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Abstract

We study the implications of biased consumer beliefs for search market outcomes. Biased

consumers base their search strategy on a belief function which specifies for any (true) distri-

bution of utility offers in the market a possibly incorrect distribution of utility offers. We show

that if biased consumers overestimate the best offer in the market, a novel type of equilibrium

may emerge in which firms make penny sales offers in order to meet biased consumers’ unrea-

sonable high expectations which then become partially self-fulfilling. As a result, the presence

of biased consumers may improve the welfare of all consumers.
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1 Introduction

Consumer search is an important element in safeguarding competition and consumer welfare in

markets. A key determinant of consumers’ search incentives is their beliefs about the benefits of

search. In equilibrium models of consumer search, consumers can correctly assess their search

benefits, because in equilibrium they know the aggregate distribution of offers in the market.

Evidence suggests, however, that in practice, this might not always be the case, especially if a

product is purchased rarely.1 To illustrate that forming correct beliefs might be difficult, consider

a flathunter who is new in a city. To assess her search benefits, she not only has to know the

(marginal) distribution of a number of relevant flat characteristics such as prices and qualities

in the city, conditional on being available, but also their joint distribution in order to assess how

likely it is that she actually finds a flat that is both cheap and nice. Without experience, it is

unlikely that all consumers know all relevant information or are able to correctly process it.

In this article, we study implications for search market outcomes when some “biased” con-

sumers’ beliefs only partially reflect the true market conditions. To capture this, we introduce a

belief function which specifies for any (true) distribution of utility offers in the market a biased

distribution of utility offers upon which biased consumers base their search strategy. Our notion

of a belief function is in the spirit of by now established theories on how boundedly rational

agents form beliefs about the behavior of other players.2 Like in these approaches, the beliefs

of biased consumers in our model are anchored in, and respond to, changes in the true market

conditions. We impose minimal regularity assumptions on the belief function requiring that small

or monotone (in the first order sense) changes in the true distribution of offers result in small or

monotone changes in beliefs3, but otherwise allow for arbitrary belief biases.

Our article makes two main points. First, we show how biased consumer beliefs shape market

outcomes, and second, we address welfare implications. To bring out the role of consumer beliefs

most clearly, we consider the seminal search model by Diamond (1971) with the novelty that a
1 For example, Matsumoto and Spence (2016) show that students, especially inexperienced ones, underestimate

the benefits of searching an online market place for textbook prices. Jindal and Aribarg (2018) elicit consumer beliefs

about prices for a popular home appliance and show that while consumers underestimate the average price, they

overestimate the variance in prices prior to their search. More generally, Price and Zhu (2016) illustrate the impor-

tance of consumers’ beliefs for their search behavior. They show for a variety of service markets such as electricity,

broadband internet and current bank accounts that a consumer’s belief about how much money she could save by

shopping around, correlates strongly with her reported search and switching behaviour.
2Examples include quantal response equilibrium (Mckelvey and Palfrey (1995)), level-k thinking (Nagel (1995),

Stahl and Wilson (1995)), analogy-based equilibrium (Jehiel (2005)), cursed equilibrium (Eyster and Rabin (2005)),

or Berk-Nash equilibrium (Esponda and Pouzo (2014)). Similar to our model, Heller and Winter (2020) endow agents

with an abstract belief function, but, unlike us, allow them to choose their belief function strategically.
3We impose a third, more technical condition, as explained later.
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fraction of consumers has biased beliefs. In this model, finitely many firms offer close substitutes

and consumers can search firms sequentially and in random order so as to learn how much utility

each firm offers before acquiring a product. When all consumers have correct beliefs, the Diamond

paradox where all firms offer zero utility to consumers is the only equilibrium outcome: because

in equilibrium, all consumers know that all firms offer zero utility, search becomes pointless which

sustains the monopoly outcome in the first place.

We show that non-pessimism is the critical property of the belief function that determines

whether other market outcome can occur relative to the benchmark. We refer to a belief function

as non-pessimistic if there is a utility distribution whose best offer a biased consumer overesti-

mates. Intuitively, non-pessimism captures that a consumer overestimates the tails of the utility

distribution which is a key factor in determining her search benefits. Note that non-pessimism

is a fairly weak property, because the existence of already a single utility distribution for which

a naive consumer overestimates the value of the best offer guarantees that the belief function is

non-pessimistic.4

We find that novel equilibrium types can occur if and only if biased consumers have non-

pessimistic beliefs, and we fully characterize these equilibria as a function of search costs.5 More

specifically, under non-pessimism, for sufficiently large search costs, even unrealistically hopeful

biased consumers consider search too costly, and unsurprisingly, the Diamond outcome occurs.

However, for intermediate search costs, the Diamond outcome can no longer be sustained, be-

cause as a consequence of non-pessimism, biased consumers overestimate the value of the best

equilibrium offer and would find it worthwhile to search for a golden egg: an offer which in reality

does not exist. For example, in the introductory example above, non-pessimistic beliefs arise when

the flat hunter underestimates the correlation between price and quality in the market, leading

her to overestimate the occurrence of cheap high quality flats. The resulting equilibria display a

form of utility dispersion that, intuitively, reflects periods in which firms make what we refer to as

penny sales offers, that is, with positive probability they make offers which supply distinctly more

utility than a regular offer. From the perspective of firms, penny sales offers serve the purpose

to cater to biased consumers who demand better offers than standard consumers to stop their

search and buy. In this sense, a biased consumer’s belief that the market supplies golden eggs is

partially confirmed in equilibrium. Finally, for sufficiently small search costs, biased consumers

become so demanding that it becomes unprofitable for firms to attract them with special offers,

and biased consumers, in a futile search effort, visit all firms before returning to the best one. The

equilibrium outcome is then the same as in Stahl (1989) in which so-called shoppers, a consumer
4To be precise, our regularity conditions imply, however, that if there is one such distribution that there is small

class of distributions for which this must be the case.
5If the belief function is pessimistic, then the Diamond outcome is the only equilibrium outcome.
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group with zero search costs, visit all firms. Thus, non-pessimism provides a somewhat surprising

foundation for the existence of shoppers in an environment where all consumers have positive

search costs.

The second main goal of our article is to study welfare implications of biased beliefs. We

address this question in the framework where biased consumers hold cursed beliefs as in Eyster

and Rabin (2005). This corresponds to a form of correlation neglect where, as in the flat hunting

example above, a consumer underestimates the negative correlation between the cons (price)

and the pros (quality) of the offers in the market.6 The basic observation is that a more strongly

cursed consumer holds a more dispersed belief about the utility distribution in the market in the

mean preserving spread sense. Thus, higher cursedness translates into higher benefits of search

and thus into a higher reservation value.

We show that the effects of higher cursedness on consumer welfare are ambiguous and de-

pend on the absolute degree of cursedness. Starting from low levels, increasing cursedness may

stimulate search by naive consumers and break the Diamond outcome, because firms start to com-

pete to attract the searching biased consumers. As cursedness increases further, however, biased

consumers become more demanding in their willingness to accept an offer, and firms’ trade-off

between maximizing market share and surplus share tilts towards the latter. As a result, firms

increasingly focus on extracting surplus from the less demanding standard consumers, and the

average utility they offer to consumers goes down after a certain level of cursedness is reached.

Hence, if one interprets cursedness as a policy variable that a regulator can influence by educa-

tion or transparency campaigns, these findings suggest that an intermediate level of cursedness

maximizes consumer welfare.

Related literature

Our article is related to a recent literature that studies the role of consumer beliefs in search

settings. Antler and Bachi (2020) study a marriage market where agents entertain wrong beliefs

about other agent’s propensity to consider them to be an acceptable match. Like in our model with

non-pessimistic beliefs, some agents then overestimate the benefits of search, engage in excessive

search and may end up being eternal singles, in particular, when search frictions are small. In

their marriage market, utility is non-transferable and no market side sets prices, a key focus of

our article. Mauring (2020) studies a labour market where workers wrongly believe that past

wages predict current wages. These wrong beliefs determine the worker’s order of search, but

not the trade-off between accepting an offer or continuing search, as in this article. Gamp and

Krähmer (2019) study a search market where, as a consequence of having mistaken beliefs, some

6See, e.g., Enke and Zimmermann (2019).
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consumers fail to infer a firm’s true quality from its pricing behaviour. By contrast, in this article,

naive consumers observe the true utility of any product they encounter. Somewhat orthogonal to

our approach, Janssen and Shelegia (2020) highlight the role of beliefs in a model with rational

consumers by showing that consumer beliefs after a price deviation off the equilibrium path can

have a key impact on market outcomes.

Our article is also related to a literature in behavioural industrial organization (for a review,

see Heidhues and Kőszegi (2018)).7 A key question is how the presence of naive consumers affects

consumer welfare. Our point that with cursed consumer beliefs an intermediate level of naivete

is optimal for consumer welfare shares similarities with the findings in Ispano and Schwardmann

(2020) but contrasts with Armstrong and Chen (2009) where an intermediate fraction of naive

consumers minimizes consumer welfare. In both articles, naive consumers effectively underesti-

mate quality differences between firms. In Ispano and Schwardmann (2020) this may improve

consumer welfare, as it reduces the mark-up of high quality firms that otherwise would not have

to compete with low quality ones. In Armstrong et al. (2009), it may relax competition and

harm all consumers, as it allows firms to differentiate in high quality firms targeting sophisticated

consumers and (inefficiently) low quality ones targeting naive consumers with low prices. In con-

trast, in our setting naive consumers observe the utility of the products they encounter, and price

competition is stimulated when they overestimate the differences between firms, as this creates

incentives to search.

Finally, our article is broadly related to a literature which, like us, is interested in market

outcomes when consumers do not know the true distribution of market offers but, unlike us,

assumes that there is aggregate uncertainty.8

2 Model

The market consists of N firms indexed by n= 1, . . . , N which sell an homogeneous product that

they can produce at zero marginal cost. Each product generates the surplus ω when traded with

a consumer. There is a unit mass of consumers, each with unit demand. At the outset, each firm

chooses a utility level un to offer to consumers. When trade takes place, the consumer obtains un,

7In a search context, Heidhues et al. (2020) argue that regulating complexly priced products may induce con-

sumers to search more firms, enhancing competition and improve consumer welfare, as they spend less time studying

offers carefully. Karle et al. (2020) show that loss aversion induces naive consumers to reduce the number of firms

they visit, benefiting in particular low quality ones.
8See, e.g., Benabou and Gertner (1993), Dana (1994), or, more recently, Janssen et al. (2017), Garcia and Shelegia

(2018) and Lauermann et al. (2018).
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and the firm’s profit is πn = ω− un.9 A mixed strategy for firm n is thus a cdf κn that describes

the distribution of consumer utility. Let C DF be the set of all cdfs over R.

Ex ante, consumers do not know the utility offered by firms but can engage in costly, sequential

search, undirected and with recall, to learn un when visiting firm n. In addition, there is an outside

option which supplies zero utility to the consumer. Search entails a marginal search cost s > 0,

except for the first search which is free.10

The novelty of our article is that we allow a fraction γ ∈ (0,1) of biased consumers to have

beliefs that are inconsistent with what the market actually supplies. Given a firm’s true utility

distribution κ, a biased consumer believes the utility distribution to be βB(κ), where the belief

function

βB : C DF → C DF (1)

captures the extent to which beliefs are biased. We assume that the remaining fraction 1− γ of

consumers is “standard” and has correct beliefs which are characterized by the belief function β0

with β0(κ) = κ.

Example: cursed beliefs

We now provide a microfoundation for a specific belief function and illustrate its role in shaping

market outcomes. Consider the special case of the above model where one half of the firms

produces a product of high quality qH at marginal cost cH , and the other half produces a good

of low quality qL < qH at marginal cost cL < cH , and where all firms generate the same surplus

ω = qH − cH = qL − cL. Let υ = qH − qL. At the outset, each firm with quality qθ once and for all

sets a price pθ , θ ∈ {H, L}. A consumer’s utility from consuming quality q at price p is u= q− p,

and when a consumer visits a firm, she uncovers both quality and price.

In the benchmark when all consumers are standard, the famous Diamond paradox occurs

(Diamond (1971)): the only equilibrium outcome is that each firm charges the consumer’s will-

ingness to pay with probability 1: pθ = qθ . Anticipating (correctly) that all firms supply a utility

of zero, a consumer does then not search but buys at the first firm she visits.

We argue now that the Diamond Paradox may break down if we introduce a fraction of biased

consumers who hold cursed beliefs in the sense of Eyster and Rabin (2005). This means that a bi-

ased consumer, while correctly understanding the marginal distribution of price and quality in the

9Equivalently, each firm charges a price pn, and when a consumer buys, she gets ω− pn = un, and the firm gets

πn = pn =ω− un.
10This common assumption ensures that there are equilibria with trade. For a discussion, see Stiglitz (1979).
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market, fails to make the correct connection between price and quality, effectively underestimat-

ing the correlation between them.11 Specifically, a biased consumer believes that with probability

χ ∈ [0,1/4] a product is of high quality and offered at the price of a low quality product and

vice versa.12 The parameter χ captures the extent to which biased consumers are cursed. Table

2 illustrates the true and the cursed joint distribution of price and quality under the Diamond

outcome.

qH qL

pH = qH 1/2 0

pL = qL 0 1/2

qH qL

pH = qH 1/2−χ χ

pL = qL χ 1/2−χ

Figure 1: True (left) and cursed (right) joint price quality distribution

If search costs are not too large, their cursed beliefs induce biased consumers to visit more

than one firm, given the prices under the Diamond outcome. Indeed, by assumption, the first firm

supplies the consumer with zero utility. On the other hand, the consumer could adopt the (not

necessarily optimal) search strategy to visit one more firm and buy from that firm among the two

which offers more utility. A biased consumer wrongly believes there is a chance of χ that the next

firm she will visit offers a golden egg, that is, high quality at the low price, and thus supplies the

fictitious utility qH − pL = υ. Therefore, she believes that visiting one additional firm yields the

additional utility

χυ− s. (2)

Hence, if s is sufficiently small, she believes that visiting more than one firm is better than buying

at the first firm, and so the Diamond outcome breaks down if s is sufficiently small.

It is instructive to see what the belief function βB is that represents cursed beliefs. Consider

again the utility distribution induced by the Diamond outcome in Table 2. A consumer’s utility is

u = 0 if an outcome on the diagonal obtains, is u = υ if the bottom-left outcome obtains, and is

u = −υ if the top-right outcome obtains. Thus, while the true utility distribution places mass 1

on the utility level u = 0, a biased consumer’s belief is a three-point distribution that takes away

the mass 2χ from the true utility u= 0 and spreads it symmetrically on the fictitious utility levels

0−υ and 0+υ.
11For example, in housing markets, a consumer might have a good idea about the distribution of apartment sizes

and prices but might be too optimistic about the apartment size that is available at a given price. For evidence on

correlation neglect in general, see Enke and Zimmermann (2019).
12More precisely, in the formulation of Eyster and Rabin (2005), a biased consumer believes that, with probability

1− ξ, a firm of quality qθ choose its true price pθ = qθ , and with probability ξ, it randomizes between pH and pL

according to the (true) marginal price distribution, resulting in χ = 1/4 · ξ.

7



This property carries over to the case when firms adopt an arbitrary (mixed) pricing strategy.

Then any firm offers some true utility distribution κ, and it is not hard to see that now the cursed

belief takes away the mass 2χ from any utility u in the support of κ and spreads it symmetrically

on u−υ and u+υ. Formally,13

βB(κ)(u)≡ χ ·κ(u+υ) + (1− 2χ) ·κ(u) +χ ·κ(u−υ), with χ ∈ [0,1/4]. (3)

In the remainder of the article, we extend this example to general belief specifications and

characterize precisely when the Diamond outcome does or does not break down and derive the

equilibrium outcomes that arise instead.14

3 Equilibrium definition and equilibrium structure

We restrict attention to symmetric equilibria in which all firms choose the same utility distribu-

tion. In this case, both standard and biased consumers believe that they sample utility offers

iid. Therefore, it follows from Kohn and Shavell (1974) that a consumer’s optimal search rule is

myopic and fully characterized by a reservation utility. Thus, while the set of consumer search

strategies is, in principle, very large, when restricting attention to symmetric equilibria, we can

equate a search strategy with a reservation utility.

More precisely, the reservation utility is the minimal utility that a consumer’s best option

must supply so that she stops her search and takes this option (possibly her outside option of 0).

Otherwise she continues her search. If the consumer has visited all firms, she returns to her best

option. Let U(β) denote a consumer’s reservation utility given her belief β ∈ C DF . From Kohn

and Shavell (1974), U(β) is given as the unique solution to the equation

U(β) = R(U(β),β), (4)

13The belief in (3) is a mean-preserving spread of κ. While this is a consequence of consumers’ cursed beliefs in

our example, a more direct alternative interpretation is that biased consumers overestimate the variance of offers

in the market which is consistent with some empirical evidence (see Jindal and Aribarg (2018)). Specification (3)

also applies in settings where a product’s surplus is the aggregate of two attributes, which are inherently negatively

correlated, for example, a car with the attributes size and fuel consumption. A biased consumer displaying correlation

neglect, might wrongly believe that with some probability (χ), she may encounter a product that excels in both (resp.

neither) attributes, entailing a utility gain of υ (resp. −υ).
14To be sure, biased beliefs are not the only reason why the Diamond Paradox may fail. For example, this also

happens when products are differentiated (Wolinsky (1986)), consumers search simultaneously (Salop and Stiglitz

(1977), Burdett and Judd (1983)) or some consumers, by assumption, visit several firms (Varian (1980), Stahl

(1989)).
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where

R(U ,β)≡ −s+

∫

max{u, U} dβ(u). (5)

Note that the reservation value U(β) = U(β , s) also depends on s. To save notation, we omit the

dependency on s unless necessary.

We can now define a symmetric equilibrium with biased consumer beliefs.15,16

Definition 1 A symmetric equilibrium (with biased consumer beliefs) is a triple (κ∗, U∗0 , U∗B) such

that

(i) κ∗ maximizes a firm’s profit, given that all other firms adopt κ∗ and consumers search according

to U∗0 and U∗B;

(ii) U∗0 and U∗B are optimal reservation values, given standard and biased consumer beliefs induced

by the true utility distribution κ∗:

U∗0 = U(β0(κ
∗)) and U∗B = U(βB(κ

∗)). (6)

Equilibrium structure

We begin by providing necessary conditions that pin down the types of symmetric equilibria that

can arise. Below, we then characterize which equilibrium arises as a function of βB. To state the

lemmata, we denote the bounds of the support of a utility distribution κ by

u=min[Supp(κ)], u=max[Supp(κ)]. (7)

We indicate the bounds by a star if they belong to an equilibrium utility distribution, and refer

to the utility level u and u as the worst respectively best offer in the market. Our first lemma

provides necessary conditions for worst and best offers in equilibrium. We say, an equilibrium

displays utility dispersion if u∗ < u∗.

Lemma 1 In any symmetric equilibrium with utility dispersion, we have:

(i) u∗ =max{0,min{U∗0 , U∗B}},
(ii) u∗ ≤max{0,max{U∗0 , U∗B}}.

15Our equilibrium definition entails that a consumer’s belief is passive and does not change when she observes an

offer which is an impossible event given her beliefs about the true distribution of offers. See Janssen and Shelegia

(2020) for a recent article that departs from the common assumption of passive beliefs.
16To derive and characterize equilibrium, we assume that a consumer accepts an offer if she is indifferent between

accepting and continuing her search, and that she never chooses her outside option when she is indifferent.
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To understand the lemma, note that, in any equilibrium, the minimal utility that induces a visiting

consumer of type τ ∈ {0, B} to stop and buy is

max{0, U∗
τ
}. (8)

The reason is that only when a firm offers u ≥ U∗
τ
, the consumer stops. Moreover, all other firms

that she might have visited before must supply less utility than U∗
τ
, as she otherwise would have

stopped before. Therefore, if the firm offers, in addition, more utility than her outside option,

then its product is the consumer’s best offer and she buys it upon stopping.

With this in mind, part (i) says that the worst equilibrium offer u∗ is the minimal utility that

induces at least one consumer type to stop and buy. Intuitively, offering more utility is not optimal

because a firm that makes the worst offer is not competing for returning consumers. On the other

hand, offering less utility generates no demand, because no consumer would stop and buy or

return. Part (i) implies that in any equilibrium with utility dispersion, at least one consumer type

stops and buys at the first firm she visits.

Part (ii) shows that the best equilibrium offer u∗ does not exceed the minimal utility that

induces both consumer types to stop and buy: u∗ ≤ max{0,max{U∗0 , U∗B}}. The reason is that

offering more utility is never profit maximizing, because the firm could offer marginally less utility

so as to increase its share of the surplus without losing demand, as any visiting consumer stops

and buys if it offers more utility than max{0,max{U∗0 , U∗B}} from (8).

Building on Lemma 1, the next lemma shows that there are only three types of candidates for

symmetric equilibria.

Lemma 2 In a symmetric equilibrium only the following three constellations can arise.

(i) Diamond-type equilibrium: All firms offer the same single utility level, and biased consumers buy

from the first firm they visit, that is, there is v∗ ≥ 0 so that

u∗ = u∗ = v∗, max{U∗0 , U∗B} ≤ v∗. (9)

(ii) Stahl-type equilibrium: The equilibrium features “smooth” utility dispersion, and biased con-

sumers visit all firms, and then return to the best offer, that is,

Supp(κ∗) = [u∗, u∗], U∗0 ≤ u∗ < u∗ ≤ U∗B. (10)

(iii) Penny sales equilibrium: The equilibrium features utility dispersion with a gap at the top, and

biased consumers stop searching only when offered the top offer u∗, and otherwise, visit all firms and

then return to the best offer:

Supp(κ∗) = [u∗, û∗]∪ {u∗}, U∗0 ≤ u∗ < û∗ < u∗ = U∗B. (11)

In all cases, standard consumers buy from the first firm they visit.
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Before we explain lemma, notice that in any equilibrium, U∗0 < u∗. Intuitively, the best that a

searching standard consumer can hope for is that the next firm offers u∗ (with probability one) so

that she is always willing to accept any current offer which supplies more than u∗− s , as visiting

another firm entails search costs s > 0. Formally, in any equilibrium, U∗0 < u∗, because

U(β0(κ))≤ u− s for all κ and s. (12)

As a consequence, in any equilibrium, a standard consumer stops and buys if a firm offers u∗.

To see the intuition behind Lemma 2, consider first the case that u∗ > U∗B, that is, the best

equilibrium offer also supplies enough utility so to induce a biased consumer to stop and buy. In

this case, an equilibrium arises as described in (i) with v∗ = 0. The reason why all firms offer zero

utility when u∗ > U∗B and u∗ > U∗0 is that otherwise, when u∗ > 0, a firm which offers u∗ could

do better by offering marginally less utility. This would increase its share of the surplus and not

affect its demand, because as u∗ > U∗B and u∗ > U∗0 , all consumers would still stop and buy.

In the case that u∗ < U∗B, we have an equilibrium as described in (ii). Recall that u∗ < U∗B means

that biased consumers never encounter an offer that induces them to stop searching. Hence, they

visit all firms and return to the one which offers the highest utility, and it follows from standard

arguments that κ∗ has no mass points, and its support has no gaps. Because there is utility disper-

sion, part (i) of Lemma 1 together with u∗ < U∗B entails that U∗0 ≤ u∗ which means that standard

consumers buy from the first firm they visit. Effectively, consumers behave thus like the consumers

in Stahl (1989): biased consumers behave like “shoppers” with zero search costs in Stahl, and

standard consumers behave like consumers with positive search costs in Stahl. Intuitively, both

models feature therefore the same equilibrium structure with smooth utility dispersion. We refer

to this type of equilibrium hence as a Stahl-type equilibrium.

Finally, consider the case that u∗ = U∗B. In this case, an equilibrium with a mass point at u∗ as

described in (iii) may occur.17 To highlight that in this equilibrium, the best offer u∗ provides dis-

continuously more utility than any other equilibrium offer, we refer to u∗ as a penny sales offer and

to this equilibrium type as a penny sales equilibrium. To understand why a mass point can occur in

equilibrium, note that when a firm makes a penny sales offer u∗, a visiting biased consumer stops

her search and accepts the firm’s offer. Hence, on the equilibrium path, a biased consumer never

visits two firms that both make penny sales offers. Hence, unlike in a Stahl-type equilibrium with

shoppers, these firms do not compete with each other for returning consumers in the sense that

that offering marginally more utility does not attract discontinuously more consumers, despite

the mass point. On the other hand, it is not profitable for a firm to offer marginally less utility,

17Also a Stahl-type equilibrium with u∗ = U∗B may occur, in which case there is no mass point at u∗. There may also

be a Diamond-type equilibrium with u∗ = U∗B in which firms offer u∗ ≥ 0 with probability one.
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as otherwise a biased consumer would not stop anymore, but rather continue her search and not

return if she encounters a firm with a penny sales offer (which occurs with positive probability).

To understand why the equilibrium utility distribution in (iii) also features an interval [u∗, û∗],

corresponding to smooth utility dispersion, note that with positive probability no firm in the mar-

ket makes a penny sales offer. In this case, a biased consumer behaves like a shopper, visits all

firms and returns to the one which offers the highest utility. Intuitively, apart from penny sales,

the utility distribution can hence have no gaps and mass points, and features a region with smooth

utility dispersion as described in (iii).

Lemma 2 makes clear that a completely novel equilibrium type may emerge when some con-

sumers are biased. More specifically, a penny sales equilibrium, that is, an equilibrium with a mass

point at u∗, is a unique feature of our environment with biased beliefs in the following sense: In

general, utility dispersion with a mass point at the top of the utility distribution may only occur

if there is a consumer of type τ who satisfies U∗
τ
= u∗.18 Now, a consumer’s reservation utility is

bounded from above by u∗
τ
− s where u∗

τ
denotes the highest utility that she expects firms to offer,

as we explain right after Lemma 2. Therefore, U∗
τ
= u∗ can only occur if some consumers hold

biased beliefs which attach positive probability to the event that there are golden eggs, that is,

offers which are better than the truly best offer u∗.

Equilibrium utility distribution

Next, we use Lemma 1 and 2 to identify the equilibrium utility distributions for each equilibrium

type. To describe the distributions, we introduce a family of cdfs κζ indexed by a parameter

ζ ∈ [0, 1] (which will correspond to the probability of a mass point at the upper support bound).

Define the bounds of the support of κζ as

u
ζ
=max

§

0,ω−
s
µ(ζ)

ª

, ûζ = (1−φ(ζ))ω+φ(ζ)uζ, uζ = (1−ρ(ζ))ω+ρ(ζ)uζ, (13)

where ρ,φ,µ : [0,1]→ [0, 1] are strictly increasing functions for which we provide closed form

expressions in Appendix B. Let ρ0 = ρ(0), and define κζ as the cdf that is continuous on [u
ζ
, ûζ]

with

κζ(u)≡
�

ρ0

1−ρ0
·
�ω− u

ζ

ω− u
− 1

��

1
N−1

and has a mass point of mass ζ ∈ [0,1] at uζ. (14)

Figure 2 illustrates κζ for the values ζ ∈ {0,0.6, 1}. κ0 is identical to the utility distribution in

Stahl (1989). Moreover, κ1 is the degenerate distribution with mass 1 on u1.

18To see this, if the reservation utility of all consumers is below u∗, then a firm which offers u∗ could offer marginally

less utility so as to increase its mark-up without losing demand. On the other hand, if U∗τ > u∗ for some consumers,

then these consumers visit all firms and return to the best offer, meaning that there cannot be a mass point at the top

as otherwise, a firm could offer marginally less utility and discontinuously increase its market share.

12



u0,6 û0,6 u0,6
u

0,4

1

Figure 2: The utility distributions κ0 (dotted), κ0,6 (dashed), and κ1 (solid). The bounds of the

support of κ0,6 are indicated by u0,6, û0,6 and u0,6.

The next lemma establishes for each equilibrium type a necessary and sufficient condition for

βB for the equilibrium to exist. Here, δv denotes the (unit step) cdf which places all mass on the

utility level v.

Lemma 3 (i) There is a Diamond-type equilibrium with utility level v∗ if and only if

(a) v∗ = 0 and 0≥ U(βB(δ0)) and κ∗ = δ0; or

(b) v∗ ∈ (0, u1] and v∗ = U(βB(δv∗)) and κ∗ = δv∗ .

(ii) There is a Stahl-type equilibrium if and only if u0 ≤ U(βB(κ0)) and κ∗ = κ0.

(iii) There is a penny sales equilibrium if and only if there is ζ∗ ∈ (0, 1) so that uζ∗ = U(βB(κζ∗))

and κ∗ = κζ∗ .

As the first step in establishing Lemma 3, we derive, for each equilibrium type, the candidate

utility distribution κ∗, up to the lower support bound u∗, from firms’ profit maximization condi-

tions as they are pinned down by the support restrictions and the consumers’ search behaviour

as laid out in Lemma 2. We then calculate the standard consumer’s reservation utility U∗0 , given

κ∗ and u∗—remarkably, in closed form—, and then set u∗ so that it satisfies the relationships

between U∗0 and u∗ in the equilibrium characterization in Lemma 1 and 2. This uniquely pins

down κ∗. Thus, we have an equilibrium (of a certain type) if and only if, in addition, the rela-

tionship between the biased consumer’s reservation utility U∗B, given κ∗, and the upper support

bound u∗ in the equilibrium characterization (for this type) in Lemma 2 is met. The conditions

on U(βB(κ∗)) = U∗B in the statement of Lemma 3 correspond to this relationship.

13



The significance of Lemma 3 is that it explicitly constructs the equilibrium utility distribution

κ∗ and reduces the question whether a particular equilibrium type exists to a comparison between

the biased consumer’s reservation utility U∗B = U(βB(κ∗)) with the upper support bound u∗ that is

induced by κ∗.

4 Biased beliefs and equilibrium outcomes

In this section, we characterize the properties of βB that determine which of the possible equilib-

rium outcomes obtains. Throughout, we assume that βB satisfies the following regularity proper-

ties:

Definition 2 Let β : C DF → C DF.

(A) β is continuous if for all κ and s and all sequences κn and sn, n= 1, 2, . . .:

U(κn, sn)→ U(κ, s) ⇒ U(β(κn), sn)→ U(β(κ), s). (15)

(B) β is monotone if for all κ,κ′:

κ first order stochastically dominates (fosd) κ′ ⇒ β(κ) fosd β(κ′), (16)

with U(β(κ))> U(β(κ′)) whenever U(κ)> U(κ′).

(C) For κ and ∆ ∈ R, let κ∆ be the cdf that results from shifting κ by ∆: κ∆(u) = κ(u−∆). Then

β is additive if for all κ,∆:

U(β(κ∆)) = U(β(κ)) +∆. (17)

Assumption 1 βB satisfies (A) to (C).

Conditions (A) to (C) are natural regularity conditions that are satisfied for β0 and which we

assume to carry over to βB.19 A sufficient condition for additivity is that βB(κ∆) = (βB(κ))∆ (see

footnote 19). That is, how a biased consumer forms his belief does not depend on the cardinal

level of utility.

Notice that a cursed belief as given in (3) satisfies Assumption 1. This holds also for any belief

function that shifts the true distribution of utility by some∆ to either higher or lower utility levels.

19(A) and (B) hold trivially for β0. To show (C), note that for U we have R(U ,κ∆) = −s+
∫

max{u+∆, U} dκ(u).

Hence,

R(U(κ) +∆,κ∆) = −s+

∫

max{u+∆, U(κ) +∆} dκ(u) = U(κ) +∆, (18)

where the last step follows from the definition of the reservation value U(κ). Therefore, U(κ∆) = U(κ) +∆.

14



An example ruled out by Assumption 1 is a constant belief function that assigns the same belief

to any κ, because additivity is then violated.

Our next result establishes that the Diamond paradox is the unique equilibrium outcome if

biased consumers are pessimistic in the sense that they (weakly) underestimate the value of the

best offer in the market. Formally:

Definition 3 β : C DF → C DF is pessimistic if for all κ:

sup(Supp(β(κ)))≤ sup(Supp(κ)). (19)

Proposition 1 If βB is pessimistic, then the Diamond-type equilibrium (with utility level 0) is the

unique symmetric equilibrium.

The intuition behind this result is reminiscent of Diamond (1971). Because biased consumers

are pessimistic, in any equilibrium, both biased and standard consumers believe that the best offer

in the market supplies weakly less utility than u∗. Hence, their reservation utilities are bounded

from above by u∗− s, as we explain after Lemma 2. From this and Lemma 1, we must have u∗ = 0

in any equilibrium, intuitively, as otherwise, a firm could offer slightly less utility than u∗ without

losing demand, because any visiting consumer is willing to stop and buy if it offers more than

u∗ − s.

Notice that the rational consumer belief β0 is pessimistic so that for βB = β0, Proposition 1 is

consistent with the rational consumer benchmark.

Our next result characterizes equilibrium outcomes if biased consumers’ beliefs are not pes-

simistic (and a mild parameter restriction holds). We show that in this case, the three equilibrium

types segment the search cost space, and almost everywhere the equilibrium is unique.

Proposition 2 Suppose ρ0 < µ0.20 If βB is non-pessimistic, then there are unique 0 < s0 < s1 so

that:

(i) There is a Diamond type equilibrium with utility level 0 if and only if s ≥ s1. Moreover, for all

v ∈ (0, u1], there is a Diamond type equilibrium with utility level v if and only if s = s1.

(ii) There is a Stahl-type equilibrium if and only if s ≤ s0.

(iii) There is a penny sales equilibrium, which is unique, if and only if s ∈ (s0, s1).

Together, Propositions 1 and 2 provide an essentially complete picture of the possible market

outcomes with biased beliefs. In particular, the propositions identify the class of pessimistic belief

20In Lemma 4 in the appendix, we provide a closed form expression for µ0 and show that ρ0 < µ0 for sufficiently

large N .
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functions as the class of beliefs for which the Diamond outcome is the unique equilibrium for all

levels of search costs. Moreover, a penny sales equilibrium obtains if and only if some consumers

have non-pessimistic beliefs and search costs are in an intermediate range s ∈ (s0, s1). Finally, for

non-pessimistic beliefs and small search costs s ≤ s0, the equilibrium outcome is indistinguishable

from the one in Stahl (1989), but the normative implications are rather different. While a shopper

in Stahl (1989) loves shopping and has zero search costs, a biased consumer in our setting expends

excessive search costs for visiting all firms due to her unrealistic expectations.

To understand the driving forces behind the proposition, observe that by Lemma 3, whether

a particular equilibrium type exists depends only on the difference between the best offer in the

market and the biased consumer’s reservation utility. In fact, under Assumption 1, Lemma 3 can

be re-phrased as follows:21

(i’) There is a Diamond-type equilibrium if and only if u1 − U(βB(κ1))≥ 0,

(i”) There is a Stahl-type equilibrium if and only if u0 − U(βB(κ0))≤ 0, and

(i”’) There is a penny sales equilibrium if and only if there is ζ∗ ∈ (0, 1) with uζ∗−U(βB(κζ∗)) = 0.

Figure 3 illustrates the equilibrium outcome for the case when biased consumers hold cursed be-

liefs as in (3).22 Observe that the equilibrium values of the best offer u∗ and the biased consumer’s

reservation value U∗B = U(βB(κ∗)) satisfy in each regime the respective equilibrium condition from

above. In the Diamond- and Stahl-regime the inequalities (i’) respectively (i”) hold strict. Indeed,

to show that the three equilibrium types segment the search cost space, the proof of Proposition

2 establishes and utilizes single-properties for uζ − U(βB(κζ)).23 We next give an intuition.

For sufficiently large search costs, it becomes too expensive even for unrealistically optimistic

biased consumers to engage in any search beyond the first firm. This grants firms full monopoly

power, and the Diamond outcome obtains. The critical value s1 is the level of search cost where

a biased consumer is just indifferent between buying from the first firm and engaging in search,

given the Diamond outcome.

Reversely, when search costs are very small, utility comparisons are very cheap for consumers.

Indeed, in the limit as search costs vanish, only the Bertrand outcome, where firms offer the

entire surplus to consumers, can obtain in equilibrium. Formally, it can be seen from (13) that

21As we show in (51), additivity of βB implies that v − U(βB(δv)) is independent of v. Part (i’) follows then from

the fact that for any v, we have that v ≥ U(βB(δv)) is equivalent to u1 ≥ U(βB(κ1)), because κ1 = δu1
.

22 From (3), for any κ, the support of a cursed belief contains utility levels that are higher than those of the

underlying utility distribution. Hence, (3) is non-pessimistic so that Proposition 2 applies.
23Specifically, we show:

(i) u0 − U(βB(κ0)) is strictly increasing in s and is zero at s = s0.

(ii) u1 − U(βB(κ1)) is strictly increasing in s and is zero at s = s1.

(iii) uζ − U(βB(κζ)) is strictly decreasing in ζ for all s.
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Figure 3: The equilibrium reservation values U∗0 and U∗B (dashed) as well as the support of the

equilibrium utility distribution κ∗ (gray area) as functions of s. In the penny sales regime, κ∗ features

a mass point of size ζ∗ at u∗ and its support is not connected.

κζ → δω for all ζ as s → 0. Now, as we show in the proof of Proposition 2, non-pessimism of

βB and Assumption 2 guarantee that sup(Supp(βB(δω))) > sup(Supp(δω)). This means that in

any equilibrium, as search costs vanish, a biased consumer believes that firms offer with positive

probability golden eggs that actually supply more utility than the entire surplus. As a consequence,

when search is essentially for free, a biased consumer is not willing to settle for less than a golden

egg, and because in reality there is none, she ends up searching all firms in the market. As a

result, biased consumers behave in any equilibrium like shoppers, and thus (only) a Stahl-type

equilibrium obtains for sufficiently small search costs.

Indeed, as long as search costs stay in the range s ∈ (0, s0), biased consumers behave like

shoppers and a Stahl-type equilibrium obtains, because it remains too costly for a firm to make

an offer which induces a biased consumer to stop and buy, as this would require to offer more or

close to the entire surplus. This changes at the critical level s0. At this point, a biased consumer

is indifferent between continuing search and accepting the best offer u0 that can obtain under

the utility distribution κ0 in the Stahl-type equilibrium. Beyond that point, search becomes too

costly to support the Stahl-type equilibrium. For s ∈ (s0, s1), firms make penny sales offers u∗ with

probability ζ∗ ∈ (0,1) (notice the gap in the support in Figure 3) so as to keep a biased consumer

indifferent between accepting an offer u∗ and continuing their search. That is, ζ∗ adjusts so that

u∗
ζ
− U(βB(κ∗ζ)) = 0. In this regime, as search costs increase, all else equal, biased consumers

17



become less selective and firms have to offer less utility so as to induce them to stop and buy. At

s = s1, a penny sale is offered with probability ζ∗ = 1, and all firms make the same single offer

with probability 1, just as under the Diamond outcome. At this point, we have u1−U(βB(κ1)) = 0,

and the transition to the Diamond regime occurs.

5 Welfare Analysis

In this section, we return to specification (3) with cursed beliefs and study how changes in the

level of cursedness χ affect market outcomes and consumer welfare. As argued in Footnote 22,

specification (3) is non-pessimistic so that from Proposition 2, the three equilibrium types segment

the search cost space, and almost everywhere the equilibrium is unique. The following corollary to

Proposition 2 establishes a similar result for the cursedness parameter χ. Assume in the following

that υ >ω in (3).24

Corollary 1 Suppose ρ0 < µ0. There are unique 0< χ0 < χ1 so that:

(i) There is a Diamond type equilibrium with utility level 0 if and only if χ ≤ χ0. Moreover, for all

v ∈ (0, u1], there is a Diamond type equilibrium with utility level v if and only if χ = χ0.

(ii) There is a Stahl-type equilibrium if and only if χ ≥ χ1.

(iii) There is a penny sales equilibrium, which is unique, if and only if χ ∈ (χ0,χ1).

In what follows, we assume χ1 <
1
4 . This means that any equilibrium type exists for some χ ∈

(0, 1
4). It is easy to see from (82) that χ1 <

1
4 if, for example, s is sufficiently small.

The left panel of Figure 4 illustrates Corollary 1 and shows the different regimes and the sup-

port of the equilibrium utility distribution as a function of χ. As χ goes to zero, the difference

in beliefs between biased and standard consumers disappears, because βB → β0 as χ → 0. Con-

sistent with this, for small χ the equilibrium outcome coincides with the Diamond outcome, and

U∗B → U∗0 as χ → 0. To the contrary, when χ is large, biased consumers are strongly cursed and

visit all firms due to their unrealistic expectations. Hence, the Stahl-type equilibrium outcome

obtains. For intermediate levels of χ, there is a penny sales equilibrium.

Our main proposition in this section characterizes the welfare properties of the market as a

function of the level of cursedness. Recall that the equilibrium is unique unless χ = χ0. In what

follows, we make the equilibrium selection that at χ = χ0, the consumer optimal equilibrium

is played, that is, firms offer the utility level v∗ = u1 with probability 1. This simplifies, but is

insubstantial, for our discussion.
24This technical assumption is for tractability and allows us to obtain a closed form solution for a biased consumer’s

reservation utility, compare (85).
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Figure 4: (Left) The equilibrium reservation values U∗0 and U∗B (dashed) as well as the support of the

equilibrium utility distribution κ∗ (gray area) as functions of χ. (Right) The equilibrium welfare of

standard (gray) and biased (dashed) consumers as functions of χ.

Proposition 3 (i) Standard consumer welfare is single-peaked in χ and maximal at χ0.

(ii) An intermediate value of cursedness χ ∈ [χ0,χ1] maximizes biased consumer welfare.25 If

ω≥
s
µ0

, (20)

then biased consumer welfare is single-peaked in χ and maximal at χ0.

(iii) A firm’s profit is u-shaped in χ and maximal in the Diamond regime for any χ < χ0.

(iv) Overall welfare decreases in χ and is maximal in the Diamond regime for any χ < χ0.

The main take-away from the proposition is that the welfare of both consumer types is max-

imized for intermediate levels of cursedness in the penny sales regime, as illustrated in the right

panel of Figure 4, while firm profits and total welfare are maximized for low levels of cursedness

in the Diamond regime.

To see what is behind consumer welfare, note that the more cursed biased consumers, the

more optimistic they are about the benefits of search, as cursedness induces them to overestimate

the variance of offers in the market.26 Thus, an increase in cursedness increases their propensity

to search. As χ moves from the Diamond regime into the penny sales regime at χ = χ0, biased

consumers begin to visit more than one firm. This creates competition and benefits both consumer

types.

Interestingly however, for χ > χ0, an increase in cursedness does not necessarily result in

fiercer competition and better offers by firms. Even though more heavily cursed consumers visit

25Naive consumer welfare is their true, actually realized welfare.
26Formally, U(βB(κ)) increases in χ for any κ. Intuitively, from (3), for any κ, a biased consumer’s belief given χ

is a mean-preserving spread of her belief given χ ′ if χ > χ ′ which entails that her reservation utility increases in χ.
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more firms in expectation, they also become more demanding in terms of the utility that firms

need to offer to induce them to stop and buy. This tilts firms’ trade-off between maximizing mar-

ket share and surplus share towards the latter. In other words, firms are less willing to compete for

biased consumers and rather make low utility offers to extract more surplus from the less selec-

tive standard consumers, while speculating that some biased consumers may return after having

visited all firms. As a result, the expected utility offered in the market decreases as cursedness in-

creases when χ > χ0, which implies that the welfare of standard consumers, who, in equilibrium,

buy from the first firm they visit, decreases in χ for χ > χ0.

The welfare of biased consumers is the sum of the expected consumption utility they derive

from accepting an offer and the expected search expenditures. As to the former, as the left panel

of Figure 4 shows, u∗ increases with χ, since more heavily cursed consumers demand better offers

to stop. Thus, conditional on receiving a penny sale offer, a biased consumer is better off as χ

increases. However, as we show in the proof, ζ∗ decreases with χ, since, as explained above,

firms increasingly target standard consumers. Thus, while penny sale offers become better as χ

goes up, biased consumers receive such an offer less frequently which increases the likelihood

that they end up with a relatively low offer after a futile search effort. As it turns out, under

condition (20), these effects cancel each other and the overall effect of an increase in χ on their

consumption utility is zero. However, biased consumers visit more firms in expectation so that

their expected search expenditures go up, as they are less likely to encounter a penny sale offer

that induces them to stop and buy. Thus, under condition (20), an increase in cursedness beyond

χ0 harms biased consumer welfare in the penny sales regime. Finally, in the Stahl regime, for

χ > χ1, biased consumers visit all firms irrespective of χ so that a change in χ does not affect the

market outcome. Therefore, biased consumer welfare is independent of χ for χ > χ1.

As to profits and total welfare, notice that in equilibrium, trade occurs with probability one,

and consumers search only to find a good offer (rather than a good match). Hence, search is

wasteful from the point of view of total welfare which is consequently maximal in the Diamond

regime, where no search takes place. Likewise, profits are maximal, too, since firms extract the

entire surplus in the Diamond regime.

Finally, in any case, rational (weakly) exceeds biased consumer welfare, as both consumer

types seek to maximize the same objective, however, biased consumers do so under incorrect

beliefs. Nevertheless, all consumers may benefit from the presence of biased consumers in com-

parison to the rational consumer benchmark, including biased ones, because biased beliefs work

as a commitment device to engage in search which can be seen as a public good that benefits all

consumers.
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6 Conclusion

This articles illustrates how biased consumer beliefs shape search market outcomes. More specif-

ically, it shows that when the consumers’ beliefs are non-pessimistic, then novel equilibria with

penny sales offers may arise in which firms respond to the consumers’ inflated expectations by

actually making excellent offers. As a result, biased consumer beliefs may actually improve the

welfare of all consumers.

An implication of our analysis is that the effect of consumer protection policies that aim at

reducing consumer bias and making consumer beliefs more realistic depends on the size of the

bias. Reducing the bias benefits all consumers when it is large. At intermediate levels of consumer

bias, eliminating the bias entirely may actually harm them.
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Appendix

Proof of Lemma 1 We first show that u∗ ≥max{0,min{U∗0 , U∗B}}. To the contrary, suppose a firm

offers u < max{0,min{U∗0 , U∗B}}. Then, from (8), no consumer stops and buys, and, as we argue

below, no consumer returns, contradicting that firms make positive profits in equilibrium (see

Footnote 16). Note for consumers to return to a firm that offers u∗, there must be a mass point at

u∗ because otherwise the probability that u∗ is the best offer has probability 0. This can, however,

not be the case in equilibrium, as otherwise, the firm could offer slightly more utility than u∗ and

discontinuously increase its demand (the latter is possible because u∗ < ω as firms make strictly

positive profits by Footnote 16).

Next, we show u∗ ≤ max{0,min{U∗0 , U∗B}}. From part (ii) below, u∗ ≤ max{0, max{U∗0 , U∗B}},
and hence, u∗ < max{0, max{U∗0 , U∗B}}, because u∗ < u∗ by assumption. Moreover, u∗ /∈
(max{0,min{U∗0 , U∗B}} , max{0,max{U∗0 , U∗B}}), because otherwise, a firm which offers u∗ only de-

rives demand from those consumers with the lower reservation utility who visit it first, because,

as argued in the preceding paragraph, no consumer returns when it offers the least utility. Thus,

as u∗ > max{0, min{U∗0 , U∗B}}, it could offer slightly less utility without losing any demand from

these consumers.

The argument for (ii) is given in the text. �

Proof of Lemma 2 The arguments for the cases u∗ > U∗B and u∗ < U∗B are given in the main

text. For u∗ = U∗B, let ζ denote the mass of a (potential) mass point at u∗. If ζ = 0, then a biased

consumer never encounters an offer that stops her. She visits all firms and returns to the best offer.

From standard arguments, κ∗ has thus no mass points and its support has no gaps, as described

in part (ii) of Lemma 2. Next, if ζ= 1, then all firms offer the same utility and u∗ = u∗ = v∗ with

U∗0 ≤ U∗B = v∗, as described in part (i) of Lemma 2. Finally, if ζ ∈ (0, 1), then with probability

(1−ζ)N no firm offers u∗ so that a biased consumer visits all firms and returns to best offer. Then,

standard arguments imply that on Supp(κ∗) ∩ [u∗, u∗),27 κ∗ has no mass points and its support

no gaps in the sense that Supp(κ∗)∩ [u∗, u∗) is connected, as described in part (iii) of Lemma 2.

To complete the proof, we show that the support has a ”gap between” Supp(κ∗)∩ [u∗, u∗) and u∗,

that is, {Supp(κ∗)∩ [u∗, u∗)} ∪ u∗ is not connected. The reason for this is that it cannot be profit

maximizing for a firm to offer marginally less utility than u∗ when there is a mass point at u∗

and u∗ = U∗B. This follows from the fact that offering marginally less utility than u∗ increases the

firm’s share of the surplus only marginally whereas its loss in demand increases discontinuously,

because a biased consumer does not stop anymore and only returns if she does not encounter a

27The restriction to Supp(κ∗)∩ [u∗, u∗) reflects that there are only consumers that return if no firm offers u∗.
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firm that offers u∗ (which occurs with positive probability because there is a mass point at u∗ by

assumption). �

Proof of Lemma 3 As to (i). From Lemma 2, (U∗0 , U∗B,κ∗) is a Diamond-type equilibrium if and

only if

(α) κ∗ = δv∗ is profit-maximizing given U∗0 , U∗B, and all other firms play κ∗ = δv∗ ,

(β) max{U∗0 , U∗B} ≤ v∗ with U∗0 = U(κ∗) and U∗B = U(βB(κ∗)).

Thus, it suffices to show that (α) and (β) is met if and only if (a) and (b) from part (i) of Lemma

3 are met.

We begin with the “only if”-part: First, for v∗ = 0, (α) and (β) trivially imply (a). Second,

let v∗ > 0. We have to show that (α) and (β) imply (b), that is, U(βB(δv∗)) = v∗ and v∗ ≤ u1.

Since max{U∗0 , U∗B} ≤ v∗ by (β), all consumers buy from the first firm they visit. Moreover, U∗0 =

U(δv∗) = v∗ − s < v∗ by (4). Hence, if, by contradiction, U∗B = U(βB(δv∗))< v∗, then a firm could

offer slightly less (non-negative) utility than v∗ so as to increase its mark-up without losing any

demand, as all consumers would still buy from the first firm they visit. Thus, U(βB(δv∗)) = v∗.

To see that v∗ ≤ u1, note that (α) implies in particular that offering v∗ is (weakly) more

profitable than offering udev =max{0, v∗ − s}, that is,

π(v∗)≥ π(max{0, v∗ − s}) ⇔
1
N
(ω− v∗)≥

1− γ
N
(ω−max{0, v∗ − s}). (21)

To understand (21), recall that ω− u is the firm’s mark-up if it offers u. Its market share when

it offers v∗ is 1/N , because in this case, the demand of all consumers is split equally among all

firms. On the other hand, U∗0 = v∗ − s and U∗B = v∗ as argued in the previous paragraph. Thus,

from (8), udev is the minimal utility that induces a standard consumer to stop and buy, but does

not offer enough utility for a biased consumer to stop and buy, as udev < U∗B, leading to a market

share of (1 − γ)/N , because no biased consumers returns, as all other firms offer v∗ = U∗B. We

now show that (21) is equivalent to v∗ ≤ u1: First, if v∗ ≥ s, then (21) is true if, and only if,

v∗ ≤ω−
1− γ
γ

s. (22)

Second, if v∗ ∈ [0, s), then (21) holds if, and only if,

v∗ ≤ γω. (23)

Now, observe that for v∗ = s, (22) is equivalent to (23). Indeed, (23) implies (22) for v∗ ≥ s and

(22) implies (23) for v∗ ∈ [0, s). Thus, for any v∗ ≥ 0, (21) is true if and only if the less restrictive

condition among the two is met. Therefore, (21) is true if and only if

v∗ ∈
�

0,max
§

γω,ω−
1− γ
γ

s
ª�

. (24)
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This is equivalent to v∗ ∈ [0, u1], because

u1 = (1−ρ(1))ω+ρ(1)max
§

0,ω−
s
µ(1)

ª

= γω+max
§

0, (1− γ)ω−
1− γ
γ

s
ª

, (25)

where we used ρ(1) = 1− γ and µ(1) = γ from Lemma 4 in the appendix. This completes the

proof of the “only if”-part.

As to the “if”-part, let (a) and (b) be given. Since U(βB(δv∗)) ≤ v∗ by assumption, and since

(4) entails that U∗0 = U(δv∗) = v∗− s < v∗, part (β) follows. To see (α), we argue that offering v∗

is profit-maximizing. Again, offering more utility than v∗ only reduces the firm’s mark-up without

generating additional demand. On the other hand, if a firm offers less utility than v∗, then this

is clearly not optimal if v∗ = 0 (because it derives no demand). If v∗ > 0, then offering less than

v∗ implies that the firm loses the entire demand from biased consumers, since U(βB(δv∗)) = v∗

by assumption. Therefore, conditional on offering less than v∗ > 0, offering udev =max{0, U∗0} is

optimal, because this is the lowest offer that induces a standard consumer to stop and buy. Hence,

(21) and the ensuing calculations imply that offering v∗ is profit-maximizing for v∗ ≤ u1. This

implies (α) and completes the proof.

As to (ii). The proof of part (ii) is identical to the proof of part (iii) for the special case that

ζ∗ = 0 and where instead of the condition u∗ = U∗B in (27), we impose the condition u∗ ≤ U∗B.

Part (iii) follows from the following four claims. Claim 1 reformulates the equilibrium condi-

tions for a penny sales equilibrium in terms of a system of equations. Claims 2 and 3 show that

this system pins down the utility distribution up to the probability ζ∗ with which a penny sale is

offered in equilibrium. Claim 4 then completes the proof by establishing the desired condition on

ζ∗ for equilibrium existence.

Claim 1: (U∗0 , U∗B,κ∗) is a penny sales equilibrium if and only if it satisfies (26), (27), (28) as well

as (29) and (30).

To see Claim 1, note that by Lemma 1 and 2, in a penny sales equilibrium

u∗ = max{0, U∗0}, with U∗0 = U(κ∗), (26)

u∗ = U∗B, with U∗B = U(βB(κ
∗)), (27)

Supp(κ∗) = [u∗, û∗]∪ {u∗}, with a mass point of size ζ∗ at u∗. (28)

For (U∗0 , U∗B,κ∗) to be an actual equilibrium, in addition, κ∗ needs to be profit maximizing, given

all other firms adopt κ∗ and (26), (27) and (28). Note first that, given (26), (27) and (28),

u 6∈ [u∗, û∗] ∪ {u∗} is never profit maximizing. Offering less than u∗ generates no demand, as no

consumer stops or returns, and offering more than u∗ does not generate any additional demand
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in comparison to offering u∗ but reduces the firm’s margin (in either case any visiting consumer

buys). Similarly, offering u ∈ (û∗, u∗) does not generate any additional demand in comparison to

offering û∗ but reduces the firm’s margin. It induces no biased consumer to stop, as u< u∗ = U∗B.

Moreover, no biased consumer returns who would not do so if the firm offered just û∗. Therefore,

κ∗ is profit maximizing if and only if any u ∈ Supp(κ∗) generates the same profit, that is,

π∗ = (ω− u) ·
�

1− γ
N
+ γκ∗(u)N−1

�

for all u ∈ [u∗, û∗], and (29)

π∗ =
�

ω− u∗
�

·
�

(1− γ)
N

+ γ ·η(ζ∗)
�

, (30)

where the function η : [0,1]→ [0,1] is defined by28

η(ζ)≡
N
∑

t=1

�

N − 1
t − 1

�

ζt−1(1− ζ)N−t

t
. (31)

To see that Condition (29) describes a firm’s profit when it supplies u ∈ [u∗, û∗], note that given

(26) and (28), a standard consumer buys from any firm with probability 1/N , as with equal

probability each firm is the first one she visits and buys from. Moreover, given (27) and (28), a

biased consumer never stops at the firm since u < u∗ but buys from it if it supplies the highest

utility in the market (in which case the biased consumer visits all firms and returns to the firm)

which occurs with probability κ∗(u)N−1.

To understand (30), if a firm offers u∗, then its mark-up is ω − u∗ and it receives its share
1−γ
N of standard consumers. In addition, if there are t − 1 many other firms that offer u∗, then a

biased consumer buys from this firm with probability 1/t, as this is the probability that she visits

it first among the t many firms that offer u∗. Furthermore, the probability that among its n− 1

many competitors exactly t −1 offer u∗ is
�N−1

t−1

�

(ζ∗)t−1(1−ζ∗)N−t . Therefore, the probability that

a biased consumer buys from a firm that offers u∗ is η(ζ∗), and (30) follows.

Claim 2: Let uζ,u and ûζ,u be defined as the support bounds uζ and ûζ defined in (13), and

let κζ,u be defined as the function κζ defined in (14) with the interpretation that ζ and u are

independent variables. Then we have that, given u∗ and ζ∗, κ∗ satisfies (28), (29), and (30) if

and only if κ∗ = κζ∗,u∗ .

Indeed, observe first, because κ∗(u∗) = 0, (29) implies that

π∗ = π(u∗) = (ω− u∗) ·
1− γ

N
. (32)

From this, it follows straightforwardly that (29) holds if and only if κ∗ satisfies (14).

28 We set η(0) = 1 and η(1) = 1
N so that η(0) = limζ→0η(ζ) and η(1) = limζ→1η(ζ).
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Second, (28) holds if and only if û∗ satisfies κ∗(û∗) = 1− ζ∗. Because κ∗ satisfies (14),

κ∗(û∗) = 1− ζ∗ ⇔
ρ0

1−ρ0

1
N−1
�

ω− u∗

ω− û∗
− 1

�

1
N−1

= 1− ζ∗ (33)

⇔
ω− u∗

ω− û∗
− 1= (1− ζ∗)N−1 ·

1−ρ0

ρ0
. (34)

Re-arranging terms and using the definition of φ(·) in (119), yields û∗ = ûζ∗,u∗ .

Third, given (29), condition (30) holds if and only if

π(u∗) = π(u∗) ⇔ (ω− u∗) ·
ρ0

1−ρ0
γ= (ω− u∗) ·

�

ρ0

1−ρ0
γ+ γη(ζ∗)

�

(35)

⇔
ω− u∗

ω− u∗
− 1= η(ζ∗)

1−ρ0

ρ0
. (36)

Re-arranging terms and using the definition of ρ(·) in (118), yields u∗ = uζ∗,u∗ . Because κ∗ satisfies

(14) with û∗ = ûζ∗,u∗ and u∗ = uζ∗,u∗ , we have κ∗ = κζ∗,u∗ .

Finally, we verify that û∗ < u∗, as required by (28). With û∗ = ûζ∗,u∗ and u∗ = uζ∗,u∗ and because

u∗ <ω, we have

û∗ < u∗ ⇔ φ(ζ∗)> ρ(ζ∗). (37)

We establish the right hand side in part (iii) of Lemma 4.

Claim 3: Let ζ∗ be given. Then u∗, κ∗ and U∗0 satisfy (26), (28), (29), and (30) if and only if

κ∗ = κζ∗,u∗ and u∗ = u
ζ∗

as given by (13).

Indeed, from Claim 2, κ∗ satisfies (28), (29), and (30) if and only if κ∗ = κζ∗,u∗ , and therefore,

condition (26) is, in addition, satisfied if and only if u∗ is a solution to the fixed point equation

u = max{0, U(κζ∗,u)}. (38)

Now, for any solution u∗ to (38), we have that u∗ ≥ U(κζ∗,u∗) and from (4),

U(κζ∗,u∗) = −s+

∫

max{u, U(κζ∗,u∗)} dκζ∗,u∗(u) (39)

= −s+

∫

u dκζ∗,u∗(u), (40)

Below, we show that for all u and ζ, we have
∫

u dκζ,u(u) = µ(ζ)ω+ (1−µ(ζ))u. (41)
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Hence,

U(κζ∗,u∗) = −s+µ(ζ∗)ω+ (1−µ(ζ∗))u∗, (42)

and we infer that u∗ is indeed a solution to (38) if and only if

u∗ = max{0,−s+µ(ζ∗)ω+ (1−µ(ζ∗))u∗}. (43)

Notice that (a) u∗ = 0 is a solution to (43) if and only ifω− s
µ(ζ∗) ≤ 0, and (b) u∗ > 0 is a solution to

(43) if and only if u∗ =ω− s
µ(ζ∗) > 0. Clearly, there is no solution to (43) with u∗ < 0. Therefore,

u∗ =max
¦

0,ω− s
1−µ(ζ∗)

©

= u
ζ∗

is the unique solution to (38).

Claim 4: There is a penny sales equilibrium if and only if there is ζ∗ ∈ (0,1) such that uζ∗ =

U(βB(κζ∗)).

From Claims 1 and 3, (U∗0 , U∗B,κ∗) is a penny sales equilibrium if and only if κ∗ = κζ∗,u∗ , u∗ = u
ζ∗

and (27). Note that κ∗ = κζ∗,u∗ and u∗ = u
ζ∗

is equivalent to κ∗ = κζ∗ . Hence, (27) holds if and

only if there is ζ∗ ∈ (0,1) such that uζ∗ = U(βB(κζ∗)).

This completes the proof of Lemma 3. It only remains to show (41). To see this, note that
∫ u

u

(ω− u) dκζ,u(u) =

∫ û

u

(ω− u)(κζ,u)
′(u) du+ ζ(ω− u), (44)

and inserting κζ,u from (14) and some manipulations yield

∫ u

u

(ω− u) dκζ,u(u) =
1

N − 1
·
�

ρ0

1−ρ0

�
1

N−1
∫ û

u

�

ω− u

ω− u
− 1

�− N−2
N−1 ω− u

ω− u
du+ ζ(ω− u). (45)

A change of variables and inserting (ω− u) = ρ(ζ)(ω− u) from (13) yield29

∫ u

u

(ω− u) dκζ,u(u) =





1
N − 1

·
�

ρ0

1−ρ0

�
1

N−1
∫

1
φ(ζ)

1

(v − 1)−
N−2
N−1 ·

1
v

dv + ζρ(ζ)



 (ω− u) (46)

= (1−µ(ζ)) · (ω− u), (47)

where the last equality follows from the definition of µ(·) in (120). Hence, (41) follows from the

fact that E(u) =ω− E(ω− u). �

Proof of Proposition 1 To see the claim, notice that for any cdf κ with u = sup(Supp(κ)), we

have for βτ, τ ∈ {0, B}:

Uτ = U(βτ(κ))≤ U(βτ(δu))≤ U(δu) = u− s, (48)

29Let v(u) = ω−u
ω−u , then du= (ω−u)2

ω−u dv = ω−u
v dv, v(u) = 1, and v(û) = 1/φ(ζ) from (33).
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where the first inequality follows from two observations: first, that βτ is monotone which entails

that βτ(δu) fosd βτ(κ) and monotonicity of U(·) with respect to fosd.30 Similarly, the second

inequality follows from monotonicity of U(·) and the fact that δu∗ fosd βτ(δu∗) because βτ is

pessimistic. Finally, the last equality follows from the definition of U(·) as explained in (12).

Now, (48) implies existence because for u= 0, the conditions in part (i) of Lemma (2) are met,

and it implies uniqueness because the only equilibrium type consistent with U∗B < u∗ is κ∗ = δ0.�

Proof of Proposition 2 Recall the definitions of uζ and κζ. For the proof, it is useful to make the

dependency on s explicit and to write u(ζ, s) and κ(ζ, s) instead. Define

Γ (ζ, s) = u(ζ, s)− U(βB(κ(ζ, s)), s). (49)

Below, we show:

(a) Γ is continuous.

(b) Γ (0, s) is strictly increasing in s, and lims→0 Γ (0, s)< 0.

(c) Γ (1, s) is strictly increasing in s, and lims→∞ Γ (1, s)> 0.

(d) Γ (ζ, s) is strictly decreasing in ζ for all s.

Taken together, these properties imply Proposition 2. Indeed, notice first that (a)–(d) imply that

there are unique 0< s0 < s1 so that

Γ (0, s0) = 0, and Γ (1, s1) = 0. (50)

Too show part (i) of Proposition 2, by part (i) of Lemma 3, a Diamond-type equilibrium with utility

level 0 exists if and only if Γ (1, s) ≥ 0, which by (c) and (50) is equivalent to s ≥ s1. Moreover,

a Diamond-type equilibrium with utility level v ∈ (0, u1] exists if and only if v − U(βB(δv)) = 0.

From additivity of βB,

v − U(βB(δv)) = 0 ⇔ v +∆− U(βB(δv+∆)) = 0 for all ∆, (51)

⇔ u1 − U(βB(δu1
)) = 0.

The latter is equivalent to Γ (1, s1) = 0, which by (c) and (50) is equivalent to s = s1.

To show part (ii) of Proposition 2, by part (ii) of Lemma 3, a Stahl-type equilibrium exists if

and only if Γ (0, s)≤ 0, which by (b) and (50) is equivalent to s ≤ s0.

To show part (iii) of Proposition 2, by part (iii) of Lemma 3, a (unique) penny sales equilibrium

exists if and only if there is a (unique) ζ∗ ∈ (0,1) with Γ (ζ∗, s) = 0, which by (a)–(d) and (50) is

equivalent to s ∈ (s0, s1).
30 As is well-known in the search literature, the definition of U(·) as given in (4) entails that U(β)≥ U(β ′) if β fosd

β ′. Moreover, for every β , U(β) strictly decreases in s with lims→0 U(β) = sup(Supp(β)) and lims→∞ U(β) = −∞.

We omit the details.
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To complete the proof, it remains to show (a)–(d). Because u(ζ, s) is clearly continuous,

property (a) follows if U(βB(κ(ζ, s)), s) is continuous in (ζ, s), which, by continuity of βB, is the

case if U(κ(ζ, s), s) is continuous in (ζ, s). From (42) and (13),

U(κ(ζ, s), s) = −s+µ(ζ)ω+ (1−µ(ζ)) max
§

0,ω−
s
µ(ζ)

ª

, (52)

which is continuous in (ζ, s), because µ(·) is continuous with µ(ζ)≥ µ0 > 0.

As to (b). To see the first part of the claim, recall from (13),

u(0, s) = (1−ρ0)ω+ρ0 max
§

0,ω−
s
µ0

ª

. (53)

Therefore, for s′ < s, we have that

u(0, s)− u(0, s′)≥ −
ρ0

µ0
(s− s′). (54)

Below we show that

U(βB(κ(0, s)), s)− U(βB(κ(0, s′)), s′) ≤ −(s− s′). (55)

Together with (49), (54) and (55) yield that

Γ (0, s)− Γ (0, s′) ≥ −
ρ0

µ0
(s− s′) + s− s′, (56)

which is positive since µ0 > ρ0 by assumption. This establishes that Γ (0, s) strictly increases in s.

To show (55), notice that κ(0, s′) first order stochastically dominates κ(0, s) (compare Propo-

sition 7 Stahl (1989)). Together with monotonicity of βB, we conclude that

βB(κ(0, s′)) f osd βB(κ(0, s)), (57)

which entails that

U(βB(κ(0, s)), s)< U(βB(κ(0, s′)), s′), (58)

because U(β , s) increases in β if β increases in the fosd sense and decreases in s by Footnote 30.

From definition (4), we obtain therefore that

U(βB(κ(0, s)), s) = −s+

∫

max{u, U(βB(κ(0, s), s)} dβB(κ(0, s))(u) (59)

≤ −(s− s′)− s′ +

∫

max{u, U(βB(κ(0, s′), s′)} dβB(κ(0, s′))(u), (60)

where the inequality follows from the fact that max{u, U} increases in u and U in combination

with (57) and (58). This establishes (55), as (60) is equivalent to (55) by (4).
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To see that lims→0 Γ (0, s) < 0, recall from (13) that u(0, s) = max
¦

0,ω− s
µ0

©

and hence

lims→0 u(0, s) = ω. Since, in addition, u(0, s) ≤ ω for all s, we conclude that lims→0κ(0, s)(u) =

δω(u) for all u and lims→0 u(0, s) =ω. Since Γ (0, s) is continuous in s by (a):

lim
s→0

U(βB(κ(0, s)), s) = U(βB(κ(0, 0)), 0) = sup(Supp(βB(δω))), (61)

where the second equality follows by assumption.31 Thus,

lim
s→0
Γ (0, s) = lim

s→0
[u(0, s)− U(βB(κ(0, s)), s)] =ω− sup(Supp(βB(δω))). (62)

To complete the proof, it suffices to show that ω− sup(Supp(βB(δω)))< 0.

Indeed, because βB is non-pessimistic, there is κ̂ with

û= sup(Supp(κ̂))< sup(Supp(βB(κ̂))). (63)

Because βB is monotone and δû fosd κ̂, we have that βB(δû) fosd βB(κ̂), and thus

sup(Supp(βB(κ̂)))≤ sup(Supp(βB(δû))). Thus, by (63),

sup(Supp(δû))< sup(Supp(βB(δû))). (64)

Let ∆ = ω − û and notice that sup(Supp(βB(δû))) = U(βB(δû), 0) by Footnote 30. Hence,

from (64),

ω< U(βB(δû), 0) +∆= U(βB(δω), 0) = sup(Supp(βB(δω))), (65)

where the second equality follows from additivity of βB, hence the desired inequality.

As to (c). To show that Γ (1, s) is strictly increasing in s, let s′ < s and recall that κ(1, s) = δu(1,s).

Because U(β , s) strictly decreases in s for every β by Footnote 30:

Γ (1, s) = u(1, s)− U(βB(δu(1,s)), s)> u(1, s)− U(βB(δu(1,s)), s′). (66)

Let ∆= u(1, s)− u(1, s′). By additivity of βB, the right hand side is equal to

u(1, s)− U(βB(δu(1,s′)+∆), s′) = u(1, s)−
�

U(βB(δu(1,s′)), s′) +∆
	

(67)

= u(1, s′)− U(βB(δu(1,s′)), s′) = Γ (1, s′), (68)

as desired.

To see that lims→∞ Γ (1, s)> 0, observe that for ∆= u(1, s), additivity of βB delivers

Γ (1, s) = u(1, s)− U(βB(δ∆), s) = u(1, s)−
�

U(βB(δ0, s) +∆
	

= −U(βB(δ0), s). (69)

31 For s = 0, let U(β)≡ sup(Supp(β)) consistent with lims→0 U(β) = sup(Supp(β)).
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From Footnote 30, U(β(δ0), s) goes to −∞ as s→∞. Hence, lims→∞ Γ (1, s)> 0, as desired.

As to (d). Let ζ′ < ζ. We have to show that Γ (ζ′, s) > Γ (ζ, s) for all s. Let α denote the level

of utility that satisfies κ(ζ′, s)(α) = 1− ζ. Denote by ψ the cdf which coincides with κ(ζ′, s) up

to α and has a mass point of size ζ at u(ζ′, s):

ψ(u) =











κ(ζ′, s)(u) i f u< α

1− ζ i f u ∈ [α, u(ζ′, s))

1 i f u≥ u(ζ′, s).

(70)

Figure 5 illustrates how ψ relates to κ(ζ, s) and κ(ζ′, s). In particular, it shows that by construc-

tion, ψ first order stochastically dominates κ(ζ′, s). Because ψ fosd κ(ζ′, s), monotonicity of βB

ûζα
u

1

Δ

Δ

κζ '

κζ

ψ

ψ-Δ

Figure 5: The utility distributions κζ = κ(ζ, s) and κζ′ = κ(ζ′, s) (solid, gray) as well as the auxiliary

functions ψ (dashed) and ψ−∆ (dotted). Notice that ψ−∆ is identical to ψ when shiftet by ∆ to the

‘’left”. Moreover, the critical values α and ûζ = û(ζ, s).

implies that32

Γ (ζ′, s) = u(ζ′, s)− U(βB(κ(ζ
′, s)))> u(ζ′, s)− U(βB(ψ)). (73)

32To see that the inequality is strict, we will show that

U(ψ, s′)> U(κ(ζ′, s), s′) for all s′ > 0. (71)

Together with monotonicity of βB, this implies (73).

To see (71), note that by (12), we have for every s′ > 0 both U(ψ, s′) < u(ζ′, s) and U(κ(ζ′, s), s′) < u(ζ′, s).

Moreover,
∫

max{u, U} dψ>

∫

max{u, U} dκ(ζ′, s) for every U < u(ζ′, s), (72)
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Further, for ∆= u(ζ′, s)−u(ζ, s)> 0, let ψ−∆(u) =ψ(u+∆) be the cdf that results from shifting

ψ by ∆ to the left. Hence, additivity of βB entails that

u(ζ′, s)− U(βB(ψ)) = u(ζ, s)− U(βB(ψ−∆)). (74)

Below, we will argue that κ(ζ, s) fosdψ−∆ which together with monotonicity of βB and the mono-

tonicity of U(·) with respect to fosd implies that

U(βB(ψ−∆))≤ U(βB(κ(ζ, s))). (75)

Putting all inequalities together delivers:

Γ (ζ′, s)> u(ζ, s)− U(βB(κ(ζ, s))) = Γ (ζ, s), (76)

as desired.

To see that κ(ζ, s) fosd ψ−∆, note that by construction (compare Figure 5)

κ(ζ, s)(u) ≤ ψ−∆(u) if u< u(ζ, s), (77)

κ(ζ, s)(u) < ψ−∆(u) if u ∈ [u(ζ, s), û(ζ, s)), (78)

κ(ζ, s)(u) = ψ−∆(u) if u≥ û(ζ, s), (79)

where (77) follows from κ(ζ, s)(u) = 0 for u < u(ζ, s) and (79) holds by construction. To see

(78), because κ(ζ, s)(u)<min{κ(ζ′, s)(u), 1−ζ} for all u ∈ [u(ζ, s), û(ζ, s)), we have κ(ζ, s)(u)<

ψ(u) for all u ∈ [u(ζ, s), û(ζ, s)). From this (78) follows, because ψ−∆(u) ≥ ψ(u) for all u by

construction. This completes the proof. �

Proof of Corollary 1 As we show below, given βB from (3), if Γ (ζ, s) = 0, then

Γ (ζ, s) = s+χ
�

(1−ρ(ζ)−µ(ζ))min
§

ω,
s
µ(ζ)

ª

−υ
�

. (80)

Recall that the cut-off value s0 from Proposition 2 is implicitly given by Γ (0, s0) = 0. With (80),

we obtain that

s0

χ
+ (1−ρ0 −µ0)min

§

ω,
s0

µ0

ª

−υ= 0, (81)

so that s ≤ s0 (respectively s < s0) is equivalent to χ ≥ χ1 (respectively χ > χ1 ) with

χ1 =
s

υ− (1−ρ0 −µ0)min
¦

ω, s
µ0

© , (82)

because ψ fosd κ(ζ′, s) and the mass point at u(ζ′, s) of ψ contains more mass than the mass point at u(ζ′, s) of

κ(ζ′, s) as ζ > ζ′. Together, this implies (71) by definition (4).
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as (81) is strictly decreasing in χ and strictly increasing in s, because 1−ρ0−µ0 > 0 from Lemma

4. Similarly, the cut-off value s1 from Proposition 2 is given by by Γ (1, s1) = 0. With (80) and

(1−ρ(1)−µ(1)) = 0 from Lemma 4, we obtain.

s1 = χυ, (83)

so that s ≥ s1 (respectively s > s1) is equivalent to χ ≤ χ0 (respectively χ < χ0 ) with

χ0 =
s
υ

. (84)

Given this, Corollary 1 follows immediately from Proposition 2 and the fact that βB as defined in

(3) satisfies Assumption (2) and is non-pessimistic.

To show (80), we establish the following auxiliary result: If Γ (ζ, s) = 0, then

U(βB(κ(ζ, s)), s) = −s+ [1−χ]u(ζ, s) +χυ+χµ(ζ)ω+χ(1−µ(ζ))u(ζ, s). (85)

To do so, inserting βB from (3) in (4) yields that (for arbitrary κ)

U(βB(κ), s) = −s+ [1− 2χ]

∫

max{u, U(βB(κ)} dκ(u) (86)

+χ

∫

max{υ+ u, U(βB(κ)} dκ(u)

+χ

∫

max{−υ+ u, U(βB(κ)} dκ(u).

Now, if Γ (ζ, s) = 0, then U(βB(κ(ζ, s)), s) = u(ζ, s) by the definition of Γ from (49). Inserting this

and κ= κ(ζ, s) in (86) yields

U(βB(κ(ζ, s)), s) = −s+ [1− 2χ]

∫

max{u, u(ζ, s)} dκ(ζ, s)(u) (87)

+χ

∫

max{υ+ u, u(ζ, s)} dκ(ζ, s)(u)

+χ

∫

max{−υ+ u, u(ζ, s)} dκ(ζ, s)(u).

From (13), we have u(ζ, s) − u(ζ, s) < ω. Together with ω < υ by assumption, this implies

u(ζ, s)−u(ζ, s)< υ. From this, it follows that υ+u> u(ζ, s) and −υ+u< u(ζ, s) for all u in the

support of κ(ζ, s). Hence, (87) is equivalent to

U(βB(κ(ζ, s)), s) = −s+ [1− 2χ]u(ζ, s) +χ

�

υ+

∫

u dκ(ζ, s)(u)

�

+χu(ζ, s) (88)

which is equivalent to (85), as desired, because of (41).
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It remains to show (80). Inserting (85) in (49) and re-arranging terms yields

Γ (ζ, s) = s+χ
�

u(ζ, s)−υ−µ(ζ)ω− (1−µ(ζ))u(ζ, s)
�

. (89)

Inserting u(ζ, s) = (1−ρ(ζ))ω+ρ(ζ)u(ζ, s) from (13) yields

Γ (ζ, s) = s+ (1−ρ(ζ)−µ(ζ))ω−υ− (1−ρ(ζ)−µ(ζ))u(ζ, s) (90)

which is equivalent to (80), because u(ζ, s) = max
¦

0,ω− s
µ(ζ)

©

from (13), and this completes

the proof. �

Proof of Proposition 3 Denote by W0, WB, π∗, WT , respectively, the equilibrium values of standard

and biased consumer welfare, profits and total welfare. We first argue that in the Diamond and

Stahl regime, for χ ∈ [0,χ0)∪ (χ1, 1/4], these values are independent of χ.

In the Diamond regime, for χ ∈ [0,χ0), both standard and biased consumers buy from the

first firm they visit which supplies zero utility. Because the first search is free, both consumer

types obtain zero utility while firms share the entire surplus from trade. Total welfare equals ω,

as trade occurs with probability one and no consumer engages in costly search:

W0 =WB = 0, π∗ =
ω

N
and WT =ω, when χ ∈ [0,χ0). (91)

In the Stahl regime, for χ ∈ [χ1, 1
4), W0, WB, π∗, WT are independent of χ, because first,

κ∗ = κ0, and κ0 is independent of χ, and second, irrespective of χ, standard consumers buy from

the first firm while biased consumers visit all firms.

Next, we consider the transition points χ1 and χ0 and show first that W0, WB, π∗, WT are

continuous at χ1. As we show below,

dζ∗(χ)
dχ

< 0 for χ ∈ (χ0,χ1) and lim
χ↓χ0

ζ∗ = 1 and lim
χ↑χ1

ζ∗ = 0. (92)

The facts that lim
χ↑χ1

ζ∗ = 0, and that κ∗ = κζ∗ in the penny sales regime imply that lim
χ↑χ1

κ∗ = κ0.

Moreover, as χ ↑ χ1, biased consumers visit all firms with probability one, just as in the Stahl

regime, because from (92), the probability ζ∗ for a penny sale that induces them to stop and buy

goes to zero. Finally, in both regimes standard consumers buy from the first firm they visit in

equilibrium. Therefore, W0, WB, π∗, WT are continuous at χ1.

Next, we show that W0, WB, π∗ are discontinuous from below at χ0, as χ ↑ χ0. Recall that, by

assumption, for χ = χ0 we focus on the consumer optimal equilibrium which is a Diamond-type

equilibrium with κ∗ = δu∗1
. From the same arguments used to derive (91), we obtain for χ = χ0:

W0 =WB = u1, π∗ =
ω− u1

N
and WT =ω, when χ = χ0. (93)
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Therefore, from (91) and (93), W0 and WB discontinuously increase at χ0, because u1 > 0, while

π∗ discontinuously decreases. Notice also that total welfare remains constant.

In contrast, W0, WB, π∗, WT are continuous from above at χ0, as χ ↓ χ0. This follows immedi-

ately from the fact that lim
χ↓χ0

ζ∗ = 1 by (92) which, in particular, entails that lim
χ↓χ0

κ∗ = δu1
.

These considerations imply that the proposition follows from the following comparative statics

results for the penny sales regime. For the rest of the proof, let χ ∈ (χ0,χ1). We show: As χ

increases,

(a) W0 decreases,

(b) WB decreases when ω≥ s
µ0

,

(c) π∗ increases, and

(d) WT decreases.

To show (a), because standard consumers buy from the first firm they visit, and as the first

search is for free, we have W0 = E(u) and with (41), we obtain:

W0 = µ(ζ
∗)ω+ (1−µ(ζ∗)) u∗ =ω− (1−µ(ζ∗)) ·min

§

ω,
s

µ(ζ∗)

ª

, (94)

where the second equality follows from inserting (13) for u∗ and straightforward algebra. Because

µ(·) is increasing by Lemma 4, and ζ∗ decreases in χ by (92), W0 decreases in χ.

To show (b), it is useful to decompose biased consumer welfare into the expected consumption

value W U
B which the consumer attains from accepting an offer, and the expected total search costs

W S
B which the consumer incurs in equilibrium:

WB =W U
B −W S

B . (95)

To show part (b), it is therefore sufficient to show:

dW U
B

dχ
= 0 if ω≥

s
µ0

, and
dW S

B

dχ
< 0. (96)

To show the first part of (96), in equilibrium trade occurs with probability one and the surplus

from trade ω is split among consumers and firms. Hence,

γ ·W U
B + (1− γ) ·W0 + N ·π∗ =ω. (97)

From (94) and (110), it follows that

W U
B =

1
γ
[ω− (1− γ) ·W0 − N ·π∗]

=
1
γ

�

ω− (1− γ)ω+ (1− γ) · (1−µ(ζ∗)) ·min
§

ω,
s

µ(ζ∗)

ª

− (1− γ) ·min
§

ω,
s

µ(ζ∗)

ª�

=ω−
1− γ
γ
·µ(ζ∗) ·min

§

ω,
s

µ(ζ∗)

ª

. (98)
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Observe that this expression depends on χ only indirectly through ζ∗. Differentiating (98) yields

∂W U
B (ζ

∗)

∂ ζ
=







−1−γ
γ µ

′(ζ∗)ω< 0 if ω< s
µ(ζ∗)

0 otherwise,
(99)

where the inequality follows since µ(·) increasing by Lemma 4. Therefore, since ∂W U
B /∂ χ =

∂W U
B /∂ ζ · ∂ ζ

∗/∂ χ and ∂ ζ∗/∂ χ < 0 from (92), the first part of (96) follows from the fact that

ω≥ s
µ0

implies ω≥ s
µ(ζ∗) , as µ(·) is increasing with µ(0) = µ0 by Lemma 4.

To show the second part of (96), let i denote the number of searches that a biased consumer

conducts until she encounters a firm which makes a penny sales offer. The probability that she

visits exactly i firms to find one that makes a penny sales offer is

ζ∗ · (1− ζ∗)i−1.

In this case, she incurs the total search costs (i − 1) s, as her first search is free. On the contrary,

with probability (1− ζ∗)N she does not encounter any firm that makes a penny sales offer (as no

firm offers one). Then, she visits all firms and incurs the total search costs (N − 1) s. Together, it

follows that

W S
B

s
=

�

N
∑

i=1

(i − 1) · ζ∗ · (1− ζ∗)i−1

�

+ (N − 1) · (1− ζ∗)N (100)

= ζ∗ ·
N−1
∑

i=1

i · (1− ζ∗)i + (N − 1) · (1− ζ∗)N (101)

=
1− ζ∗

ζ∗
· [1− (1− ζ∗)N−1], (102)

where the final equality follows from a straightforward calculation.33

Again, this expression depends on χ only through ζ∗, and by (92) the second part of (96) is

33Recall that

N−1
∑

i=1

i · (1− ζ∗)i =
ζ∗(1− ζ∗)N − ζ∗N(1− ζ∗)N − (1− ζ∗)N + (1− ζ∗)

(ζ∗)2
, (103)

and thus,

W S
B

s
= ζ∗ ·

ζ∗(1− ζ∗)N − ζ∗N(1− ζ∗)N − (1− ζ∗)N + (1− ζ∗)
(ζ∗)2

+ (N − 1) · (1− ζ∗)N (104)

= ζ∗ ·
−(1− ζ∗)N + (1− ζ∗)

(ζ∗)2
, (105)

which is equivalent to (102).
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shown if ∂W S
B (ζ

∗)/∂ ζ < 0 for all ζ∗ ∈ (0,1). In fact,

∂W S
B (ζ

∗)

∂ ζ
= −

s
(ζ∗)2

· [1− (1− ζ∗)N−1] + s
1− ζ∗

ζ∗
(N − 1)(1− ζ∗)N−2 (106)

= −s ·
1− (1− ζ∗)N−1 − ζ∗(N − 1)(1− ζ∗)N−1

(ζ∗)2
. (107)

This is negative if the denominator

h(ζ∗)≡ 1− (1− ζ∗)N−1 − ζ∗(N − 1)(1− ζ∗)N−1 (108)

is positive. To see this, observe that h(0) = 0, and

h′(ζ∗) = (N − 1) · (1− ζ∗)N−2 · [1− (1− ζ∗) + ζ∗(N − 1)]

= (N − 1) · (1− ζ∗)N−2 · N ζ∗ > 0. (109)

This completes the proof of part (b).

To show (c), a firm’s profit in a penny sales equilibrium is equal to the profit of a firm that

offers the lowest utility which is given as the product of the demand it derives from standard

consumers (1− γ)/N and its margin ω− u∗. Inserting from (13) for u∗ yields

π∗ =
1− γ

N
·min

§

ω,
s

µ(ζ∗)

ª

. (110)

Because µ(·) is increasing from Lemma 4 and ζ∗ decreases in χ by (92), π∗ increases in χ.

To show (d), because trade occurs with probability one and no standard consumer engages in

costly search, we have

WT =ω− γW S
B , (111)

and (d) follows from the fact W S
B increases in χ as argued above.

To complete the proof, it remains to show (92). For fixed s, let

Γ̃ (ζ,χ)≡
Γ (ζ, s)
χ

=
s
χ
+ (1−ρ(ζ)−µ(ζ))min

§

ω,
s
µ(ζ)

ª

−υ (112)

with Γ (ζ, s) as given in (80). Recall that ζ∗ is defined by the equilibrium condition Γ (ζ∗, s) = 0.

Hence, Γ̃ (ζ∗,χ) = 0 for all χ in equilibrium, and it follows that

dζ∗

dχ
= −

∂ Γ̃ (ζ∗,χ)
∂ χ

À∂ Γ̃ (ζ∗,χ)
∂ ζ

. (113)

Differentiating (112) yields

∂ Γ̃ (ζ∗,χ)
∂ χ

= −
s
χ2
< 0. (114)
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Moreover,

∂ Γ̃ (ζ∗,χ)
∂ ζ

=







−[ρ′(ζ∗) +µ′(ζ∗)]ω< 0 if ω< s
µ(ζ∗)

−
�

ρ′(ζ∗)
µ(ζ∗) +

1−ρ(ζ∗)
µ2(ζ∗) µ

′(ζ∗)
�

s < 0 otherwise,
(115)

where the inequalities follow from µ′(ζ∗)> 0 and ρ′(ζ∗)> 0 by Lemma 4. Hence, dζ∗
�

dχ < 0.

Finally, limχ↓χ0
ζ∗ = 1 and limχ↑χ1

ζ∗ = 0, because ζ∗ is unique and implicitly given by

Γ̃ (ζ∗,χ) = 0, and Γ̃ is continuous in ζ and χ with Γ̃ (1,χ0) = 0 and Γ̃ (0,χ1) = 0. This com-

pletes the proof. �

7 Appendix B

Recall the definition of η(·) in (31). Define

ρ0 ≡
1− γ

Nγ+ 1− γ
, (116)

µ0 ≡ 1−
1

N − 1
·
�

ρ0

1−ρ0

�
1

N−1
∫

1
ρ0

1

(v − 1)−
N−2
N−1

v
dv, (117)

ρ(ζ) ≡
ρ0

ρ0 + (1−ρ0)η(ζ)
, (118)

φ(ζ) ≡
ρ0

ρ0 + (1−ρ0)(1− ζ)N−1
, (119)

µ(ζ) ≡ 1−
1

N − 1
·
�

ρ0

1−ρ0

�
1

N−1
∫

1
φ(ζ)

1

(v − 1)−
N−2
N−1

v
dv − ζρ(ζ). (120)

Lemma 4 We have:

(i) η(·) is strictly decreasing with η(0) = 1 and η(1) = 1
N .

(ii) ρ(·) is strictly increasing with ρ(0) = ρ0 and ρ(1) = 1− γ.

(iii) φ(·) is strictly increasing with φ(0) = ρ0 and φ(1) = 1. Moreover, φ(ζ) > ρ(ζ) for all

ζ ∈ (0,1].

(iv) µ(·) is strictly increasing with µ(0) = µ0 > 0 and µ(1) = γ. Moreover, 1−ρ(ζ)−µ(ζ) > 0 for

all ζ ∈ (0,1).

(v) limN→∞ρ0 = 0, and limN→∞µ0 = 1.

Proof of Lemma 4 (i) Recall from definition (31) that

η(ζ) =
N
∑

t=1

�

N − 1
t − 1

�

ζt−1(1− ζ)N−t

t
, (121)
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with η(0) = 1 and η(1) = 1
N . Differentiating (121) yields

η′(ζ) =
N
∑

t=2

�

N − 1
t − 1

�

t − 1
t
ζt−2(1− ζ)N−t −

N−1
∑

t=1

�

N − 1
t − 1

�

N − t
t
ζt−1(1− ζ)N−t−1. (122)

By an index change, the second term on the right hand side can be written as34

N
∑

t=2

�

N − 1
t − 2

�

N − t + 1
t − 1

ζt−2(1− ζ)N−t =
N
∑

t=2

�

N − 1
t − 1

�

ζt−2(1− ζ)N−t , (124)

Therefore,

η′(ζ) =
N
∑

t=2

�

N − 1
t − 1

��

t − 1
t
− 1

�

ζt−2(1− ζ)N−t (125)

= −
1
ζ

N
∑

t=2

�

N − 1
t − 1

�

·
1
t
· ζt−1(1− ζ)N−t (126)

= −
1
ζ

�

η(ζ)− (1− ζ)N−1
�

(127)

= −
1
ζ

ρ0

1−ρ0

�

1
ρ(ζ)

−
1
φ(ζ)

�

< 0, (128)

where the third line follows from the definition of η(·) in (121) and the last line from the definition

of ρ(·) in (118) and φ(·) in (119). Finally, η(·) strictly decreasing follows from (126).

(ii) Because η(0) = 1 and η(1) = 1
N from part (i), we have

ρ(0) = ρ0 and ρ(1) = 1− γ, (129)

where the last equality follows straightforwardly from the definition of ρ0 in (116) and re-

arranging terms. Moreover, differentiating (118) yields

ρ′(ζ) = −
ρ0

(ρ0 + (1−ρ0)η(ζ))2
· (1−ρ0)η

′(ζ) (130)

= −
1−ρ0

ρ0
·ρ(ζ)2 ·η′(ζ) (131)

=
ρ(ζ)2

ζ
·
�

1
ρ(ζ)

−
1
φ(ζ)

�

, (132)

where the last equality follows from inserting η′ from (128). Moreover, ρ(·) strictly increasing

follows from (131) and η(·) strictly decreasing by part (i).

34Note that
�

N − 1
t − 2

�

=
(N − 1)!

(t − 2)!(N − t + 1)!
=

(N − 1)!
(t − 1)!(N − t)!

t − 1
N − t + 1

=
�

N − 1
t − 1

�

t − 1
N − t + 1

. (123)
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(iii) Observe that φ(0) = ρ0 and φ(1) = 1. Moreover, differentiating (119) yields

φ′(ζ) =
1−ρ0

ρ0
·φ(ζ)2 · (N − 1)(1− ζ)N−2 > 0, (133)

as desired. Finally, φ(ζ)> ρ(ζ) for all ζ ∈ (0, 1] follows immediately from equation (128) in the

proof of part (i).

(iv) Observe that µ(1) = 1−ρ(1) = γ and µ(0) = µ0, as φ(0) = ρ0 and φ(1) = 1 from part

(iii). Differentiating (120) yields

µ′(ζ) = −
1

N − 1
·
�

ρ0

1−ρ0

�
1

N−1

·
�

−
φ′(ζ)
φ(ζ)2

�

·φ(ζ)
�

1
φ(ζ)

− 1
�

1
N−1−1

−ρ(ζ)− ζρ′(ζ)

=

(

�

ρ0

1−ρ0

�
1

N−1−1

(1− ζ)N−2

�

(1−ρ0)(1− ζ)N−1

ρ0

�
1

N−1−1
)

·φ(ζ) (134)

−ρ(ζ)−ρ(ζ)2 ·
�

1
ρ(ζ)

−
1
φ(ζ)

�

=
(φ(ζ)−ρ(ζ))2

φ(ζ)
(135)

where the second line follows from inserting ρ′ from (132) and φ′ from (133), and the third line

from the fact that the term in curly brackets in the second line is equal to one. Now, the term in

(135) is positive for all ζ ∈ (0, 1] by part (iii), which implies that µ(·) is strictly increasing. Next,

µ0 > 0 follows from

µ0 = 1−
1

N − 1
·
�

ρ0

1−ρ0

�
1

N−1
∫

1
ρ0

1

(v − 1)−
N−2
N−1

v
dv (136)

> 1−
1

N − 1
·
�

ρ0

1−ρ0

�
1

N−1
∫

1
ρ0

1

(v − 1)−
N−2
N−1

1
dv = 0, (137)

where the second line follows from 1/v < 1 for v ∈ [1, 1
ρ0
], and the final equality from a straight-

forward calculation. Finally, 1−ρ(ζ)−µ(ζ) > 0 for all ζ ∈ (0, 1) follows from the fact that ρ(·)
and µ(·) are strictly increasing and 1−ρ(1)−µ(1) = 0, since ρ(1) = 1− γ and µ(1) = γ.

(v) Obviously, ρ0→ 0 as N →∞ from (116). Moreover, by definition,

µ0 = 1−
1

N − 1
·
�

ρ0

1−ρ0

�
1

N−1
∫

1
ρ0

1

1
v

�

1
v − 1

�
N−2
N−1

dv. (138)

We show that this converges to 1 as N →∞, by showing that as N →∞,

�

ρ0

1−ρ0

�
1

N−1

→ 1, and
1

N − 1
·
∫

1
ρ0

1

1
v

�

1
v − 1

�
N−2
N−1

dv→ 0. (139)

40



Indeed, to see the first limit, since ρ0
1−ρ0

= 1−γ
Nγ , as N →∞,

log

�

�

ρ0

1−ρ0

�
1

N−1

�

=
1

N − 1
[log(1− γ)− log(Nγ)]→ 0. (140)

Moreover, for N large, we have 1/ρ0 > 2, in which case

1
N − 1

∫
1
ρ0

1

1
v

�

1
v − 1

�
N−2
N−1

dv ≤
1

N − 1





∫ 2

1

1
v

�

1
v − 1

�

dv +

∫
1
ρ0

2

1
v

dv



 (141)

=
1

N − 1
[log(1/ρ0) + Const] (142)

=
1

N − 1

�

log
�

Nγ+ 1− γ
1− γ

�

+ Const
�

, (143)

which converges to zero, as N →∞. This completes the proof. �
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