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Abstract

This paper develops a theory of optimal provision of commitment de-

vices to people who value both commitment and �exibility, and whose pref-

erences di¤er in the degree of time inconsistency. If time inconsistency is

observable, then both a planner and a monopolist provide devices that help

each person commit to the e¢ cient level of �exibility. But the combination

of unobservable time inconsistency and preference for �exibility creates an

adverse-selection problem. To solve it, the monopolist and (possibly) the

planner ine¢ ciently curtail �exibility in the device for a more inconsistent

person, and may have to add unused options to, or even distort, the device

for a less inconsistent person. Flexibility is curtailed in a particular way

that is evocative of existing commitment devices. This theory has norma-

tive as well as positive implications for private and public provision of these

devices.
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1 Introduction

Evidence suggests that many people have self-control problems (see DellaVigna�s

(2009) survey). Often aware of these problems, people demand commitment de-

vices. This demand has received the attention of di¤erent institutions: Firms, like

StickK and GymPact, sell devices that help people commit to their goals, and some

governments set up tax incentives to help people adequately save for retirement�

in the US, through devices like individual retirement accounts (IRAs) and 401(k)

plans.1 But, uncertain about the future, people demand commitment devices

that also allow for �exibility. Can �rms or governments satisfy these opposite

desires for commitment and �exibility? Moreover, the degree of self-control� and

hence the demand for commitment� varies across people and is not immediately

detectable. How does this a¤ect the provision of commitment devices?

This paper answers these questions by developing a theory of optimal pro-

vision of �exible commitment devices� from the point of view both of a pro�t-

maximizing �rm and of a welfare-maximizing planner. The paper �rst shows that

the combination of people�s demand for �exibility and superior information on

their self-control creates an adverse-selection problem. Then, it shows that this

problem leads to a trade-o¤between commitment and �exibility, and characterizes

how, as a result, the �rm and (possibly) the planner optimally curtail �exibility

for people with self-control problems. This theory could be a basis to guide private

and public provision (or regulation) of commitment devices, to predict its possible

ine¢ ciencies, and to explain some broad features of existing commitment devices.

The model features a provider (she), an agent (he), and two periods. In period

1, the provider o¤ers the agent a device that, in period 2, allows him to choose

among several actions and, for each action, charges a payment. An example would

be a savings device that allows the agent to make deposits and withdrawals, whose

amount determines a fee or a tax. In period 1, the agent desires �exibility (in the

sense of Kreps (1979)) because his preference over period-2 actions depends on an

uncertain state; importantly, the state is not contractible. Moreover, in period 1,

the agent can desire commitment because his preference can be time inconsistent

(Strotz (1956)). In line with most of the literature, this paper uses the period-1

1Other typical examples of commitment devices include automatic drafts from checking to in-
vestment accounts, Christmas clubs, rotating savings and credit associations, microcredit savings
accounts in developing countries, fat farms, and programs to reduce consumption of cigarettes,
alcohol or drugs. (See Ashraf et al. (2003), Ashraf at al. (2006), DellaVigna and Malmendier
(2004, 2006), Bryan et al. (2010)).
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preference to measure e¢ ciency. Finally, only the agent knows his degree of time

inconsistency� his type� from period 1. For illustration, suppose the agent can

be either consistent (type C) or inconsistent (type I).

It is common to think that coexisting preferences for commitment and for �ex-

ibility must involve a trade-o¤, which may be re�ected in the design of commit-

ment devices, even when the provider observes the agent�s degree of inconsistency

(Amador et al. (2006); Ambrus and Egorov (2013); Bond and Sigurdsson (2013)).

In contrast, Section 3 shows that, without restrictions on monetary incentives (the

device payments), it is possible to design a device that commits type I to a �exible

plan of action that is e¢ cient in each state. Moreover, if types were observable,

the provider would always o¤er I an e¢ cient device� even if she cares only about

pro�ts. This is because, in period 1, type I knows his self-control problems and

therefore is willing to pay more for an e¢ cient device.2 Section 3 also shows how

e¢ cient devices must feature di¤erent payments as the agent�s degree of incon-

sistency changes; nonetheless, they all induce a behavior with the same level of

�exibility. Concretely, in a savings application, an e¢ cient device for I� but not

that for C� penalizes withdrawals and rewards deposits; in an exercising appli-

cation, it penalizes missed workouts and rewards attended ones. Nonetheless, in

each state, savings and workouts are the same across types.

With unobservable types, however, the question is whether it is possible and,

in particular, optimal to make each type self-select an e¢ cient device. Section 4,

the core of the paper, �rst shows that a less inconsistent agent values any �exible

device strictly more than a more inconsistent agent, creating the adverse-selection

problem. This is because, for example, an e¢ cient savings device for I rewards

deposits and penalizes withdrawals. But if C takes this �exible device, thanks to

his higher self-control, he expects to incur less penalties and enjoy more rewards

than I; as a result, C expects a higher payo¤. As in usual screening models, for C

not to take the device for I, the device for C must then grant him an information

rent. But in contrast to those models, unfortunately, the rent that makes C just

prefer the device for himself can suddenly make I strictly prefer this device too.

Intuitively, a device for C does not feature payments that will solve I�s self-control

problems, yet C�s minimal rent can still be enough to lure I. This possibility

creates an unusual situation: When designing each device, the provider has to

worry about both types�incentives to mimic one another.

Section 4 then derives the screening devices that solve this unusual adverse-

2This result generalizes a result of DellaVigna and Malmendier (2004).
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selection problem. This derivation involves designing, for each type, a menu of

actions and associated payments and requires some nonstandard techniques (see

below).

The screening device for I curtails �exibility below e¢ ciency. Although in

principle it can do so in many ways, this paper tightly characterizes the optimal

way: Flexibility is curtailed at both ends of the e¢ cient choice range. Speci�cally,

type I reacts to both high and low states less than e¢ ciently� resulting in a

narrower choice range� and does not react at all to extreme states, again both

high and low. These ine¢ ciencies are induced by modifying the payments I faces

in an e¢ cient device. For example, suppose there are four states, s2 > s1 >

s�1 > s�2, with corresponding e¢ cient savings 2, 1, �1, and �2 (the last two are
withdrawals). Then, the device for I makes him save, say, 0:9 in s1 and s2 and

�0:5 in s�1 and s�2, by making the withdrawal penalties sti¤er and the deposit
rewards weaker beyond certain amounts. Intuitively, the device for I curtails

�exibility, because by committing I to a less �exible savings plan, it also gives C

fewer chances to bene�t from his higher self-control and thus cuts the rent that is

necessary to make C choose the device for himself.

The screening device for C may also have to depart from the optimal device

under observable types, in order to ward o¤ I. The �rst strategy the provider

adopts to do so is unconventional. In standard models with only time-consistent

agents, the provider would have to distort C�s choices to deter I from mimicking C.

Here, instead, she �rst adds options C never uses but I views as temptations, to an

otherwise e¢ cient device for C, thus making it less attractive for I. But to ward o¤

I, the unused options must be tempting enough; otherwise, the provider will also

have to distort C�s choices. Therefore, screening time inconsistency violates the

usual �no distortion at the top�property that marks previous screening models,

both static and dynamic (e.g., Mussa and Rosen (1978); Courty and Li (2000);

Battaglini (2005)).

Some features that distinguish the screening devices from the e¢ cient ones

are broadly consistent with existing commitment devices. For example, some

devices that incentivize savings� like IRAs and 401(k) plans� also restrict both

withdrawals and deposits through dear monetary penalties; and there is evidence

consistent with the principle that such restrictions dissuade people who value �ex-

ibility more than commitment from using those devices (Amromin (2002, 2003)).

As another example, some devices that provide monetary incentives to work out

regularly� like GymPact� also limit the maximum and minimum number of work-
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outs they incentivize. Section 4.4 discusses this evidence and alternative explana-

tions.

This paper relates to the literature on the trade-o¤s between preferences for

commitment and for �exibility. Amador et al. (AWA) (2006), Ambrus and Egorov

(AE) (2013), and Bond and Sigurdsson (BS) (2013) characterize commitment poli-

cies an inconsistent agent would impose on himself, when he also values reacting

to future information. These papers assume technology constraints on the fea-

sible policies� they rule out monetary transfers across states� which, as noted,

can lead to trade-o¤s between commitment and �exibility. In contrast, in the

present paper without restrictions on transfers, a tension between commitment

and �exibility arises from a quite di¤erent, perhaps unexpected, source: informa-

tion constraints. AWA, AE, and BS also discuss how the agent can implement his

policies with contracts already available in the market (like illiquid assets), even

though they are not designed to serve as commitment devices. In contrast, this

paper explicitly studies the provision of such devices by third parties like banks,

gyms, or governments.3 Section 4.4 compares the policy implications of AWA,

AE, BS with those of this paper.

Other papers have studied the problem of designing incentives, or contracts, for

agents with low self-control. This paper, however, is the �rst to characterize the

optimal provision of commitment devices to agents who value both commitment

and �exibility, and privately know their degree of time inconsistency. In some

earlier papers (e.g., O�Donoghue and Rabin (1999b); DellaVigna and Malmendier

(2004)), the agent has no private information when he is o¤ered a contract.4

In other papers (e.g., Eliaz and Spiegler (ES) (2006); Esteban and Miyagawa

(EM) (2006b); Heidhues and Koszegi (HK) (2010)), the agent has some private

information from the outset, but has no preference for �exibility. Moreover, in ES,

the agent privately knows whether he is aware of his time inconsistency, but its

actual degree is known to the mechanism designer. ES therefore study a di¤erent

screening problem: For instance, if the agent can be of two types� sophisticated

or naive� then the designer can always screen them without losing any pro�t (see

Spiegler (2011)). In contrast, here she can never screen C and I without losing

3O�Donoghue and Rabin (2007) as well as Bryan et al. (2010) ask whether markets can
provide products that solve people�s commitment problems, but leave the answer to future
research.

4Solving speci�c cases of DellaVigna and Malmendier�s (2004) model, Jianye (2012) shows
that their results may change if the agent has private information on di¤erent aspects of his
preference, including the degree of time inconsistency.
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pro�ts. In EM, the designer has to screen the agent�s valuation for her good� not

his degree of inconsistency. However, EM show that the agent�s low self-control

can help the designer extract more pro�ts than in standard monopolistic-screening

models. Finally, even when allowing for asymmetric information from the outset,

HK focus on settings in which self-selection is guaranteed by the contracts that

are optimal under symmetric information.5

The result that the device for type C may have to contain unused options is

based on a key insight of Gul and Pesendorfer (2001): Agents who are prone

to temptations (or are time inconsistent) dislike menus with more options, as

such menus make the woes of temptation more likely. This insight is also behind

related results in BS and EM. The present model, however, di¤ers in ways that

lead to substantive di¤erences in when and how the provider has to rely on unused

options, as explained in Section 4.4.

By examining welfare maximization, this paper also speaks to the literature on

optimal paternalism (e.g., O�Donoghue and Rabin (2003)). It indicates a reason

for some public provision of commitment devices: The inability to observe people�s

self-control problems leads pro�t-maximizing �rms to create ine¢ ciencies for those

who most need commitment.6 In general, a paternalistic planner can achieve

higher e¢ ciency. She may, however, not be able to reach full e¢ ciency, because

of the adverse-selection problem identi�ed in this paper. In the speci�c case of

devices that rely on taxation, like IRAs and 401(k) plans, this paper also shows

that the planner will face a trade-o¤ between her corrective goal� helping I save

adequately for retirement� and her redistributive goal� collecting tax revenues

from C.

Finally, this paper relates to the literature on dynamic mechanism design. On

the methodological side, it highlights the following point about direct mechanisms.

We know from Myerson (1986) that, in models with only time-consistent agents,

one can always restrict attention to mechanisms that describe only options on the

truthful path of play, thus preventing the agents from revealing lies. But with

time-inconsistent agents, this is not true: To �nd the optimal mechanisms, one

must allow for o¤-path options and thus allow the agents to reveal if they lie�

even though lies never occur in equilibrium (see Section 4.1). On the technical

side, this paper uses nonstandard and recent methods to �nd the mechanisms

5The literature on contracting with behaviorally biased agents also includes, among others,
DellaVigna and Malmendier (2006); Esteban and Miyagawa (2006a, 2007); Eliaz and Spiegler
(2008); Grubb (2009); and Spiegler (2011).

6Section 5.2 argues that competition alone may fail to remove these ine¢ ciencies.
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that optimally screen time inconsistency. For reasons that will be explained later,

to handle the incentive constraints involving the agent�s degree of inconsistency,

it uses Lagrangian methods from Luenberger (1969). These methods di¤er from

standard optimal-control methods and the standard dynamic-mechanism-design

approach (Courty and Li (2000); Pavan, Segal, and Toikka (2012)). Finally, to

ensure that the mechanisms satisfy certain monotonicity properties, it adapts

Toikka�s (2011) generalization of Myerson�s (1981) ironing method to allow for

o¤-path options.

Section 5 shows that the insights of the paper generalize to settings with naive

agents, competition among providers, and more than two types. Section 6 con-

cludes. All proofs are in the appendix.

2 The Model

This section sets up a simple two-period model in which a party (the provider)

supplies commitment devices to another party (the agent). As noted, Section 5

will extend the model and its analysis in several directions.

The provider o¤ers her devices in period 1. Each device allows the agent to

choose in period 2 among several options, each consisting of a contractible action

a and a payment p to the provider. The set of feasible actions is [a; a] � R with
�1 < a < a < +1. The provider incurs a cost to produce a in period 2,
given by the twice-di¤erentiable function c : [a; a] ! R with c0 � 0 and c00 � 0.

By assumption, the provider can fully commit to any device� which, if chosen in

period 1, becomes binding for the agent� and no third party can, in period 2, o¤er

the agent contracts that may interfere with the provider�s devices. Relaxing either

of these assumptions can undermine the provider�s ability to supply commitment

devices and raises issues that, though important, are beyond the scope of this

paper.

The agent may have time-inconsistent preferences and is fully aware of it (so-

phistication). To model time inconsistency, this paper follows Strotz (1956). The

agent has two selves: self-1 lives in period 1 and chooses a device; self-2 lives in

period 2 and picks an option from the device chosen by self-1. Both selves�prefer-

ences depend on state s, which occurs in period 2 and can re�ect taste, income, or

health shocks. These shocks induce self-1 to desire �exibility; moreover, they are

not contractible, for example because only the agent observes them.7 Conditional

7If s were contractible, the agent could simply delegate his future choices to the provider and
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on s, self-1�s and self-2�s direct utilities from action a are

u1 (a; s) = sb(a)� a and u2 (a; s; t) = tsb(a)� a,

where b : [a; a]! R is twice di¤erentiable with b0 > 0 and b00 < 0. The distribution
of s is F , which is commonly known in period 1 and has continuous and strictly

positive density f over [s; s] � R with 0 < s < s < +1. This simply says that, in
each state, the agent assigns a weight to the bene�t and cost of action a that is

bounded away from zero. Finally, self-1�s and self-2�s total utilities are u1(a; s)�p
and u2(a; s; t)� p. These functions have two properties that help, as we will see,
to keep the model tractable: (1) s, t, and the function b enter multiplicatively;

(2) p interacts neither with s nor with t.

The positive parameter t determines the preferences�degree of (time) incon-

sistency and can lead self-1 to desire commitment. When t 6= 1, self-1 foresees

that, in each state, self-2 trades o¤ the bene�t and cost of a in a systematically

di¤erent way. This modeling assumption is based on the idea, proposed by cog-

nitive psychologists, of �salience:� Decision-makers seem to perceive the cost of

their actions (�a) as more (or less) salient than the bene�t (sb(a)), depending on
whether they are considering an immediate or a future decision (see, e.g., Akerlof

(1991) and the references therein).

The model captures, in a stylized way, some key common aspects of di¤erent

settings.

Example 1 In period 1, the government (or a bank) o¤ers savings devices to the
agent, who is planning his future savings. A device allows him to make deposits

and withdrawals in period 2 (his working life), whose amount, a, determines a

tax or fee, p; the device gives a return at retirement, based on an exogenous rate.

The government can design di¤erent devices by changing how p depends on a.8 In

period 1, the agent knows his period-2 income, y, but is uncertain about his rate,

s, of intertemporal substitution between period 2 and retirement� for instance,

because it depends on his period-2 health. So, self-1 assigns utility y�a�p+sb(a) to
saving a and paying p in state s, where y�a�p is self-2�s immediate consumption
and b(a) is the expected utility at retirement. However, self-2�s utility function is

y� a� p+ tsb(a) with 0 < t � 1, since period-2 consumption is then more salient

thus bypass his self-control problems.
8Note that p can have two parts, p1 and p2, where only p2 depends on a and p1 is possibly

paid by the agent in period 1, as an initial deposit.
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(Phelps and Pollack (1968); Laibson (1997)).9

Example 2 In period 1, a gym o¤ers memberships, which allow the agent to work
out in period 2 (the following month) at its facility; the time spent there determines

a fee, p. A workout of e hours causes immediate discomfort, but improves future

health by b̂ (e) (with b̂0 > 0 and b̂00 < 0). The agent�s self-1 knows that his marginal

disutility from e will depend, for example, on whether he is sick (s). Self-1 may

also foresee that self-2 will always overweigh the discomfort of e and thus will tend

to work out less than self-1 wants ex ante. To model the agent�s preferences, we

can use b̂(e)� se for self-1 and b̂(e)� tse for self-2, with t > 1. Letting a = �b̂(e)
and assuming quasi-linearity in p, we can write these preferences as u1(a; s) � p
and u2(a; s; t)� p, with the properties assumed above.10

For clarity�s sake, in most of the paper the agent can be one of two types:

type C has tC = 1 and is consistent; type I has 0 < tI < 1 (as in the savings

example) and is inconsistent. Being sophisticated, the agent knows t in period 1.

In contrast, the provider cannot observe t; she, however, knows the possible types

and the probability  2 (0; 1) of type C.
The overall utility that type j gets from a device in period 1 depends on

what j�s self-2 does in period 2. Type j�s utility from a device is then just the

expected utility of self-2�s ensuing decisions, computed using self-1�s preference.

If the agent rejects all the provider�s devices, he gets the outside option whose

value is normalized to zero.

As in other models with time inconsistency, the choice of a welfare criterion

is delicate. This paper adopts the following criterion, which adheres to the usual

interpretation of self-1�s preference as the agent�s long-run preference (see, e.g.,

O�Donoghue and Rabin (1999a); DellaVigna and Malmendier (2004)).

De�nition 1 (E¢ ciency) In state s, the social surplus of action a is u1 (a; s)
� c (a), and the e¢ cient outcome is

a� (s) = arg max
a2[a;a]

u1 (a; s)� c (a) .

By the properties of u1 and c, the function a� is strictly increasing if it always

takes interior values in [a; a]. A strictly increasing a� sets a clearer benchmark

9Section 5.6 discusses the case with utility functions that are not linear in p.
10The interpretation of some gym memberships as examples of commitment devices already

appears in DellaVigna and Malmendier (2004, 2006).
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in terms of the e¢ cient level of �exibility� in this case, e¢ ciency always calls for

di¤erent actions in di¤erent states. For this reason, this paper assumes that the

smallest and largest feasible actions (a and a) are never e¢ cient. It also assumes

that the maximum social surplus is positive in every state.

Assumption 1 For every s, a� (s) is interior, and u1 (a� (s) ; s) � c (a� (s)) > 0.

Finally, when designing her devices in period 1, the provider maximizes a

weighted sum of expected pro�ts and expected social surplus, with respective

weights � 2 [0; 1] and 1 � �. This is a convenient way to allow for a monopolist
(� = 1), as well as for a paternalistic planner who may have to worry about

the pro�tability of her devices (� < 1). This situation may arise if the planner

regulates the market of commitment devices and has to ensure that third-party

providers expect enough pro�ts to enter the market, or if she exclusively provides

such devices and has limited funds to �nance them� consider, for example, a

government providing tax incentives for savings. In these cases, one could let the

planner maximize the expected social surplus subject to making some minimum

(possibly negative) pro�t. This alternative setup would only make � endogenous,

without changing the thrust of the paper (see Online Appendix C).

3 Observable Time Inconsistency

To better understand how the inability to observe the agent�s degree of inconsis-

tency t a¤ects the provider�s supply of commitment devices, this section charac-

terizes her optimal devices when she can observe t.

Such devices can be characterized using direct mechanisms (DMs) that make

the agent report truthfully state s in period 2. Formally, each DM consists of two

functions, a : [s; s]! [a; a] and p : [s; s]! R, and must satisfy the constraints

u2 (a (s) ; s; t)� p (s) � u2 (a (s0) ; s; t)� p (s0) (IC)

for all s; s0 and R s
s
[u1 (a (s) ; s)� p (s)] f (s) ds � 0. (IR)

Note that (IR) depends on self-1�s preference, but (IC) depends on self-2�s pref-

erence. In period 1, the provider maximizes

(1� �)
R s
s
[u1 (a (s) ; s)� c(a (s))]f (s) ds+ �

R s
s
[p (s)� c (a (s))] f (s) ds.
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Although varying � changes the provider�s goal, it turns out that she always

�nds it optimal to o¤er an inconsistent agent a device that solves his self-control

problems.

Lemma 1 (First Best) If the agent�s degree of inconsistency t is observable,
then for any � 2 [0; 1] and t > 0, the optimal device sustains a� and yields the

same expected pro�ts. Moreover, d
2p�

dsdt
> 0, and dp�

ds
� 0 if and only if the agent is

consistent (t = 1).

The intuition for Lemma 1 follows. As usual, since the agent has no private

information in period 1, the provider can extract the whole utility the agent

expects when choosing a device, i.e., the whole expected utility of self-1. For

any �, the provider then wants to maximize the expected social surplus, which

requires sustaining a�. Compared to models with only consistent agents, however,

there is a twist: If the agent is inconsistent, the provider has to o¤er him tailored

incentives (the function p�) so that his self-2 will comply with plan a�. In general,

such incentives may not exist (e.g., if t < 0 in this model). But they always exist

when t > 0, because self-2 prefers higher actions in higher states as prescribed by

a�.

Lemma 1 generalizes a similar result of DellaVigna and Malmendier (2004)�

by allowing for more than two values of action a� and has several implications.

First, pro�t maximization alone leads a �rm to provide a full solution to the

agent�s time inconsistency.11 This result, however, relies on both self-1 and self-2

preferring higher actions in higher states (t > 1); it may therefore not hold, even

with symmetric information, for other forms of time inconsistency. Second, the

provider is indi¤erent between trading with a consistent agent and trading with

an inconsistent agent of any degree t, given their common period-1 preference.

Finally, the �rst-best devices induce behaviors whose level of �exibility is invariant

across types, even though they provide incentives (p�) that vary with t: As the

agent becomes more inconsistent (i.e., t moves farther away from 1), p� becomes

steeper.

Concretely, the properties of p� can be interpreted as follows. In the savings

example, the �rst-best device for C involves a �xed payment for any deposit or

withdrawal (e.g., a setup fee with no other fees). On the other hand, the �rst-

best device for I, who has tI < 1, involves payments that increase as the agent

11It is easy to see that, with perfect competition among providers, each device continues to
be e¢ cient, but the agent enjoys the entire surplus from it.
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deposits less or withdraws more (e.g., a setup fee combined with strictly increasing

rewards for deposits and analogous penalties for withdrawals). Similarly, in the

gym example with tI > 1, the �rst-best device for C involves a setup fee with

no per-visit fee, whereas the �rst-best device for I involves, say, a setup fee,

strictly increasing rewards for attended workouts, and analogous penalties for

missed workouts (recall that a = �b̂(e) where e are the workout hours).
This paper aims to explain why and how the agent�s private information on his

time inconsistency alters the provider�s supply of commitment devices, relative to

the �rst best. One can show that if the number of states is �nite, then for tI close

to tC the provider can (and will) sustain a� without worrying about the agent�s

private information. Intuitively, with discrete states, many incentive schemes (i.e.,

functions p) can sustain a� with each type. Moreover, for tI close to tC, there is a

single p that sustains a� with both types, so private information does not matter

(see Online Appendix B). This never happens, however, with a continuum of

states. For this reason, the paper focuses on this case.

4 Unobservable Time Inconsistency

4.1 The Screening Problem

When the provider cannot observe the agent�s degree of inconsistency, she has

to design commitment devices� one for each type� that satisfy two kinds of

incentive-compatibility conditions. First, type j�s self-1 must select the device

designed for j, hereafter called �j-device.�Second, after selecting a j-device, type

j�s self-2 must choose, at each state, the option that the provider designed for

j to choose in that state. As usual, this design problem can be analyzed using

direct mechanisms (DMs) that make the agent reveal, sequentially, his period-1

and period-2 information.

However, since in this model the agent can be time inconsistent, one has to

specify carefully what information self-2 can reveal to the DMs. In contrast to

models with only consistent agents (Myerson (1986)), DMs that let self-1 report t

and self-2 report only s� his �incremental�information� entail a loss of generality.

Richer mechanisms allow the provider to o¤er j-devices with more options than

j�s self-2 will ever use. These unused options can never help her screen consistent

agents, but they can help her screen inconsistent agents: By representing tempta-

tions, unused options may deter self-1 of an inconsistent agent other than j from
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choosing the j-device (see Proposition 4). So, to describe unused but tempting

options, DMs must allow self-2 to report more than just s: They must allow him

to report how his preference depends on all his information, both s and t. Note

that this dependence is summarized by the product ts, which pins down self-2�s

marginal valuation of a. Therefore, let vj = tjs, vj = tjs, and [v; v] = [vI; vC].

Without loss of generality, we can focus on DMs that satisfy two properties.

First, each DM must assign a pair (a; p) to each sequential report of t and v 2
[v; v]� these reports correspond to choosing a device in period 1 and one of its

options in period 2, respectively. Second, each DM must ensure that truthfully

reporting t is optimal in period 1, and that truthfully reporting v is optimal in

period 2 for any report about t.12 Formally, each DM is then an array fA;Pg =
(aj;pj)j=C;I, where aj : [v; v] ! [a; a] is an allocation and pj : [v; v] ! R is

a payment scheme. Slightly abusing notation, let u2 (a; v) = u2 (a; s; t) for v =

ts. Given the device (aj;pj), let U j(aj;pj) be j�s expected utility in period 1,

�j(aj;pj) be the expected pro�ts if j chooses it, and W j(aj) be the expected

social surplus if j chooses it. The provider�s problem is

P =

8>>>>>>>><>>>>>>>>:

maxfA;Pg ��(A;P) + (1� �)W (A)
s.t., for j =C;I and v; v0 2 [v; v],
u2(a

j (v) ; v)� pj (v) � u2(aj (v0) ; v)� pj (v0), (ICj2)

U j(aj;pj) � U j(a�j;p�j), (ICj1)

U j(aj;pj) � 0, (IRj)

where

W (A) = W C(aC) + (1� )W I(aI)

and

�(A;P) = �C(aC;pC) + (1� )�I(aI;pI).

The key to understanding the adverse-selection problem at the heart of screen-

ing time inconsistency is the constraint (ICj1), which captures j�s incentives to

choose between devices in period 1. To better understand these incentives, rewrite

12This second property is stronger than requiring that truthfully reporting v be optimal only
conditional on a truthful report about t. However, it entails no loss of generality. See, e.g.,
Pavan (2007).
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(ICj1) as

U j(aj;pj)� U�j(a�j;p�j) � U j(a�j;p�j)� U�j(a�j;p�j).

If the right-hand side of this inequality is strictly positive, then j�s expected payo¤

from partaking in the mechanism must exceed �j�s; in other words, j must enjoy
some information rent. Note that the di¤erence on the right-hand side simply

captures whether, in period 1, j expects to get a larger payo¤ than �j�s, if he
mimics �j. Therefore, by studying the payo¤s C and I expect in period 1 when
choosing the same device, we can understand the nature of the adverse-selection

problem created by the unobservability of time inconsistency.

As the next proposition shows, in period 1, C expects a larger payo¤ than I

for any device, and a strictly larger one if and only if the device provides some

�exibility. First, this result shows that C is the �high�type in this model, because

(in expectation) he values any o¤er of the provider more than I. Second, it high-

lights that I�s demand for �exibility is a key determinant of the adverse-selection

problem: If I demanded a device with only one option (no �exibility), then C

could not get any payo¤ surplus by mimicking I, and so the provider would not

have to grant C any information rent.

Proposition 1 (Adverse-Selection Problem) If the mechanism fA;Pg sat-
is�es (IC j

2 ), then

UC(aj;pj) � UI(aj;pj)

for j =C;I, with equality if and only if aj is constant over (v; v).13

The intuition for Proposition 1 is simple. Fix a device (aj;pj) that satis�es

(ICj2), so that we know exactly what self-2 chooses in each state. Recall that C�s

self-2 always chooses the best option from self-1�s point of view, but I�s self-2 may

not. Therefore, C�s self-1 must be at least as well o¤, choosing (aj;pj), as I�s self-

1� recall that both selves-1 have the same preference. Moreover, C�s self-1 must

be strictly better o¤ than I�s, if in period 2 C and I prefer and choose di¤erent

options from (aj;pj) with strictly positive probability; this always happens� as

shown in the proof� unless aj de�nes a device with only one option.14

13The function aj can jump at v and v without making UC(aj ;pj) > UI(aj ;pj), simply
because the distribution F is atomless. Since this indeterminacy has no economic content,
hereafter the paper focuses on the extension of aj to [v; v] by continuity, whenever possible.
14The proof assumes only that 0 < tI < tC � 1. So what really matters is that C�s ex-post

preference is �closer� to the common ex-ante preference than I�s ex-post preference. For this
reason, one can show that C is the �high�type, in this model, also when tI > tC � 1.
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To further understand Proposition 1, it is helpful to consider what changes

if the agent can be of di¤erent types, but is always time consistent. Speci�cally,

consider a model that is identical to that of Section 2, except that the agent�s

utility function is u2 (a; s; t)�p in both periods;15 also, call the type with 0 < t < 1
L, and that with t = 1 H. This model shares two features with that of Section 2: In

period 1, the agent values �exibility, and H expects to have a systematically higher

valuation of a than L, as does C relative to I. The two models, however, di¤er in

another key feature: H enjoys a more than L already in period 1. This implies

that H can obtain a payo¤ surplus by mimicking L, even if their future choices

coincide; in particular, H�s surplus can be strictly positive even if the device for L

has only one option. This also implies that, to give H no rent, the provider must

forgo trading with L; in contrast, the provider can give C no rent and, at the same

time, trade with I.

We can now reduce problem P to simple conditions that characterize the opti-
mal screening devices in terms of the allocations aC and aI only. First, by standard

arguments, each payment scheme pj depends only on aj up to a scalar. Indeed,

(ICj2) holds if and only if a
j is increasing and, for every v 2 [v; v],

pj(v) = u2(a
j (v) ; v) +

R v
v
b(aj (x))dx� kj. (E)

As self-2 values a more, he cannot choose a smaller one; and the price of aj(v)

must deter self-2 from choosing it when his valuation di¤ers from (in particular,

exceeds) v, explaining the integral in (E). Second, since C�s expected payo¤must

exceed I�s, (IRC) always holds. And since payo¤s decrease and pro�ts increase in

the payments, as usual, at the optimum both (IRI) and (ICC1) must bind� recall

that I is the �low�type and C the �high�type. These constraints then pin down

kC and kI, for every aC and aI.16

However, nothing guarantees that the remaining constraint (ICI1) is always

slack. In contrast to standard screening models (e.g., Mussa and Rosen (1978)),

here I� the �low�type� may prefer the C-device to the I-device, even though C�

the �high�type� is indi¤erent between them (see Section 4.3). By the previous

15A similar model appears in Courty and Li (2000).
16When � = 0, (IRI) and (ICC1) can be slack at the optimum. However, assuming that they

hold with equality is without loss of generality, as far as characterizing the optimal aI and aC is
concerned.
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observations, (ICI1) holds if and only if

�RI(aC) � RC(aI), (R)

where17

R�j(aj) = U�j(aj;pj)� U j(aj;pj).

Intuitively, (R) says that a dishonest I must expect to lose, relative to C�s payo¤,

at least as much as a dishonest C expects to gain, relative to I�s payo¤.

Finally, using �j(aj;pj) = W j(aj)� U j(aj;pj), we obtain the following.

Corollary 1 A mechanism fA;Pg solves P if and only if aC and aI solve

P 0 =

8<: maxA W
C(aC) + (1� )

h
W I(aI)� � 

1�R
C(aI)

i
s.t. aC; aI increasing and (R)

.

Due to condition (R), P 0 is not separable across allocations. So we cannot solve
for the optimal allocations independently of one another. Nonetheless, the next

lemma gives necessary and su¢ cient conditions for aC and aI to solve P 0, which
will allow us to characterize their properties.

Lemma 2 (Optimality) The allocations aC and aI solve P 0 if and only if, for
� � 0, (aC; aI; �) satis�es for j = C; I

aj 2 arg max
âj increasing

W j
�
âj
�
� r�jR�j

�
âj
�
,

RC(aI) +RI(aC) � 0, and � [RC(aI) +RI(aC)] = 0,

where rC = � 
1� +

�
1� and r

I = �

.

Lemma 2 relies on in�nite-dimensional, global, Lagrangian methods that don�t re-

quire assuming any property about aC and aI beyond the necessary monotonicity.

Its key implication is that we can characterize aC and aI by solving two distinct

maximizations, each as a function of the weight r�j. As usual, rC depends on the

hazard rate between C and I (the �high�and �low�type), scaled by how much the

provider weighs pro�ts (�). However, both rC and rI also depend on a new term

that takes into account whether (R) binds. This term links the maximizations

17The functional R�j depends only on aj because kj enters additively in U i(aj ;pj) (see the
proof of Proposition 1).
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de�ning aC and aI, thereby reducing the nonseparability of P 0 to the scalar �.
Finally, even if the provider cares only about welfare (� = 0), both rC and rI

can be strictly positive; in this case, both devices will feature distortions at the

optimum (see Section 4.3).

4.2 The Optimal Device for the Inconsistent Agent

This section characterizes the optimal screening device for type I. It shows how

the provider distorts the I-device, so as to limit the rent of type C, by curtailing

its �exibility at both ends of the e¢ cient choice range.

By Lemma 2, when designing the I-device, the provider faces a standard trade-

o¤� captured by W I(aI)� rCRC(aI)� which results in a curtailment of �exibility.
On the one hand, she wants to maximize the expected social surplus with I, which

calls for a device that sustains the e¢ cient level of �exibility (a�)� for the same

reason as in the �rst best. On the other hand, she wants to minimize the rent that

keeps C from mimicking I, which calls for a device with no �exibility (Proposition

1); this is because C�s rent reduces the pro�t from the C-device and can make I

mimic C (recall (R)). Intuitively, the optimal I-device should then strike a balance

between these two polar cases and therefore its �exibility should be curtailed below

e¢ ciency. To gain more intuition, recall that C�s rent arises because, in each state,

C and I have di¤erent valuations v and consequently behave di¤erently under the

I-device (unless aI is constant). Curbing C�s rent then requires curtailing this

di¤erence between C�s and I�s behavior, which depends on how aI responds to

changes in v� i.e., its �exibility.

Although the basic trade-o¤ here is the same as in standard screening models,

those models o¤er no guidelines on how to optimally curtail the �exibility of the

I-device. In Mussa and Rosen (1978), for instance, a seller faces the same trade-

o¤ when designing the quality o¤ered to low-valuation buyers, in a market with

also high-valuation buyers. In that model, the seller has to lower quality below

e¢ ciency; similarly here the provider has to curtail �exibility below e¢ ciency. But

curtailing �exibility, in contrast to lowering quality, can be done in many ways

and the optimal one is not obvious.

The next proposition characterizes it. To state the result, let aI� be the al-

location that de�nes (up to kI) the �rst-best I-device: aI�(v) = a�(v=tI) for

v 2 [vI; vI] and aI�(v) = aI�(vI) otherwise.
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Proposition 2 (Curtailment of Flexibility: Optimal Form) An increasing
aI that maximizes W I(âI) � rCR C(âI) exists, is unique, and is continuous in v

and rC. If rC > 0, aI features:

(a) Range Reduction with �Overconsumption�at the Bottom and �Underconsump-

tion�at the Top: there are v� > vI and v� < vC such that aI(v) = aI�(v) at v� and

v�, aI(v) > aI�(v) for v < v�, and aI(v) < aI�(v) for v > v�;

(b) No Flexibility at the Top: aI is constant over [vb; vC] with vb < vI.

In addition, aI can feature

(c) No Flexibility at the Bottom: aI can be constant over [vI; vb] with vb > vI. A

su¢ cient condition for (c) is that for all s0 > s in [s; sy] 6= ?

F (s0)=f(s0)� F (s)=f(s)
s0 � s � 1� tI

tI
+

1

tIrC
.

The proof is constructive: First, it builds aI on path (over [vI; vI]), relying on

Toikka�s (2011) generalization of Myerson�s (1981) ironing method, and then it

explicitly builds the best extension of aI o¤ path. Uniqueness follows from strict

concavity of the function b.

The optimal I-device curtails the �exibility of I�s behavior, relative to the �rst

best, as follows. First, I reacts to extreme states (both high and low) less than in

the �rst best, so that his choice range is a strict subset of the e¢ cient one given

by aI�. In general, I retains some �exibility to act on ex-post information, and his

choice range remains rich, involving all options in a connected interval.18 Second,

I does not react at all to high enough states and, in some environments, to low

enough states as well; over such states, I�s behavior features no �exibility.

Of course, the I-device sustains all these features with an appropriately tailored

payment scheme pI (recall (E)). This observation is the key to Proposition 2. As

noted, to curb C�s rent the I-device must curtail how di¤erently I and C behave

after choosing it, which depends on how aI varies across v�s. So, to explain how

the optimal aI departs from aI�, it is crucial to understand the global e¤ects on the

di¤erences in actions and payments across v�s of changing aI at one v. Intuitively,

if we raise aI (v), then pI (v) has to rise and pI (v0) has to fall for every v0 above v�

so that self-2�s reports remain truthful. The di¤erences in actions and payments

then shrink between v and every v0 above v, but grow between v and every v0 below

v (recall that aI is increasing). The opposite e¤ects arise, if we lower aI (v). So the

18For example, I retains some �exibility if C�s probability  is small (so that rC is small) and
the utility b(a) of the smallest action is low (see Proposition 3 and Corollary 3).
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Figure 1: �Overconsumption�and No Flexibility at the Bottom

relative strength of these global e¤ects above and below v ultimately determines

whether aI� (v) is distorted up or down, leading to properties (a), (b), and (c).

Speci�cally, to see why �overconsumption�and possibly no �exibility arise at

the bottom, start from the lowest v (see Figure 1). At vI, it is clearly optimal

to distort aI� up, as only the global e¤ect above vI matters. At v close to vI,

however, the global e¤ect below v also matters, but that above v prevails be-

cause, intuitively, the mass of v0 > v prevails on that of v0 < v; it is therefore

still optimal to distort aI� up. As v grows, the e¤ect below v gains strength,

shrinking the upward distortions until some v�, where the two e¤ects balance

each other and aI(v�) = aI�(v�) (e.g., curve 1). Intuitively, how fast this hap-

pens depends on how fast the ratio F I(v)=fI(v) grows. So, if this ratio� which

equals tIF (v=tI)=f(v=tI)� grows fast enough for v close to vI, as formally stated in

Proposition 2, then the upward distortions can shrink so quickly that the provider

may wish that a larger v chose a smaller action than a smaller v0 (e.g., curve 2).

But aI must be increasing; so the provider can only pool v�s close to vI at the

same action (e.g., curve 3). Note that the condition on F that ensures bunching

at the bottom is more likely to hold when I is less inconsistent (i.e., tI is closer to

1), and when the provider cares more about C�s rent (i.e., rC is higher).

To see why �underconsumption�and no �exibility arise at the top, �rst observe

that aI must be constant above vI. Otherwise, tossing any option with a > aI(vI)

curbs C�s rent without harming I: For s > vI (recall that v = s for type C), a

dishonest C now chooses aI(vI), which is closer to I�s choices. So, at vI, only

the global e¤ect below it matters, and therefore it is optimal to distort aI down.
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By the same argument as before, the downward distortions persist until some v�,

where aI(v�) = aI�(v�). Now suppose aI were strictly increasing near vI. If we

lower aI(vI) a bit, a dishonest C�s choices move closer to I�s for almost all s > vI,

thus curbing C�s rent even more. To do so, however, we also have to lower aI for

some v�s below vI, to satisfy monotonicity. The smaller the set of v�s a¤ected by

this extra distortion, the smaller the extra welfare loss with I. So the best thing

to do is to bunch at some ab every v whose action was above ab� formally, every

v > vb� and leave aI unchanged for all other v�s. Note that, for every vb < vI, a

dishonest C chooses more similarly to I for s 2 [vb; s], whereas I must choose ab

only for s 2 [vb=tI; s]. So some bunching is always optimal, because for vb close
to vI = tIs, it reduces more C�s rent than the welfare with I.

To better understand how the provider sustains I�s distorted behavior, it is

helpful to compare the payment schemes associated with aI and aI�. Recall that

pI� is strictly decreasing for tI < 1: By Lemma 1, dpI�=dv < 0 over [vI; vI].

As the next corollary shows, at the bottom pI rises more rapidly than pI� for

an equal decrease in a; this reduces I�s willingness to decrease a and makes him

�overconsume.� On the other hand, at the top pI falls more slowly than pI� for

an equal increase in a; this reduces I�s willingness to increase a and makes him

�underconsume.�

Corollary 2 If daI=dv > 0 at v, then dpI=dv
daI=dv

is strictly smaller than dpI�=dv
daI�=dv for

v 2 [vI; v�), and strictly larger for v 2 (v�; vI].

The next proposition shows how the optimal I-device changes as the weight

rC becomes very large or small. Recall that, by Lemma 2, rC increases in C�s

probability  and the weight � on pro�ts. Also, let

anf = arg max
a2[a;a]

E[u1(a; s)]� c(a),

which is the ex-ante e¢ cient action if the agent is not allowed to act on ex-post

information at all� �nf�means �no �exibility.�

Proposition 3 (Comparative Statics) Let aI(rC) be the optimal allocation for
I. Then aI(rC) converges pointwise to aI� as rC ! 0 and uniformly to anf as

rC ! +1.

If the provider cares very little about C�s rent, then she tends to o¤er an e¢ cient

I-device. If instead she cares a lot about C�s rent, then she tends to disregard I�s
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desire for �exibility, in the limit o¤ering an I-device with only the option anf� a

radical reduction of �exibility vis-à-vis the �rst best. This happens, for example,

whenever the provider cares about pro�ts and the agent�s type is very likely to be

C (if � > 0, rC ! +1 as  ! 1).

With more information on the distribution F , it is possible to say more about

how the screening I-device di¤ers from an e¢ cient one. This is because the

virtual valuation de�ning aI is in general complex. For illustrative purposes, the

next lemma looks at the case with uniform F . In this case, a simple monotonic

relationship also emerges between the weight rC and the choice range of the I-

device, as well as the regions involving no �exibility ([vI; vb] and [vb; vC]).19

Lemma 3 Suppose s is uniformly distributed and tI > s=s. Then, the optimal

aI crosses aI� only once and is strictly increasing over [vb; vb]. As rC rises, aI

changes as follows: vb and aI(vb) decrease and aI(vb) increases; when vb > vI,

then vb increases as well.

In general, more intricate patterns can occur, including bunching also at inter-

mediate points for standard ironing reasons. Lemma 3 highlights, however, that

the bunching at the top and bottom is due not to failures of standard regularity

conditions� which are satis�ed by the uniform distribution� but precisely to the

problem of optimally screening time inconsistency.

4.3 The Optimal Device for the Consistent Agent

This section characterizes the optimal screening device for type C. It shows that,

to deter I from mimicking C, the provider may have to add unused options to

an otherwise e¢ cient C-device, and if these options are not deterring enough, she

may also distort C�s behavior.

By Lemma 2, when designing the C-device, the provider wants to maximize the

surplus with C, but also has to worry about jeopardizing I�s incentives for revealing

his time inconsistency� by (R), how much a dishonest I expects to lose, relative

to C�s payo¤, must exceed C�s rent. A natural benchmark of an e¢ cient C-device is

the �rst-best device, de�ned (up to kC) by the allocation aC� with aC�(v) = a�(v)

for v 2 [vC; vC] and aC�(v) = aC�(vC) otherwise. By the next lemma, however, aC�

can violate (R) for some aI.

19For the proof, see Online Appendix A.
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Lemma 4 Let aC� and aI� be the allocations associated with a�. There is a family
of distributions F such that aC� and aI� violate (R) and are therefore infeasible.

To see the intuition for Lemma 4, recall that a dishonest I loses relative to C�s

payo¤, to the extent that I and C behave di¤erently under the C-device. Given

aC�, this di¤erence is small in states close to s. Therefore, if these states are likely

enough according to F , then ex ante I values the C-device almost as much as C.

On the other hand, since aI� is �exible, C�s rent must be positive and can be large

enough to lure I to mimic C. One can show, for example, that if b(a) =
p
a and

F is uniform, then aC� and aI� are infeasible.

Although Lemma 4 looks at the extreme case of aC� and aI�, its conclusion

holds more generally. By Proposition 3, as the provider cares more about C�s rent

(rC ! +1), she tends to reduce the I-device to a single option; therefore, by
continuity, aC� and aI(rC) are always feasible for rC large enough. On the other

hand, as the provider cares less about C�s rent (rC ! 0), she tends to design an

I-device similar to the �rst-best one. So, if aC� and aI� are infeasible, then by

continuity, aC� and aI(rC) are also infeasible for rC small enough. In this case, the

key question is how the provider changes aC� to avoid I�s mimicking C.

The �rst strategy she adopts is unconventional. In models in which the agent

is always time consistent, the provider must distort the o¤er for one type� hence

his choices� whenever that o¤er makes another type mimic. In the present model,

instead, the provider may be able to avoid I�s mimicking and to o¤er, at the same

time, an e¢ cient C-device. To do that, she adds to the device options that C never

uses, but that make a dishonest I behave more di¤erently from C. Intuitively,

these options lower the degree of commitment that I already �nds too low in an

e¢ cient C-device, thus making a dishonest I lose more relative to C�s payo¤. Since

these options are o¤ path, their production cost is irrelevant and the provider can

usefully employ them in many ways. The way that maximizes a dishonest I�s loss

is presented in the next proposition: To maximally deter I�s mimicking C, the

provider needs to add to an e¢ cient C-device only one option, which a dishonest

I would choose in su¢ ciently low states.

Proposition 4 (Usefulness of Unused Options) An increasing aC sustains a�

with C and maximizes �RI(âC) if and only if aC(v) = a for v < vu and aC(v) =
aC�(v) for v � vu, where vI < vu � vu � vC.

One unused option involving a is enough to maximally deter I�s mimicking, be-

cause I�s self-1 views a as the action that would most tempt his self-2, who always
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prefers lower actions (tI < 1). The payment p for a plays a key role too, for it

controls both the probability (by pinning down vu) and the regret that I�s self-1

assigns to choosing the unused option. Intuitively, if p is low, then I expects to

choose a already for v close to vC, but regrets it only a little. If instead p is high,

then I expects to choose a only for v close to vI� hence with lower probability�

but regrets it more. Clearly, depending on the distribution F , a high payment for

a may deter more I�s mimicking. This explains why the provider may actually

restrict� by setting vu < vC� the set of states in which I�s self-2 has a valuation

low enough to choose the unused option from the C-device.

Although by Proposition 4 unused options in the e¢ cient C-device can make

I less willing to mimic C, they must be tempting enough to keep I away. If they

are, the provider can sustain the e¢ cient outcome with C.

Corollary 3 If aC� and aI(rC) are infeasible, then there is d > 0� which depends
on aC� and aI(rC)� such that aC as in Proposition 4 and aI(rC) are feasible if and

only if b(a) � b(aC�(v C))� d.

The lowest feasible action a can be tempting enough, relative to the lowest e¢ cient

one a� (s), for several reasons. For instance, suppose b(a) captures the future

consequences of some current action (like shopping with credit cards). The worst

consequence b(a) is then likely far worse than the e¢ cient one b(a� (s)), which

takes into account the current utility �a and the cost c(a) (like default costs).
More generally, no technological or legal constraint may prevent the provider from

o¤ering very unattractive actions.

Combining the previous insights, the next proposition summarizes how the

screening C-device depends on C�s probability  and the weight � on pro�ts. Recall

that rC = � 
1� +

�
1� , where � � 0 is the Lagrange multiplier associated with

condition (R).

Proposition 5 (Optimal C-device) There are r1 and r2, where 0 � r1 � r2 <
+1 possibly with strict inequalities, such that the optimal C-device sustains a�

with C if and only if � 
1� � r1, and must include unused options if and only if

� 
1� < r2.

Since r1 can be strictly positive, the present model violates the �no distortion at

the top�property, common in standard screening models. In those models, the

agent of the �highest�type usually achieves an e¢ cient outcome, as if types were

observable; for example, in Mussa and Rosen (1978), the highest-valuation buyer
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always trades e¢ ciently with the monopolist. Here, instead, although C is the

�high�type, the C-device can be ine¢ cient.

The C-device is more likely to feature unused options and (possibly) be inef-

�cient when the agent is less likely to be of type C ( is lower), or the provider

cares more about welfare (� is lower). Intuitively, when either  or � are lower,

the provider is willing to grant C a larger rent. But this rent makes I more willing

to mimic C, so the provider has to o¤set it by lowering the degree of commitment

that I �nds in the C-device.

Corollary 4 If the monopolist (� = 1) has to add unused options to the C-device,
so does the planner (� < 1). If the monopolist�s solution violates the �no distortion

at the top�property, so does the planner�s.

Finally, when unused options alone cannot avoid I�s mimicking C� for example,

because a represents consumption of a good that cannot be negative (healthy

food), and self-1 deems consuming zero a minor temptation� then the provider

has to distort aC on path. She does so to make C and I behave even more di¤erently

after choosing the C-device� this is the only way to make a dishonest I lose even

more relative to C�s payo¤ and thus satisfy (R). By Lemma 2, the optimal aC

maximizes W C
�
âC
�
� rIRI

�
âC
�
with rI > 0, which can again be written as a

virtual surplus to study the properties of aC. The resulting C-device, in general,

can distort C�s behavior both up and down relative to e¢ ciency, in part also to

make I�s self-1 view the unused option with a as an even worse temptation.20

4.4 Discussion

When applied to concrete settings, the previous results can be interpreted as

follows.21

Consider the savings example in Section 2. In contrast to the �rst-best devices,

the screening devices sustain di¤erent behaviors. The C-device should be able to

make C save e¢ ciently, as the lowest feasible savings most likely lead to very

low utility at retirement (i.e., b(a) is very low). The I-device, instead, curtails

�exibility (i.e., liquidity) at both ends of the e¢ cient savings range, which can

be interpreted as restricting both withdrawals and deposits. Such restrictions are

20Formal details are available upon request.
21Of course, this discussion is not meant to be an exact (let alone sole) explanation for the

considered features of some real contracts, given that this paper intentionally omits important
aspects of speci�c applications to focus on its main theoretical question.
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implemented by making the withdrawal penalties sti¤er and the deposit rewards

weaker for large enough amounts. This can create caps on withdrawals as well as

on deposits. Lemma 1 highlights that, contrary to what one might think, this kind

of restrictions may be introduced not to help inconsistent agents avoid depleting

their savings, but to ward o¤ consistent agents.

These implications for commitment policies involving savings di¤er substan-

tively from related results in the literature. Amador et al. (AWA) (2006), Ambrus

and Egorov (AE) (2013), and Bond and Sigurdsson (BS) (2013) give a justi�cation

for penalizing inconsistent agents when they tap their savings to pay for current

overconsumption. In this paper, the �rst-best I-device similarly penalizes current

overconsumption with withdrawal penalties, but it also promotes savings with de-

posit rewards (Lemma 1). In all four papers, penalties (and rewards) are justi�ed

by inconsistent agents�propensity to overconsume. But, in contrast to AWA, BS,

and AE, this paper also gives a justi�cation for ine¢ ciently restricting inconsis-

tent agents�ability not only to tap but also to deposit into their devices. These

restrictions are justi�ed by the need to dissuade consistent agents from choosing

the devices for inconsistent agents. This need never arises in AWA, AE, and BS:

One can easily see that, because those papers rule out payments across states, con-

sistent agents would never want the commitment policies for inconsistent agents,

and vice versa. That is, those policies create no adverse-selection problem with

respect to agents�degree of inconsistency. Concretely, this implies that such prob-

lems do not arise with policies like Social Security and de�ned-bene�t plans, which

are better captured by models without payments. Instead, devices like de�ned-

contribution plans� which have tax penalties and rewards varying with savings

decisions and therefore are better captured by models with payments� are subject

to the adverse-selection problem identi�ed in this paper.

For real-life examples of savings devices that resemble� at least at a broad

level� the di¤erences between the screening C- and I-devices, consider the U.S.

retirement market.22 This market o¤ers standard devices, called taxable accounts

(TAs), as well as special devices, called �tax-shielded�accounts (TSAs)� like IRAs

and 401(k) plans. Governed by di¤erent tax rules, TSAs and TAs di¤er in many

ways. In particular, TSAs have all of the following features, while TAs don�t. Con-

sistent with Lemma 1, TSAs reward deposits and penalize withdrawals through

22Other examples of savings devices that resemble the screening I-device include some
Christmas-club accounts and individual-development accounts� a form of matched-savings
accounts� o¤ered, in the U.S., by some �nancial institutions (see also Ashraf, Gons, Karlan,
and Yin (2003)).

25



taxation. However, consistent with Proposition 2 and Corollary 2, TSAs set dear

tax penalties for deposits beyond certain amounts and also limit withdrawals�

empirically these limits sometimes bind.23 Moreover, for instance, IRA-backed

loans are de facto prohibited, and 401(k)-backed loans are capped and subject to

quick repayments. Finally, there is some evidence consistent with the principle

that curtailing �exibility in the special devices curbs their appeal to less inconsis-

tent agents. Amromin (2002, 2003) shows that a signi�cant share (39%) of U.S.

savers does not take full advantage of TSAs�tax bene�ts, and prefers to invest in

TAs because of TSAs�liquidity constraints. These savers reveal that they value

�exibility more than commitment, which may depend, among other things, on

them being less time inconsistent.

Of course, many other reasons can explain each of these features. For example,

deposits could be limited to prevent rich people from exploiting IRAs�tax bene�ts

too much, thus avoiding large tax-revenue losses. But the possibility of observing

people�s income should, in principle, remove this issue. Indeed, one might wonder

why deposit limits also apply to poor savers� this paper provides an answer. But

even if other reasons led to the current regulation, this paper suggests that its

broad features also appropriately screen among di¤erently inconsistent savers.

Moreover, this paper points out a single rationale that can account for all the

mentioned features at once, as well as some, perhaps unexpected, consequences

of modifying them. For example, relaxing the withdrawal (but not the deposit)

penalties of TSAs can lure consistent people away from TAs, even though TAs

have no such penalties to begin with.

Consider now the exercising example in Section 2. Although here tI > 1, the

results in Sections 4.2-4.3 are qualitatively unchanged (see Section 5.4) and can

be interpreted as follows. The screening C-device features no monetary incentives

to work out. Moreover, by allowing the agent to skip any number of workouts

without penalties (intended as an unused option), the C-device may deter I from

choosing it because, otherwise, he would end up exercising too little. On the

other hand, the I-device curtails �exibility at both ends of the e¢ cient range of

workouts, by making the penalties for missed workouts sti¤er and the rewards

23In 2007 (2008), about 59% (49%) of IRA-owners contributed at the limit (Holden et al.
(2010b)), and roughly 11% of all 401(k) participants did so in 2004 (Munnell and Sundén (2006)).
Except for few cases (like �rst-time home purchase for IRAs), any sum withdrawn before the
age of 59 12 incurs tax penalties, which seem to actually limit access to these TSAs: Holden and
Schrass (2008-2010a) report that the vast majority of IRA withdrawals are retirement related,
and only about 5% occurs before the owner turns 59 12 .
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for attended workouts weaker as their number exceeds some level; again, this can

create caps on maximum and minimum workouts. Finally, there are examples of

devices that o¤er monetary incentives to work out, but also have restrictions that

are evocative of the I-device (see, e.g., GymPact.com).

The curtailment of �exibility in the I-device should not be confused with an

apparently similar result in O�Donoghue and Rabin (OR) (1999b). In OR, a �rm

designs contracts to incentivize a present-biased worker to complete a task at the

most e¢ cient time, which only the worker knows by observing the task cost over

time. If the �rm does not know the worker�s propensity to procrastinate (which the

worker learns only after signing a contract), then the best contract sets penalties

that increase for longer delays, possibly involving deadlines. Although such a

contract curtails the worker�s �exibility, its rationale is based on learning, not on

screening. As the worker continues to delay, the �rm will learn that his propensity

to procrastinate is high, which justi�es stronger punishments; therefore, the �rm

wants to commit to a contract that will take that into account.

Finally, as noted, the result that optimal mechanisms may have to o¤er options

that no type ever uses also appears in Esteban and Miyagawa (EM) (2006b). EM

consider a classic monopolistic-screening model, except that buyers are prone to

temptations as in Gul and Pesendorfer (2001). In such a model, the monopolist

may be able to fully extract all buyers�surplus, by o¤ering low-valuation buyers

menus with unused options that ward o¤ high-valuation buyers who view them

as temptations.

EM�s paper, however, di¤ers substantively from this paper. First, in EM,

the monopolist screens buyers�usual valuation, not their degree of inconsistency.

Second, in EM, buyers value commitment but not �exibility, and consequently

unused options are necessary to screen high-valuation buyers. In this paper, in-

stead, since the agent also values �exibility, type I may �nd the e¢ cient C-device

unappealing even without unused options: To satisfy C�s demand for �exibility,

such a device must include many options and consequently can already create

enough temptations from I�s point of view. Finally, one can show that, in EM,

maximizing welfare never requires adding unused options to any menu. In this

paper, instead, the opposite is true: Maximizing welfare may require a C-device

with unused options, while maximizing pro�ts may not (Proposition 5). This

last di¤erence explains why, as EM point out, their result on menus with unused

options is not robust to competition, whereas the possibility of a C-device with

unused options is (see Section 5.2).
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5 Extensions

This section extends the model of Section 2 and its analysis in several natural

directions. Section 5.1 allows for naive agents, in the sense that some agents may

overestimate their self-control and thus undervalue commitment. In fact, some

people do so (see, e.g., DellaVigna�s (2009) survey and the references therein).

Section 5.2 allows for competition among providers of commitment devices in pe-

riod 1. The paper focuses on the case without competition, so as to isolate and

thus better understand the screening problem created by the inability to observe

people�s time inconsistency. But, in many settings, commitment devices (like

savings accounts) are provided by competing �rms (like banks), whose incentives

di¤er from those of a monopolist. Section 5.3 allows for more than two types of

agents. The two-type model reveals important features of the problem of screen-

ing time inconsistency. But, in principle, richer heterogeneity across agents may

generate other interesting results. Section 5.4 allows for inconsistent agents whose

self-1�s and self-2�s preferences disagree in the opposite direction (t > 1) to that

considered so far, so that self-2 tends to �overconsume�a. As we saw in example

2, some interpretations of the model are consistent with t > 1. Section 5.5 allows

di¤erent types to assign di¤erent values to the option of rejecting all the provider�s

devices. Intuitively, having no commitment device can be worse for more incon-

sistent types. This clearly changes the incentive constraints the provider faces.

Finally, Section 5.6 relaxes the assumption that the agent�s utility is transferable.

Transferability is standard in many screening models and gives tractability, but

it is not ideal for some applications of the present model.

Of course, these extensions add generality, nuances, and complications. Im-

portantly, however, they do not change the main insights of the paper.24

5.1 Naïveté

One way to add naïveté to the present model is to assume that, with some prob-

ability, the agent of type t < 1 (or t > 1) believes in period 1 that his type is

t̂ 2 (t; 1] (or t̂ 2 [1; t)), but learns in period 2 that it is actually t (O�Donoghue
and Rabin (2001)).

Naïveté a¤ects the analysis as follows. On the one hand, it changes the

provider�s objective in the usual way: The provider now has to design the de-

24For reasons of space, the following discussion will be mainly informal and focused on intu-
itions.
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vice for an agent who in period 1 believes his type to be t̂, taking into account

that (with some probability) his real type is t. So, depending on how much

she cares about pro�ts versus welfare, she will exploit or counteract the agent�s

naïveté. Of course, this implies that, even when the provider can observe t̂ and

t, she may o¤er a device that does not sustain a�. Intuitively, if an inconsistent

agent believes himself to be consistent, he does not value the commitment that

would allow his real self-2 to achieve a�, so providing such a commitment does

not help to maximize pro�ts. On the other hand, naïveté does not change the

incentive constraints the provider has to satisfy: In period 2 only self-2�s valua-

tion v matters, and in period 1 only self-1�s belief about t matters� not whether

it is correct. In particular, Proposition 1 now says that, in period 1, an agent

who believes himself to be less inconsistent values any �exible device more than

an agent who believes himself to be more inconsistent. So, if the second gets a

�exible device, then the �rst must get a positive information rent.

Therefore, the insights from Section 4 also apply to a setting with naïveté.

Now the provider has to screen, in period 1, the agent�s perceived degree of in-

consistency t̂. For each t̂, she will face a trade-o¤ between o¤ering t̂ the device

that is optimal with observable types and extracting rents from an agent who

believes himself to be less inconsistent than t̂, while ensuring that an agent who

believes himself to be more inconsistent than t̂ does not mimic t̂. Since, as noted,

the incentive constraints are unchanged, the optimal way to solve this trade-o¤

is also qualitatively unchanged. For instance, suppose in the two-type model I

believes his type to be t̂ 2 (tI; tC), and let anI� be the optimal allocation for the
naive I if all types are observable.25 Then, to lower C�s rent, the provider will

curtail the �exibility of anI� in the same way as she curtails that of aI� for the

sophisticated I. Finally, to better dissuade the naive I from mimicking C, she may

add unused options to the C-device as shown in Section 4.3. Of course, design-

ing such options requires more caution with naïveté� especially when maximizing

welfare� for a naive agent can incorrectly predict the likelihood of choosing them

after committing to a device.

5.2 Competition

Competition in the provision of commitment devices raises natural questions.

For example, can it lead �rms to provide these devices e¢ ciently, removing the

25If t̂ = tC, then in period 1 I and C believe that they are the same type. So the provider
cannot screen them.
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distortions shown in Section 4? A complete answer is beyond the scope of this

paper; therefore, the following only aims to give a rough intuition for why the

answer may be no, even with perfect competition.

Consider a model that is identical to that in Section 2, with two exceptions:

(1) there are many �rms that, in period 1, can freely enter the market and o¤er

devices as does the monopolist in the original setup; (2) there are many agents,

each of type I or C, who can freely interact with any �rm. Ignoring technicalities,

suppose a perfectly competitive equilibrium exists. First, one can see that the

e¢ cient outcome cannot arise with each type. Clearly, for this to happen, di¤erent

types must choose di¤erent devices (Lemma 1); that is, the equilibrium must be

separating. By free entry, each �rm in the market must then break even on each

device it o¤ers, so j�s expected payo¤ from the j-device equals the social surplus

it creates with j: U j(aj;pj) = W j(aj). Since the largest surplus W j(aj�) is the

same across types (by de�nition), it follows that UC(aC�;pC) = UI(aI�;pI). But

by Proposition 1 UC(aI�;pI) > UI(aI�;pI), so C agents would prefer the I-devices,

contradicting separation. We conclude that in any separating equilibrium

W C(aC�) � UC(aC;pC) > UI(aI;pI) =W I(aI),

so aI is ine¢ cient.

Second, one can see that the ine¢ ciencies of the I-devices should qualitatively

match those in Section 4.2. For simplicity, assume that it is always possible to

deter I agents from mimicking C agents by adding unused options to otherwise

e¢ cient C-devices (Section 4.3). Then, in equilibrium, each I-device should max-

imize e¢ ciency with I (i.e., W I(aI)), while ensuring that no C wants to mimic

I (i.e., W I(aI) + RC(aI) � W C(aC�)). Applying once more the methods used

for Lemma 2, we get that aI must maximize, among all increasing functions, an

objective of the form W I(aI)� rRC(aI) with r > 0, as in Section 4.2.

5.3 Many Degrees of Inconsistency

Consider a model that is identical to that in Section 2, except that now the agent

can be one of N > 2 types with N �nite. For simplicity, index the types from the

lowest to the highest degree of inconsistency: 1 � t1 > t2 > : : : > tN > 0. Finally,
let j�s probability be j > 0.

Most of the analysis of the screening problem generalizes easily. A DM is now

an array fA;Pg = (aj;pj)Nj=1 with aj : [v; v] ! [a; a] and pj : [v; v] ! R, where
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[v; v] = [stN ; st1]. As in problem P, each DM must satisfy constraints (ICj2) and

(IRj) for every j, and constraint ICjm1 , given by U
j(aj;pj) � U j(am;pm), for

every j and m. The provider�s objective changes only to the extent that she now

takes expectations over N types. Finally, a generalization of Proposition 1 says

that if (ICj2) holds, then U
i(aj;pj) � Um(aj;pj) for i < m, with equality if and

only if aj is constant over (vm; vi) (recall that vm = stm and vi = sti). Intuitively,

outside this range neither i norm get to choose aj (v), so neither i�s norm�s payo¤

depends on it.26

Screening more than two degrees of inconsistency, however, raises one addi-

tional complication, which this paper solves with a novel strategy. Not only can

the constraints ICjm1 bind in both directions between adjacent types� as in the

two-type model. But they can also be violated between nonadjacent types, even

though they hold between all adjacent ones. A similar issue appears in the liter-

ature on dynamic mechanism design with only time-consistent agents, which has

developed a speci�c strategy to handle it (Courty and Li (2000); Pavan, Segal,

and Toikka (2012)). This strategy involves restricting the primitives (potentially

in an ad-hoc way), so that local incentive compatibility implies global incentive

compatibility. Using this strategy to study a new screening problem seems un-

appealing; moreover, �nding e¤ective� let alone reasonable� restrictions is hard

in the present model. Therefore, this paper adopts a di¤erent strategy that does

not restrict the primitives and deals with the constraints ICjm1 all at once; it uses

Lagrangian methods and relies on having �nitely many types.

Applying these methods reveals that, when designing each j-device, the provider

trades o¤ the surplus with j and the rents the device causes for (some of) the less

inconsistent types (see Online Appendix A); this generalizes the trade-o¤ high-

lighted in the two-type model. The provider also has to ensure that each j-device

deters types who are more inconsistent than j from mimicking j. Based on Sec-

tion 4.3, the next proposition looks at the case in which unused options su¢ ce to

ensure this property.27

Proposition 6 Suppose b(a) is low so that unused options su¢ ce to satisfy IC jm
1

for j > m. An optimal mechanism fA;Pg exists with aj unique over (vj; vj), for
every j. Moreover, (i) the 1-device sustains a�; (ii) all devices sustain a� if � = 0,

otherwise at least the N-device sustains a distorted outcome; (iii) if the j-device

26It is easy to see this generalization from the proof of Proposition 1.
27For the proof, see Online Appendix A.
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is distorted, it curtails j�s �exibility as in Proposition 2; and (iv) for j < N , the

j-device may have to include unused options with a < aj(vj).

As long as the provider cares about pro�ts (� > 0), she will curtail �exibility

for the most inconsistent type in the same way as she did for I in the two-type

model. This also happens for an intermediate type m, whenever at the optimum

ICjm1 binds for some j less inconsistent than m.

5.4 Other Directions of Time Inconsistency

To see what happens when time inconsistency induces self-2 to overconsume a,

consider a two-type model with tI > 1 = tC. In period 1, C values any �exible

device more than I, for the same logic behind Proposition 1. So the provider has

to trade-o¤ the surplus with I and the rent to C when designing the I-device,

which calls for curtailing its �exibility for the same reason as in Section 4.2. The

optimal way to curtail �exibility is also qualitatively the same. The only change is

that now there is always no �exibility at the bottom (rather than at the top) and

possibly no �exibility at the top (rather than at the bottom). Moreover, Lemma

4 and its implications continue to hold. So, if the provider has to deter I from

mimicking C, she again designs the C-device as shown in Section 4.3. The only

change here is that the unused option features a (rather than a), because now I�s

self-1 deems a as the action that would most tempt his self-2, who always prefers

higher actions (tI > 1).

Finally, to see what happens when time inconsistency induces some agents to

underconsume a and others to overconsume it in period 2, consider a three-type

model with tI1 > 1 = tC > tI2. Again, in period 1, C values �exible devices more

than both I1 and I2; so the provider has to grant C an information rent. However,

she may be able to extract the whole surplus from both I1 and I2. Indeed, neither

I1 nor I2 may value the device for any other type j more than j. Intuitively, I1
and I2 can behave di¤erently after choosing the device for j, but from self-1�s

point of view, neither may be able to improve on j�s choices (see Online Appendix

B). To fully analyze the case with both t < 1 and t > 1, one can again use the

methods in Section 5.3.

5.5 Outside Option with Type-Dependent Values

After rejecting all the provider�s devices in period 1, the agent will make certain

state-contingent choices in period 2, which can be described with the pair (a0;p0)
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using the formalism of Section 4.1. For simplicity, consider again the two-type

model. By Proposition 1, UC(a0;p0) � UI(a0;p0) with equality if and only if a0
is constant over (v; v). So C and I value the outside option di¤erently, unless they

always end up making the same choice.

When C values the outside option more than I, the analysis in Section 4 can be

easily adjusted without changing its thrust. Recall that the constraints (IRC) and

(ICC1) set two lower bounds on C�s payo¤ from the C-device: one endogenous, given

by UC(aI;pI) = UI(aI;pI) + RC(aI), and one exogenous, given by UC(a0;p0)

= UI(a0;p0) + RC(a0). The question is which binds �rst. In Section 4, the

endogenous bound always binds �rst, for (IRI) and (ICC1) imply (IR
C). Now this is

no longer the case. But, intuitively, whenever the endogenous bound binds �rst,

we are in a situation similar to Section 4; so the provider will distort the I-device

as shown in Section 4.2.28 On the other hand, if the exogenous bound binds �rst,

then obviously the provider has no reason to distort the I-device. For example,

the provider will never distort the I-device, if the outside option already sustains

the e¢ cient outcome with I� i.e., a0 = aI� over [vI; vI]. In this case, the provider

must grant C at least the surplus RC(a0), which exceeds RC(aI�), that C can get

from (a0;p0) relative to UI(a0;p0). Finally, if (ICI1) binds, then the provider will

design the C-device as shown in Section 4.3.29

5.6 Nontransferable Utility

The assumption of transferable utility between the provider and the agent is not

ideal for some applications. In the case of savings devices, for example, it seems

more natural to let self-1�s and self-2�s preferences be b(y � a � p) + sb(a) and
b(y � a � p) + tsb(a), where the instantaneous utility b(�) is nonlinear. It is well
known, however, that screening models without transferability can be complicated

to analyze; this paper is no exception.

To some extent, characterizing the agent�s incentives to use commitment de-

vices may be straightforward even without transferability. First, in a model with

types I and C, the same revealed-preference logic behind Proposition 1 implies

that C must enjoy an information rent; and the same logic behind Lemma 4 im-

plies that C�s rent can again jeopardize I�s incentives to reveal his type. Second,

28This is more likely to happen when the outside option involves little �exibility, so that a0
is almost constant and RC(a0) is small. Recall that RC(aI�) > 0.
29This argument can be extended to settings in which, in period 1, the agent has access to

other devices if he rejects the provider�s ones. In these settings, (a0;p0) can be type dependent.
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we can still use truthful direct mechanisms to describe each device with a pair

(aj;pj) as in Section 4.1. More speci�cally, suppose in the previous example b(�)
is strictly increasing with range R. Then, we can let p̂j(�) = b(y � aj(�) � pj(�))
and work with (aj; p̂j) to characterize the incentive constraints as before.

On the other hand, characterizing the optimal screening devices is harder

without transferability. As usual, this is because we lose the linear relationship

between utils for the agent and pro�ts for the provider. To see this, consider

again the previous example with additive utility functions. Using the formalism

(aj; p̂j), standard arguments imply that

p̂j(v) = vb(aj(v)) +
R v
v
b(aj(x))dx+ k̂j,

where k̂j controls the level of j�s expected payo¤. For C, this level depends on the

rent caused by the I-device, so k̂C depends on aI� similarly, k̂I can depend on aC.

Now consider the pro�t from (aC(v); p̂C(v)), which equals y�aC(v)� b�1(p̂C(v))�
c(aC(v)). Since b(�) is nonlinear, the pro�t is not separable in aC and k̂C and
therefore the trade-o¤s that de�ne each aC(v) depend on the entire function aI.

In the end, this implies that� in contrast to Lemma 2� we cannot characterize

each aj by solving a distinct maximization that fully determines its properties.

However, recall that the logic behind the properties of the optimal devices in

Sections 4.2 and 4.3 does not rely on transferability. Therefore, it seems reasonable

to expect that the key insights of this paper should also hold in settings without

transferability.

6 Conclusion

Commitment devices that rely on monetary incentives can o¤set people�s time

inconsistency by realigning their preferences at di¤erent dates; such devices can

thus avoid tensions between people�s demand for commitment and for �exibility.

When aware of their inconsistency, people are ready to pay more for devices that

o¤set it; this gives pro�t-maximizing �rms an incentive to o¤er such devices.

But the combination of people�s demand for �exibility and superior information

on their degree of inconsistency creates an adverse-selection problem. Its pro�t-

maximizing solution involves devices for more inconsistent people that curtail

�exibility at both ends of the e¢ cient choice range, and devices for less inconsistent

people that may include unused options, and possibly distort their behavior; these
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properties can mark the welfare-maximizing solution too. By curtailing �exibility,

a device for more inconsistent people makes a less inconsistent person less willing

to mimic them, because it gives him fewer chances to make better decisions.

By including unused options, a device for less inconsistent people makes a more

inconsistent person less willing to mimic them, because it gives him more chances

to make worse decisions.

The theory developed in this paper can be a basis to think about how public

and private institutions (should) provide commitment devices when, ex ante, they

cannot easily detect each person�s degree of inconsistency (or self-control). For

example, governments may want to o¤er savings accounts with tax incentives

that help inconsistent people save enough for retirement; gyms may want to o¤er

memberships with monetary incentives that help inconsistent people work out

regularly.

Alternatively, one could also interpret the model in this paper as capturing

�nested-agency�situations like the following. A local state (corresponding to self-1

in the model) has to delegate some decision to a better informed �rm (self-2). To

do that, however, the local state must comply with delegation rules designed by a

federal regulator (the provider). This paper could then o¤er insights on how the

regulator should design these rules, when the local state knows better how the

�rm�s goals di¤er from the state and federal goals.

One key assumption of this paper is that the provider can o¤er people com-

mitment devices to begin with. But this ability may be limited if the provider

herself lacks commitment power, or if people can contract with other parties in the

future� people can open illiquid savings accounts at a bank today, and then get

credit cards from the same or another bank. As in other dynamic-contracting set-

tings, ex post, the provider may want to renegotiate her ex-ante o¤ers. Moreover,

since here people can be time inconsistent, they themselves may want to undo,

ex post, the commitment they took on ex ante� either by renegotiating it or by

trading with new parties. Gottlieb (2008) and Zhang (2012) tackle some of these

issues in settings in which everybody knows each person�s degree of inconsistency.

Investigating how renegotiation and ex-post contracting a¤ects the provision of

commitment devices, when people privately know their degree of inconsistency, is

left for future work.
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A Proofs

A.1 Proof of Lemma 1

Consider the provider�s problem described in the main text. If � > 0, (IR) must

bind; if � = 0, assume w.l.o.g. that (IR) holds with equality. Thus, the problem

becomes

max
a

nR s
s
[u1 (a (s) ; s)� c(a(s))]dF

o
s.t. (IC).

The relaxed problem without (IC) has a unique solution (up to fs; sg): a � a�.
It remains to show that there is p� such that (a�;p�) satis�es (IC). By standard

arguments, for any t > 0 such a p� exists if and only if a increases in s, a property

satis�ed by a�. Moreover, for every s,

p�(s) = u2(a
�(s); s; t)�

R s
s
tb(a�(s))� k,

where k is a scalar. By standard arguments, a� is di¤erentiable and

dp�(s)

ds
=
@u2(a

�(s); s; t)

@a

da�(s)

ds
,

which equals zero if and only if t = 1, by the de�nition of a� and Assumption 1.

Finally,
d2p�(s)

dsdt
= sb0(a�(s))

da�(s)

ds
> 0.

A.2 Proof of Proposition 1

By standard arguments, (ICj2) holds if and only if a
j is increasing and, for v 2 [v; v],

pj(v) = u2(a
j (v) ; v) +

R v
v
b(aj (x))dx� kj (1)

where kj = u2(aj(v); v)� pj(v). Using (1), we get

U i(aj;pj) =
R vi
vi

h
u1(a

j (v) ; v=ti)� u2(aj (v) ; v)�
R v
v
b(aj (x))dx

i
dF i(v) + kj,

(2)

where F i is the distribution F induces on [v; v], conditional on being type i.

Changing variables, we get

U i(aj;pj) =
R s
s
[sb(aj(tis))� tisb(aj(tis))�

R v
tis
b(aj (x))dx]dF (s) + kj. (3)
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For each s, de�ne

�(sj aj) = s(1� tC)b(aj(tCs))�
R v
tCs
b(aj (x))dx

�s(1� tI)b(aj(tIs)) +
R v
tIs
b(aj (x))dx

= s(1� tC)[b(aj(tCs))� b(aj(tIs))] (4)

+
R tCs
tIs
[b(aj (x))� b(aj(tIs))]dx.

Since aj is increasing and tI < tC � 1, �(sj aj) � 0. Also, if aj (v) = a on (v; v),
then �(sj aj) = 0 on (s; s). Using (3) and (4), we have

UC(aj;pj)� UI(aj;pj) =
R s
s
�(sj aj)dF � 0,

with equality if aj (v) = a on (v; v). Now suppose aj is not constant on (v; v). Since

aj is increasing, there is ~v 2 (v; v) such that v < ~v < v0 implies aj (v) < aj (v0).

Let ~s1 = ~v=tC and ~s2 = ~v=tI, and consider interval I = (~s1; ~s2) \ [s; s] 6= ?. For
s 2 I, tIs < ~v < tCs and aj(tIs) < aj(tCs). To prove that UC(aj;pj) > UI(aj;pj),
it is enough to show that

R
I

hR tCs
tIs
[b(aj (x))� b(aj(tIs))]dx

i
dF > 0. (5)

For s 2 I,

R tCs
tIs
[b(aj (x))� b(aj(tIs))]dx �

R tCs
~v
[b(aj (x))� b(aj(tIs))]dx > 0,

where the �rst inequality follows from aj being increasing and the last from

aj (x) > aj(tIs) for x 2 (~v; tCs). Since I has positive measure, (5) follows.

A.3 Proof of Lemma 2

Let B = fb : [v; v] ! [b(a); b(a)] j b increasingg. If a is increasing, then

b(v) = b(a(v)) 2 B; if b 2 B, then a(v) = b�1(b(v)) is increasing. LetfW i(b) =W i(b�1(b)) and eRi(bj) = Ri(b�1(bj)). Then, P 0 is equivalent to
Pb =

(
max fW C(bC) + (1� )

hfW I(bI)� �
1�

eR C(bI)
i

s.t. bC;bI 2 B and eRC(bI) + eRI(bC) � 0.
The space X = f(bC;bI) j bi : [v; v]! Rg is linear and Y = B�B is a convex

subset of X . The objective is concave, as b�1 and c are convex; eRI(�) + eRC(�)
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is linear. Moreover, there is (bC;bI) 2 Y such that eRI(bC) + eRC(bI) < 0: e.g.,

bC = b(aC�) and bI constant. Let � � 0 and de�ne

L(bC;bI; �) = fW C(bC) + (1� ) [fW I(bI)� �

1� 
eRC(bI)]

��[ eRI(bC) + eRC(bI)]
= [fW C(bC)� rI eRI(bC)] + (1� ) [fW I(bI)� rC eRC(bI)]. (6)

By Corollary 1, p. 219, and Theorem 2, p. 221, of Luenberger (1969), (bC;bI)

solve Pb if and only if there is � � 0 such that, for all (bC0;bI0) 2 Y ; �0 � 0, both
L(bC;bI; �) � L(bC0;bI0; �) and L(bC;bI; �0) � L(bC;bI; �). Given � � 0, the �rst
inequality holds if and only if bC and bI maximize, within B, the �rst and second
term in brackets of (6). The second inequality holds if eRC(bI) + eRI(bC) � 0 and
�[ eRC(bI) + eRI(bC)] = 0. Finally, if (bC;bI) solves Pb, then eRC(bI) + eRI(bC) � 0.
And if eRC(bI) + eRI(bC) < 0, then � must be zero: otherwise, there is �0 2 [0; �)
such that

L(bC;bI; �0)� L(bC;bI; �) = (�� �0) [ eRI(bC) + eRC(bI)] < 0.
Finally, if (bC;bI; �) satis�es bi 2 argmaxb2BffW i(bi) � r�i eR�i(bi)g, � � 0,eRC(bI)+ eRI(bC) � 0, and �[ eRC(bI)+ eRI(bC)] = 0, then aC = b�1(bC), aI = b�1(bI),
and � satisfy the conditions in Lemma 2. Similarly, if (aC; aI; �) satis�es the

conditions in Lemma 2, then bi = b(ai) 2 argmaxb2BffW i(bi) � r�i eR�i(bi)g,eRC(bI) + eRI(bC) � 0, and �[ eRC(bI) + eRI(bC)] = 0.
A.4 Proof of Propositions 2 and 3

Step 0: Writing W I(aI)� rCR C(aI) in Lemma 2 as an expected virtual surplus.

To do so, note that

W i(ai) =
R v
v
[u1(a

i (v) ; v=ti)� c(ai (v))]dF i. (7)

Use (2) to express RC(aI). Then, changing order of integration and rearranging

yields

RC(aI) = �
R vC
vI
b(aI (v))gC (v) dv �

R vI
vI
b(aI (v))GI (v) dF I, (8)

where gC (v) : (vI; vC]! R and GI : [vI; vI]! R are given by

gC (v) = tC�1
tC
vf C (v)� (1� F C (v)) and GI (v) = qI (v)� fC(v)

fI(v)
qC (v), (9)
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with qi (v) = v=ti � v � F i (v) =f i(v). By (7) and (8), W I(aI) � rCRC(aI) equals
the expected virtual surplus

VS I(aI; rC) =
R vI
vI

�
b(aI (v))wI(v; rC)� aI (v)� c(aI (v))

�
dF I (10)

�rC
R vC
vI
b(aI (v))(1� F C (v))dv,

where, on [vI; vI], wI(v; rC) = v=tI + rCGI (v) is the virtual valuation of b(aI (v)).

As in the proof of Lemma 2, it is convenient to work in terms of the functions

bI 2 B. The properties of the corresponding allocation follow by letting aI =
b�1(bI).

Part 1: Existence and Uniqueness.
Step 1: Constructing the generalized version of VS I using Toikka�s (2011)

method on [vI; vI]. Since f is strictly positive, the inverse function (F I)�1 :

[0; 1] ! [vI; vI] is well-de�ned, strictly increasing, and continuous. Fix rC and

de�ne, for x 2 [0; 1],

z(x; rC) = wI((F I)�1 (x) ; rC) and Z(x; rC) =
R x
0
z(y; rC)dy.

Then, z is continuous in x, except possibly at xm = F I (vm) > 0, where vm =

minfvI; vCg: If tC < 1 and vC < vI,

lim
v#vC

wI(v; rC) = lim
v"vC

wI(v; rC)� rCf
C(vC)

f I(vC)

�
1� tC
tC

vC
�
. (11)

Let 
 be the convex hull of Z: 
 is the highest convex function such that 
 � Z
(Rockafellar (1970), p.36). De�ne ! : [0; 1]! R as !(x; rC) = 
0(x; rC), whenever

0(x; rC) exists. W.l.o.g., extend !(x; rC) by right-continuity on [0; 1) and by left-

continuity at 1.

Lemma 5 The function ! is continuous in x and rC.

Proof. (Continuity in x). Suppress rC. Continuity at 0 and 1 holds by

construction. For x 2 (0; 1) n fxmg, z is continuous, so Z 0 (x) = z (x). First,

suppose 
 (x) < Z (x). By de�nition, ! (�) is constant at ! (x) in a neighborhood
of x; so ! is continuous at x. Second, suppose 
 (x) = Z (x). Since 
 is convex

and 
 � Z,


+ (x) = lim
y#x


 (y)� 
 (x)
y � x � lim

y#x

Z (y)� Z (x)
y � x = Z+ (x) ,
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and similarly 
� (x) � Z� (x). Since 
� (x) � 
+ (x) and Z is di¤erentiable at
x, 
� (x) = 
+ (x); so ! is continuous at x. Finally, consider xm. If vm = vI,

then xm = 1 and we are done. For xm 2 (0; 1), ! is continuous if 
 (xm) < Z (xm)
when z jumps at xm. Recall that

z (xm�) = lim
x"xm

z (x) = lim
v"vm

wI(v; rC),

z(xm+) = lim
x#xm

z (x) = lim
v#vm

wI(v; rC).

By (11), z can only jump down at xm, so z (xm�) > z (xm+). Also, z (xm+) =
z (xm). Suppose 
 (xm) = Z (xm). By the same steps as before, 
+ (xm) �
Z+ (xm) = z (xm). By convexity, ! (x) � 
� (xm) for x � xm. So, for x close to
xm from the left, we obtain the following contradiction:


 (x) = 
 (xm)�
R xm
x
! (y) dy > Z (xm)�

R xm
x
z (y) dy = Z (x) .

(Continuity in rC). Given x, Z(x; rC) is continuous in rC. So 
 is continuous if

x 2 f0; 1g, since 
(0; rC) = Z(0; rC) and 
(1; rC) = Z(1; rC). Consider x 2 (0; 1).
For rC � 0, by de�nition,


(x; rC) = min�Z(x1; r
C) + (1� �)Z(x2; rC)

over all �; x1; x2 2 [0; 1] such that x = �x1+ (1� �)x2. By continuity of Z(x; rC)
and the Maximum Theorem, 
 (x; �) is continuous in rC for every x. Moreover,

(�; rC) is di¤erentiable in x with derivative !(�; rC). Fix x 2 (0; 1) and any

sequence frCng such that limn!1 r
C
n = r

C. Since limn!1
(x; r
C
n) = 
(x; r

C), The-

orem 25.7, p. 248, of Rockafellar (1970) implies limn!1 !(x; r
C
n) = !(x; r

C).

On [vI; vI], de�ne the generalized virtual valuation

wI(v; rC) = !(F I (v) ; rC),

which is increasing by construction and continuous by Lemma 5. Let ��(�) =
b�1(�) + c (b�1(�)) and replace wI with wI and a = b�1(b) in VS I to get

VS
I
(b; rC) =

R vI
vI

�
b (v)wI(v; rC) + �(b (v))

�
dF I + rC

R vC
vI
b (v) gC (v) dv.

Step 2: Deriving a candidate solution that maximizes VS
I
. On [vI; vI], de�ne
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'(y; v; rC) = ywI(v; rC) + �(y) and let

b
I
(v; rC) = arg max

y2[b(a);b(a)]
'(y; v; rC); (12)

let b
I
(v; rC) = b(a) on (vI; vC]. Then, b

I
is the unique pointwise maximizer of

VS
I
. Although b

I
(rC) is increasing on [vI; vI], it may not be increasing on [v; v].

The next lemma characterizes any increasing maximizer of VS
I
.

Lemma 6 If VS
I
(bI; rC) = maxb2B VS

I
(b; rC), then bI must satisfy bI(v; rC) =

b
I
(v; rC) if vI < v < vb, and bI(v; rC) = yb(rC) if vb � v < vC, where vb 2 [vI; vI]

and yb(rC) � bI(vb; rC). If vb > vI, then yb(rC) = bI(vb; rC).

Proof. Drop rC and suppose bI 2 B maximizes VS I. First, bI (v) = bI(vI)
on (vI; vC). Otherwise, there is v0 2 (vI; vC) such that bI (v) > bI(vI) for v > v0.
But then bI cannot be optimal in B, as

R vC
vI

�
bI(vI)� bI (v)

�
gC (v) dv �

R vC
v0

�
bI(vI)� bI (v)

�
gC (v) dv > 0.

Consider bI (v) on [vI; vI]. Recall that ' (y; v) in (12) is strictly concave in y and

continuous in v. Since b
I
(v) is continuous and increasing on [vI; vI], only two

cases can arise.

Case 1: bI(vI) � b
I
(vI). Then bI (v) = bI(vI) on (vI; vI]. If not, there

is v0 > vI such that bI (v) < bI(vI) � b
I
(v) for v � v0. By strict concavity,

for v 2 (vI; vI], '(bI(vI); v) � '(bI (v) ; v), with strict inequality for v � v0; soR vI
vI
'(bI(vI); v)dF I >

R vI
vI
'(bI (v) ; v)dF I, contradicting the optimality of bI.

Case 2: bI(vI) = b
I �
vb
�
> b

I
(vI) for some vb 2 (vI; vI]. SobI (v) =

minfbI
�
vb
�
;b

I
(v)g on (vI; vI]. Suppose not. First, consider (vb; vI] and sup-

pose bI (v) < b
I �
vb
�
for some v > vb. Then, by the argument used in case 1,

setting bI (v) = b
I �
vb
�
on (vb; vI] strictly improves on bI: The resulting function

is in B and
R vI
vb
'(b

I �
vb
�
; v)dF I >

R vI
vb
' (bI (v) ; v) dF I. Second, consider (vI; vb]

and suppose bI (v0) 6= bI (v0) for some v0. If bI (v0) > bI (v0), then by continuity of
b
I
and monotonicity of bI, there is a v00 > v0 such that bI (v) > b

I
(v) on (v0; v00).

Similarly, if bI (v0) < b
I
(v0), then there is v000 < v0 such that bI (v) < b

I
(v) on

(v000; v0). In either case, since b
I
is the unique maximizer of ' (y; v), for v 2 (vI; vb],

'(b
I
(v) ; v) � '(bI (v) ; v), with strict inequality for v 2 (v000; v0) or v 2 (v0; v00);

so
R vb
vI
'(b

I
(v) ; v)dF I >

R vb
vI
'(bI (v) ; v)dF I, contradicting the optimality of bI.

It remains to show that bI(vI) > b
I
(vI) is impossible. Suppose not. By

the argument used in case 2, bI (v) = b
I
(v) on (vI; vI). Then, setting bI(vI) >
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b
I
(vI) cannot be optimal: Since bI (v) = bI(vI) on (vI; vC), and gC (v) is negative,

reducing bI(vI) to b
I
(vI) satis�es monotonicity and strictly improves VS

I
.

By Lemma 6, bI is continuous on (vI; vC). Lemma 6 doesn�t pin down bI at vI

and vC, but it is w.l.o.g. to extend bI at vI and vC by continuity. The next lemma

proves that a maximizer of VS
I
exists, and shows that it is unique on (vI; vC),

and so on [vI; vC] w.l.o.g..

Lemma 7 There is bI such that VS
I
(bI; rC) = maxb2B VS

I
(b; rC); such a bI is

unique.

Proof. Drop rC. By Lemma 6, if a solution bI exists, then either (1) bI is
constant at y � bI(vI) on [vI; vC], or (2) bI is constant at bI

�
vb
�
on [vb; vC], with

vb � vI, and equals bI (v) for v � vb.
Case (1): In this case, VS

I
(bI) =VS I(bI) = fW I(bI). The �rst equality

follows because
R vI
vI
wI (v) dF I =

R vI
vI
wI (v) dF I since

R 1
0
z (x) dx =

R 1
0
! (x) dx; the

second follows from Proposition 1. Moreover,

fW I(bI) = y
R vI
vI
(v=tI)dF I + �(y). (13)

By continuity and strictly concavity, there is a unique constant maximizer of

VS
I
(bI). Call it bI1.

Case (2): Using ' (y; v) in (12), VS
I
equals

�
�
vb
�
=
R vb
vI
'(b

I
(v) ; v)dF I +

R vI
vb
'(b

I �
vb
�
; v)dF I + b

I �
vb
�
K, (14)

where K = rC
R vC
vI
gC (v) dv. By continuity of b

I
, �

�
vb
�
is continuous. So there

is vb 2 [vI; vI] that fully identi�es a maximizer for case (2). Since b
I
can be

locally �at, vb need not be unique. However, there cannot be two optimal vb1
and vb2 such that b

I
(vb1 ) 6= b

I
(vb2 ). Suppose to the contrary that v

b
1 < vb2 both

maximize �
�
vb
�
, and b

I
(vb1 ) < b

I
(vb2 ). W.l.o.g., let v

b
1 be the largest v such that

b
I
(v) = b

I
(vb1 ). Let b1 and b2 be the functions identi�ed by v

b
1 and v

b
2 , and for

� 2 (0; 1), let eb = �b1 + (1� �)b2 2 B. On (vb1 ; vC], b2 (v) 6= b1 (v), whereas on
[vI; vb1 ], b2 (v) = b1 (v) = b

I
(v). By strict concavity of ' (y; v),

R vb1
vI
'(eb (v) ; v)dF I + R vI

vb1
'(eb (v) ; v)dF I + eb (v)K > ��(vb1 ) + (1� �)�(vb2 ).

Note that eb is constant on [vb2 ; vC] at some bI(~vb), with ~vb 2 (vb1 ; vb2 ). So bI (v)
equals minfbI(~vb);bI (v)g satis�es case (2) and, by the argument used in Lemma
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6 (Case 2),

�(~vb) �
R vb1
vI
'(eb (v) ; v)dF I + R vI

vb1
'(eb (v) ; v)dF I + eb (v)K > �(vb1 ).

The claim follows. So any maximizer of �
�
vb
�
identi�es a unique bI for case (2).

Call it bI2.

By an argument similar to that for the uniqueness of bI2, VS
I
(bI2) = VS

I
(bI1)

if and only if bI2 = b
I
1 (on (v

I; vC)). So the overall maximizer of VS
I
is unique; it

equals bI1 if VS
I
(bI1) � VS

I
(bI2), and b

I
2 otherwise.

Step 3: The unique maximizer of VS
I
, denoted bI(rC), is also the unique max-

imizer of VS I(b�1(b)). The argument modi�es Toikka�s (2011) proof of Theorem

3.7 and Corollary 3.9 to account for (vI; vC].

Lemma 8 The function bI(rC) is the unique maximizer of VS I(b�1(b)).

Proof. Drop rC. Since b 2 B, integrating by parts, we get

R vI
vI
b (v) [wI (v)� wI (v)]dF I = b (v) [Z(F I (v))� 
(F I (v))]

��vI
vI

�
R vI
vI
[Z(F I (v))� 
(F I (v))]db (v)

=
R vI
vI
[
(F I (v))� Z(F I (v))]db (v) � 0.

The last equality follows from Z (0) = 
 (0) and Z (1) = 
 (1); the inequality

follows from b 2 B and 
 � Z. Rewriting VS I(b�1(b)), we get

sup
b2B

VS I(b�1(b)) = sup
b2B
fVS I (b) +

R vI
vI
[
(F I (v))� Z(F I (v))]db (v)g.

Since bI 2 B and achieves the supremum of VS
I
(b), we have to show that

R vI
vI
[
(F I (v))� Z(F I (v))]dbI (v) = 0. (15)

If bI is constant on [vI; vC], then dbI � 0 and we are done. Otherwise, consider the
pointwise solution b

I
on [vI; vI] as de�ned in (12), and a v such that 
(F I (v)) <

Z(F I (v)). For some open interval N around v, wI (�) = !(F I (v)), and b
I
is

constant on N . So, db
I
(�) assigns zero measure to any such N , and satis�es (15).

For any such N , dbI does the same. Consider [vb; vC], on which bI is constant.

If N � [vb; vC], the claim is immediate. The same holds if N \ [vb; vC] = ?,
because then bI (v) = b

I
(v) for v 2 N . Finally, if both N \ [vb; vC] 6= ? and
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N \ [vI; vb) 6= ? (so vb > vI), then bI is constant on [vb; vC] [ N , which implies
the claim. So (15) holds also for a nonconstant bI.

By Lemma 7, if eb 2 B di¤ers from bI on (vI; vC), then VS
I
(eb) < VS

I
(bI).

Uniqueness follows on (vI; vC); extending it to [vI; vC] is w.l.o.g..

Part 2: Continuity and Limit Behavior of bI

Continuity in v follows from Part 1; consider continuity in rC. By the de�ni-

tion of b
I
in (12) and the Maximum Theorem, b

I
(v; �) is continuous in rC for v 2

[vI; vI]. Now consider �(vb; rC) in (14). By pointwise continuity of wI(v; rC) and

b
I
(v; rC), �(vb; rC) is continuous in rC and so V b(rC) = argmaxv2[vI;vI]�(v; rC) is

u.h.c.. For v; v0 2 V b(rC), bI(v; rC) = b
I
(v0; rC). Take any sequence frCng with

limn!1 r
C
n = r

C. Then, limn!1 v
b(rCn) = v

b 2 V b(rC). The candidate bI2(rC) that
maximizes �(vb; rC) is such that bI2(v; r

C) equals minfbI(vb(rC); rC);bI(v; rC)g
on [vI; vI], and bI2(v; r

C) = b
I
(vb(rC); rC) for v > vI. So, by continuity of b

I
,

limn!1 b
I
2(v; r

C
n) = b

I
2(v; r

C) on [vI; vC]. Finally, the constant function bI1 in the

proof of Lemma 7, as well as (13), is independent of rC. It remains to show that

bI(rCn) converges pointwise to b
I(rC). First, if VS I(b�1(bI1)) > VS

I(b�1(bI2(r
C))) =

�(vb(rC); rC), then by continuity of �, there is N such that n � N implies

VS I(b�1(bI1)) > VS
I(b�1(bI2(r

C
n))). So, for n � N , bI(v; rCn) = bI1 on [vI; vC]. Sec-

ond, if VS I(b�1(bI1)) < VS
I(b�1(bI2(r

C))), then again for n large bI(rCn) = b
I
2(r

C
n),

which converges pointwise to bI(rC). Finally, if VS I(b�1(bI1)) =VS
I(b�1(bI2(r

C))),

then bI1 � bI2(rC). So jbI1 � bI(v; rCn)j � maxf0; jbI1 � bI2(v; rCn)jg ! 0 as n!1.
To prove that bI(rC)! bI� = b(aI�) pointwise as rC ! 0, note thatVS I (b�1(b); 0) =fW I (b). So bI (v; 0) = bI� (v) on (vI; vI), which can be extended to [vI; vC]

by letting bI(vI; 0) = bI�(vI) and bI (v; 0) = bI�(vI) for v � vI. To prove

max[v;v]
��bI(v; rC)� b(anf)�� ! 0 as rC ! +1, �rst recall that bI(rC) maximizes

VS I(b�1(b); rC) = fW I (b) � rC eRC (b) and that, by Proposition 1, eRC (b) > 0

for any b 2 B that is not constant on (vI; vC). Clearly, bI(rC) cannot con-

verge to a constant function with value y0 6= b(anf), for b(anf) is the unique

maximizer of (13). Now, suppose bI(rC) converges pointwise to a function, de-

noted bI1, that is not constant on (v
I; vC). Then, there is r̂C such that, for

rC > r̂C, b(anf) strictly dominates bI1: SincefW I(bI1) is bounded and eRC(bI1) > 0,fW I(bI1)� r̂C eRC(bI1) � fW I(b(anf)) for some r̂C � 0. Finally, consider the unique
extension of bI(rC) by continuity. By monotonicity,

max
[v;v]

��bI(v; rC)� b(anf)�� = maxf��bI(v; rC)� b(anf)�� ; ��bI(v; rC)� b(anf)��g.
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Part 3: Properties (a)-(c) of bI

Property (b): Drop rC. Recall that (1) bI satis�es Lemma 6, (2) on [vI; vI],
b
I
is de�ned by (12) and is continuous. Suppose vb > vI. For v < vb, bI (v) =

b
I
(v) < b

I �
vb
�
= bI

�
vb
�
by Lemma 6, and �

�
vb
�
� �(v) by construction (see

(14)). So

�
�
vb
�
��(v)

b
I
(vb)� bI (v)

= K +
R vI
v
wI (y) dF I �

R vb
v
wI (y) dF I

+
�(b

I
(vb))� �(bI (v))
b
I
(vb)� bI (v)

(1� F I (v))

�
R vb
v

�(b
I
(vb))� �(bI (y))
b
I
(vb)� bI (v)

dF I � 0.

Since b
I
and wI are increasing,���R vbv wI (y) dF I��� � maxfjwI(vI)j; jwI(vb)jg(F I(vb)� F I(v)).

Since b
I
is continuous, using the Mean Value Theorem, we get that for v close to

vb �����R vbv �(b
I �
vb
�
)� �(bI (y))

b
I
(vb)� bI (v)

dF I

����� � maxfjwI(vI)j; jwI(vb)jg(F I(vb)� F I(v)).
Therefore

lim
v"vb

�
�
vb
�
��(v)

b
I
(vb)� bI (v)

=
R vI
vb
wI (y) dF I +K + �0(b

I �
vb
�
)(1� F I

�
vb
�
) � 0. (16)

It follows that vb < vI because K < 0 and �0(�) < 0.
I claim that there is v 2 (vb; vI] such that bI (v) > b

I �
vb
�
. Suppose not.

If b
I �
vb
�
is interior, wI (v) = ��0(bI (v)) for v � vb, and (16) is violated. If

b
I �
vb
�
= b(a) and the set Va = fv 2 [vI; vI] j wI (v) > ��0 (b(a))g is nonempty� if

Va = ?, we are back to the previous case� then (16) is violated again. To see this,
note that since vb is the smallest v for which wI (v) = ��0 (b(a)), Z(F I

�
vb
�
) =
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(F I
�
vb
�
), which implies

R vI
vb
wI (y) dF I =

R vI
vb
wI (y) dF I; so

R vI
vb
[wI (y) + �0(b(a))]dF I +K =

R vI
vb
(y=tI + �0(b(a)))dF I

+rC
hR vC
vI
gC (y) dy +

R vI
vb
GI (y) dF I

i
.

By Assumption 1 and concavity of �, vI=tI + �0(b(a)) < 0, so the �rst integral is

negative. The term in brackets is too, contradicting 16. To see this, integrate by

parts: R vC
vI
gC (v) dv = �

R vC
vI

�
v=tC

�
dF C + vI(1� F C(vI)),R vI

vb
qi (v) dF i =

R vI
vb
(v=ti � vb)dF i � (vI � vb)F i(vI).

Thus, the term in brackets equals

R vI
vb
(v=tI � vb)dF I �

R vC
vb
(v=tC � vb)dF C = �

R vb=tI
vb=tC

(s� vb)dF < 0, (17)

where the equality is a change of variables, and the inequality follows from vI >

vb > vI > 0 and 0 < tI < tC � 1.
De�ne v1 = maxfv j bI (v) = bI

�
vb
�
g < vI. For v > v1, bI (v) > bI(v1) and

�(v) � �(v1) = �
�
vb
�
. By the same steps that give (16),

lim
v#v1

�(v1)��(v)
b
I
(v1)� bI (v)

=
R vI
v1
wI (y) dF I +K + �0(b

I
(v1))(1� F I(v1)) � 0.

As b
I
(y) is interior and constant on [vb; v1], �0(b

I
(y)) = �wI (y) = �wI(vb) =

�0(b
I
(vb)), and

0 �
R vI
v1
[wI (y)� wI(v1)]dF I +K =

R vI
vb
[wI (y)� wI

�
vb
�
]dF I +K � 0.

Finally, since Z(F I
�
vb
�
) = 
(F I

�
vb
�
), the argument used in Lemma 5 yields

wI
�
vb
�
= wI

�
vb
�
. So

R vI
vb
[wI (y)� wI

�
vb
�
]dF I +K =

R vI
vb
[wI (y)� wI

�
vb
�
]dF I +K,

which gives, by rearranging wI (y),

R vI
vb
[wI(vb; rC)� v=tI]dF I (v) = rC

hR vI
vb
GI (v) dF I �

R vC
vI
gC (v) dv

i
. (18)

Property (a): Since bI(rC) and bI� = b(aI�) are continuous and increasing,
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it is enough to prove that bI(vI; rC) > bI�(vI) and bI(vI; rC) < bI�(vI).

Case 1: bI not constant. This implies that vb > vI, and by Lemma 6

bI(vI; rC) = bI(vb; rC) = b
I
(vb; rC). To show that bI(vI; rC) < bI�(vI) for rC > 0,

it is enough to prove that wI(vb; rC) < vI=tI. This inequality follows from (17)

and (18), because wI(vb; rC) = wI(vb; rC). To show that bI(vI; rC) > bI�(vI),

given rC > 0, let vb = maxfv j wI(v; rC) = wI(vI; rC)g.

Lemma 9 wI(vI; rC) � wI(vI; rC). If the inequality is strict, then vb > vI.

Proof. Drop rC and recall that wI(vI) = ! (0) and wI(vI) = z (0). If ! (0) >
z (0), the argument used in Lemma 10 leads to a contradiction. Suppose ! (0) <

z (0) and let x̂ = supfx j 8x0 < x; !(x0) < z(x0)g; by continuity, x̂ > 0. Then, for
0 < x < x̂,

Z (x) = Z (0) +
R x
0
z (y) dy > 
 (0) +

R x
0
! (y) dy = 
(x) .

It follows that vb � (F I)�1 (x̂) > vI.
So, if wI(vI; rC) = wI(vI; rC), then it equals (vI=tI)(1+rC(1�tI))+rC(f I(vI))�1 >

vI=tI. If instead wI(vI; rC) < wI(vI; rC), then it is constant on [vI; vb] at wI(vb; rC).

Since Z(F I(vb); rC) = 
(F I(vb); rC), vb must satisfyR vb
vI
[wI(y; rC)� wI(vb; rC)]dF I = 0 (19)

or equivalently,

R vb
vI
(y=tI � wI(vb; rC))dF I = �rC

R vb
vI
GI (y) dF I. (20)

Integrating by parts,

R vb
vI
GI (y) dF I =

R vb
vI
(y=tI � vb)dF I �

R vb
vI
(y=tC � vb)dF C =

R vb=tI
vb=tC

(s� vb)dF > 0,

where the last equality follows from a change of variables and the inequality from

vb > v
I > 0 and 0 < tI < tC � 1. So, by (20), wI(vb; rC) > vI=tI. In either case,

bI(vI; rC) must be interior and strictly greater than bI�(vI).

Case 2: bI constant. From the proof of Lemma 7, bI(v; rC) equals b(anf) on

[v; v]. Since vI=tI < E (s) < vI=tI, Assumption 1 implies bI�(vI) < b(anf) <

bI�(vI).
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Property (c): Let vI < v0 � vm (recall vm = minfvI; vCg) and consider

wI(v0; rC)� wI(vI; rC) = v0 � vI
tI

(1 + rC(1� tI))� rC
�
F I(v0)

f I(v0)
� F

I (vI)

f I (vI)

�
. (21)

The �rst part of (21) is positive since 0 < tI < 1, but the second part can be

negative. So w(�; rC) can be decreasing in a neighborhood of vI. If so, wI(v; rC)
and bI(rC) are constant on [vI; vb] 6= ?.
Finally, note that F

I(v0)=fI(v0)�F I(v)=fI(v)
v0�v =

F (v0=tI)=f(v0=tI)�F(v=tI)=f(v=tI)
v0=tI�v=tI . So, the

condition in part (c) of Proposition 2 implies that, for v0 > v in [vI;minftIsy; vmg],

wI(v0;rC)�wI(v;rC)
rC(v0�v) = 1

rCtI
+ 1�tI

tI

+
F (v0=tI)=f(v0=tI)�F(v=tI)=f(v=tI)

v0=tI�v=tI � 0.

So bI(rC) must be constant on [vI; vb] 6= ?.

A.5 Proof of Corollary 2

Being increasing, aI is di¤erentiable a. e. on [v; v]. If da
I

dv
> 0 at v, then using (E)

dpI=dv

daI=dv
= vb0(aI(v))� 1 and

dpI�=dv

daI�=dv
= vb0(aI�(v))� 1.

The result follows from b00 < 0 and point (a) in Proposition 2.

A.6 Proof of Lemma 4

Using (4),

�RI(aC�) =
R s tC

tI

s
�(sj aC�)dF +

R s
s t
C

tI
�(sj aC�)dF .

For s � s tC
tI
, since aC�(stI) = aC�(stC),

�(sj aC�) = stCb(aC�(stC))� stCb(aC�(stC)) +
R stC
stC
b(aC� (y))dy

+s[b(aC�(stC))� b(aC�(stC))].

Since aC� is continuous, �(sj aC�) ! 0 as s ! s. Now consider RC(aI�). Since

stI < stC,�(sj aI�) > 0 for s < s. Let s0 = 1
2
(s+ s). By continuity,min[s;s0]�(sj aI�) =

� > 0. Choose s�=2 > s so that �(sj aC�) � �=2 for s 2 [s; s�=2]. Finally, let
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s1 = minfs0; s�=2g. Then,

RC(aI�) �
R s1
s
�(sj aI�)dF � �F (s1) ,

�RI(aC�) � sup
s>s1

�(sj aC�)(1� F (s1)) +
�

2
F (s1) .

So RC(aI�) > �RI(aC�) if F (s1)/ (1� F (s1)) > 2
�
sups>s1 �(sj aC�).

A.7 Proof of Proposition 4

Use (2) to express RI(aC). Then, changing order of integration and rearranging

yields

RI(aC) = �
R vC
vI
b(aC (v))gI (v) dv +

R v C
vC
b(aC (v))GC (v) dF C, (22)

where gI : [vI; vC]! R is given by

gI (v) =
tI � 1
tI

vf I (v) + F I (v) ,

and GC : [v C; vC]! R is given by

GC (v) =
tC � 1
tC

v � 1� F
C (v)

f C (v)
� f

I (v)

f C (v)

�
tI � 1
tI

v � 1� F
I (v)

f I (v)

�
.

Maximizing �RI(aC) with an increasing aC that equals aC� on [vC; vC] is equiva-
lent to maximizing

R vI
v C
b(a(v))gI (v) dv with an increasing a : [vI; vC)! [a; aC�(vC)].

Although gI(vI) < 0, gI(v) may be strictly positive or decreasing. So, let eF be

the uniform distribution on [vI; vC] and eF�1 : [0; 1] ! [vI; vC] be its inverse func-

tion. For x 2 [0; 1], de�ne z (x) = gI( eF�1 (x)) and Z (x) = R x
0
z (y) dy. Let 


be the convex hull of Z, and de�ne ! : [0; 1] ! R as ! (x) = 
0 (x), whenever


0 (x) exists. W.l.o.g., extend ! (x) by right-continuity on [0; 1) and by left-

continuity at 1. On [vI; vC], let gI (v) = !( eF (v)), which is increasing. Recall that
vm = minfvI; vCg > vI, and let xm = eF (vm) > 0. Since gI is continuous on [vI; vI],
by the argument in Lemma 5, ! is continuous on [0; xm], so gI is continuous on

[vI; vm].

Lemma 10 gI(vI) � gI(vI).

Proof. Otherwise, ! (0) > z (0). Since z is continuous on [0; xm] and ! is

increasing, there is x > 0 such that ! (y) > z (y) for y � x. Since Z (0) = 
 (0),
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we get the contradiction

Z (x) = Z (0) +
R x
0
z (y) dy < 
 (0) +

R x
0
! (y) dy = 
(x) .

So vu = supfv 2 [vI; vC] j gI (v) < 0g > vI. Similarly, de�ne vu = inffv 2
[vI; vC] j gI (v) > 0g, if the set is nonempty, otherwise vu = vC. By Theorem 3.7

of Toikka (2011), aC must satisfy aC (v) = a for v 2 (vI; vu) and aC (v) = aC�(vC)
for v 2 (vu; vC), if any. Letting aC (vu) = aC�(vC) is w.l.o.g.. For completeness,

on [vu; vu), aC can be any increasing function, so long as it satis�es the necessary

pooling property described by Toikka (see De�nition 3.5). By Corollary 3.8 of

Toikka (2011), it is w.l.o.g. to set aC (v) = aC�(vC) on [vu; vu).

A.8 Proof of Corollary 3

Fix aI(rC) and recall that it minimizes RC(aI) among all increasing aI that equal

aI(rC) on [vI; vI]. Using (22) and aC from Proposition 4, (R) becomes

[b(a)� b(aC�(vC))]
R vu
vI
gI (v) dv � RC(aI(rC)) +

R v C
vC
b(aC� (v))GC (v) dF C

�b(aC�(vC))
R vC
vI
gI (v) dv.

Since aC� and aI(rC) are infeasible, the right-hand side is positive. RC(aI) has

been minimized. The result follows, since
R vu
vI
gI (v) dv < 0.

A.9 Proof of Proposition 5

First, the next lemma shows that aC sustains a� with C if and only if (R) does not

bind. Recall that rI = �=, where � is the Lagrange multiplier associated with

(R).

Lemma 11 There is aC increasing such that aC(v) = aC�(v) on [vC; vC] and aC

maximizes W C
�
âC
�
� rIRI

�
âC
�
if and only if rI = 0.

Proof. The proof uses functions b 2 B (see the proof of Lemma 2). Suppose
rI > 0. Using eRI(b) = RI(b�1(b)) in (22), write fW C (b)� rI eRI (b) as

VS C(b�1(b); rI) =
R v C
vC
[b (v)wC(v; rI) + �(b (v))]dF C + rI

R vC
vI
b (v) gI (v) dv,
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where wC(v; rI) = v=tC � rIGC (v). Let bCu = b(aC) where aC is as in Proposition
4 and let B� be the set of bC 2 B that equal bCu on [vC; vC]. By construction,
VS C(b�1(bCu); r

I) = maxb2B�VS C(b�1(b); rI). But there is b̂
C 2 BnB� such that

VS C(b�1(b̂
C
); rI) > VS C(b�1(bCu); r

I). Focus on [vm; vC] with vm = maxfvI; vCg,
and let ŵC be the generalized version of wC on this interval, obtained with the

method used in the proof of Proposition 2. Since wC is continuous on [vm; vC], so

is ŵC (Lemma 5). Since rI > 0, GC implies wC(v; rI) > v=tC for v 2 [vm; vC). I claim
that ŵC(vm; rI) > vm=tC. By the argument in Lemma 9, ŵC(vm; rI) � wC(vm; rI).
If ŵC(vm; rI) = wC(vm; r

I), the claim follows. If ŵC(vm; rI) < wC(vm; r
I), then

there is v0 > vm such that ŵC(v; rI) = wC(v0; r
I) on [vm; v0]; so, ŵC(vm; rI) =

wC(v0; r
I) � v0=t

C > vm=t
C. Since ŵC is continuous and increasing, in either

case there is v1 > vm such that ŵC(v; rI) > v=tC on [vm; v1]. Construct b̂
C
by

letting b̂
C
(v) = argmaxy2[b(a);b(a)] yŵ

C(v; rI) + � (y) if v 2 [vm; vC], and bCu (v) if
v 2 [vI; vm). Then, b̂

C 2 B, but b̂C (v) > bCu (v) on [vm; v1]; so b̂
C
=2 B�. Finally,

the di¤erence between VS C(b�1(b̂
C
); rI) and VS C(b�1(bCu); r

I) is

R vC
vm
[b̂
C
(v)wC(v; rI) + �(b̂

C
(v))]dF C �

R vC
vm
[bCu (v)w

C(v; rI) + �(bCu (v))]dF
C,

which is strictly positive. So the increasing maximizer ofW C (aC)�rIRI (aC) must
di¤er from aC�(v) on a nonempty interval of [vC; vC].

Recall that aI(rC) maximizes W I(aI)� rCRC(aI) among all increasing aI. By
revealed optimality, r̂C > rC implies RC(aI(r̂C)) � RC(aI(rC)). By uniqueness of

aI(rC) (Proposition 2), RC(aI(r̂C)) = RC(aI(rC)) if r̂C = rC. So, RC(aI(rC)) is a

decreasing function of rC, RC(aI(rC)) � RC(aI�), and limrC!+1R
C(aI(rC)) = 0 by

Proposition 2 and 3. By Proposition 1, RI(aC�) < 0. So, de�ne r2 = minfrC �
0 j RC(aI(rC)) + RI(aC�) � 0g. Now, let aC be as in Proposition 4, so RI(aC) <
RI(aC�) < 0. De�ne r1 = minfrC � 0 j RC(aI(rC)) + RI(aC) � 0g. Lemma 4 and
continuity of RC(aI(rC)) imply that r1 < r2 in some environments and, together

with Corollary 3, that r1 > 0 in some environments. The result follows from

Lemma 11.
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