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Abstract. The paper developes a general arbitrage free model for the term structure of interest rates.

The principal model is formulated in a discrete time structure. It di�ers substantially from the Ho{Lee{

Model (1986) and does not generate negative spot and forward rates. The results for the continuous

time limit support this. The probability distribution with �nite support is derived for the spot rate

return. The model permits the arbitrage free valuation of bond options and interest rate options and

produces dynamic portfolio strategies to duplicate these contracts.

Introduction

The uncertainty of future interest rate movements is a serious aspect to �nancial decision making.

Investment decisions are often very sensitive to changes of the term structure. Therefore the management

of interest rate uncertainty is an important subject and it is necessary to analyse �nancial innovation

which are designed to deal with the interest rate risk. Examples of such instruments are put and call

options on zero coupon and coupon bonds or direct interest rate options like caps and oors.

The study of options on zero coupon bonds which are special forms of interest rate derivatives was the

�rst important step to analyse these new instruments. C. A. Ball and W. N. Torous (1983) replaced the

geometric Brownian motion used by F. Black and M. Scholes by a Brownian bridge process to model the

dynamics of a zero coupon bond process. By this they could guarantee the face value for a default free

bond at the end of its maturity and were able to derive a closed form solution to European type options

over zero coupon bonds. Following the Ball{Torous{Model the principal question of interest rate options

appears to be the appropiate modelling of the Brownian bridge process1 .

However, these bond price based models have the disadvantage that in most of them negative spot or

forward rates cannot be excluded. Moreover they cannot be easily extended to price options on coupon

bonds and by mixing up zero coupon bonds of di�erent maturity one usually leaves the considered class

of Brownian bridge processes. But the principal problem of the bond price based method is that this

approach is not suitable to describe the whole term structure of interest in an arbitrage free way. As a

consequence most of the problems that are inherent to the bond price based models cannot be solved in

a satisfactory way. Therefore it is necessary to incorporate the whole term structure of interest rates into

one consistent, i.e. intertemporally arbitrage free model.
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2 INTRODUCTION

A �rst solution to this problem was provided by the seminal paper of T. Ho and S.B. Lee (1986) They

take the initial term structure as exogeneously given and let the entire curve uctuate in a discrete time

binomial process, thus producing a consistent arbitrage free model of bond prices for all initially given

maturities. Unforunately their model produces negative spot and forward rates with positive probability.

The Ho and Lee model has been extended by D. Heath, R. Jarrow and A. Morton in a series of papers

(1987, 1988, 1989) in three signi�cant ways. First they take forward rates instead of bond prices as the

basic building blocks for their analysis. This seems a more natural approach to modelling stochastic inter-

est rate movements and facilitates the estimation of the parameters for the stochatic processes involved.

Second, they extend Ho and Lee to incorporate continuous trading. In particular, they show that with

continuous trading the valuation formula becomes independent of the so{called \pseudo\ probabilites.

Third, they extend the one{factor model of Ho and Lee to include multiple random factors. Their work

give important insight into the basics of term structure models both from a theoretical and a practical

point of view.

In the present paper we develope an alternative binomial model of the term structure, in which the

basic building blocks are not the forward rates but the spot rates. In contrast to the Ho{Lee{Model our

risk measure is the volatility of the spot rate and not of the return. Furthermore, negative spot rates

and forward rates are not generated within the model. The model permits the arbitrage free valuation

of interest rate options and produces dynamic hedge strategies to duplicate these options, where it is

possible to choose from several equivalent strategies.

Although our model is driven only by the process of the short term interest rates it can incorporate

practically any term structure with time dependent volatility, since the volatility may depend both on

time and state. Our model is akin to the Binomial models proposed by Courtadon and Weintraub (1989)

and Black, Derman and Toy (1990) which were developed independently. But as Jensen and Nielsen

(1990) have shown the Courtadon{Weintraub model is not arbitrage free. We go beyond Black, Derman

and Toy by proving the existence of a unique positive short rate process for any term structure and

martingale measure. The only requirement beeing that today`s forward rates are positive. This result

implies that our model is arbitrage{free and complete in the sense of Harrison and Kreps (1979). Hence

any interest rate dependent contingent claim, including caps, swaptions, option on both zero and coupon

bonds, whether European or American, can be uniquely priced by arbitrage. We also go beyond Black,

Derman and Toy by providing limit results for the discrete interest rate process (section 3). This results

show that the model has an implicite mean reversion property in expectation.

In a recent paper Jensen and Nielsen (1991) have studied the generale structure of Binomial Lattice

Models for bonds. They also provide an excellent survey on these types of models which were initiated

by the seminal paper of Ho and Lee (1986). As they have shown our model, as well as the Black, Derman

and Toy{Model, falls into their class of monotone binomial lattice models.

The paper is organised as follows: Section 1 contains the general implications of the no arbitrage require-

ment for a model of the term structure of interest rates. The resulting discrete term structure model

is discussed in section 2, while section 3 analyses the limit aspects of the model. Given this model of

the term structure of interest, the pricing of di�erent types of interest rate derivatives is investigated in

section 4. Section 5 contains some concluding remarks.

1. Arbitrage Implications

The no arbitrage requirement together with non negativity of forward rates does impose several re-

strictions on zero coupon and coupon bond price processes. As a �rst consequence the following four

conditions have to be ful�lled.

1. Neglecting the default risk any bond price process has a non{stochastic terminal value at the end

of its maturity.
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2. During the lifetime of a bond its value cannot exceed his terminal value plus the outstanding coupon

payments.

3. The value of any zero coupon bond is restricted from above by the value of an identical zero coupon

bond with shorter maturity.

4. The value of any coupon bond must be equal to a portfolio of zero coupon bonds with face value

and maturity corresponding to the coupon payments.

To ful�ll these principal requirements would impose an enormous amount of boundary conditions on a

bond price based approach.

One way to overcome these di�culties, following the analysis of J. M. Harrison and D. M. Kreps (1979)2

would be to consider the set of probability measures under which the bond price processes are martingales.

It turns out, that any price system consistent with the no arbitrage condition corresponds exactly to one

equivalent martingale measure. Therefore if this set is empty there are arbitrage opportunities. If

there exists only one equivalent martingale measure then the arbitrage consistent price system is unique.

Furthermore the market is complete in this case and any derivative security is redundant with respect to

the existing securities.

The consequences of the probability theoretical characterisation of price systems consitent with no arbi-

trage can best be seen if one assumes only one source of uncertainty, i.e. a one{factor{model. There are

mainly two approaches by which the no arbitrage condition can close such a model. First one can specify

two price processes in such a way that they de�ne a unique martingale measure. In continuous time mod-

els this is usually done by two di�erential equations for zero coupon bonds of di�erent maturities with

respect to one Brownian motion process. Then any other security depending on the Brownian motion

process and with maturity in the considered time range is redundant and can be priced by arbitrage. In

other words there is no freedom in specifying additional zero bond price processes.

The second approach is to use the martingale feature to describe the suitable class of price processes.

Suppose the instantaneous spot rate process (rt)t is given by a stochastic di�erential equation

dr = �(t; r)dt+ �(t; r)dW(1)

where W is a Brownian motion and the functions �(:::) and �(:::) do ful�ll the Lipschitz{and growth

conditions such that a solution of (1:1) exist3. The price process of a zero coupon bond fB(t; T )gt�[0;T ]
with maturity date T then entirely depends on the spot rate process. Therefore the stochastic di�erential

equation of the zero coupon bond can be derived by Itô's Lemma4

dB =

�
Bt + �(t; r)Br +

1

2
�2(t; r)Brr

�
dt+ �(t; r)BrdW:(2)

The no arbitrage condition implies that the excess return per unit risk of any zero coupon bond does not

depend on the maturity date of this particular bond5. Therefore there exists a function �(r; t) independent

2See also Sandmann (1988) for an application of Harrison an Kreps to the case of an interest rate market .
3The conditions on �(t; r) and �(t; r) are:

a) �; � : IR�0 � IR! IR measurable functions.

b) 9 K1 > 0, such that the Lipschitz{condition holds, i.e. 8t 2 [0; T ]; x; g 2 IR

j �(t; x)� �(t; y) j + j �(t; x)� �(t; y) j � K1 j x� y j :

c) 9 K2 > 0, such that the growth condition is speci�ed, i.e. 8t 2 [0; T ]; x 2 IR

j �(t; x) j2 + j �(t; x) j2� K2(1+ j x j2) :

4See for example Friedman (1969)
5See for example Heath, Jarrow and Morton (1986).
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of T , such that at any t < T

Et[dB(t; T; r)]� rtB(t; T; r)dtp
Vt[dB(t; T; r)]

= �(r; t) 8T:(3)

From (1:2) and (1:3) the bond price dynamics are determinated by the di�erential equation

Bt +
�
�(t; r)� �(t; r) � �(r; t)

�
Br +

1

2
�2(t; r)Brr � rB = 0(4)

with the boundary condition

B(T; T; r) = face value = 1:

The unique solution for the Feyman-Kac-Equation (1:4)6 is given by

B(t; T; r) = E[expf�
Z T

t

~rsdsg j ~rt](5)

where

d~r = dr� �(r; t) � �(r; t)dt:
If the risk primium per unit risk �(r; t) is equal to zero (1:3) takes the form of the local expection hypoth-

esis 7 , which is the only form of expectation hypothesis compatible with the no arbitrage requirement.

In general the risk premia �(r; t) may not be equal to zero. We know from the no arbitrage condition

and completeness of the market structure that there exists a unique martingale measure. This mea-

sure depends on the risk premium function �(r; t). Under the equivalent martingale measure the lokal

expectation hypothesis is ful�lled. Therefore equation (1.5) can be written as

B(t; T; r) = E

"
exp

(
�
Z T

t

~rsds

)����� rt
#

(6)

= EP

"
exp

(
�
Z T

t

rsds

)����� rt
#

where P is the equivalent martingale measure such that the lokal expectation hypothesis

EP [dB(t; T; r) j t]� rBdt = 0(7)

is ful�lled. The change of measure from the original probability distribution Q to the equivalent martingal

measure P depends on the risk premium and is determinated by the Radon{Nikodym density function

dP

dQ
= �(t) = exp

Z T

t

�(r; s)dW (s) � 1

2

Z T

t

�(r; s)2ds(8)

The no arbitrage conditions guarantee the existence of such a transformation from the original model

with risk premium to a model without risk premium where the price processes are determinated under

the local expectation hypothesis. If the original market model is complete, the transformation is unique.

Therefore the local expectation hypothesis is not an additional assumption for those models which assume

a complete market structure.

2. Term Structure of Interest

The goal of this section is to present an arbitrage free discrete term structure model which has enough

exibility to explain the di�erent features of interest rate movements and allows the valuation of a rich

class of interest rate derivatives. In a discrete time setting the most simple way to model uncertain price

movements is the binomial process. The �rst binomial term structure model which excludes arbitrage

opportunities was given by T. Ho and Sang{Bin{Lee (1986). Their starting point is, that at time t = 0

the prices of zero coupon bonds for any maturity of the discrete time scale are known. Then the idea is to

6See Friedman (1969) and Du�e (1988).
7See Ingersoll (1987, chapter 18)
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model the price movements of all zero coupon bonds in one step by introducing two maturity dependent

pertubation functions h(t) and h�(t). In principle the term structure at time t1 equals the original one

at time t0 multiplied either by the pertubation function h with probability � (relative up{movement of

the term structure) or by the pertubation function h� with probability 1� � (relative down{movement

of the term structure). With the assumption of the path independence of price movements of all zero

coupon bond prices Ho and Lee are able to give an explicit form of the pertubation function h and h�

dependent of the measure �. Furthermore they show that the volatility of the one period return is the

appropriate risk measure which enters into the pertubation functions.

The probability � of the up{ and down{ movements of the term structure has to be estimated from the

data and it is not obvious how sensitive the model depends on �. Second, the construction principle

does allow the zero coupon bond price to exceed his face value and therefore generates negative spot and

forward rates. Especially for the pricing of interest rate options this can lead to serious mispricing. If one

cuts o� such undesired interest rate pathes by an exogenous boundary condition the resulting volatility

of the model does no longer correspond to the input data.

Therefore it seems to us of some importance to remodel the term structure of interest in order to avoid

some of the disadvantages of the Ho{Lee{Model. The principal assumptions of the underlying market

structure are quite standard.

� There exists a discrete set of trading dates T = f0 = t0 < : : : < tN = Tg. For simplicity they are

chosen to be equidistant, that is �t = ti+1 � ti for all i = 0; : : : ; N � 1

� There are no transaction costs or taxes.

� There is no default risk.

� As trading can only occur at trading date ti 2 T we assume that at time t0 = 0 the prices of all zero

coupon bonds B(t0; ti) with maturity ti 2 T are known. We interpret this as full price information

at time t0.
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Figure 2.1: Binomial spot rate process

For the stochastic process of the spot rate process frigN�1i=0 we construct a path independent binomial

process with the following features:

� The current market information, i.e. the observed zero bond prices, have to be reected.

� Negative spot rates are not generated within the model.
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� The zero coupon bond price processes are derived under the local expectation hypothesis. As

shown in section 1 this assumption is equivalent to consider a risk premium function �(r; t) which

is independent of the bonds maturity.

At time t0 the initial spot rate for the �rst period is r0. At time t1 the possible spot rate realisations

for the next period are r1;0 resp. r1;1. If the transition probability of the �rst period p(t1) 6= 0 and the

local volatility of the spot rate �(t1) are known then the following relationship gives us more information

about the binomial interest rate process:

�2(t1) := V [log r1;�jr0] = p(t1)
�
1� p(t1)

��
log

r1;0

r1;1

�2

, r1;0 := r1;1 exp

8>><
>>:

�(t1)r
p(t1)

�
1� p(t1)

�
9>>=
>>;(9)

= r1;1 g
�
�(t1); p(t1)

�

The pertubation function g(�; p) = exp

�
�p

p(1�p)

�
is continuous on IR>0�]0; 1[ , bounded below by 1,

and, for any � > 0, has a minimum at p = 1=2. The function g(:; :) replaces in a way the pertubation

function h and h� of the Ho{Lee{Model. In contrast to the Ho{Lee{Model g(:; :) de�nes the relation

between di�erent spot rates and not between returns. Therefore the risk measure is the local volatility

of the spot rate.

Suppose for example that the local volatility of the spot rate and the transition probability are both

constant over time. Due to the path independence of the binomial spot rate process the following relation

holds:

rn;j = rn;n � g(�; p)n�j 8j = 0; : : : ; n; n = 0; : : : ; N � 1(10)

From the binomial process of the spot rate the price process of the two period zero coupon bond with

face value one is given by �gure 2.2

B(t0; t2)
�
�
�
�
�

P
P
P
P
P Bup(t1; t2) =

1

1 + r1;1

Bdown(t1; t2) =
1

1 + r1;0
=

1

1 + r1;1g(�; p)

t0 t1 t2

p

1� p

1

1

Figure 2.2: Price process of the two period zero coupon bond.

Under the local expectation hypothesis the value at time t0 must be equal to the expected value of the

discounted face value. Therefore

B(t0; t2) =
1

1 + r0

�
p

1 + r1;0
+

1� p

1 + r1;1

�
(11)

=
1

1 + r0

�
p

1 + r1;1g(�; p)
+

1� p

1 + r1;1

�
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For �xed p 2]0; 1[ and � � 0 there exists a unique positive solution for r1;1 which solves (2.3) i� B(t0; t2) <

B(t0; t1) =
1

1+r0
. Given the solution for r1;1 and r1;0 we can solve the recursion for the next period under

the assumption of the path independence of the spot rate process. The t0 value of a three period zero

coupon bond under the local expectation hypothesis is equal to its expected discounted payo�

B(t0; t3) = Ep

"
2Y

n=0

1

1 + rn;�

���� r0
#

=
1

1 + r0

�
p

1 + r1;0

�
p

1 + r2;2 g2(�; p)
+

1� p

1 + r2;2 g(�; p)

�
(12)

+
1� p

1 + r1;1

�
p

1 + r2;2 g(�; p)
+

1� p

1 + r2;2

��

The following theorem guarantees the existence and uniqueness of a non negative path independent

binomial spot rate process under weak conditions. Especially the local volatility and the transition

probability are allowed to be both time and path dependent.

Theorem 2.1. Let A denote the set of time and state tupels, i.e. A := f(n; j) j tn 2 T nft0g; j = 0; : : : ; ng
and let �(n; j) denote the local volatility at time tn 2 T and p(n; j) the transition probability from time

tn�1 to tn, given the spot rate at time tn�1 is equal to rn�1;j : If the zero coupon bond prices at time t0

are strictly decreasing with maturity, i.e.

B(t0; t1) > B(t0; t2) > : : : > B(t0; tN)

then for any volatility function

� : A! IR�0

and any transition probability function

p : A!]0; 1[

there exists a unique non negative, path independent binomial spot rate process, such that the local

expectation hypothesis for the zero coupon bonds is satis�ed.

Proof: Appendix

For a exible class of transition probabilities p() and volatility functions �() Theorem 2.1 guarantees

the existence of a binomial spot rate process. Under the local expectation hypothesis the zero coupon

bond price processes are then determined.

The transition probability seems to be a purely exogenuous and restrictive factor of the model. As in

the original Ho{Lee{Model one could come to the conclusion that the transition probability has to be

estimated from the data. In fact this is not the only possible interpretation. As for the binomial option

pricing model of Cox and Rubinstein (1985) and the continuous time Black{Scholes Model (1973) the

role of the transition probability has to be associated with the corresponding limit model.

Section 3 analyses the special case where the transition probability of the discrete time model is constant.

As a result the instantaneous spot rate is lognormal distributed in the limit. It is shown that in this case

the valuation formulas for interest rate contingent claims and the trading strategies become independent

of the transition probability with the trading interval going to zero, an observation already made by

Heath, Jarrow and Morton (1989). In general, the choice of a speci�c transition probability for the

discrete time model corresponds to the choice of a spci�c continuous time limit model. For example Ball

(1989) has reformulated a binomial Ehrenfest{Model which corresponds to the mean reverting square

root process for the spot rate analysed by Cox, Ross and Ingersoll (1985 a, b). Thus by using another

class of transition probabilities the binomial model of Theroem 2.1 can be used to explain and study

di�erent continuous time models.
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3. Continuous Time Consideration

In this section we want to look at a special limit result for the interest rate process frigN�1i=0 if the

length of the time period goes to zero. Let T = f0 = t0 < : : : < tNg be the original set of trading dates,
then a re�nement of order n 2 IIN is de�ned by

T (n) = f0 = t00 < t01 < : : : < t0N�ng(13)

with t0j+1 � t0j =
�t
n

and t0i�n = ti 2 T ; t00 = t0; �t = t0i�n � t0(i�1)n :

If the zero coupon bond prices with respect to the re�nement of the set of trading dates T (n) are known

and decreasing with maturity then Theorem 2.1 is satis�ed. Otherwise we could for example compute

the additional bond prices by

B(t00; t
0
i�n+j) := B(t0; ti) [f0(ti�1; ti) + 1]�j

�t
n(14)

= B(ti; ti+1) [f0(ti�1; ti) + 1]�t
(n�j)

n 8j = 0; : : : ; n

where f0(ti�1; ti) =
B0(t0;ti�1)

B0(t0;ti)
� 1 is the forward rate at time t0. The additional bond prices de�ned

by (3.2) obviously satisfy the monotonicity requirement if this is true for the original ones. Therefore

Theorem 2.1 can be applied.

The limit result for the interest rate process in general depends on the function of the transition proba-

bility p(:; :) and the local volatility function �(:; :). We want to restrict our view to the case of a constant

transition probability p 2]0; 1[ and a exclusively time dependent volatility function. Under these addi-

tional assumptions the following limit theorem for the interest rate process can be derived:

Theorem 3.1. Let p 2]0; 1[ be the constant transition probability and � : T ! IR�0 the volatility function,

so that �2(ti) is proportional to the length of the time intervall with

�2(ti) = h(ti) ��t

were h(:) converges against a bounded function on [0; T ]. Then�
xti = log

ri

ri�1

�
ti2T (n)

satis�es the Central Limit Theorem.

Proof: Appendix

The appropriate limit model for the discrete interest rate process of section two is therefore given by

dr

r
= �(t)dt+ �(t)dW(15)

if the transition probability p is constant and the discrete volatility function �( ) ful�lls the conditions

of theorem 3.1.8. The drift function �( ) is determinated by the local expectation hypothesis for the zero

coupon bonds at time t0,i.e. �(t) has been chosen such that

B(t0; t; r0) = E

�
expf�

Z t

o

r(s; �(s); �(s))dsg
���� r0
�

(16)

8By changing the transition probability other stochastic processes than the geometric Brownian Motion can be approx-

imated in the limit by the binomial spot rate process. Using for example the idea of Ball (1989) another possible limit

model for the spot rate is the square root process

dr = �(t)r dt+ �(t)
p
r dW:

For a discussion of the resulting term structure model see Cox, Ross and Ingersoll (1985a, b). Furthermore Hull and White

(1990) have studied di�erent continuous time models for the spot rate.
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holds. Under the local expectation hypothesis the risk premium �(r; t) (1.3) is equal to zero and the

dynamics of the zero coupon bond prices are given by the stochastic di�erential equation (1.4)9

Bt +�(t) � rBr +
1

2
�2(t) � r2Brr � rB = 0(17)

B (t; t; r) = 1 8t 2 [0; T ]:

From (3.3) we can derive the process of the instantanous discount factor
n
yt =

1
1+rt

o
at time t where

rt is lognormally distributed. The stochastic di�erential equation for the instantanous discount factor is

given by

dy = y(1 � y)[(1 � y)�2(t) � �(t)]dt� y(1 � y)�(t)dW ; y0 =
1

1 + r0
:(18)

In 1949 N.L. Johnson studied a special system of distribution functions which are generated by translation

of a normal distributed variable. Among others he considered the following transformation

y = a +
b� a

1 + expf�(z� + �)g a < b

(19)

, z = � �

�
+

1

�
log

�
y � a

b� y

�
a < y < b �; � > 0

where z is a N (0; 1) distributed variable. The idea is to �nd a exible transformation of a N (0; 1) variable,

so that the resulting density function has support [a; b]. For [a; b] = [0; 1] and

�2 =

Z t

0

�2(s)ds

(20)

�� = log r0 +

Z t

0

�(s) � 1

2
�2(s)ds

this describes exactly the transformation for the discount factor yt at time t. The probability density

function of the discount function yt is therefore given by

�
�
y; r; �(:); �( ); t

�
=

1q
2�
R t
0 �

2(s)ds

1

y(1 � y)
(21)

� exp

8><
>:�

�
log 1�y

y
� log r � R t

0
�(s) � 1

2
�2(s)ds

�2
2
R t
0
�2(s)ds

9>=
>;

0 � y � 1

Figure 3.1 shows some typically pattern of the density function �(:), where we assume � to be constant

and
R t
0
�(s)ds equal to log f0(t)=r0, f0(t) is the instantaneous forward rate.

Furthermore the transformation (3.7) induces that the median of the probability distribution given by

�(y; : : : ) is equal to

y0;5(t; r0) =

�
1 + r0 exp

�Z t

0

�(s) � 1

2
�2(s)ds

���1
(22)

9Contrary to the elliptic partial di�erential equation obtained in the Cox{Ingersoll{Ross{Model, the partial di�erential

equation (3.5) is parabolic and we do not know whether an explicite solution exists.



10 3 CONTINUOUS TIME CONSIDERATIONS

The expected value of the discount factor yt at time t equals

E[yt j r0] =

Z +1

�1

1q
2�
R t
0
�2(s)ds

1

1 + ey
(23)

� exp

8><
>:�

�
y � log r � R t

0
�(s) � 1

2
�2(s)ds

�2
2
R t
0
�2(s)ds

9>=
>; dy

Figure 3.1: Density function �(y; r; f; �; t)

a) �xed � and t and di�erent forward rate f . b) �xed f and t and di�erent volatility �.

c) �xed � and f and di�erent time period t. d) �xed t and di�erent forward rate f and

volatility �.

N.L. Johnson (1949) proposes a numerical method to compute the moments of fytg.
Table 3.1 shows some examples of the expectation and standard error of the discount function fytg where
log r0 +

R t
0
�(s)ds = log f .

However, with Jensen's Inequality and some easy calculations we get the following boundary condition

(for the proof see the appendix)

1

1 + r0 exp
nR t

0
�(s)ds

o � E[yt j r0] �
1

1 + r0 exp
nR t

0
�(s) � �2(s)ds

o(24)
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Therefore the expected discount factor at time t is not far away from the discount factor obtained by the

expected spot rate at time t which is

E[rt j r0] = r0 exp

�Z t

0

�(s)ds

�
(25)

Table 3.1:

Forward

rate

Expectation E[yt] Standard error �(yt)

f �r = �r =

0.15 0.25 0.35 0.45 0.15 0.25 0.35 0.45

0.01 0.99010 0.99011 0.99013 0.99015 0.00211 0.00357 0.00512 0.00681

0.02 0.98041 0.98044 0.98050 0.98057 0.00412 0.00696 0.00996 0.01316

0.03 0.97091 0.97098 0.97110 0.97127 0.00605 0.01020 0.01454 0.01910

0.04 0.96160 0.96173 0.96192 0.96221 0.00790 0.01330 0.01888 0.02468

0.05 0.95248 0.95266 0.95296 0.95338 0.00967 0.01625 0.02301 0.02992

0.06 0.94353 0.94379 0.94420 0.94478 0.01138 0.01908 0.02692 0.03487

0.07 0.93476 0.93510 0.93563 0.93640 0.01301 0.02178 0.03065 0.03954

0.08 0.92616 0.92658 0.92726 0.92821 0.01458 0.02437 0.03420 0.04396

0.09 0.91772 0.91824 0.91906 0.92022 0.01609 0.02685 0.03758 0.04815

0.10 0.90943 0.91006 0.91104 0.91241 0.01754 0.02922 0.04080 0.05213

0.11 0.90130 0.90204 0.90318 0.90478 0.01893 0.03149 0.04388 0.05591

0.12 0.89332 0.89417 0.89549 0.89731 0.02027 0.03367 0.04683 0.05951

0.13 0.88549 0.88645 0.88795 0.89001 0.02155 0.03576 0.04964 0.06293

0.14 0.87779 0.87888 0.88056 0.88286 0.02279 0.03776 0.05233 0.06620

0.15 0.87024 0.87145 0.87331 0.87586 0.02398 0.03969 0.05490 0.06932

Equation (3.12) shows the mean reversion property of the discount function. The expected discount

factor is bounded from both sides and under certainty both bounds are equal. To qualify the boundary

conditions (3.12) one could assume that the unbiased expectation hypothesis would be satis�ed. As

Ingersoll (1987, chapter 18) has shown, this form of an expectation hypothesis is not arbitrage free.

Nevertheless using the unbiased expectation hypothesis

E[rt j r0] = f(0; t) (instantaneous forward rate)(26)

yields for the drift of the spot rate processZ t

0

�(s)ds = log
f(0; t)

r0

(27)

, �(t) =
@ logf(0; t)

@t
+ c

Therefore the instantaneous drift of the spot rate is given by the shape of the actual continously com-

pounded forward rate. Furthermore the boundary condition (3.12) can be reformulated

1

1 + f(0; t)
� E[yt j r0] �

1

1 + f(0; t) exp
n
�
R t
0
�2(s)ds

o(28)

As a consequence the zero coupon prices predicted within the model by the local expectation hypothesis

are bounded from below by those predicted under the unbiased expectations hypothesis. As already

mentioned the unbiased expectation hypothesis (3.14) is not arbitrage free and therefore (3.15) and

(3.16) are not exactly satis�ed. But if there is no uncertainty (�() � 0) about future spot rates the local

and the unbiased expectation hypothesis coincide as can also be seen from relation (3.12). Thus the
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di�erence between the cumulated drift
R t
0
�(s)ds and log f(0;t)

r0
decreases with decreasing volatility. The

same observation is true for the boundary condition and therefore both relationships (3.15) and (3.16)

can be regarded as approximations.

4. Interest Rate Derivatives

In general an interest rate derivative or interest rate contingent claimH is de�ned by a k{dimensional

random variable with

H = (Ht0i ; : : : ;Ht0k) : 
! IRk(29)

where each Ht0i : 
! IR is measurable with respect to the information given by the term structure model

at time t0i. Concerning the term structure model in section 2 the information at time ti is represented by

the �{algebra =t0i generated by the historical and present prices of all zero coupon bonds and the spot

rate up to time t0i. The set ft01; : : : ; t0kg is then the set of payment dates of the contingent claim and

must be contained in T .

The �rst example of such interest rate contingent claims are European bond options on either zero coupon

or coupon bonds. The second example consists of direct interest rate options, namely caps and oors.

However, the class of interest rate derivatives de�ned by (4.1) is much larger and include also American

options as well as e.g. look{back options where the payment at time t0i may depend on some historical

realisation.

More precisely the payo� of a European call option with exercise price E and maturity t 2 T on a zero

coupon or coupon bond B is de�ned by

[B(t) �E]+ := max
n
B(t) � E; 0

o
(30)

respectively for a put option we have

[E � B(t)]+ := max
n
E �B(t); 0

o
(31)

For zero coupon bonds we know from Merton's (1973) analysis that a call option is always more worth

alive than dead. Therefore an American type call option, i.e. premature exercise is possible, has the

same price as an European call option. For a put option or, if the underlying security is a coupon bond,

this result is not transferable. However, the payo� of an American type option at some time t0 less than

the maturity date t is equal to the maximum of the future expected discounted payo� and the exercise

payo� at time t0.

Direct interest rate options like caps and oor are somehow special. Their properties are closely related

to those of European call and put options. In principal the protection against upward movements of the

interest rate is called a cap and the protection against downward movements a oor. The underlying

security of these contracts is the interest rate, for example 3 or 6 month Libor. Let rti be the interest

rate at time ti 2 T for the time period [ti; ti+1]. The payo� of a cap with cap level L and face value V

at time ti+1, i.e. at the end of the period is the equal to

V [rti � L]+(32)

Similarly to a oor the payo� at time ti+1 is equal to

V [L� rti]
+(33)

In general caps and oor are characterised by the following instruments:

� the underlying interest rate r; e.g. libor

� The set of comparing dates (tenor of the contract)

� The set of payment dates (frequency of the contract)

� The level L

� The face value V
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For simplicity we assume that the set of comparing dates is contained in T n ftNg and the payment will

take place always at the end of the time interval. Clearly if r is denoted in yearly interest rates the

payment has to be adjusted with respect to the contract tenor. From (4.4) resp. (4.5) we can discount

the payment to the beginning of the time period:

V

�
1� 1 + L

1 + rti

�+
= V (1 + L)

�
1

1 + L
� 1

1 + rti

�+
(34)

Therefore the discounted cap payment at time ti is equal to V (1 + L) times the payment of a European

put option with exercise price 1
1+L , expiration date ti where the underlying security is a zero coupon

bond with maturity date ti+1 and face value 1. Therefore the arbitrage price of a cap must be equal to

the value of a portfolio of European put options on zero coupon bonds with di�erent maturity.

Cap[r; L; T n ftNg; V ] = V (1 + L)
N�1X
i=0

PutE

�
B(ti+1);

1

1 + L
; ti

�
(35)

For the oor the same argument leads to

Floor[r; L; T n ftNg; V ] = V (1 + L)
N�1X
i=0

CallE

�
B(ti+1);

1

1 + L
; ti

�
(36)

From the characterisation of cap and oor contracts as a portfolio of European bond options it is obvious

that the arbitrage pricing of these contracts requires a term structure model.

Furthermore cap and oor contracts are convex functions of the level L and the underlying interest rate

r10. In analogy to the put{call{parity the cap{oor{parity is given by

Cap[r; L; T n ftNg; V ] = Floor[r; L; T n ftNg; V ] + Swap[r; L; T n ftNg; V ](37)

were Swap[r; L; T n ftNg; V ] denotes an interest rate swap with �xed rate L, oating rate r, face value

V and comparing frequency T n ftNg. The cash ow of a swap at time ti+1 2 T is therefore equal to

V [rti � L]. The arbitrage price of such an interest rate swap is equal to

Swap[r; L; T n ftNg; V ] = V �
 
1� B(t0; tN )� L

NX
i=1

B(t0; ti)

!
(38)

Finally we have the following boundary condition for the arbitrage prices of cap and oors:

maxf0; Swap[r; L; T n ftNg; V ]g � Cap[r; L; T n ftNg; V ] � V [1�B(t0; tN )]

maxf0;�Swap[r; L; T n ftNg; V ]g � Floor[r; L; T n ftNg; V ] � V � L
NX
i=1

B(t0; ti)

Swap[r; L; T n ftNg; V ]g � Cap[r; L1; T n ftNg; V ] � Floor[r; L2; T n ftNg; V ]
� Swap[r; L; T n ftNg; V ]

with L = maxfL1; L2g ; L = minfL1; L2g(39)

In the framework of the term structure model (section two) bond options, interest rate options and more

complicated contracts such as swaptions can be priced by arbitrage. Since the presented model describe

a complete market structure the martingal measure is unique and we have the following pricing relation:

10The proofs of the distribution free properties of cap and oor contracts are not complicated. Some of the proofs are

given in the appendix.



14 4 INTEREST RATE DERIVATIVES

Theorem 4.1. The arbitrage price of an interest rate derivative H given by (4.1) is equal to the sum

of the expected discounted payo� under the martingal measure P de�ned by the family of the transition

probabilities, i.e.

H(t01; : : : ; t
0
k) =

kX
l=1

Ep

"
Ht0lQl�1

j=0(1 + rj ; �)

#
(40)

where ft01; : : : ; t0kg � T .

Proof. The proof is given in the appendix and implements self{�nancing dynamic portfolio strategies

which duplicate the payo� of the interest rate derivative H.

Example 4.1. We consider three di�erent portfolio strategies to duplicate the payo� of a cap contract.

The market data and model assumptions are:

interest rate : per anno

maturity of the cap : 3 years

level : 4%

comparing date : every year = ft0; t2; t4g
payment date : end of the year = ft2; t4; t6g

hedge frequency : every 6 month = ft0; t1; : : : ; t5g
face value : 100$

zero coupon prices : B(t0; t1) = .9806 , B(t0; t2)=.9615, B(t0; t3)=.9406

B(t0; t4) = .9200 , B(t0; t5)=.8977, B(t0; t6)=.8759

For the term structure model we assume the local volatiltiy per period to be 17.86% and the transition

probability to be .5 .

We consider three di�erent hedging strategies based either on a zero coupon bond, a coupon bond with

yearly coupon of 4.5% or an interest rate swap with swap level 4.5%. All instruments have a maturity

equal to t6 and face value 100. The easiest way to describe the whole structure is to use the binomial tree

(�gure 4.1). Therefore at each knot r denotes the interest rate per anno, d the product of the face value

and the cap payment at the end of the period and PV the present value of the contract at the beginning

of the period. The notation of the portfolio strategie is:

Portfoliostrategie: Zero Coupon Bond (P1)

ZB : price of the zero coupon bond

�ZB : hedgeratio in percent

MB : amount of money invested at the spot rate

Portfoliostrategie: Coupon Bond (P2)

CB : price of the coupon bond

�CB : hedgeratio in percent

MC : amount of money invested at the spot rate

Portfoliostrategie: Swap (P3)

S : price of the interest rate swap

�S : hedgeratio in percent

MS : amount of money invested at the spot rate
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trading date: t4

r 2,3576 3,3575 4,7814 6,8093 9,6973

d 0,0000 0,0000 0,7814 2,8093 5,6973

PV 0,0000 0,0000 0,7458 2,6302 5,1936

ZB 97,6967 96,7516 95,4368 93,6248 91,1600

CB 102,0931 101,1054 99,7314 97,8379 95,2622

S -2,0931 -1,1054 0,2686 2,1621 4,7378

trading date: t3

r 2,5462 3,6261 5,1640 7,3542

d 0,0000 0,0000 0,0000 0,00000

PV 0,0000 0,3663 1,6460 3,7755

ZB 96,0095 94,3979 92,1806 89,1716

(P1) � ZB 0,0000 -0,5672 -1,0400 -1,0400

MB 0,0000 53,9075 97,5139 96,5140

CB 104,7738 103,0664 100,71646 97,5275

(P2) � CB 0,0000 -0,5428 -0,9952 -0,9952

MC 0,0000 59,3069 101,8810 100,8364

S -1,5793 -0,4110 1,1851 3,3297

(P3) � S 0,0000 0,5428 0,9952 0,9952

MS 0,0000 0,5894 0,4666 0,4618

trading date: t2

r 3,0788 4,3846 6,2441

d 0,0000 0,3846 2,2441

PV 0,1804 1,3532 4,7422

ZB 93,7712 91,3090 87,9712

(P1) � ZB -0,2273 -0,5772 -0,7077

MB 21,4933 54,0522 67,0012

CB 102,3564 99,7288 96,1653

(P2) � CB -0,2145 -0,5447 -0,6677

MC 22,1401 55,6726 68,9503

S -2,3589 0,2682 3,8317

(P3) � S 0,3135 0,8018 0,9930

MS 0,9200 1,1382 0,9374

trading date: t1

r 3,3031 4,7040

d 0,0000 0,0000

PV 0,7544 2,9784

ZB 91,0486 87,6033

(P1) � ZB -0,4663 -1,0153

MB 44,1243 91,9241

CB 103,8415 100,1193

(P2) � CB -0,4464 -0,9510

MC 47,1039 98,1947

S -1,0285 2,0034

(P3) � S 0,4464 0,9510

MS 1,2136 1,0732

trading date: t0

r 4,0000

d 0,0000

PV11 1,8302

ZB 87,5913

(P1) � ZB -0,6455

MB 58,3727

CB 100,0000

(P2) � CB -0,5975

MC 61,5795

S -0,0028

(P3) � S 0,7335

MS 1,8322

Figure 4.1: Payo� pattern and portfolio strategies for a cap contract.

11The arbitrage price of the cap is equal to 1,8302% of the face value.
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Finally with respect to the limit results of section 3 we want to compare the impact of more frequent

trading with a change of the transition probability for the cap contract of example 4.1 . Tabels 4.1 to 4.3

gives the initial positions for the hedge strategies for zero coupon, coupon bonds and swaps, as well as

the arbitrage price and the hedge strategies. As the limit result suggests the inuence of the transition

probability vanishes if the trading frequency is augmented.

Tabel 4.1: Portfolio Strategy Zero Coupon Bond (P1)

Hedge Tenor Transition Probability (p)

0.3 0.4 0.5 0.6 0.7

PV 1.83503 1.75159 1.83022 1.81936 1.83202

1/2 Year � ZB -0.61114 -0.64004 -0.64553 -0.676910 -0.70452

MB 55.36562 57.81324 58.37315 61.11074 63.54228

PV 1.80575 1.77102 1.81121 1.80685 1.77541

1/4 Year � ZB -0.56884 -0.59371 -0.59922 -0.61758 -0.63198

MB 51.63136 53.77490 54.29784 55.90105 57.13150

PV 1.79312 1.79397 1.79211 1.78743 1.76734

Monthly � ZB -0.55308 -0.56235 -0.57049 -0.57911 -0.58000

MB 50.23775 51.05089 51.76225 52.51219 53.44329

PV 1.78139 1.78795 1.78395 1.78657 1.78428

1/2 Month � ZB -0.55272 -0-55791 -0.56390 -0.56859 -0.57491

MB 50.19454 50.65638 51.17694 51.59018 52.14130

PV 1.78790 1.78426 1.78618 1.78369 1.78300

Weekly � ZB -0.55168 -0.55609 -0.55949 -0.56329 -0.56737

MB 50.11024 50.49251 50.79222 51.12308 51.47965

For example the maximal di�erence of the cap contract is less than 0,09% of the face value for a hedge

tenor equal to 1/2 and less than 0,005% if the hedge is adjusted weekly.

Tabel 4.2: Portfolio Strategy Coupon Bond (P2)

Hedge Tenor Transition Probability (p)

0.3 0.4 0.5 0.6 0.7

PV 1.83503 1.75159 1.83022 1.81936 1.83202

1/2 Year � CB -0.56576 -0.59246 -0.59750 -0.62649 -0.65198

MC 58.41064 60.99737 61.57997 64.46817 67.02993

PV 1.80575 1.77102 1.81121 1.80685 1.77541

1/4 Year � CB -0.52418 -0.54706 -0.55210 -0.56897 -0.58219

MC 54.22381 56.47669 57.02096 58.70349 59.99429

PV 1.79312 1.79397 1.79211 1.78743 1.76734

Monthly � CB -0.50827 -0.51677 -0.52423 -0.53212 -0.54207

MC 52.62012 53.47069 54.21477 54.99933 55.97417

PV 1.78139 1.78795 1.78395 1.78657 1.78428

1/2 Month � CB -0.50761 -0.51236 -0.51785 -0.52214 -0.52792

MC 52.54234 53.02443 53.56875 54.00016 54.57605

PV 1.78790 1.78426 1.78618 1.78369 1.78300

Weekly � CB -0.50648 -0.51051 -0.51362 -0.51710 -0.52083

MC 52.43586 52.83543 53.14833 53.49406 53.86644
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Tabel 4.3: Portfolio Strategy Swap (P3)

Hedge Tenor Transition Probability (p)

0.3 0.4 0.5 0.6 0.7

PV 1.83503 1.75159 1.83022 1.81936 1.83202

1/2 Year � S .69342 .72677 .73354 .76980 .80198

MS 1.83668 1.75350 1.83225 1.82164 1.83461

PV 1.80575 1.77102 1.81121 1.80685 1.77541

1/4 Year � S .70237 .73373 .74115 .76452 .78317

MS 1.80843 1.77394 1.81434 1.81026 1.77909

PV 1.79312 1.79397 1.79211 1.78743 1.76734

Monthly � S .72042 .73300 .74406 .75576 .77049

MS 1.79666 1.79776 1.79600 1.79142 1.77151

PV 1.78139 1.78795 1.78395 1.78657 1.78428

1/2 Month � S .72951 .73676 .74500 .75152 .76029

MS 1.78522 1.79203 1.78816 1.79064 1.78862

PV 1.78790 1.78426 1.78618 1.78369 1.78300

Weekly � S .73336 .73949 .74422 .74955 .75525

MS 1.79177 1.78836 1.79011 1.78792 1.78731

For example the maximal price di�erence for the considered cap is less then 0.004% of the face value if

trading is done weekly.

Conclusion

For a model of a pure interest rate dependent market bond price based models are not exible enough

to satisfy the �rst object. Especially for the analysis of direct interest rate options like caps and oors this

approach leads to serious problems. Therefore it was necessary to model the term structure of interest

rates in an arbitrage free way. The presented discrete term structure model does not permit arbitrage

opportunities and is exible enough to analyse the di�erent aspects of interest rates. Furthermore a large

class of probability distributions satis�es the existence conditions of our model. For a special subclass of

probability distributions the corresponding continuous time model is characterised.

The presented term structure model describes a complete market structure. Within this structure interest

rate derivatives like bond options or caps and oors can be priced under arbitrage. Furthermore it is

possible to implement portfolio strategies to duplicate the payo� of such derivatives. In contrast to option

pricing on stocks it is possible to choose among several equivalent strategies, which is certainly important

for portfolio managers.
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Appendix

Proof of Theorem 2.1.

a) The proof is given by induction. For simplicity we �rst consider the case were �(:; :) and p(:; :) are

constant parameters of the model. For N = 2 the local expectation hypothesis is satis�ed if

B(t0; t2) =
1

1 + r0

�
p

1 + r1;1g(�; p)
+

1� p

1 + r1;1

�
=: k(r1;1)

Since g(�; p) = exp

�
�p

p(1�p)

�
> 1 the function k() is continuous and decreasing in r. For r = 0

we have

k(0) =
1

1 + r0
= B(t0; t1)

Therefore there exists a unique r > 0 which is a solution under the expectation hypothesis if

B(t0; t1) > B(t0; t2) > 0:

Suppose now the statement is true for N periods. For the N + 1 period let B(t0; tN+1) > 0 be the

price of a zero coupon bond which pays one unit at time tN+1. The binomial spot at rate process

at time tN is then given by

rN;j = rN;N [g(�; p)]
N�j for j = 0; : : : ; N

Under the local expectation hypothesis B(t0; tN+1) must be equal to the expected value of the

discounted face value. We can describe the pathes of the spot rate by

K(N ) =
n
i = (0; i1; : : : ; iN ) 2 f0g � f0; 1gN

o
De�ne by

S(n; i) :=
Pn

j=0 ij =̂ the number of up{movements of the i 2 K(N ) at

time tn; n � N

n � S(n; i) =̂ the number of down{movements of the path i 2
K(N ) at time tn; n � N:

Furthermore set x := rN;N and r0;0 := r0 then x is a solution of

B(t0; tN+1) =
X

i2K(N)

"
pS(N;i)(1� p)N�S(N;i)

1QN�1
j=0

�
1 + rj;j�S(j;i)

�
� 1

1 + xg(�; p)S(N;i)

�

The function

G(x; tN+1) =
X

i2K(N)

"
pS(N;i)(1� p)N�S(N;i)

1QN�1
j=0

�
1 + rj;j�S(j;i)

�
� 1

1 + xg(�; p)S(N;i)

�
�B(to; tN+1)

is strictly decreasing and continuous for x � 0 with

lim
x!1

G(x; tN+1) = �B(t0; tN+1) < 0

G(0; tN+1) = B(t0; tN )�B(t0; tN+1) > 0
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b) For the general case the transition probability and local volatility are time and spot rate dependent

in a predictable way. However the path independence of the spot rate process gives us

rn;j = rn;n �
n�1Y
i=j

g
�
�(n; i); p(n� 1; i)

�
for j = 0; : : : ; n� 1

n = 1; : : : ; N

where �(n; i) is the local volatility at time tn if the spot rate from tn�1 to tn is

equal to rn�1;i

p(n� 1; i) is the transition probability from tn�1 to tn if the spot rate is

rn�1;i .

As before we can de�ne a function G(x; tN+1)

G(x; tN+1) :=
X

i2K(N)

"
NY
n=0

p
�
n;S(n; i)

�in�
1� p

�
n;S(n; i)

��1�in

� 1QN�1
n=0

�
1 + rn;n�S(n;i)

�
� 1

1 + x �QN�1
j=N�S(N;i) g

�
�(N; j); p(N � 1; j)

�
3
5

�B(t0; tN+1)

were
QN�1

j=N g
�
�(:; :); p(:; :)

�
= 1. The function G(x; tN+1) has the same feature as G(:; :) in part a.

Namely continuous and decreasing in x � 0.

lim
x!1

G(x; tN+1) = �B(t0; tN+1) < 0

G(0; tN+1) = B(t0; tN )� B(tN+1) > 0, B(t0; tN ) > B(t0; tN+1) �

Proof of Theorem 3.1. Let T (n) = ft00 < t01 < : : : < t0N�n = Tg be a re�nement of the set of trading

dates with �t0 = T
N�n

. The binomial structure of the interest rate process implies that

ri;j = ri;i � exp
(

�(t0i)p
p(1� p)

)
= ri;i � g

�
�(t0i); p)

�
8 i = 0; : : : ; N � n ; j = 0; : : : ; i

were ri;i > 0 and depends on the yield curve at time t00. The expectation and variance of xt0i is given

by:

�i = Ep

�
log

ri

ri�1

�

=
i�1X
j=0

�
i� 1

j

�
(1� p)jpi�1�j

�
p

�
log

ri;i

ri�1;i�1
+ logg

�
�(t0i); p

�

+(i � 1) log g
�
�(t0i) � �(t0i�1); p

� �
+ (1� p)

�
log

�
ri;i

ri�1;i�1

�

+(i � 1) log g
�
�(t0i) � �(t0i�1); p

� ��

= log
ri;i

ri�1;i�1
+ p � logg

�
�(t0i); p

�
+ (i � 1) log g

�
�(t0i)� �(t0i�1); p

�

s2i = Vp

�
log

ri

r0

�
=

iX
j=1

�2(t0j) =
iX

j=1

h(t0j)�t
0 n!1�!

Z ti

0

h(t)dt <1
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It remains to show that the Ljapuno�-condition (Bauer(1978) 268f.) is ful�lled, i.e. there exists at least

one � > 1 such that limn!1
1

s2+�
N�n

Pn�N

i=1 Ep

����log ri
ri�1

� �i

���2+�� = 0

For � = 1 we have: Ep

"����log ri

ri�1
� �i

����
3
#
=

i�1X
j=0

�
i� 1

j

�
(1� p)jpi�1�j

�
"
p

 ����log ri;i

ri�1;i�1
+ logg

�
�(t0i); p

�
� log

ri;i

ri�1;i�1
� p logg

�
�(t0i); p

�����
3
!

+(1 � p)

 ����log ri;i

ri�1;i�1
� log

ri;i

ri�1;i�1
� p logg

�
�(t0i); p

�����
3
!#

=

�
logg

�
�(t0i; p)

��3�
p(1� p)3 + (1� p)p3

�

= �(t0i)
3 (1� p)2 + p2p

p(1� p)

) 1
s3
N�n

n�NX
i=1

Ep

"����log ri

ri�1
� �i

����
3
#
=

1�PN�n

i=1 �
2(t0i)

�3
2

N�nX
i=1

�3(t0i)
(1� p)2 + p2p

p(1� p)

=
1�PN�n

i=1 h(t
0
i)�t0

� 3
2

�
N�nX
i=1

h
3
2 (t0i) ��

3
2 t0 � (1� p)2 + p2p

p(1� p)

=

p
�t0�PN�n

i=1 h(t
0
i)�t0

� 3
2

N�nX
i=1

h
3
2 (t0i)�t

0
(1� p)2 + p2p

p(1� p)

n!1�! 0

because lim
n!1

n�NX
i=1

h(t0i)�t
0 =

Z T

0

h(t)dt <1 ; lim
n!1

N�nX
i=1

h
3
2 (t0i)�t � T � max

t2[0;T ]
h(t)

3
2 <1 �

Proof of the inequality (3.12). For simplicity set

� := log r0 +

Z t

0

�(s) � 1

2
�2(s)ds ; �2 :=

Z t

0

�2(s)ds

a)

) E[yt] =

Z
1

�1

1p
2� �

1

1 + ey
exp

�
� (y � �)2

2�2

�
dy

= 1�
Z
1

�1

1p
2� �

ey

1 + ey
exp

�
� (y � �)2

2�2

�
dy

= 1�
Z
1

�1

1p
2� �

1

1 + ey
exp

8><
>:�

�
y � (�+ �2)

�2
2�2

+ �+
1

2
�2

9>=
>; dy

= 1� e�+
1
2�

2

Z
1

�1

1p
2� �

1

1 + ey+�
2 exp

�
� (y � �)2

2�2

�
dy

= 1� e��
1
2�

2

Z
1

�1

1p
2� �

e�
2

1 + ey+�
2 exp

�
� (y � �)2

2�2

�
dy

� 1� e��
1
2�

2

Z
1

�1

1p
2� �

1

1 + ey
exp

�
� (y � �)2

2�2

�
dy

) E[yt] � 1

1 + e��
1
2�

2
=

1

1 + r0 expf
R t
0 �(s) � �2(s)dsg
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b) Since g(r) = 1
1+r is convex on [0;+1[ we know from Jensens Inequality

E[yt] = E

�
1

1 + rt

�
� 1

1 + E[rt]
=

1

1 + r0 exp
nR t

0
�(s)ds

o
�

Proposition. Cap and oor contracts are convex functions of the level L and the underlying interest rate

r.

Proof.

a) Level L

Let ti 2 T a payment date of the cap resp. oor contract. For � 2]0; 1[ with L = �L1 + (1 �
�)L2; 0 < L1 < L2 the cap payment with level L satis�es always

V [r� L]+ = V [r � (�L1 + (1� �)L2)]
+

� �V [r � L1]
+ + (1� �)V [r� L2]

+

resp. for the oor payment with level L

V [L� r]+ = V [(�L1 + (1� �)L2) � r]+

� �V [L1 � r]+ + (1� �)V [L2 � r]+

b) The result for the underlying interest rate is prooved by the same argument.

�

Proof of (4.9) (Cap { Floor { Parity). Consider the following portfolio at time t0

sell Cap [r; L; T n ftNg; V ]
buy Floor [r; L; T n ftNg; V ]

then at any time ti 2 T n ft0g the cash ow of the portfolio is equal to V [L � rti�1 ] which de�nes just

the cash ow of a swap contract.

�

Proof of (4.10). Consider the following portfolio strategy which obviously duplicates the cash ow of an

interest rate swap:

Sell a coupon bond with face value V and coupon payment L equal to the �x rate at any date ti 2 T nftog
Invest the face value V at the underlying interest rate. At time ti the cash ow is equal to

V (1 + r0) � V � L = V [r0 � L] + V

which equals the swap payment plus the face value. Then reinvest the face value at the underlying interest

rate and so on. At the last period tN this leads to

V (1 + rtN�1 )� V (1 + L) = V [rtN�1 � L]

�
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Proof of (4.11) (Boundary condition for cap and oor contracts). From the monotonicity with respect to

the level L and the cap { oor parity we have

maxf0; Swap[r; L; T n ftNg; V ]g � Cap[r; L; T n ftNg; V ]
� Cap[r; 0; T n ftNg; V ]

The cash ow of a cap contract with level L = 0 is equal to the interest earned by investing the face value

at each period. Therefore

Cap[r; 0; T n ftNg; V ] = V � V B(t0; tN )

The arbitrage prices of cap and oor contracts are non negative. Together with the cap { oor { parity

this leads to:

max
�
0;�Swap[r; L; T n ftNg; V ]

	
� Floor[r; L; T n ftNg; V ]

Furthermore the cash ow of a oor contract at any time ti 2 T n ft0g is bounded above by

V [L� rti�1 ]
+ � V � L

which gives us

Floor[r; L; T n ftNg; V ] �
NX
i=1

V �L B(t0; ti)

Finally the last statement results from the monotonicity of the interest rate swap with respect to the

swap level L.

�

Proof of Theorem 4.1. With respect to the complete market structure and the results of Harrison and

Kreps (1979) we have only to demonstrate that every self{�nancing portfolio strategy which duplicates

the payo� of a given interest rate derivative has the same initial price (4.12).

1. Let H = (Ht0i ; : : : ;Ht0k) be an interest rate derivative with ft0i; : : : ; t0kg � T : First we consider

a portfolio strategy using a zero{coupon bond with maturity tN and the spot rate frg. Under the
assumptions of the term structure model the price process of the zero{coupon bond is determined

by the local expectation hypothesis

Bj(ti; tN ) =
Ep(i;j)[B � (ti+1; tN )jri;j]

1 + ri;j

for all knots (i; j) of the binomial model with the terminal condition Bj(tN ; tN ) = 1 for all

j = 0; : : : ; N: With respect to these two instruments the market situation at time tk can be

described by

�
ri;j

Bj(ti; tN )

�
�
�
�
�
�
�
�

P
P
P
P
P
P
P

0
B@ ri+1;j

Bj(ti+1; tN )

Hti+1(i + 1; j)

1
CA

0
B@ ri+1;j+1

Bj+1(ti+1; tN )

Hti+1(i + 1; j + 1)

1
CA

ti ti+1

Suppose ti+1 is the last payment date of the interest rate derivative, then the resulting cash ow

would be given by Hti+1(:; :): As the interest rate process and the zero coupon bond process span
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the whole market structure at time ti+1 and the payment is adapted to the information structure,

there exists a portfolio at time ti which duplicates Hti+1 : The portfolio is given by

� =
Hti+1(i + 1; j)�Hti+1(i+ 1; j + 1)

Bj(ti+1; tN )� Bj+1(ti+1; tN )
(hedge ratio)

K =
1

1 + ri;j

�
Bj(ti+1; tN )Hti+1(i + 1; j + 1)� Bj+1(ti+1; tN)Hti+1(i + 1; j)

Bj(ti+1; tN )� Bj+1(ti+1; tN )

�

Under the no arbitrage condition the value H at time ti of the payment Hti+1 must be equal to the

value of the portfolio. Under the local expectation hypothesis of the zero coupon bond this can be

reformulated to

H = �Bj(ti; tN ) +K

=
1

1 + ri;j
Ep(i;j)[Hti+1(:; :)jri;j;Bj(ti; tN )]

By induction this lead to the statement with respect to the choosen instruments.

2. From the assumptions of the model the cash ow of any other security, e.g. zero{coupon bonds

with shorter maturity, coupon bonds, swaps etc. can be interpreted as an interest rate derivative.

Therefore a self �nancing portfolio strategy using the zero coupon bond B(tN ) and the interest

rate exists for each of these instruments. The initial value of this strategy is equal to the expected

discounted payo�. This means that any interest rate depending security within the model can be

replaced by a self{�nancing portfolio strategy of the �rst two instruments. As a conclusion the

arbitrage price do not depend on the choice of the instruments.

�
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