

means that she has characteristic k (e.g., is black). A group consists of individuals who share all

characteristics, and is thus defined by a characteristic vector c. Furthermore, discrimination of

type k affects individuals who have characteristic k and those who do not in opposite directions.

We say that agent i is more similar to individual j than to individual j′ if whenever j′ shares a

characteristic with i, so does j (i.e., cj′k = cik ⇒ cjk = cik); and the relationship is strict if the

characteristic vectors of j and j′ are not identical.

Proposition 5 (Similarity Bias). Suppose that ϕck does not depend on ck′ for any k
′ ̸= k. If agent

i is (strictly) more similar to individual j than to individual j′, then his long-run bias regarding

the caliber of j is (strictly) greater than his long-run bias regarding the caliber of j′, i.e., ãij −Aj ≥

ãij′ −Aj′.

A sufficient condition for similarity bias is that the impact of type-k discrimination depends

only on whether a person has characteristic k. Then, similarity determines how much agent i

believes that discrimination hurting him also hurts rather than helps individual j, so it determines

how much of j’s recognition i attributes to caliber.15

When there is a single dimension, similarity bias reduces to a two-group version of in-group bias

discussed above. While the multi-attribute version of similarity bias has to our knowledge not been

14 This is immediate from observing that for a fellow group member (gj = gi), the coefficient scaling the agent’s

overconfidence in the equation is

∑
k ϕ

2
gik
vηk

vqi +
∑

k′ ϕ2
gik′v

η
k′
< 1.

15 One type of discrimination the agent may consider is “exclusive discrimination” directed only against him. This
corresponds to a characteristic k that only he has, with ϕck < 0 for his characteristic vector c. Assuming that
exclusive discrimination is actually zero (Θk = 0), the agent develops the “paranoid” view that there is some of it
(θ̃ik > 0), believing that “the world is out to get him.” So long as the agent entertains the possibility of other types
of discrimination too, his social biases are qualitatively unchanged.
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directly tested, some evidence does seem consistent with it. Jackson et al. (2022) document that

students are more likely to form friendship and study links with others who match more of their

attributes, and Banal-Estañol et al. (2023) find that grant applicants are more likely to be successful

if panelists share more of their characteristics. These findings could be driven by similarity-biased

beliefs, but also by taste (although, as we discuss in the conclusion, those “tastes” may actually be

driven by incorrect beliefs).

4 Model Variants

4.1 Prejudice without Discrimination or Group Knowledge

We show that prejudiced beliefs can arise even if the agent does not entertain the possibility of

systematic discrimination, and has no pre-existing notion of groups. Suppose that I ≥ 3, and agent

i observes a sequence of realizations of each individual j’s recognition,

qj = aj + ψjϵg + ϵj , (4)

where aj is j’s caliber, ϵg and ϵj are independent mean-zero Normal shocks with variances vg and

vj , respectively, and ψj ∈ R with realization Ψj is the incidence of the group-level shock ϵg on j.

As in our previous model, agent i is stubbornly overconfident about himself, but agnostic about

the calibers of others. Furthermore, he knows vg, but not the ψj and vj , with his prior supported

on RI × [v,∞)I , where 0 < v ≤ minj vj .
16 He understands the rest of the situation correctly,

and updates his beliefs using Bayes’ Rule. Since models with ψ1, . . . , ψI and −ψ1, . . . ,−ψI are

equivalent, we normalize Ψi, ψ̃i ≥ 0. Then, individuals with Ψj > 0 are “in the same boat” with

— i.e., are affected by the group-level shock ϵg similarly to — the agent, and in this sense belong

to his in-group; and those with Ψj < 0 belong to his out-group. But the agent does not initially

know who is in which group.

Proposition 6. Agent i’s beliefs concentrate on a single (ãi, ψ̃i). The agent’s long-run belief about

individual j’s caliber is

ãij = Aj +
ΨiΨjvg
vqi +Ψ2

i vg
· (ãi −Ai), (5)

and his long-run belief about ψj is ψ̃ij = κ ·Ψj, where κ > 1 is a constant.

16 An increase in vg and a rescaling of all ψj are observationally equivalent, so assuming that the agent correctly
understands vg is effectively a normalization.
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Proposition 6 says that the agent learns his in-group and out-group, develops an in-group bias,

and comes to exaggerate the importance of groups in determining recognition (i.e., overestimates

|ψj |). To develop intuition for these results, suppose first that the agent knows the ψj . Given his

overconfidence, qi is to him often surprisingly low, so he thinks that he must be unlucky. Since

part of his luck derives from the common shocks, he thinks that individuals with ψj > 0 must also

have been unlucky, and those with ψj < 0 must have been lucky. Hence, given their recognitions,

he overestimates the former individuals and underestimates the latter ones.

But agent i does not know the ψj . It turns out that he correctly infers the sign of each ψj ,

so that the above logic regarding the estimation of calibers still holds. Additionally, the agent

overestimates the importance of common shocks. For an intuition, suppose that ψj , ψj′ > 0. Then,

agent i overestimates individuals j and j′. In a prototypical observation, therefore, both qj and

qj′ seem to him unexpectedly low. Hence, agent i exaggerates the correlation between qj and qj′ ,

leading him to overestimate ψj and ψj′ .

4.2 Overconfidence through Biased Learning

Our main model captures stubborn overconfidence by assuming that the agent has a fixed, overly

positive belief about his caliber. We now consider one possible microfoundation for stubborn

overconfidence, biased learning about oneself.

We modify the model introduced in Section 2 in the following ways. The agent has a full-support

prior regarding his own caliber, and observes (in addition to qj and ηk) signals si = ai + b + ϵai ,

where ϵai is a normally distributed error with mean zero and variance vai that is independent of the

other errors. In reality, b = B > 0, but the agent believes with certainty that it is b = b̃ = 0: he is

interpreting signals about himself in a biased way.

Proposition 7. The agent’s long-run bias about his own caliber is

ãi −Ai =
vqi +

∑
k ϕ

2
gik
vηk

vai + vqi +
∑

k′ ϕ
2
gik′

vηk′
·B, (6)

while his long-run bias about the caliber of individual j ̸= i is

ãij −Aj =

∑
k ϕgikϕgjkv

η
k

vai + vqi +
∑

k′ ϕ
2
gik′

vηk′
·B =

∑
k ϕgikϕgjkv

η
k

vqi +
∑

k′ ϕ
2
gik′

vηk′
· (ãi −Ai). (7)

His bias regarding discrimination of type k is

θ̃ik −Θk =
−ϕgikv

η
k

vai + vqi +
∑

k′ ϕ
2
gik′

vηk′
·B =

−ϕgikv
η
k

vqi +
∑

k′ ϕ
2
gik′

vηk′
· (ãi −Ai). (8)

Being described by the same formulas as in Theorem 1, the relationship between the agent’s social
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beliefs and his overconfidence is exactly the same as in our main model. Accordingly, predictions

regarding his social beliefs relative to each other are unchanged. Furthermore, it readily follows

that the comparative statics in Propositions 2 to 5 also hold.17,18

In this version of the model, however, overconfidence can depend on the learning environment.

We point out one relevant implication. To motivate our result, notice that in our basic model,

agent i’s biases are increasing in his overconfidence ãi − Ai (Equations (2) and (3)). This implies

that if an outsider can make the agent more realistic about himself, then all his social prejudices

decrease. Here, in contrast:

Corollary 1. Making his own recognition a more precise signal of caliber (lowering vqi ) lowers the

agent’s overconfidence and increases all his other biases.

Confirming the classical intuition, providing better information about the agent lowers his over-

confidence. But disconfirming the insight from the basic model that lowering overconfidence helps

debias the agent, all his other biases increase. Intuitively, the agent attributes his low performance

partly to discrimination, and partly to bad luck. With less noise, bad luck becomes a worse expla-

nation, raising the need for the discrimination explanation. To reliably lower the agent’s biases,

one must decrease the root misspecification — overconfidence in the basic model, misinterpreting

signals about himself in this variant — that he has. In practice, however, it seems difficult to

determine what this root bias is.

Uncertainty regarding the cause of overconfidence also has implications for the empirical testing

of our predictions. Namely, because our theory does not imply an unambiguous positive relationship

between overconfidence and social biases, it cannot be tested by simply looking at correlations

between the two types of distorted beliefs. At the same time, controlling for all the information a

person has appears impossible in practice. Nevertheless, our theory has many predictions that can

be tested — and that, as we have discussed, are consistent with existing evidence.

4.3 Short-Run Beliefs

In this section, we investigate short-run beliefs in our main model (Section 2) when agent i knows

the covariance matrix of the errors, and starts off with the prior that others’ calibers and the

17 For Proposition 2, this requires imposing that vai is common across a group (like vqi is).
18 In a model of learning with selective memory, Fudenberg et al. (2024, Section IV.B and Proposition 6) establish

an analogue of Proposition 7. They show that the implications of dogmatic overconfidence for long-run beliefs are
identical to those of a positive memory bias that generates the same level of overconfidence. This suggests that one
can also think of our model as capturing the effect of a positive memory bias, so that the exact source of overconfidence
is not crucial for our main qualitative findings.
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degrees of discrimination are independently and normally distributed.

First, we investigate situations with a single type of discrimination (K = 1). We denote the

prior variances of discrimination and individual j’s caliber by v̄θ, v̄aj , expected mean beliefs in period

t by θ̃i(t), ãij(t), the expected mean beliefs of an agent who correctly assesses his caliber (ãi = Ai)

by θi(t), aij(t), and long-run beliefs derived in Theorem 1 by θ̃i, ãij .

Proposition 8. Let K = 1. The biases in agent i’s mean beliefs in period t are given by

θ̃i(t)− θi(t) = βt(θ̃
i −Θ) and ãij(t)− aij(t) = βt

t/vqj
1/v̄aj + t/vqj

(
ãij −Aj

)
,

where

βt =
t/vη

1/v̄θ + t/vη +
∑

j(ϕgj1)
2 1/v̄aj

t/vqj
1/v̄aj +t/v

q
j

.

The proposition implies that the agent’s short-run biases have the same sign as and a lower mag-

nitude than his long-run biases. Thus, for K = 1 our qualitative results survive.

Next, we note that if the variance of the agent’s prior belief is sufficiently large — i.e., he is

sufficiently uncertain to start with — then the long-run biases we have derived approximate his

average biases in every period for any K.19 Hence, in this case all of our insights hold on average

in any period (in addition to holding with probability 1 in the long run).

To conclude, we show through an example that if the agent’s prior is not sufficiently uncertain

and K > 1, then short-run and long-run biases can be qualitatively different.

Example 2. I = 3, K = 2, i = 1, each (representative) individual is in a separate group, ϕ11 =

ϕ32 = −1, ϕ21 = ϕ22 = 1, ϕ12 = ϕ31 = 0, and all priors and errors have variance 1.

Type-1 discrimination affects groups 1 and 2, while type-2 discrimination affects groups 2 and 3.

Theorem 1 then implies that agent 1 is in the long run unbiased about θ2 and a3. Yet applying

the updating formula for Normal distributions, it is easy to check that after finite time he is

on average biased about both. Intuitively, due to his overconfidence, agent 1 immediately starts

overestimating the degree of discrimination θ1 against him. Consequently, individual 2’s recognition

— which he thinks increases in type-1 discrimination — appears to him too low. In the short run,

he attributes this discrepancy partly to a2 and partly to θ2, thinking that individual 2 suffers from

type-2 discrimination. He therefore underestimates individual 3’s caliber a3 as well. In the long

19 To see this, denote the mean and covariance matrix of the prior by (ā, θ̄) and Σ0, respectively. The agent’s

expected posterior mean belief in period t is given by (ã(t) θ̃(t))T = (Σ−1
0 + tΣ̂−1)−1

(
Σ−1

0 (ā θ̄)T + tΣ̂−1(ã θ̃)T
)
; see

the the proof of Proposition 8. If the prior variance goes to infinity, Σ−1
0 converges to the null matrix and hence

(ã(t), θ̃(t)) converges to the long-run belief (ã, θ̃).
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run, however, agent 1 attributes individual 2’s (seemingly) low recognition solely to a2, as a biased

belief about θ2 does not help him explain other observations.

Nor does bias substitution generally hold in the short run. Indeed, suppose that the agent

receives extremely precise information about θ1. Then, his bias about θ1 becomes small, and by

the above logic, so do his biases about θ2 and a3. The short-run biases about θ1 and θ2 are

complements because the latter bias derives from the former.20

5 Multi-Dimensional Misspecified Learning

This section derives a theoretical result that we used throughout the paper, and that might be useful

for others studying implications of misspecifications in multidimensional settings. To the best of

our knowledge, ours is the first closed-form solution for the long-run outcome of a misspecified

learning process with high-dimensional interdependent beliefs.21

The agent makes inferences about a fixed vector of fundamentals f ∈ RL, whose realization is

F . In each period t, he observes a signal

rt =Mf + ϵt ∈ RD ,

where M ∈ RD×L is a matrix of rank L and ϵt ∈ RD is a vector of errors that are jointly normally

distributed with mean zero and positive definite covariance matrix Σ, and that are independent over

time.22 The agent updates using Bayes’ rule: given a prior belief P0 over the set of fundamentals

and positive definite covariance matrices, the probability that his posterior Pt assigns to the set A

after the sequence of signals r = (r1, r2, . . . , rt) is

PtA =

∫
1(f ′,Σ′)∈Aℓt(r|f ′,Σ′)dP0(f

′,Σ′)∫
ℓt(r|f ′,Σ′)dP0(f ′,Σ′)

,

where the likelihood equals

ℓt(r|f ′,Σ′) =
t∏

z=1

1√
(2π)L detΣ′

exp

(
−1

2
(rz −Mf ′)TΣ′ (rz −Mf ′)

)
. (9)

The agent is misspecified: he believes with certainty that fi equals f̃i. We consider three

20 For formal simplicity, our example features unbiased long-run beliefs about θ2 and a3. But a modification in
which ϕ12 is slightly negative shows that short-run and long-run biases can have strictly opposite signs. Then, agent
1 is in the long run positively biased about individual 3, but by continuity of his beliefs in ϕ12, in the short run he
is still negatively biased. Furthermore, in this case, biases about θ1 and θ2 are strict substitutes in the long run but
strict complements in the short run.

21 Spiegler (2016, 2020) also develops and solves in closed form models of high-dimensional interdependent misspec-
ified inferences. These models are not based on an explicit learning process, and their economic logic and solution
methods are completely different from ours.

22 IfM had lower rank, there would be different vectors of fundamentals that entail the same distribution of signals
and hence the agent could not learn the fundamentals.
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different inference problems depending on which parts of the agent’s beliefs are fixed by his prior

belief, and which are derived from his observations. We denote by M the set of positive definite

symmetric matrices whose eigenvalues are all greater than λ, where λ is chosen to be sufficiently

small.23 In our main specification, the agent is trying to infer the fundamentals f as well as the

covariance matrix Σ:

suppP0 =
{
(f ′,Σ′) ∈ RL × RD×D : f ′i = f̃i,Σ

′ ∈ M
}
. (Case III)

Because they are potentially of interest in other applications, we also consider two simpler infer-

ence problems. We ask what the agent infers about the fundamentals when his beliefs about the

covariance matrix are fixed at some positive definite Σ̃:

suppP0 =
{
(f ′,Σ′) ∈ RL × RD×D : f ′i = f̃i,Σ

′ = Σ̃
}
. (Case I)

And we ask what the agent infers about the covariance matrix when his beliefs about all funda-

mentals are fixed at f̃ = (f̃1, . . . , f̃L)
T :

suppP0 =
{
(f ′,Σ′) ∈ RL × RD×D : f ′ = f̃ ,Σ′ ∈ M

}
. (Case II)

We say that the agent’s beliefs concentrate on a point (f̃ , Σ̃) if for every open set A such that

(f̃ , Σ̃) ∈ A, almost surely the agent will in the limit assign probability 1 to A: P[limt→∞PtA =

1] = 1. For stating our theorem, note that any positive definite covariance matrix Σ̃ is invertible,

so the matrix MT Σ̃−1M is well-defined; and since M has rank L, this matrix is positive definite

and hence invertible.

Theorem 2 (Long-Run Beliefs). In Cases (I), (II), and (III), the agent’s beliefs concentrate on a

single point (f̃ , Σ̃). Furthermore:

I. If the agent has fixed beliefs Σ̃ about the covariance matrix but is uncertain about the fundamentals

j ̸= i, then in the limit his bias about fundamental j is

f̃j − Fj =
(MT Σ̃−1M)−1

ij

(MT Σ̃−1M)−1
ii

(f̃i − Fi). (10)

II. If the agent has fixed beliefs f̃ about the fundamentals but is uncertain about the covariance

matrix, then in the limit his bias about the covariance matrix is

Σ̃− Σ = (M(f̃ − F ))(M(f̃ − F ))T . (11)

23 Formally, one can choose any λ less than the smallest eigenvalue of Σ+(M(f̃−F ))(M(f̃−F ))T , where f̃ is given

exogenously in Case (II); and equals f̃j = Fj +
[MTΣ−1M]−1

ji

[MTΣ−1M]−1

ii

(f̃i − Fi) for j ̸= i in Case (III). The agent’s long-run

beliefs do not depend on the precise choice of λ.
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III. If the agent is uncertain about both the fundamentals j ̸= i and the covariance matrix, then in

the limit his bias about fundamental j is

f̃j − Fj =

[
MTΣ−1M

]−1

ji

[MTΣ−1M ]−1
ii

(f̃i − Fi), (12)

and his bias about the covariance matrix is given by Expression (11).

The initial part of the proof of Theorem 2 follows steps commonly used in econometric and

statistical analyses of misspecification. First, we verify that the assumptions in Berk (1966) are

satisfied. Then, applying Berk’s seminal result, beliefs concentrate on the set of minimizers of the

Kullback-Leibler divergence. Now it is well-known that for Normal signals, the Kullback-Leibler

divergence assigned to the parameters (f̂ , Σ̂) when the true parameters equal (F,Σ) is

D
(
F,Σ ∥ f̂ , Σ̂

)
=

1

2

(
tr(Σ̂−1Σ) + (M(f̂ − F ))T Σ̂−1M(f̂ − F )− n+ log

det Σ̂

detΣ

)
. (13)

In the second part of the proof, we derive the unique minimizer of (13) over the support specified

in Cases (I), (II), and (III). Since our type of misspecification has not been analyzed in the literature,

this part of the proof is novel. Case (I) can be verified by taking first-order conditions with respect

to the fundamentals. But Cases (II) and (III) are non-trivial semi-definite programming problems

because (13) involves the determinant of Σ̂, which is not a tractable function in general. We

proceed by looking at the eigenvalues of a well-chosen matrix in each case, greatly reducing the

dimensionality of the problems as well as eliminating the determinant from the objective.

Notwithstanding the technical nature of our proof, intuition for our results can be gleaned

by looking at (13) in the special case where the covariance matrix Σ is known and errors are

independent, so that Σ is diagonal. Then, the objective function reduces to (M(f̂−F ))TΣ−1M(f̂−

F ): the agent minimizes the weighted sum of the squared mean errors in his observations (the

differences between his observations and his expectations), with weights equal to the precisions of

his signals. Our formulas in Theorem 1 derive from this problem, and we have used properties of

this problem to explain the logic behind our main results. In particular, the agent’s misspecification

(overconfidence) introduces errors in his observations (e.g., in his recognition), which is reduced by

biased beliefs about other fundamentals (e.g., discrimination against his group). Further, if one

of the agent’s observations becomes more precise (e.g., regarding one type of discrimination), the

weights in the minimization problem change, leading to bias substitution.

The trickier parts of our proofs are in establishing that the above logic works also when the

agent does not know the covariance matrix. Indeed, notice that plugging Σ̃ = Σ into Expression
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(10) yields Expression (12). Hence, when the agent is initially agnostic about the covariance matrix,

then — although he misinfers the covariance matrix — his long-run beliefs about the fundamentals

are the same as when he correctly understands the covariance matrix. Investigating what happens

when in addition the errors are correlated (as in Proposition 6) is also much less obvious.

Our flexible theoretical apparatus provides a tool that can help researchers understand the im-

plications of biases beyond overconfidence. Building on our results, for instance, He et al. (2024)

analyze what a misspecified agent concludes about the biases of his information sources; Korne-

mann (2024) studies what happens when the agent is misspecified about the matrix M , such as

when he interprets observations using a simplified, sparse model; and in Appendix B, we con-

sider the situation in which the agent has stubborn beliefs about two fundamentals. Economic

applications abound. In the political arena, for instance, a person may have the stubborn belief

that Democrats/Republicans are evil, with implications for his views about a multitude of social

issues. Going further, our model can serve as an input into theories of propaganda, asking what

misspecified beliefs a politician wants to instill given a set of goals and constraints. And in the

personal arena, an individual may misperceive an aspect of others’ preferences or beliefs, and thus

misinterpret a range of their behaviors. Although a multitude of such misperceptions have been

documented (see Bursztyn and Yang, 2022, for a review), their ultimate sources, interrelationship,

and implications for multidimensional observations have not been analyzed in detail.

6 Related Literature

In this section, we relate our theory to research not discussed so far. Most importantly, existing work

does not derive a general in-group bias, develop a theory of group beliefs based on overconfidence,

or make predictions regarding spillovers between multiple interdependent incorrect beliefs about

others. Indeed, previous research on misspecified learning typically restricts attention to a one- or

two-dimensional state of the world.24 Unlike many others, however, we do not investigate behavior,

and assume normally distributed signals.

The agent’s biased interpretation of the signal about his own caliber in Section 4.2 is naturally

interpreted as driven by motivated reasoning (Bénabou and Tirole, 2016). Within discrimination

settings, Rackstraw (2022), Eyting (2024) and Stoetzer and Zimmermann (2024) experimentally

24 Papers in this literature not mentioned previously focus on different issues than our paper, including inferences
by individuals who ignore some explanatory variables (Hanna et al., 2014), misunderstand causal relationships (Levy
et al., 2022), misinterpret social observations (Bohren, 2016, Levy and Razin, 2017, Bohren and Hauser, 2019, Frick
et al., 2020), or draw incorrect inferences from their own past behavior (Heidhues et al., 2022).
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investigate whether motivated reasoning drives subjects’ updating. In contrast, we theoretically

derive what stereotypes an agent eventually holds while allowing for multiple dimensions of dis-

crimination.

There is a large sociology and social-psychology literature on prejudice, but to our knowledge

no theory is based on overconfidence, connects prejudice to opinions about discrimination, or makes

precise comparative-statics predictions. Most related, social identity theory (Tajfel, 1982) posits

that individuals identify with a few relevant groups, so that thinking positively about these in-

groups and negatively about out-groups leads them to think and feel positively about themselves.

Our theory also connects a person’s prejudices to his views about himself, but through a different

— in a sense reverse — logic: he thinks positively about himself, and this leads him to develop

social biases.

An influential body of research demonstrates that prejudice and discrimination can operate

implicitly outside the person’s awareness (e.g., Bertrand et al., 2005). Our framework is predicated

on an inferential process, and hence may appear contradictory to implicit bias. But once the

agent has drawn conclusions along the lines of our model, he may act on them without conscious

thought. Indeed, the idea that learned connections can unwittingly affect judgment is commonplace

in psychology, and formed the basis from which the literature on implicit discrimination started

(Jost et al., 2009). In this sense, our model is not contradictory to implicit bias.

Bordalo et al. (2016) model stereotypes by assuming that a person considers a trait more typical

in a group if it is relatively more common in the group than in the relevant comparison group. This

approach does not comfortably explain why stereotypes are often derogatory prejudices and why

many views are self-serving, and unless different groups have different comparison groups, it also

does not explain why different groups hold different views. On the other hand, our framework does

not explain neutral stereotypes, such as the view that Swedes are blonde.

Glaeser (2005) presents a political-economy model of hate in which beliefs about the harm-

fulness of others are created by politicians’ messages. Unlike our framework, this model explains

how the political environment affects people’s beliefs about minorities, and which messages are

communicated by which politicians. At the same time, our theory helps understand why negative

attitudes often persist without politicians stoking them, or even despite politicians’ attempts to

debias.
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7 Conclusion

While we have studied beliefs, it is natural to ask what our theory implies for discriminatory

behavior. To make predictions regarding choices, we need to add an assumption about the agent’s

objectives. One possibility is to posit classical outcome-based preferences (e.g., earnings from one’s

firm). Then, our model can be thought of as one of misspecified statistical discrimination — the

agent uses group membership as a signal to guide behavior (e.g., whom to hire), but he does so

incorrectly.25 Another possibility is to assume that the agent dislikes rewarding or interacting

with individuals he considers less deserving. Then, the agent treats other groups worse than his

own because he has incorrectly concluded that they are less worthy. In this case, our model

can be thought of as a microfoundation for taste-based discrimination. In fact, we suspect that

the “pure” dislike of other groups assumed in the classical theory of taste-based discrimination is

psychologically unrealistic. For instance, we do not think that a person dislikes a particular skin

color unless it is associated in his mind with some meaning about what such others are like.
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A Proofs

Theorem 1 follows from Theorem 2 which we prove later in the Appendix.

Proof of Theorem 1. Let Σq,Ση be the covariance matrices of ϵq and ϵη,

Σq = diag(vq1, . . . , v
q
I ), Ση = diag(vη1 , . . . , v

η
K)

and observe that they are invertible as the variances are greater than zero. We next show that this

model can be reduced into our model in Section 5. Observe that one can write the vector (q η)T in

matrix notation as q
η

 =

Id Φ

0 Id

 ·

a
θ

+

ϵq
ϵη

 , (14)

where the entry (Φ)jk = ϕgjk of the matrix Φ is the impact of discrimination k on group gj ’s output.

Let

M =

Id Φ

0 Id

 .

As M has determinant 1, it is invertible, and[
M

T
Σ−1M

]−1
=M−1Σ(M−1)T =

Id −Φ

0 Id

Σq 0

0 Ση

 Id 0

−ΦT Id


=

Id −Φ

0 Id

 Σq 0

−ΣηΦT Ση

 =

Σq +ΦΣη ΦT −ΦΣη

−ΣηΦT Ση

 .

By Theorem 2, agent i’s bias about the caliber of agent j is given by

ãij −Aj =

[
M

T
Σ−1M

]−1

ij[
MTΣ−1M

]−1

ii

∆i =

[
Σq +ΦΣη ΦT

]
ij

[Σq +ΦΣη ΦT ]ii
(ãi −Ai) =

∑
k ϕgikϕgjkv

η
k

vqi +
∑

k ϕ
2
gik
vηk

· (ãi −Ai) .
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By a similar argument,

θ̃ik −Θk =

[
M

T
Σ−1M

]−1

i(I+k)[
MTΣ−1M

]−1

ii

∆i =

[
−ΣηΦT

]
ik

[Σq +ΦΣη ΦT ]ii
(ãi −Ai) =

−ϕgikv
η
k

vqi +
∑

k ϕ
2
gik
vηk

· (ãi −Ai).

Proof of Proposition 1. I. By Theorem 1, the view of group g about group g′ is

ãgg′ =
∑
i∈g

ãig′

Img
=
∑
i∈g

∑
j∈g′\i

ãij
Img × (Img′ − I{g=g′})

= Ag′ +

∑K
k=1 ϕgkϕg′kv

η
k

vqg +
∑K

k=1 ϕ
2
gkv

η
k

(ãg −Ag),

so its view of group g is

ãgg = Ag +

∑K
k=1 ϕ

2
gkv

η
k

vqg +
∑K

k=1 ϕ
2
gkv

η
k

(ãg −Ag).

Hence, clearly ãgg > Ag.

Furthermore,∑
g′

mg′ ã
g
g′ =

∑
g′

mg′Ag′ +
∑
g′

mg′

∑K
k=1 ϕgkϕg′kv

η
k

vqg +
∑K

k=1 ϕ
2
gkv

η
k

(ãg −Ag)

=
∑
g′

mg′Ag′ +

∑K
k=1 ϕgk(

∑
g′ mg′ϕg′k)v

η
k

vqg +
∑K

k=1 ϕ
2
gkv

η
k

(ãg −Ag) =
∑
g′

mg′Ag′ ,

where in the last step we have used that
∑

g′ mg′ϕg′k = 0.

II. Immediate from part I.

III. Let ãg =
∑

i∈g ãi/Img, and note that by Theorem 1 ãg > Ag. We have∑
g,g′

mgmg′(ã
g
g − ãgg′) =

∑
g

mg

∑
g′

mg′ ã
g
g −

∑
g

mg

∑
g′

mg′ ã
g
g′

=
∑
g

mgã
g
g −

∑
g

mg

∑
g′

mg′Ag′ =
∑
g

mgã
g
g −

∑
g′

mg′Ag′

=
∑
g

mgã
g
g −

∑
g

mgAg =
∑
g

mg

∑K
k=1 ϕ

2
gkv

η
k

vqg +
∑K

k=1 ϕ
2
gkv

η
k

(ãg −Ag) > 0.

Proof of Proposition 2. We work with K + 1 types of discrimination, with type K + 1 having

effects sϕgK+1 and sϕg′K+1 on the two groups. Then, s = 0 corresponds to a situation with K

types of discrimination, and s = 1 to the new situation.

I. The view of group g about g′ is

ãgg′ = Ag′ +

∑K
k=1 ϕgkϕg′kv

η
k + s2ϕgK+1ϕg′K+1v

η
K+1

vqg +
∑K

k=1 ϕ
2
gkv

η
k + s2ϕ2gK+1v

η
K+1

(ãg −Ag)

= Ag′ +
s2ϕgK+1ϕg′K+1v

η
K+1

vqg +
∑K

k=1 ϕ
2
gkv

η
k + s2ϕ2gK+1v

η
K+1

(ãg −Ag),
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where we have used that ϕgkϕg′k = 0 for all k ≤ K. Since ϕgK+1 ̸= 0, this immediately implies

that the bias of group g about g′ is negative when s = 1 and zero when s = 0, establishing Part I.

II. The view of group g about group g is

ãgg = Ag +

∑K
k=1 ϕ

2
gkv

η
k + s2ϕ2gK+1v

η
K+1

vqg +
∑K

k=1 ϕ
2
gkv

η
k + s2ϕ2gK+1v

η
K+1

(ãg −Ag).

This is higher for s = 1 than for s = 0, proving Part II.

III. Notice that

mgã
g
g +mg′ ã

g
g′ = mgAg +mg′Ag′ +

∑K
k=1 ϕ

2
gkv

η
k + s2(mgϕ

2
gK+1 +mg′ϕgK+1ϕg′K+1)v

η
K+1

vqg +
∑K

k=1 ϕ
2
gkv

η
k + s2ϕ2gK+1v

η
K+1

(ãg −Ag)

= mgAg +mg′Ag′ +

∑K
k=1 ϕ

2
gkv

η
k

vqg +
∑K

k=1 ϕ
2
gkv

η
k + s2ϕ2gK+1v

η
K+1

(ãg −Ag),

where we have used that mgϕgK+1 +mg′ϕg′K+1 = 0. The above is lower for s = 1 than for s = 0.

Since group g has an average bias over all groups equal to zero, the average view of g regarding

other groups must be higher for s = 1 than for s = 0.

Proof of Proposition 3. By Theorem 1,

|ϕgik|
∣∣∣θ̃ik −Θk

∣∣∣ = ϕ2gikv
η
k

vqi +
∑

k′ ϕ
2
gik′

vηk′
· |ãi −Ai| , (15)

As the above term is increasing in vηk , Part (I) follows. Part (II) is implied as for an individual j

who is a member of agent i’s group

ãij −Aj =

∑
k′ ϕ

2
gik′

vηk′

vqi +
∑

k′ ϕ
2
gik′

vηk′
· (ãi −Ai)

which is increasing in vηk . Part (III) is implied as for k′′ ̸= k the term in (15) is (weakly) decreasing

in vηk , and strictly so if ϕgik′′ ̸= 0. Part (IV) follows since
∑

gmgã
i
g =

∑
gmgAg and by Part (II)

ãigi is decreasing, so that
∑

g ̸=gi mgã
i
g must be increasing. For Part (V), observe that as ϕgk = 0

for group g, Theorem 1 implies that∣∣ãig −Ag
∣∣ = ∣∣∣∣∣

∑
k′ ̸=k ϕgik′ϕgjk′v

η
k′

vqi +
∑

k′ ϕ
2
gik′

vηk′

∣∣∣∣∣ · |ãi −Ai| ,

and the first term on the right-hand side is (weakly) decreasing in vηk , and strictly so whenever the

bias about group g is non-zero.

Proof of Proposition 4. Consider a proportional change that lowers all vηk by some constant

factor α < 1. By Theorem 1, this implies that agent i’s long-run bias about discrimination toward
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group k is

|θ̃ik −Θk| =

∣∣∣∣∣∣ −ϕgikv
η
k

vqi
α +

∑
k′ ϕ

2
gik′

vηk′

∣∣∣∣∣∣ · (ãi −Ai) ≤

∣∣∣∣∣ −ϕgikv
η
k

vqi +
∑

k′ ϕ
2
gik′

vηk′

∣∣∣∣∣ · (ãi −Ai),

with the inequality strict whenever ϕgik ̸= 0. Similarly, his long-run bias about individual j’s

caliber becomes∣∣ãij −Aj
∣∣ =

∣∣∣∣∣∣
∑

k ϕgikϕgjkv
η
k

vqi
α +

∑
k′ ϕ

2
gik′

vηk′

∣∣∣∣∣∣ · (ãi −Ai) ≤

∣∣∣∣∣
∑

k ϕgikϕgjkv
η
k

vqi +
∑

k′ ϕ
2
gik′

vηk′

∣∣∣∣∣ · (ãi −Ai),

with the inequality strict whenever
∑

k ϕgikϕgjkv
η
k ̸= 0.

Proof of Proposition 5. Theorem 1 implies that the difference in agent i’s long-run bias about

individual j and j′ is

(ãij −Aj)− (ãij′ −Aj′) = −
∑
k

(θ̃ik −Θk)(ϕcj ,k − ϕcj′ ,k).

Consider an agent i who is more similar to agent j than to agent j′. Then cj′k = cik implies that

cjk = cik and hence that ϕcj′k = ϕcjk = ϕcik . Furthermore, if cj′k = cjk then ϕcj′k = ϕcjk . Using

these facts the above equation simplifies to

(ãij −Aj)− (ãij′ −Aj′) =
∑

k:cj′k ̸=cik∧cj′k=cjk

−(θ̃ik −Θk)(ϕcj ,k − ϕcj′ ,k).

Since characteristics are binary, for any dimension k in which cj′k ̸= cik ∧ cj′k = cjk, one has

cjk = cik and thus ϕcjk = ϕcik . Furthermore sgn ϕcj′k ̸= sgn ϕcik = sgn ϕcjk . Using these facts

and Theorem 1 (i) ϕcik > 0 implies −(θ̃ik − Θk) > 0 and (ϕcj ,k − ϕcj′ ,k) > 0; and (ii) ϕcik < 0

implies −(θ̃ik − Θk) < 0 and (ϕcj ,k − ϕcj′ ,k) < 0. We conclude that in any dimension k in which

cj′k ̸= cik ∧ cj′k = cjk, we have −(θ̃ik−Θk)(ϕcj ,k−ϕcj′ ,k) > 0. Thus, (ãij −Aj)− (ãij′ −Aj′) > 0.

To prove Proposition 6, we solve a more general model first in which recognition qj = aj + ϵ′j is

an unbiased signal of caliber that allows the error terms ϵj to have any positive definite covariance

matrix Σq for which all eigenvalues are greater than some sufficiently small λ that is less than the

solution stated in the Proposition A.1 below. All other assumptions remain unchanged. In this

case, one has:

Proposition A.1 (Correlated Errors and Biases). Agent i’s long-run bias about j is

ãij −Aj =
Σqij
Σqii

(ãi −Ai), (16)
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while his bias about the covariance matrix is given by

Σ̃qjj′ − Σqjj′ = (ãij −Aj)(ã
i
j′ −Aj′) =

Σqj′iΣ
q
ji

(Σqii)
2
(ãi −Ai)

2 . (17)

Proof. We apply Part III of Theorem 2 to f = a, M = Id. Then, [MTΣ−1M ]−1 = Σ, and

M(f̃ − F ) = ã−A, yielding the formulas in the proposition.

Proof of Proposition 6. Observe that the true model of Proposition 6 is a special case of the

model of Proposition A.1 in which ϵ′j = ψjϵg + ϵj , where ϵg and ϵj are independent mean-zero

Normal shocks with variances vg and vj . Note that the sum of Normal random variables is Normal,

and the true variance-covariance matrix of the shocks ϵ′j has entries Σ
q
jj′ = ψjψj′vg for j ̸= j′ and

Σjj = vqj + ψ2
j vg.

26

The agent considers the subclass of subjective covariance matrices for which Σ̃qjj′ = ψ̃jψ̃j′vg for

j ̸= j′ and Σ̃jj = ṽqj + ψ̃2
j vg. Note that this class of subjective models satisfies the assumptions

of Berk’s Theorem, and hence by Berk (1966, main theorem p. 54), the support of the agent’s

beliefs will concentrate on the set of points that minimize the Kullback-Leibler divergence to the

true model parameters (A,Σ) over the support of the agent’s subjective models. To solve this

minimization problem, we minimize a relaxed problem in which we ignore the restriction that there

must exist ψ̃j ’s such that Σ̃qjj′ = ψ̃jψ̃j′vg for j ̸= j′ and Σ̃jj = ṽqj + ψ̃2
j vg, and then verify that the

solution to the relaxed problem satisfies these constraints.

By Proposition A.1, we have that in the solution to the relaxed problem is given by

ãij = Aj +
ψiψjvg
vqi + ψ2

i vg
· (ãi −Ai),

and

Σ̃qjj′ = Σqjj′ +
Σqj′iΣ

q
ji

(Σqii)
2
(ãi −Ai)

2.

Hence,

Σ̃qjj′ = ψjψj′vg

[
1 +

ψ2
i vg(

vqi + ψ2
i vg
)2 (ãi −Ai)

2

]
for j ̸= j′ ,

and

Σ̃qjj = vqj + ψ2
j vg +

ψ2
jψ

2
i v

2
g(

vqi + ψ2
i vg
)2 (ãi −Ai)

2 for j ̸= i , (18)

and finally

Σ̃qii = vqi + ψ2
i vg + (ãi −Ai)

2 .

26 To see that the chosen v implies a uniform bound on the covariance matrix as required by Theorem 2, observe
that the covariance matrix is given by vg × (ψ ⊗ ψ′) + diag(v1, v2, . . . , vI), where diag(v1, v2, . . . , vI) denotes the
diagonal matrix with entries v1, . . . , vI . The smallest eigenvector of the covariance matrix is thus greater than
minx:|x|=1 x

T [vg × (ψ ⊗ ψ′) + diag(v1, v2, . . . , vI)]x ≥ xT diag(v1, v2, . . . , vI)x = minj vj .
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To show that the solution to the relaxed problem is among the class of subjective models the

agent considers, we are left to show that there exists ψ̃j ’s such that

ψ̃jψ̃j′vg = ψjψj′vg

[
1 +

ψ2
i vg(

vqi + ψ2
i vg
)2 (ãi −Ai)

2

]
for all j ̸= j′, (19)

and

ṽqj + ψ̃2
j vg = vqj + ψ2

j vg +
ψ2
jψ

2
i v

2
g(

vqi + ψ2
i vg
)2 (ãi −Ai)

2 for j ̸= i , (20)

and finally

ṽqi + ψ̃2
i vg = vqi + ψ2

i vg + (ãi −Ai)
2. (21)

Observe that (19) to (21) are solved by

ψ̃j = ψj

√√√√[1 + ψ2
i vg(

vqi + ψ2
i vg
)2 (ãi −Ai)2

]
, (22)

and own variances

ṽqi = vqi +

(
vqi + ψ2

i vg
)2 − (ψ2

i vg
)2(

vqi + ψ2
i vg
)2 (ãi −Ai)

2 and ṽqj = vqj . (23)

We now argue that for I ≥ 3, the solution given by (22) and (23) is unique. Dividing (19) for

j, j′ ̸= j by that for j, j′′ ̸= j, j′ implies that ψ̃j′/ψ̃j′′ = ψj′/ψj′′ , so that ψ̃j′/ψ̃j′′ is unique. By (19),

ψ̃j′ψ̃j′′ is also unique. Together with the normalization that ψ̃i ≥ 0, this implies that all ψ̃j are

unique. With all ψ̃j uniquely given, own variances are unique by (20) and (21).

Proof of Proposition 7. Let ei be the i-th unit row vector, and Φ the matrix with (Φ)jk = ϕgjk.

In the notation of Theorem 2,

f =


b

a

θ

 , r =


si

q

η

 , M =


1 ei 0

0 Id Φ

0 0 Id

 , Σ =


vai 0 0

0 Σq 0

0 0 Ση

 ,

and the agent is misspecified regarding b, with b̃−B = −B. It is easy to check that

M−1 =


1 −ei ϕi

0 Id −Φ

0 0 Id

 ,
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where ϕi is the row vector (ϕgi1, · · · , ϕgiK). We thus have

M−1Σ(M−1)T =


1 −ei ϕi

0 Id −Φ

0 0 Id



vai 0 0

0 Σq 0

0 0 Ση




1 0 0

−eTi Id 0

ϕTi −ΦT Id



=


1 −ei ϕi

0 Id −Φ

0 0 Id




via 0 0

−vqi eTi Σq 0

ΣηϕTi −ΣηΦT Ση

 =


vai + vqi + ciΣ

ηcTi . . . . . .

−vqi eTi − ΦΣηϕTi . . . . . .

ΣηϕTi . . . . . .

 .

The formulas follow by applying Theorem 2, Part III.

Proof of Corollary 1. The result follows from taking the derivative of the respective biases in

Proposition 7 with respect to vqi .

Proof of Proposition 8. Recall that the agent observes the signals

qj(t) = Aj +

K∑
k=1

ϕgjkΘk + ϵqj(t), j = 1, . . . , I,

η(t) = Θ + ϵη(t) .

(24)

We assumed that there is a single dimension of discrimination, so that e.g. Θ = Θ1 ∈ R. The

agent now observes two signals that are purely about discrimination: (1) the signal directly about

discrimination

η = Θ+ ϵη

and (2) the signal about the agent’s own caliber

qi = Ai + ϕgi1Θ+ ϵqi .

We transform qi into a new signal q̂i, which agent i believes to be an unbiased signal of Θ,

q̂i = (qi − ãi)/ϕgi1 = Θ− ãi −Ai
ϕgi1

+
1

ϕgi1
ϵqi .

The direct signal η has precision 1/vη and the second signal q̂i has precision (ϕgi1)
2/vqi . This means

that the overall information of these two signals can be summarized into a single signal given by

η̂i =
1/vη η + (ϕgi1)

2 1/vqi q̂i
1/vη + (ϕgi1)

2 1/vqi
=

1/vη η + ϕgi1 1/v
q
i (qi − ãi)

1/vη + (ϕgi1)
2 1/vqi

.

The precision of this signal η̂i is equal to 1/vη + (ϕgi1)
2 1/vqi . The signal η̂i is a sufficient statistic

for Θ from the point of view of the agent, in the sense that her posterior belief about Θ will be

the same after observing (η, qi) or η̂i.
27 The objective expectation of the signal η̂i is given by the

27This follows from the updating rules for Normal signals given a Normal prior.
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long-run belief

E[η̂i] = Θ−
ϕgi11/v

q
i

1/vη + (ϕgi1)
2 1/vqi

(ãi −Ai) = Θ− ϕgi1v
η

vqi + (ϕgi1)
2vη

(ãi −Ai).

We can now also transform the signal about agent j ̸= i’s ability qj in an invertible way such that

agent i believes it to be an unbiased signal about aj by defining q̂j as

q̂j = qj − ϕgj1η̂i .

The objective expectation of q̂j is given as

E[q̂j ] = Aj + ϕgj1
ϕgi1v

η

vqi + (ϕgi1)
2vη

(ãi −Ai) .

As the distribution of qj only depends on θ and aj , we get that (q̂−i, η̂i) is a sufficient statistic for

computing the agent’s beliefs about (a−i, θ).

By slight abuse of notation, we denote by Φ the vector (ϕgj1)j ̸=i and by a the vector (aj)j ̸=i

to avoid the subindices in Φ−i, a−i. Recall that we denote by (ãi, θ̃i) the long-run belief of agent

i. The objective expectation of (q̂, η̂i) is exactly equal to the long-run belief derived in Theorem 2

and given as

E

q̂−i
η̂i

−

A
Θ

 =

 ã

θ̃i

−

A
Θ

 =

−Φ

1

(θ̃i −Θ
)
.

According to the agent’s subjective expectation

Ẽ[q̂j ] = Aj and Ẽ[η̂i] = Θ .

The signals (q̂, η̂i) have the subjective covariance matrix

Σ̂ =

Σq + vηΦΦT −vηΦ

−vηΦT vη

 .
Here Σq = diag(vq1, v

q
2, . . .) is a diagonal matrix with the variance of the outputs of the different

agent’s on the diagonal. Denote by ãi(t), θ̃i(t) the expected posterior mean belief in period t

when the agent assigns probability 1 to his own caliber being ãi, and by āj , θ̄ the prior means of

individual j’s caliber and discrimination, respectively. By the updating formula for Normal beliefs

from Normal signals,28 we have thatãi(t)
θ̃i(t)

 = (Σ−1
0 + tΣ̂−1)−1

Σ−1
0

ā
θ̄

+ tΣ̂−1

ãi
θ̃i

 .

28See e.g. here https://en.wikipedia.org/wiki/Conjugate_prior#When_likelihood_function_is_a_

continuous_distribution.
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Here

Σ0 = diag(v̄a1 , v̄
a
2 , . . . , v̄

θ) =

Σa0 0

0 v̄θ


is a diagonal matrix with the variance of the prior belief about the the different agents’ calibers

a1, a2, . . . and the state Θ on the diagonal. Denote by a(t), θ(t) the expected posterior mean belief

in period t when the agent is correctly specified and assigns probability 1 to his own caliber being

Ai. We have that ai(t)
θi(t)

 = (Σ−1
0 + tΣ̂−1)−1

Σ−1
0

ā
θ̄

+ tΣ̂−1

A
Θ

 .

We get that the difference between the mean belief of the correctly specified agent and the agent

who misestimates his own caliber is given byãi(t)
θ̃i(t)

−

ai(t)
θi(t)

 = (Σ−1
0 + tΣ̂−1)−1tΣ̂−1

ãi
θ̃i

−

A
Θ

 .
The matrix Σ̂ has an inverse equal to

Σ̂−1 =

 Σq−1 Σq−1Φ

ΦTΣq−1 1/vη +ΦTΣq−1Φ

 .
We observe that Σq−1 Σq−1Φ

ΦTΣq−1 1/vη +ΦTΣq−1Φ

ãi
θ̃i

−

A
Θ


=

 Σq−1 Σq−1Φ

ΦTΣq−1 1/vη +ΦTΣq−1Φ

−Φ

1

 (θ̃i −Θ) =

 0

1/vη

 (θ̃i −Θ) .

Multiplying by (Σ−1
0 + tΣ̂−1) yields that[

Σ−1
0 + tΣ̂−1

]ãi(t)− ai(t)

θ̃i(t)− θi(t)

 =

 0

t/vη

 (θ̃i −Θ)

⇔

Σa0−1 + tΣq−1 tΣq−1Φ

ΦT tΣq−1 1/v̄θ + t/vη +ΦT tΣq−1Φ

ãi(t)− ai(t)

θ̃i(t)− θi(t)

 =

 0

t/vη

 (θ̃i −Θ) .
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The solution to this equation is given as

ãi(t)− ai(t) = −
(
Σa0

−1 + tΣq−1
)−1

tΣq−1Φ
(
θ̃i(t)− θi(t)

)
θ̃i(t)− θi(t) =

t/vη × (θ̃i −Θ)

1/v̄θ + t/vη +ΦT tΣq−1Φ− ΦT tΣq−1
(
Σa0

−1 + tΣq−1
)−1

tΣq−1Φ

=
t/vη

1/v̄θ + t/vη +
∑

j(ϕgj1)
2 1/v̄aj

t/vqj
1/v̄aj +t/v

q
j

(θ̃i −Θ) .

Where, in the last equation we used that Σa0 and Σq are diagonal matrices. Expressing the above

equations component-wise yields the formulas in the statement.

Proof of Theorem 2. For brevity, we denote the agent’s long-run bias about fundamental j by

∆j = f̃j − Fj ,

and let ∆ = (∆1, . . . ,∆L)
T .

We first verify that the assumptions of Berk (1966) are satisfied. Part (i) requires that the

subjective density is continuous in (f ′,Σ′) ∈ suppP0. The subjective density is

1√
(2π)L detΣ′

exp

(
−1

2
(r −Mf ′)(Σ′)−1(r −Mf ′)

)
,

which is continuous as the determinant and the inverse of a matrix are continuous functions of the

coefficients of the matrix, and the determinant of a matrix whose eigenvalues are bounded from

below by λ is bounded from below by λn > 0. Part (ii) is that the above density equals zero

only on a set of measure zero with respect to the true distribution, which is satisfied as the above

density is always strictly positive. Part (iii) states that for some open neighborhood U ⊂ suppP0

of every parameter value (f ′,Σ′) ∈ suppP0 the expected maximal log-likelihood is finite, i.e. for

the random first period observation r1

E

[
sup

(f ′′,Σ′′)∈U

∣∣log ℓ1(r1|f ′′,Σ′′)
∣∣] <∞ .

Let λmax(Σ
′′) be the largest and λmin(Σ

′′) the smallest eigenvalue of Σ′′. Then,

| log ℓ1(r1|f ′′,Σ′′)| = 1

2

∣∣log[(2π)L detΣ′′] + (r1 −Mf ′′)T (Σ′′)−1 (r1 −Mf ′′)
∣∣

≤ 1

2

∣∣∣∣L log[(2π)λmax(Σ
′′)] +

1

λmin(Σ′′)
||r1 −Mf ′′||2

∣∣∣∣ .
As the eigenvalues are a continuous function of the entries of the matrix and bounded from below

by λ, we get that the above function is continuous in (f ′′,Σ′′) and thus that the supremum is finite

over every neighborhood U .

Finally, part (iv) is that for every constant γ ∈ R there exists a set D ⊂ suppP0 with compact
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complement (suppP0) \D such that

E

[
sup

(f ′′,Σ′′)∈D
log ℓ1(r1|f ′′,Σ′′)

]
≤ γ . (25)

Fix δ1, δ2 > 0 and let D be the set of vectors f ′′ such that ||M(F − f ′′)|| > δ1 and covariance

matrices Σ′′ whose largest eigenvalue is strictly greater δ2. For all (f
′′,Σ′′) ∈ D and ||Mϵ1|| ≤ δ1/4

the log-likelihood satisfies

log ℓ1(r1|f ′′,Σ′′) = −1

2

(
log[(2π)L detΣ′′] + (r1 −Mf ′′)T (Σ′′)−1 (r1 −Mf ′′)

)
≤ −1

2

(
L log(2π) + (L− 1) log λmin(Σ

′′) + log(λmax(Σ
′′)) +

1

λmax(Σ′′)
||r1 −Mf ′′||2

)
Denote by a ∨ b the maximum of a and b. As log(x) + y/x is minimized at x = y with value

log(y) + 1 we can bound the above term by

≤ −1

2

(
L log(2π) + (L− 1) log λmin(Σ

′′) + log(δ2 ∨ ||r1 −Mf ′′||2)
)

= −1

2

(
L log(2π) + (L− 1) log λmin(Σ

′′) + log(δ2 ∨ ||M(F − f ′′) +Mϵ1||2)
)

≤ −1

2

(
L log(2π) + (L− 1) log λmin(Σ

′′)

+ log
(
δ2 ∨

[
||M(F − f ′′)||2 + ||Mϵ1||2 − 2||M(F − f ′′)|| × ||Mϵ1||

]) )
As right-hand-side above is decreasing in ||M(F −f ′′)|| for ||Mϵ1|| < δ1/2 the minimum is attained

at ||M(F − f ′′)|| = δ1 and we obtain the following bound

≤ log−1

2

(
L log(2π) + (L− 1) log λmin(Σ

′′) + log
(
δ2 ∨ δ21/2

) )
.

As the lowest eigenvalue of all covariance matrices in suppP0 is bounded from below by λ < 1 we

have log ℓ1(r1|f ′′,Σ′′) ≤ L/2| log(λ)|. That implies

E

[
sup

(f ′′,Σ′′)∈D
log ℓ1(r1|f ′′,Σ′′)

]
≤ E

[
1||Mϵ1||≤δ1/4 sup

(f ′′,Σ′′)∈D
log ℓ1(r1|f ′′,Σ′′)

]
+ L/2| log(λ)|

≤ −1

2

(
L log(2π) + (L− 1) log λ+ log

(
δ2 ∨ δ21/2

) )
P[||Mϵ1|| ≤ δ1/4] + L/2| log(λ)| .

As limδ1→∞ P[||Mϵ1|| ≤ δ1/4] = 1 it follows that the left-hand-side of (25) becomes arbitrarily small

for either δ1 or δ2 large enough. We are left to argue that the complement of D is compact for every

δ1, δ2. Note, that the complement of D is the subset of suppP0 of positive definite matrices where

all eigenvalues are in [λ, δ2] and vectors f ′′ with ||M(F − f ′′)|| ≤ δ1. As ||Σ′′|| equals the largest

eigenvalue, and thus is less than δ2, it follows from norm equivalence that the set of covariance

matrices in the complement of D form a compact set. We can define the pseudo inverse of M as

M∗ = (MTM)−1MT and note that for fundamental vectors f ′′ in the complement of D it holds
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that ||F − f ′′|| = ||M∗M(F − f ′′)|| ≤ ||M∗|| × ||M(F − f ′′)|| ≤ δ1||M∗||. Thus, the complement of

D is compact.

As shown by Berk (1966, main theorem p. 54), the support of the agent’s beliefs will concentrate

on the set of points that minimize the Kullback-Leibler divergence to the true model parameters

(F,Σ) over the support of P0

argmin
(f̂ ,Σ̂)∈suppP0

D
(
F,Σ ∥ f̂ , Σ̂

)
, (26)

where the Kullback-Leibler divergence is given by

D
(
F,Σ ∥ f̂ , Σ̂

)
= E

[
log

ℓ1(r1|F,Σ)
ℓ1(r1|f̂ , Σ̂)

]
.

We will argue that (26) admits a unique solution when the prior P0 satisfies either (Case I),

(Case II), or (Case III) and thus beliefs concentrate on a single point. As the true and subjective

models are both Normal, the Kullback-Leibler divergence is given by (13).29 Throughout, we

denote by f̃ , Σ̃ the agent’s subjective long-run beliefs about the mean of the fundamentals and the

covariance matrix. Define the matrix

B =MT Σ̃−1M ∈ RL×L

and denote its elements by (Bjk)j,k∈{1,...,L}. For future reference, note that since Σ̃ is symmetric,

so is MT Σ̃−1M , and thus Bjk = Bkj . Furthermore, as Σ̃ is positive definite, so is Σ̃−1 and

B =MT Σ̃−1M .

We first analyze Case (I): We solve (26) over ∆ = f̂ − F . As we can ignore all terms in (13) that

do not depend on f̂ , the problem becomes

argmin
f̂ : f̂i=f̃i

(M(f̂ − F ))T Σ̃−1M(f̂ − F ) = F + argmin
∆: ∆i=f̃i−fi

∆T
(
MT Σ̃−1M

)
∆

= F + argmin
∆: ∆i=f̃i−fi

L∑
k=1

L∑
j=1

Bkj∆k∆j . (27)

Here the sum symbolizes the addition of F to every element by element in the set of minimizers.

Taking the first order conditions in the bias about fundamental ∆h for h ̸= i and using that

Bjk = Bkj yields

0 = 2

L∑
k=1

Bkj∆k .

29 See for example https://en.wikipedia.org/wiki/Multivariate_normal_distribution.
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Dividing by 2 and plugging in ∆k =
B−1

ki

B−1
ii

∆i on the right-hand-side yields

L∑
k=1

Bkj∆k =
L∑
k=1

Bkj
B−1
ki

B−1
ii

∆i =
∆i

B−1
ii

L∑
k=1

BkjB
−1
ki =

∆i

B−1
ii

L∑
k=1

BjkB
−1
ki =

∆i

B−1
ii

(BB−1)ji ,

which equals zero as BB−1 is the identity and i ̸= j. Hence, ∆k =
B−1

ki

B−1
ii

∆i satisfies the first order

condition.

Let ek be the k-th unit vector, for k ∈ {1, . . . , L}. We next verify that the first order condition

is sufficient for a global minimum. To do so, we rewrite the part of the objective (27) in terms of

∆−i =
∑

j ̸=i ej∆j

∆TB∆ =

ei∆i +
∑
j ̸=i

ej∆j

T

B

ei∆i +
∑
j ̸=i

ej∆j

 = (ei∆i +∆−i)
T B (ei∆i +∆−i)

= (ei∆i)
T B (ei∆i) + ∆T

−iB∆−i + 2 (ei∆i)
T B∆−i . (28)

The Hessian with respect to ∆−i of (28) equals 2B. As any quadratic form with a positive definite

matrix Hessian has a unique global minimum that satisfies the first-order condition, it follows that

indeed

∆k =
B−1
ki

B−1
ii

∆i =
(MT Σ̃−1M)−1

ij

(MT Σ̃−1M)−1
ii

∆i

is the unique global minimizer for all k ̸= i. This completes (I).

We next analyze Case (II): In this case, we minimize (13) over Σ̂:

argmin
Σ̂

(
tr(Σ̂−1Σ) + (M∆)T Σ̂−1(M∆) + log

det Σ̂

detΣ

)
. (29)

Denote by · ⊗ · : RD × RD → RD×D the Kronecker product. In matrix notation, we want to show

that the unique minimum of (29) is attained at

Σ̂ = Σ + (M∆)⊗ (M∆)T
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To simplify notation let y =M∆. We first manipulate the objective function

tr(Σ̂−1Σ) + yT Σ̂−1y + log
det Σ̂

detΣ
= tr(Σ̂−1Σ) + tr(yT Σ̂−1y) + log(det Σ̂)− log(detΣ)

= tr(Σ̂−1Σ) + tr(Σ̂−1[y ⊗ yT ])− log(det Σ̂−1)− log(detΣ)

= tr
(
Σ̂−1(Σ + [y ⊗ yT ])

)
− log

(
det Σ̂−1

)
− log(detΣ)

= tr
(
Σ̂−1(Σ + [y ⊗ yT ])

)
− log det

(
Σ̂−1(Σ + [y ⊗ yT ])

)
+ log det

(
Σ−1(Σ + [y ⊗ yT ])

)
= tr

(
Σ̂−1(Σ + [y ⊗ yT ])

)
− log det

(
Σ̂−1(Σ + [y ⊗ yT ])

)
+ log det

(
Id+Σ−1[y ⊗ yT ]

)
. (30)

Here we used in the first equality that a real number equals its trace and the log of the ratio equals

the difference of the logs. The second equality uses that the trace of ATB equals the trace of BAT .

For third equality we use that the trace is an additive function. In the second to last equality,

we use that the sum of logarithms equals the logarithm of the product and that the product of

determinants equals the determinant of the product. Now notice that since Σ and y do not depend

on Σ̂, the set of minimizers equals

argmin
Σ̂

tr(Σ̂−1(Σ + [y ⊗ yT ]))− log(det(Σ̂−1(Σ + [y ⊗ yT ])). (31)

Let λ1, . . . , λD be the eigenvalues of the matrix Σ̂−1(Σ + [y ⊗ yT ]). Since the trace is the sum of

eigenvalues and the determinant is the product of eigenvalues, (31) is minimized by all matrices Σ̂

such that the eigenvalues of Σ̂−1(Σ + [y ⊗ yT ]) minimize

D∑
k=1

λk −
D∑
k=1

log λk. (32)

As (32) is strictly convex, we can take the first order condition to identify the unique minimizer.

This yields that (32) uniquely minimized if and only if λk = 1 for all k. As all eigenvalues equal one

and Σ̃−1(Σ+ [y⊗ yT ]) is symmetric—and hence diagonalizable—, Σ̃−1(Σ+ [y⊗ yT ]) is the identity

matrix. This establishes that

Σ̃ = Σ + [y ⊗ yT ] = Σ + (M∆)⊗ (M∆)T (33)

is the unique minimizer of (29) and thus the subjective long-run belief of the agent about the

covariance matrix. This establishes (II).

Finally, we prove Case (III): We now solve

argmin
(∆,Σ̂) : ∆i=f̃i−Fi

1

2

(
tr(Σ̂−1Σ) + yT Σ̂−1y −D + log

det Σ̂

detΣ

)
. (34)
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As shown in (30) this objective is equivalent to 1/2 times

tr
(
Σ̂−1(Σ + [y ⊗ yT ])

)
− log det

(
Σ̂−1(Σ + [y ⊗ yT ])

)
−D + log det

(
Id+Σ−1[y ⊗ yT ]

)
.

Plugging in the minimizer for the covariance matrix Σ+ [y⊗ yT ] derived in part two simplifies the

objective to

log det
(
Id+Σ−1[y ⊗ yT ]

)
. (35)

We first observe that as the determinant is the product of eigenvalues, (35) equals the sum of the

logarithms of the eigenvalues of Id+Σ−1[y⊗yT ]. Furthermore, if λ is an eigenvalue of Id+Σ−1[y⊗yT ]

with associated eigenvector v then λ− 1 is an eigenvalue of Σ−1[y ⊗ yT ] as

λv = (Id+Σ−1[y ⊗ yT ])v ⇒ (λ− 1)v = Σ−1[y ⊗ yT ]v .

Denoting the eigenvalues of Σ−1[y ⊗ yT ] by λ1, . . . , λD, the objective (35) becomes

K∑
i=1

log(λk + 1) .

As eigenvalues are independent of the basis, we next choose an orthogonal basis x1, . . . , xD such

that x1 = y (we can always do so by picking an arbitrary basis and applying the Gram-Schmidt

process). Denote, 1 = (1) the 1× 1 identity matrix. As xi is orthogonal to y = x1, we have that

Σ−1[y ⊗ yT ]xi = Σ−1[y ⊗ yT ][1⊗ xi] = Σ−1[y1]⊗ [yTxi] =


0 if i ̸= 1

(yT y)(Σ−1y) if i = 1

.

Hence, D − 1 of the eigenvalues of Σ−1[y ⊗ yT ] equal zero. We will next show that v = Σ−1y is

an eigenvector with associated non-zero eigenvalue. Let v =
∑D

i=1 αixi be the representation of

v = Σ−1y in the basis x. We have that

Σ−1[y ⊗ yT ]v = α1(y
T y)(Σ−1y) = α1(y

T y)v

and thus v is an eigenvector of Σ−1[y⊗yT ] with eigenvalue α1(y
T y). As α1 is given by the projection

of v on y, we have α1 =
yT v
yT y

, so the non-zero eigenvalue of Σ−1[y ⊗ yT ] equals

α1(y
T y) = yT v = yTΣ−1y .

Consequently, the agent’s long-run belief about the mean of the state satisfies

f̃ = F + argmin
∆: ∆i=f̃i−fi

yTΣ−1y

= F + argmin
∆: ∆i=f̃i−fi

∆T
(
MTΣ−1M

)
∆ .
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By (I) we then have that the unique minimizer and thus the long-run belief of the agent is

∆k =

[
M

T
Σ−1M

]−1

ki[
MTΣ−1M

]−1

ii

∆i for k ̸= i

Σ̃ = Σ + (M∆)⊗ (M∆)T

. (36)

This completes the proof of (III).

B Two Dimensions of Stubborn Beliefs

We consider the variant of our model in which the agent has fixed stubborn beliefs about two

fundamentals, fi1 and fi2 . We restrict attention to the analogue of Case I in Theorem 2, supposing

that the agent knows the correct covariance matrix Σ.

Using the notation B =MTΣ−1M , the agent’s long-run bias about fundamental j is

∆j =
B−1
i1j

(B−1
i2i2

∆i1 −B−1
i1i2

∆i2) +B−1
i2j

(B−1
i1i1

∆i2 −B−1
i1i2

∆i1)

B−1
i1i1

B−1
i2i2

−
(
B−1
i1i2

)2 . (37)

This satisfies the first-order condition in the proof of Theorem 2, Case I.

We use (37) to prove a more general version of our result that contact with a group lowers

the agent’s bias regarding that group. Consider the model of Section 2 in which the fundamentals

i1, i2, j equal i1’s, i2’s, and j’s calibers, respectively, but suppose that agent i1 knows the true

caliber of individual i2. Let individuals j and i2 belong to the same group. Using that ∆i2 = 0,

(37) reduces to

∆j =
B−1
i1j
B−1
i2i2

−B−1
i2j
B−1
i1i2

B−1
i1i1

B−1
i2i2

−
(
B−1
i1i2

)2 ·∆i1 .

Since individuals i2 and j belong to the same group, we have B−1
i1i2

= B−1
i1j

, so

∆j =
B−1
i1j

B−1
i1i1

·
B−1
i2i2

−B−1
i2j

B−1
i2i2

−
(
B−1
i1j

)2
/B−1

i1i1

·∆i1 .

Without contact with individual i2, agent i1’s bias regarding individual j is (B−1
i1j
/B−1

i1i1
) · ∆i1 .

Hence, to show that contact lowers his bias, it is sufficient to establish that

B−1
i2j

>

(
B−1
i1j

)2
B−1
i1i1

or B−1
i2j
B−1
i1i1

>
(
B−1
i1j

)2
Plugging in the expressions for the entries of B−1 from the proof Theorem 1, and again using that
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i2 and j belong to the same group, the above inequality becomes(∑
k

ϕ2gjkv
η
k

)(
vqi1 +

∑
k

ϕ2gi1k
vηk

)
>

(∑
k

ϕgi1kϕgjkv
η
k

)2

,

which holds by the Cauchy-Schwarz inequality.
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