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1 Introduction

In this paper we present some results of a data analysis of Family Expenditure

Surveys for the United Kingdom and France. These surveys contain (among

other information) for every household of a large random sample from the whole

population of households the expenditure (typically per year) on a variety of

consumption items, like food (bread, 
our, beef and veal, mutton and lamb...),

housing, services, transport, etc. The sum of household expenditure on all con-

sumption items that are considered in the survey is called household total ex-

penditure .

We shall show that all consumption expenditure data sets which we have

analysed so far exhibit a characteristic feature that we shall call \increasing

spread ".

In this introduction we shall �rst informally describe the characteristic fea-

ture of the consumption expenditure data. Formal de�nitions of the statistical

concepts that are needed are given in section 2. Then we sketch an argument in

order to show why a theorist who is concerned about demand aggregation might

be interested in the empirical �ndings of this paper.

It is a well-known empirical fact that the variance, var(x), of the distribution

of expenditure on a certain consumption item of all households with total expen-

diture x is dependent upon the level of total expenditure (\heteroscedasticity")

and, further more, this conditional variance var(x) has a tendency to increase

with total expenditure. To be more speci�c, consider the expressionZ
(var(x+�)� var(x)) �(x)dx ; � > 0

where � denotes the density (histogram) of the total expenditure distribution.

Estimates of this expression from family expenditure data typically turn out to

be positive.

We extend this notion of "monoscedasticity" of expenditure on a particular

consumption item to a comprehensive collection of consumption items. This

then leads to the notion of \increasing dispersion of conditional consumption

expenditure" and to the property of \average increasing dispersion" which are

de�ned in the next section. The last property is well supported by the data
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which have been analysed so far.

Instead of considering the variance var(x) of the distribution of expenditure

on a certain consumption item of all households with total expenditure x, one

can consider the second moment, denoted by m2(x). Surely, one expects that

the conditional second moment m2(x) will also depend on x. The question is

whether there is also a tendency to increase with total expenditure.

Since m2(x + �) � m2(x) = [var(x + �) � var(x)] + [m(x + �)2 � m(x)2],

and since one can expect that m(x + �)2 � m(x)2 is positive, this increasing

tendency of the second moment m2(x), which we call "increasing spread", will

even be more pronounced. Furthermore, if one considers the average over the

expenditure distribution, that is to say, the expression

Z �
m2(x+�)�m2(x)

�
�(x)dx

then, estimates of this expression from family expenditure data turn out to be

positive.

As before, we extend this notion of "increasing spread" of expenditure on

a particular consumption item to a comprehensive collection of consumption

items. For this, one considers the matrix m2(x) of second moments of the joint

distribution of expenditure on the collection of consumption items of all house-

holds with total expenditure x. Thus, if there are n consumption items then

m2(x) is a n� n matrix. The de�nition of the matrix m2(x) implies that m2(x)

is positive semi-de�nite. The degree of positive-de�niteness can be taken as a

measure of "spread" of the joint distribution of expenditure.

The joint distribution of consumption expenditure of all households who

spend x+� is said to be more spread than the joint distribution of consumption

expenditure of all households who spend x if the matrix

m2(x +�)�m2(x)

is positive semi-de�nite. This clearly generalises the above one-dimensional no-

tion of increasing spread since it implies that every element on the diagonal of

m2(x + �) is larger or equal to the corresponding element on the diagonal of

m2(x). We de�ne average increasing spread by the positive semi-de�niteness of
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the matrix

M(�) :=
Z h

m2(x +�)�m2(x)
i
�(x)dx; � > 0:

Estimates of this matrix from consumption expenditure data turn out to be

positive de�nite for all data sets which we have analysed so far.

We shall now sketch an argument1 which shows that the property of "average

increasing spread" is relevant for deriving the Law of Demand of the market

demand function.

Let us assume that the demand behavior of a household can be modelled by

a demand function

f� : (p; x) 7! f�(p; x) 2 IRn

where IRn denotes the commodity space, p 2 IRn denotes the price vector, and x

the total expenditure of the household. Di�erent households typically will have

di�erent demand functions and total expenditure.

A large population of households is then described by a joint distribution � of

(�; x) 2 A�IR+. The parameterspace A which is used to parametrize household

demand functions can be any separable matrix space.

The market demand is de�ned by

F (p) :=
Z
A�IR+

f�(p; x)d�:

The Law of Demand says that for any two price vectors p and q the vector of

price changes (p� q) and the vector of demand changes (F (p)� F (q)) point in

opposite direction, i.e.,

(p� q) � (F (p)� F (q)) � 0:

If the market demand function F is di�erentiable then this inequality is equiva-

lent with the negative semi-de�niteness of the Jacobian matrix @pF (p) =
R
@pf

�(p; x)d�.

The Jacobian matrix @pf
� can be decomposed into two matrices (Slutsky-

decomposition):

@pf
�(p; x) = Sf�(p; x)� Af�(p; x)

1For more details we refer to Hildenbrand (1993).
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where Af�(p; x) = @xf
�(p; x)f�(p; x)? and Sf�(p; x) is the Jacobian matrix,

evaluated at q = p, of the mapping

q 7! f� (q; q � f(p; x)) :

Consequently, a positive semi-de�nite average expenditure e�ect matrix

�A(p) =

Z
A�IR+

Af�(p; x)d�

supports the Law of Demand. Yet, why should the matrix �A be positive semi-

de�nite?

The expenditure e�ect matrix Af�(p; x) is positive semi-de�nite if, and only

if, the vectors f�(p; x) and @xf
�(p; x) are collinear. There is obviously no a priori

reason for this to hold. Consequently, if the average expenditure e�ect matrix

�A is positive semi-de�nite at all, then it must be the result of an aggregation

(averaging) e�ect.

The expenditure on commodity h of household � with total expenditure x

at the price vector p is denoted by

y�h (p; x) = ph � f�h (p; x); h = 1; :::; n

It is easy to show that the matrix �A is positive semi- de�nite if, and only if, for

su�ciently small � > 0 the distribution of consumption expenditure fy�(p; x+
�)g (i.e., the image distribution of � under the mapping (�; x) 7! y�(p; x)) is

more spread than the distribution of consumption expenditure fy�(p; x)g. By

de�nition of the partial ordering "more spread" this means that the matrix

~M(p;�) := m2

�fy�(p; x+�)g �m2

�fy�(p; x)g

is positive semi-de�nite.

Let � denote the density of the distribution of total expenditure (the marginal

distribution of �) and �jx the conditional distribution of � on A given the total

expenditure level x. Then we obtain

~M(p;�) =
Z
[m2

�jxfy�(p; x+�)g �m2

�jxfy�(p; x)g]�(x)dx:
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Now we recall the de�nition of average increasing spread of conditional ex-

penditure which we discussed in the �rst part of this introduction. In our new

notation this means that the matrix

M(p;�) =
Z
[m2

�jx+�fy�(p; x+�)g �m2

�jxfy�(p; x)g]�(x)dx :

is positive semi-de�nite. This matrixM(p;�) looks similar to the matrix ~M(p;�),

yet, in general, they are not identical since the conditional distribution �jxmight

depend on x. However, if this dependence is su�ciently weak, then one can

consider the "observable" matrix M(p;�) as a "proxi" for the "unobservable"

matrix ~M(p;�). Since the estimates of the matrix M(p;�) from expenditure

surveys turns out to be positive de�nite one might use these empirical �ndings

as a support for the hypothesis that the matrix ~M(p;�), and hence, the average

expenditure e�ect matrix �A is positive semi-de�nite.

Thus we have shown that the hypothesis of increasing spread supports the

Law of Market Demand to hold. One can also show that the hypothesis of

increasing dispersion gives support to a weaker property of the market demand

function, that is to say, the Weak Axiom of Revealed Preference. For more

details we refer to Hildenbrand (1993).

�

2 Increasing dispersion and spread

In this section we shall de�ne some simple concepts from descriptive statistics

which will be needed for the data analysis of the Family Expenditure Survey in

section 3.

Let � denote a distribution (probability measure) on IRn. The covariance-

matrix , cov �, of the distribution �, is de�ned by

(cov �)ij :=
Z
yiyjd� �

Z
yid� �

Z
yjd�; 1 � i; j � n

The secondmoment-matrix , m2�, of the distribution � is de�ned by
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(m2�)ij :=
Z
yiyjd�; 1 � i; j � n:

We only consider distiributions � for which the covariance and second moment-

matrix are �nite.

De�nition 1

a) The distribution �1 on IRn is said to be more dispersed than the distribu-

tion �2 on IRn if the matrix cov �1 � cov �2 is positive semi-de�nite.

b) The distribution �1 is said to be more spread than the distribution �2 if the

matrix m2�1 �m2�2 is positive semi-de�nite.

In order to visualize in the next section the partial orderings of `more

dispersed' and `more spread' for consumption expenditure distributions we

de�ne the ellipsoid of dispersion and the ellipsoid of spread .

For our purpose, it su�ces to consider only the case where the matrices cov �

and m2� are non-singular. In this case we de�ne the ellipsoid of dispersion of

the distribution � on IRn by

Ell(cov �) :=
n
z 2 IRn

���z � (cov �)�1z � 1
o
;

and the ellipsoid of spread of the distribution � by

Ell(m2�) :=
n
z 2 IRn

���z � (m2�)�1z � 1
o
;

One easily shows that the distribution �1 is more dispersed than the distri-

bution �2 if and only if

Ell(cov �2) � Ell(cov �1):
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The distribution �1 is more spread than the distribution �2 if and only if

Ell(m2�2) � Ell(m2�1):

For a distribution � on IRn we consider the image distribution under the mapping

y 7!
nX

h=1

yh:

We shall assume that this image distribution has a density, which we denote

by �. For simplicity it is assumed that the support of this density is an intervall

[a; b] in IR.

For every x 2 [a; b] we denote by �(x) the conditional distribution of � on

the set fy 2 IRnjPn
h=1 yh = xg. In the following de�nition we shall assume that

the distribution � is su�ciently smooth such that cov �(x) and m2�(x) are dif-

ferentiable for x 2 (a; b).

De�nition 2

The distribution � has the property of

(a.1.) conditional increasing dispersion

if for every x 2 (a; b) the matrix

C(x) = @x cov �(x) is positive semi-de�nite

(a.2.) average conditional increasing dispersion

if the matrix

C� =
R
@x cov �(x)�(x)dx is positive semi-de�nite

(b.1.) conditional increasing spread

if for every x 2 (a; b) the matrix

M(x) = @xm
2�(x) is positive semi-de�nite

(b.2.) average conditional increasing spread

if the matrix

M� =
R
@xm

2�(x)�(x)dx is positive semi-de�nite.
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One can show that the property of conditional increasing spread for a distri-

bution � on IRn
+
is stronger than the property of conditional increasing dispersion.

The proof of this claim is based on the identity C(x)1 = 0, where 1 is the vector

(1; : : : ; 1), and the following result: the matrix M(x) is positive semi-de�nite if

and only if the matrix C(x) satis�es the inequality

v � C(x)v � x

2
(v � @xm�(x))

2

for every vector v 2 IRn which is orthogonal to m�(x) =
R
yd�.

In the next section we consider the expenditure data from the Family Expen-

diture Survey as a random sample from a hypothetical distribution �. We shall

estimate the matrices C(x); C;M(x) and M , and test whether they are positive

de�nite.

�

3 Data Analysis

In this section we discuss the empirical evidence of the hypotheses of increasing

dispersion and increasing spread of household consumption expenditure. For

this we analyse two di�erent family expenditure surveys.

One data set is from the United Kingdom Family Expenditure Survey (FES)

from 1968 to 1984. For each year the consumption expenditure of approximately

7000 households are reported. Households are selected at random from electorial

registers. For details on samples and commodity classi�cation see Family Expen-

diture Survey (1968 - 1983), Kemsley, Redpath and Holmes (1980). Expenditure

on the following nine commodity aggregates are considered (abbreviations used

in the subsequent Figures are given in brackets):

1. Housing (Housing)

2. Fuel, light and power (Fuel)

3. Food and non-alcoholic beverages (Food)

4. Clothing and footwear (Clothing)
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5. Durable household goods (Durables)

6. Services (Services)

7. Transport (Transport)

8. Alcohol and tobacco (Alcohol and Tobacco)

9. Other goods and miscellaneous (Other Goods)

The second data set is the French "Enquête budget de famille" (EBF) from

1979, 1984-85 and 1989. As for the data expenditure of United Kingdom large

samples of randomly selected households are reported. The sample size varies

from 9000 to 12000. Details concerning samples and commodity classi�cation

can be found in the documents of the French Institut National de la Statistique

et des �Etudes �Economique. A somewhat �ner speci�cation of consumption items

than for the FES data is used (abbreviations are given in brackets)

1. Food at home (Food 1)

2. Non-alcoholic beverages (Beverage)

3. Alcoholic beverages (Alcohol)

4. Food outside home (Food 2)

5. Clothing (Clothing)

6. Footwear (Footwear)

7. Housing (Housing)

8. Fuel, light and power (Fuel)

9. Durable household goods and domestic services (Durables)

10. Hygiene and health (Health)

11. Transport and communication (Transport)
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12. Tobacco (Tobacco)

13. Culture and leisure (Leisure)

14. Other goods and miscellaneous (Other goods)

The FES and EBF data provide independent samples from the underlying

population of households. It is now assumed that household consumption ex-

penditure of each of these populations can be described by a smooth probability

distribution � on IRN ;which has compact support (N = 9 for FES,N = 14 for

EBF ). Of course, � varies between years.To simplify the interpretation of the

results, it is convenient to normalize the data in every year such that the mean

total expenditure is equal to one.

We �rst analyze the hypotheses of conditonal increasing dispersion and spread.

Consider the diagonal elements of the matrices cov �(x) and m2 �(x); let covjj

and mjj(x) denote the j�th diagonal element of these matrices. Both covjj(x)

and mjj(x) are functions of total expenditure which can be estimated by non-

parametric regression methods. We will call them "variance-curve" and

"second moment-curve." Kernel estimators are applied for estimating covjj(x)

and mjj(x): A description of the estimators can be found in the appendix. Fig-

ures 1 and 3 show estimated "variance-curves" for FES and EBF data from the

years 1974 and 1989. One immediately recognizes that for all consumption items

conditional variance has a tendency to increase with total expenditure. Figures

2 and 4 show the same e�ect for "second moment-curves". One should note

that the curve estimates are not very reliable for high values of x: This follows

from the theoretical results discussed in the appendix. The hypotheses of condi-

tional increasing dispersion and spread are of course more demanding, and the

empirical evidence given in Figures 1 - 4 is incomplete.

A su�cient condition for C(x) be positive semi-de�nite is that for

x� > x; cov �(x�)� cov �(x) be positive semi-de�nite. H�ardle and Park (1992)

developed a method for testing whether cov �(x�) � cov �(x) be positive semi-

de�nite. They applied their statistics to FES data and obtained results which

are consistent with the hypothesis of increasing dispersion. Some problem arises

from the fact that the di�erence jx��xj can not be very small for the procedure

to be reliable.
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The matrix C(x) is positive semi-de�nite if and only if the smallest non-

zero eigenvalue of C(x) is larger than zero. Note that by de�nition at least one

eigenvalue of C(x) is equal to zero. We now estimate the matrices C(x) and

their eigenvalues by kernel derivative estimation. Let �̂min denote the smallest

non-zero eigenvalue of a resulting estimate Ĉ(x); and let �min be the smallest

non-zero eigenvalue of C(x): Bootstrap techniques now allow to establish con-

�dence bounds c�up; c
�
low such that approximately P

�
�min � �̂min � c�up

�
� 0:05:

and P
�
�min � �̂min � c�low

�
� 0:05: Details of the statistical procedures can be

found in the appendix. Hence, with cup = c�up+�̂min; clow = c�low+�̂min we approx-

imately obtain P (�min � cup) � 0:05 and P (�min � clow) � 0:05: The values cup

and clow can now serve as test statistics for testing positive semi-de�niteness
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of C(x) with respect to the critical value of � = 0:05: The tests

1) reject the hypotheses of conditional increasing dispersion (i.e. of positive

semi-de�niteness of C(x)), if cup < 0

2) reject the hypotheses that C(x) is not positive semi-de�nite if clow > 0:

Table 1 and Table 2 summarize the results for the FES and EBF data for

di�erent values of total expenditure.

x # clow < 0 # �̂min < 0 # cup < 0

0.25 0 0 0

0.5 5 0 0

0.75 7 4 1

1 6 1 0

1.25 7 1 0

1.5 10 3 1

2 7 2 0

2.5 17 11 1

Table 1. Smallest non-zero eigenvalues of Ĉ(x), upper and lower con�dence

bounds: Number of negative values out of 17 estimates (the years 1968-1984),

for FES data.
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x # clow < 0 # �̂min < 0 # cup < 0

0.25 0 0 0

0.5 1 0 0

0.75 3 2 0

1 3 1 0

1.25 3 1 0

1.5 3 1 0

2 3 2 0

2.5 3 3 0

Table 2: Smallest non-zero eigenvalues of Ĉ(x), upper and lower con�dence

bounds: Number of negative values out of 3 estimates (the years (1979, 1984,

1989))for EBF data.

When interpreting the tables one should keep in mind that for the FES data

independent tests for each of the 17 di�erent years were performed with respect

to the critical value � = 0:05. One rejection out of 17 independent test might

occure just by chance. Thus, the above results do not reject the hypothesis of

conditional increasing dispersion.

The same approach can be adopted when dealing with the hypothesis of

conditional increasing spread. By an analogous statistical method, described in

the appendix, an estimate �̂min of the smallest eigenvalue �min of M(x) can be

constructed. With � = 0:05 bootstrap leads to upper and lower bounds cup and

clow for �min: Similar to 1 and 2 the values of cup and clow can then serve as

statistics for testing the hypothesis of conditional increasing spread. FES and

EBF data now lead to the results presentend in Tables 3 and 4.

In contrast to Table 1 and 2, the results of Table 3 and 4 are not in good

accordance with the hypothsesis of conditional increasing spread. Too many

rejections are obtained for the FES aswell as for EBF data. On the other hand,
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when considering the tables one might say that rejection of the hypothesis is not

very strong, since for a majority of situations cup > 0:

The above results for conditional increasing dispersion surely let us expect

that the weaker hypothesis of average conditional increasing dispersion will be

x # clow < 0 # �̂min < 0 # cup < 0

0.25 0 0 0

0.5 16 14 2

0.75 17 14 4

1 16 10 0

1.25 16 8 1

1.5 14 8 1

2 16 6 1

2.5 17 14 2

Table 3: Smallest eigenvalues of M̂(x), upper and lower con�dence bounds:

Number of negative values out of 17 estimates for FES data.
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x # clow < 0 # �̂min < 0 # cup < 0

0.25 0 0 0

0.5 2 1 0

0.75 3 2 0

1 3 3 0

1.25 3 2 1

1.5 3 3 0

2 3 3 1

2.5 3 3 0

Table 4: Smallest eigenvalues of M̂(x), upper and lower con�dence bounds:

Number of negative eigenvalues out of 3 estimates for EBF data.
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in good accordance with the data. Estimates Ĉ and �̂min of the matrix C =R
@xcov�(x)�(x)dx and its smallest non-zero eigenvalue �min can be obtained

by average derivative methods. Note that at least one eigenvalue of C has to

equal zero. As before for � = 0:05 bootstrap allows to establish upper and

lower bounds cup and clow for �min; which can be used as statistics for testing

the positive semi-de�niteness of C: Interpretation is analogous to 1) and 2). A

description of the statistical procedures is given in the appendix. FES and EBF

data then lead to the results presented in Tables 5 and 6.
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year sample clow � 100 �̂min � 100 cup � 100

size

1968 7184 0.30 0.42 0.54

1969 7007 0.35 0.44 0.54

1970 6391 0.27 0.33 0.40

1971 7238 0.31 0.40 0.49

1972 7017 0.25 0.36 0.46

1973 7125 0.24 0.35 0.46

1974 6694 0.26 0.39 0.51

1975 7201 0.30 0.43 0.57

1976 7203 0.26 0.38 0.49

1977 7198 0.22 0.32 0.43

1978 7001 0.21 0.28 0.37

1979 6777 0.17 0.22 0.26

1980 6943 0.14 0.32 0.46

1981 7485 0.19 0.26 0.32

1982 7427 0.18 0.27 0.35

1983 6973 0.16 0.21 0.27

1984 7081 0.17 0.30 0.41

Table 5: Smallest non-zero eigenvalues of Ĉ, upper and lower con�dence

bounds for FES data.
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year sample clow � 100 �̂min � 100 cup � 100

size

1979 10647 0.0094 0.0131 0.0168

1984 11978 0.0090 0.0107 0.0127

1989 9043 0.0094 0.0106 0.0122

Table 6: Smallest non-zero eigenvalues of Ĉ, upper and lower con�dence

bounds for EBF data.

In all situations clow; �̂min and cup are positive which means that the hypoth-

esis of average conditional increasing dispersion is consistent with the data. We

can even say more. Since clow > 0; the opposite hypothesis that C is not positive

semi-de�nite is rejected by both FES and EBF data from all years. In this sense

the data even support the hypothesis of average conditional increasing dispersion.

As explained in the introduction the hypothesis of average conditional in-

creasing spread is the most important one of the four hypotheses. Eventhough

positive de�niteness of the matricesM(x) is rejected, the weaker hypothesis that

M =
R
M(x)�(x)dx is positive de�nite seems to have a better chance to pass the

test.

To visualize the empirical �ndings we can use ellipsoids of spread. By de�-

nition M is positive semi-de�nite if for all � > 0 the di�erence �M(�) � �M is

positive semi-de�nite, where �M(�) =
R
m2�(x + �)�(x)dx and �M(0) � �M =R

m2�(x)�(x)dx This implies that for all � > 0 the ellipsoid of spread of the

matrix �M is contained in the ellipsoid of spread of the matrix �M(�): Figures 5

and 6 illustrate that this is in fact the case for all estimates of �M(�) and �M for

FES and EBF data (statistical tools are described in the appendix).

A more precise analysis of the matrix M is based on the type of approach

already described above. Estimates M̂ and �̂min of M and its smallest eigen-

value �min are determined by average derivative methods (we refer again to the

appendix for a description of statistical methodology). For � = 0:05 bootstrap
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methods allow to approximate upper and lower con�dence bounds cup and clow

for �min; which can be taken as statistics for testing the positive de�nitnesss of

M: Interpretation follows 1) and 2). FES and EBF data then lead to the results

given in Tables 7 and 8.

23



24



25



year sample clow � 100 �̂min � 100 cup � 100

size

1968 7184 0.26 0.34 0.41

1969 7007 0.28 0.36 0.44

1970 6391 0.21 0.26 0.31

1971 7238 0.24 0.32 0.39

1972 7017 0.13 0.34 0.49

1973 7125 0.19 0.29 0.37

1974 6694 0.19 0.31 0.42

1975 7201 0.23 0.36 0.46

1976 7203 0.19 0.31 0.40

1977 7198 0.18 0.26 0.34

1978 7001 0.15 0.21 0.27

1979 6777 0.12 0.16 0.21

1980 6943 0.12 0.28 0.40

1981 7485 0.15 0.20 0.24

1982 7427 0.14 0.21 0.27

1983 6973 0.11 0.14 0.17

1984 7081 0.12 0.22 0.30

Table 7: Smallest eigenvalues of M̂ , upper and lower con�dence bounds for

FES data.
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year sample clow � 100 �̂min � 100 cup � 100

size

1979 10647 0.0108 0.0135 0.0167

1984 11978 0.0080 0.0091 0.0101

1989 9043 0.0063 0.0073 0.0083

Table 8: Smallest eigenvalues of M̂ , upper and lower con�dence bounds for

EBF data.

As in the analysis of the matrix C, we obtain clow > 0 for FES and EBF data

for all years. The opposite hypothesis that M is not positive de�nite is thus

rejected in all situations. In this sense, the data give support to the hypothesis of

average conditional increasing spread . Our results are in agreement with those

of H�ardle, Hildenbrand and Jerison (1991), who �rst analysed this hypothesis

for FES data.

�
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Appendix: Statistical Tools

In this section we describe the statistical procedures that are used to obtain the

empirical results described in Section 3.

The data consists of the expenditure on N consumption items for n house-

holds. Households are sampled independently such that the expenditure vectors

y1; :::; yn in IRN can be considered as independent random variables with com-

mon distribution �: For simplicity we assume that � has a compact support. The

total expenditure on all consumption items of household i is denoted by xi: The

pairs (xi; yi) are i.i.d. with a common distribution2 induced by �: As in previous

sections the marginal density of total expenditure is denoted by �.

1. Analysis of M(x) and C(x). For every pair of j; l 2 f1; :::; Ng we

want to estimate the "second moment-curve"

mjl(x) = E(yij � yiljxi = x) =
�
m2�(x)

�
j;l

and the "covariance-curve"

covjl(x) = E(yij � yiljxi = x)� (E(yijjxi = x) � E(yiljxi = x)) = (cov �(x))j;l :

The functions mjl and covj;l are assumed to be "smooth" functions which are

at least three times continuously di�erentiable. Estimation then relies on non-

parametric regression methods; we use kernel estimators to estimate these curves

in an interval [a; b] � IR. For a survey of kernel and other non-parametric curve

estimation methods see H�ardle (1990). We use the following kernel estimation

technique which in the present context has some computational and theoretical

advantages compared to the usual methods as proposed by Nadaraya (1964) and

Watson (1964) or Gasser and M�uller (1984):

First, the data is discretized into bins of the form

Ba(k) :=

"
a+

(k � 1)

L
; a+

k

L

#
; k = 1; :::; L

for some integer L < n. For each bin Ba(k); k = 1; :::; L, the average

2We always assume that average total expenditure is normalized to 1. Thus, yi; xi must be

divided by average total expenditure. Clearly, this induces some correlation between di�erent

(yi; xi). However, since n is large, this e�ect is negligible.
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Mjl;k :=
1

nk

nX
i=1

yij � yil � I (xi 2 Ba(k))

and

Cjl;k :=
1

nk � 1

 
nX
i=1

yij � yil � I (xi 2 Ba(k))

�
� nX
i=1

yij � I (xi 2 Ba(k))
�
�
� nX
i=1

yil � I (xi 2 Ba(k))
�
=nk

!

are computed, where nk := #fXijXi 2 Ba(k)g: The kernel estimators m̂jl(x)

and ^covjl(x) are then de�ned by3

m̂jl(x) =
1

h

nX
k=1

Z a+ k

L

a+
(k�1)

L

W

�
x� v

h

�
dv �Mjl;k

^covjl(x) =
1

h

nX
k=1

Z a+ k

L

a+
(k�1)

L

W

�
x� v

h

�
dv � Cjl;k

where W is a kernel function and h denotes the bandwidth. This approach

is closely related to the "WARPing" algorithm considered in Hrdle and Scott

(1988) and Hrdle (1990) which has been proposed as a method for fast computa-

tion of kernel estimators. The number L has to be smaller than n but large

enough such that it can be assumed that

1

nk

nX
i=1

mjl(xi) � I (xi 2 Ba(k)) and
1

nk

nX
i=1

covjl(xi) � I (xi 2 Ba(k))

equal mjl(tk) and covjl(tk) up to a negligible error, where tk = a+ 2k�1
2L

:

To make this more precise let L = 
 n
1
2 ; 0 < 
 <1: One can then write

Mjl;k = mjl(tk) + "k; k = 1; :::; L;

where the "k are independent with jE"kj = o( 1
n
) as n ! 1: Furthermore,

var("k) = �2jl(tk)=(
n
L
�(tk)) + o( n

L
) as n!1, where �2jl(x) := var(yijyiljxi = x).

These properties of the "k can easily be derived from standard arguments (note

3Estimators have to be modi�ed near the boundary of [a,b]. Possible boundary modi�ca-

tions are, for example, discussed in M�uller (1988)
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that Enk � n
L
�(tk)). If a second order kernel W is used, then it can be inferred

from the arguments of Gasser and M�uller (1984) that as n!1; h! 0; nh!1

E(m̂jl(x)�mjl(x))
2

= (Em̂jl(x)�mjl(x))
2
+ var(m̂jl(x))

= h4
m00

jl(x)

4
dw +

�2jl(x)

nh�(x)
cw + o(h4 +

1

n
h)(1)

Here, dw and cw are kernel dependent constants. The optimal bandwidth hopt is

proportional to n�
1
5 and results in E (m̂jl(x)�mjl(x))

2
= O

�
n�

4
5

�
: An analo-

gous expression can be established to hold for ^covjl(x)� covjl(x): Relation (A1)

shows that the method proposed above shows a slightly superior asymptotic

behaviour compared to the Nadaraya-Watson and Gasser-M�uller kernel estima-

tors. The bias jEm̂jl(x)�mjl(x)j of the Nadaraya-Watson estimator contains an

additional term proportional to �0(x)

�(x)
which can lead to strange e�ects (compare

Jennen-Steinmetz and Gasser, 1990). The Gasser-M�uller estimator possesses the

same bias term as in (A1), but the variance term has to be multiplied by 1.5.

The estimators introduced above were used to generate the curves presented

in Figures 1 - 4. They are based on L = 200. The Epanechnikov kernel de�ned

by W (u) = 3

4
(1� u2) for juj � 1 and W (u) = 0; juj > 1, was applied which has

some optimality properties (compare, e.g., M�uller, 1988). Optimal bandwidths

were estimated from the data by using a plug-in method similar to the one

proposed by Gasser, Kneip and K�ohler (1991).

For given x; estimates of the matrices

M(x) = (m0
jl(x))j;l=f1;:::;Ng

and

C(x) = (cov0jl(x))j;l=f1;:::;Ng

were obtained by

M̂(x) = (m̂0
jl(x))j;l=f1;:::;Ng

Ĉ(x) = ( ^cov0jl(x))j;l=f1;:::;Ng ;

where m̂jl(x); ^covjl(x) were determined as above. A quartic kernel with W (u) =
15

16
(1�u2)2; juj � 1, andW (u) = 0; juj > 1; was used in this estimation step, since

this kernel has some optimality properties in estimating derivatives (compare,
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e.g., M�uller, 1988). We are not only interested in estimating the matrices M(x)

and C(x); but also in testing positive de�niteness. Let us �rst consider estimates

of M(x). If the bandwidth h satis�es h! 0; 1

nh3
! 0 as h!1 then it follows

from easy computations (compare Gasser and M�uller, 1984)

Em̂jl(x) =
1

h

Z
W 0(u)mjl(x� hu)du+ o(

1

nh
)

=
Z
W (u)m0

jl(x� hu)du+ o(
1

nh
)(2)

= m0
jl(x) +

h2

2
m000

jl(x)c
�
w + o(h2 +

1

nh
)

and

var (m̂0
jl(x)) =

�2jl(x)

nh3�(x)
� d�w + o

�
1

nh3

�
;(3)

where c�w; d
�
w are constants which can easily be computed from the de�nition of

the quartic kernel. The optimal bandwidth is now proportional to n�
1
7 yielding

E(m̂0
jl(x)�m0

jl(x))
2
= (Em̂0

jl(x)�m0
jl(x))

2
+ var (m̂0

jl(x)) = O(n�
4
7 ) :

Furthermore, by well known central limit theorems the following relation can be

shown in a straightforward manner

p
nh3(m̂0

jl(x)� Em̂0
jl(x)) �!L N

�
0;
�2jl(x)

�(x)
d�w

�
(4)

If �min(A) denotes the smallest eigenvalue of a matrix A, the techniques devel-

oped in Hrdle and Hart (1992) and Hrdle and Park (1992) allow to derive from

(A4) that

p
nh3

�
�min(M̂(x))� �min(EM̂(x))

�
�!L N(0; 
);(5)

where 
 is a suitable constant which can be evaluated from (A4).

When choosing now an undersmoothing bandwidth, i.e., h = o(n�
1
7 );

1

nh3
! 0, (A2) implies that

p
nh3(Em̂0

jl(x)�m0
jl(x)) �!P 0. Hence, by (A5)

p
nh3

�
�min(M̂(x))� �min(M(x))

�
�!L N(0; 
) :(6)

Expressions analogous to (A2) -(A6) can be obtained for cov0jl(x). The re-

sults (A5) and (A6) can in principle be applied for testing �min(M(x)) > 0
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(or �min(C(x)) > 0) but this procedure will be complicated (note that one

has to plug in estimates of �2jl). An attractive alternative consists in a boot-

strap approximation of the distribution of
p
nh3(�min(M̂(x))��min(M(x))). We

therefore use resamples from the data f(Yi; Xi)gi=1;:::;n for the given year and

the given country. More precisely bootstrap samples fY �
i ; X

�
i gi=1;:::;n are gener-

ated by independent sampling (with replacement) from f(Yi; Xi)gi=1;:::;n. Then
estimates M̂�(x) and Ĉ�(x) of M(x) and C(x) are determined from the boot-

strap samples. The distribution of �min(M̂
�(x)) or �min(Ĉ

�(x)) can easily be

approximated by Monte Carlo simulations. Adapting arguments of Hrdle and

Park (1992) and Hrdle and Hart (1992) it can be shown that the distribution ofp
nh3

�
�min(M̂

�(x))� �min(EM̂
�(x))

�
is asymptotically close to the distribution

of
p
nh3

�
�min(M̂(x)) � �min(EM̂(x))

�
. The same result holds when replacing

M̂ by Ĉ.

A bootstrap test of the hypothesis �min(M(x)) � 0 can now be described as

follows: One determines the constant B(x) < 0 from the bootstrap distribution

such that P
�
�min(M̂

�(x)) � �min(EM̂
�(x)) � B(x)

�
= �, where � equals, say

0.05. Then one computes the constant cup by cup = �min(M̂(x)) � B(x). The

above asymptotic arguments now imply that

P
�
�min(M(x)) � cup

�
� P

�
�min(EM̂(x)) � cup

�
= � ;

provided that h is small enough such that j�min(M(x)) � �min(EM̂(x))j is neg-
ligible. The hypothesis is rejected if cup < 0. A test of �min(M̂(x)) < 0

can be obtained by evaluating the constants D(x); clow with P
�
�min(M̂

�(x)) �
�min(EM̂

�(x)) � D(x)
�
� � and clow = �min(M̂(x)) �D(x). The hypothesis is

rejected if clow > 0. In an analogous manner one de�nes tests of �min(C(x)) � 0

and �min(C(x)) < 0.

This methodology was applied to the given data to obtain the results pre-

sented in Tables 1-4. We chose L = 200. The bandwidths used at x =

0:25; 0:5; 0:75; 1:0; 1:25; 1:5; 2:0; 2:5where h = 0:15; 0:2; 0:25; 0:3; 0:35; 0:5; 0:75; 1:0.

For all values of x < 1:25 the selected bandwidths are smaller than the (aver-

age) optimal bandwidths estimated by a plug-in method similar to the one of

Gasser, Kneip and K�ohler (1991). They might be considered as undersmooth-

ing bandwidths for which the above theory applies. A di�culty arises for large
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values of total expenditure. The corresponding values of �(x) are comparably

small, as is illustrated in Figure 7 which shows a kernel estimated density �̂(x)

for the French data of the year 1984. The e�ect generalizes to all years and

holds for both data sets considered. Furthermore, �2jl(x) increases with x. But

if �(x) becomes small and �2jl(x) large, then by (A3) the variances var (m̂0
jl(x))

grow, which will corrupt the estimates �min(M̂(x)) if a small h is selected. This

explains the large values of h for large total expenditures. The problem then is

that the di�erence between EM̂(x) and M(x) will not be negligible. However,

(A4),(A5) and the bootstrap approximations remain true, and the above tests

can still be considered as valid tools for checking the positive semi-de�niteness

of EM̂(x); EĈ(x). Relation (A2) implies that as n!1; 1

nh
! 0

EM̂(x) �
Z
W (u)M(x� hu)du ;

and an analogous expression holds for EĈ(x). Since the values ofW are positive

for the quartic kernel, the hypotheses of conditional increasing spread and dis-

persion imply that EM̂(x) and EĈ(x) be positive semi-de�nite asymptotically.

Hence, even for large h these hypotheses will have to be rejected if cup < 0.

Figure 7: Estimated density of total expenditure for EBF data from 1984
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2. Ellipsoids of concentration. Estimates of the matrices �M(�) =R
m2�(x + �)�(x)dx for � > 0 can be obtained in a very simple manner. We

linearly interpolate the observations y1j � y1l; :::; ynj � ynl to determine a rough

estimate ~mjl of mjl. An estimate �̂M(�) is then computed by averaging the

values ~mjl(xi + �); i.e., �̂M(�) = ( 1
n

Pn
i=1 ~mjl(xi + �))j;l=1;:::;N. Together with

�̂M � �̂M(0) = ( 1
n

Pn
i=1 yij � yil)j;l=1;:::;N these estimates were used to generate the

ellipsoids of spread presented in Figures 5 and 6. It is easily seen that as n!1
����� 1n

nX
i=1

~mjl(xi +�)�
Z
mjl(x+�)�(x)dx

����� = Op
�
n�

1
2

�

holds for all � � 0. It should be noted, however, that as �! 0

� �
�
�̂M(�)� �̂M

�
is not a consistent estimator of M = @� �M(�)j�=0:

3. Analysis of M and C. It remains to consider statistical tools for

analyzing the matrices

M =
Z
M(x)�(x)dx

C =
Z
C(x)�(x)dx

Let us �rst consider the matrix M .

The basic methodology applied is "average derivative" estimation as introduced

by Hrdle and Stoker (1989). The idea is simple. By partial integration one

obtains

M =
Z
(m0

jl(x))j;l=1;:::;N�(x)dx =
Z
(mjl(x))j;l=1;:::;N

��0(x)
�(x)

�(x)dx

Now estimate L(x) = ��0(x)
�(x)

by kernel density estimation. This approach is

already described in Hrdle, Hildenbrand and Jerison (1991), who present an

analysis of the M -matrix for the FES data. The density � can be estimated by

a Rosenblatt-Parzen kernel density estimator

�̂(x) =
1

nh

nX
i=1

W

�
x� xi

h

�

where W is a di�erentiable kernel function and h is the bandwidth. This results

in an estimate L̂(x) = ��̂0(x)
�(x)

: We again run into problems if x is large. Then
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�(x) is very small and L̂(x) might become unstable. The �nal estimator used in

Hrdle, Hildenbrand and Jerison (1991) thus looks as follows.

M̂ =
1

nb

nX
i=1

yiy
T
i L̂(xi) � I(xi � b);(7)

where I is the indicator function, b denotes the "cut- o�" point, and nb :=

#fxijxi � bg. In principle, for the type of densities considered (compare Figure

7) one also has to cut-o� very small values of x. This is, however, of minor

practical importance and will not be considered in this paper.

Hrdle and Stoker (1989) showed that under weak technical conditions there

exists a bandwidth sequence h = hn ! 0 and a sequence b = bn !1 such that

as n!1 p
n
�
M̂jl �Mjl

�
�!L N(0; 
jl); jl = 1; :::; N;

where 
jl can be computed from M and �: Mammitzsch (1989) showed that the

quartic kernel is optimal. Hrdle, Hart, Marron and Tsybakov (1991) analyzed

the bandwidth choice and showed that h � hn � n�
2
7 is optimal. They fur-

thermore give an asymptotic expansion for the optimal bandwidth which allows

the construction of plug-in estimators. For further details on average derivative

estimation see Stoker (1992).

The cut-o� technique in (A7) does not completely solve the problem of in-

stability of L̂ at those values of x where �(x) is small. A further improve-

ment can be obtained by using variable bandwidths which increase with x:

We follow an approach by Wand, Marron and Ruppert (1991). They pro-

pose to estimate heavily skewed densities in three steps: First a transformation

xi ! (�+ xi)
� (� > 0; � < 1) is done to obtain a less skewed density ��;� of the

transformed data f(�+xi)
�gi=1;::;n: Then ��;� is estimated by kernel estimation,

and �nally a back-transformation is done to determine an estimate �̂ of �: The

resulting estimator has the form

^̂�(x) =
� � (� + x)��1

nh

nX
i=1

W

 
(� + x)� � (� + xi)

�

h

!
(8)

The estimate presented in Figure 7 has been constructed in this way, setting

� = 0:1; � = 0:25 and using a quartic kernel W: This choice of �; � is in line

with the results of Wand, Marron and Ruppert (1991) and was used throughout.
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Since j(0:1+ x)
1
4 � (0:1+ xi)

1
4 j � jx� xij for large x; (A8) behaves like a kernel

estimator which automatically increases its bandwidth for large xi: An estimator

M̂ of M can now be constructed by

M̂ =
1

nb

nbX
i=1

yiy
T
i

^̂
L(xi) � I(xi � b);(9)

where
^̂
L(x) = �^̂�0(x)=^̂�(x): (A9) will be called "power-transformed average

derivative estimator". The asymptotic properties derived for (A7) basically gen-

eralize.

Besides (A7) and (A9) we considered a further method which might be called

a "� - nearest neighbour average derivative estimator". The idea is to estimate

the m0
jl(x) directly by determining the slope of a straigth line �t to the � nearest

neighbours of x (� 2 IIN; �� n):

More precisely, for i = 1; :::; n and j; l = 1; :::; N parameters âi;jl and b̂i;jl are

obtained by minimizing

nX
r=1

(yrjyrl � �xr � �)
2 � I (xr 2 J�(xi))

with respect to �; �; where J�(xi) := fxrjxr is one of the � nearest neighbours

of xig
Then M is estimated by

M̂j;l =
1

n

nX
i=1

âi;jl; j; l = 1; :::; N:(10)

Conceptually (A10) is quite di�erent from (A7) and (A9). In particular, no cut-

o� point is required. Similar to (A7) it can, however, be shown that
p
n (M̂jl �

Mjl) tends to an asymptotic normal distribution as n ! 1, provided � ! 1
not too fast and not too slow.

All three methods (A7), (A9) and (A10) were applied to estimate the M -

matrices for the given data. A quartic kernel was applied in (A7) and (A9), and

b = 3 resp. b = 4 were used. Optimal bandwidths were determined according

to asymptotic formulas. For FES as well as for EBF data h = 0:2 for (A7)

and h = 0:04 (for A9) seemed to be appropriate choices over all years. The

number � of nearest neighbours required in (A10) was determined in such a way
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that with h = 0:2 the average number of data points falling into the intervals

[xi�h; xi+h] was equal to �. All three methods lead to basically identical results.

In particular, (A9) and (A10) were in close coincidence. Estimates proved to

be quite robust with respect to di�erent choices of h; �: Positive semi-de�nite

matrices M̂ were found in all situations. Tables 7 and 8 show the results obtained

by applying the power-transformed average derivative estimation method (A9).

Tests of positive semi-de�niteness of M were based on bootstrap approxima-

tions to the distribution of the smallest eigenvalue of M̂: This was done in a way

completely analogous to the tests of positive semi-de�niteness of M(x); C(x): A

theoretical justi�cation for the use of bootstrap methods is given by Hrdle and

Hart (1992). They only consider estimators (A7), but their results can easily be

generalized to (A9) and (A10).

It remains to consider the matrix C: A ��nearest neighbour approach yields

�yij =
1

�

Pn
r=1 yrj � I(xr 2 J�(xi)) as an estimate of E(yijjxi); j = 1; :::; N ; i =

1; :::; n. One then might de�ne new "observations" zij by zij = yij � �yij. If �

is chosen appropriately, then E(zijziljxi) � covjl(xi), and C � R
@xE(zijziljxi =

x)�(x)dx. The matrix C can thus be estimated by applying average derivative

estimation procedures to the data fzijgi=1;:::;n;j=1;:::;N. More precisely, we use

method (A10). The �nal estimator then looks as follows:

a) Determine parameters âi;jl and b̂i;jl by minimizing

nX
r=1

((yrj � �yrj)(yrl � �yrl)� �xr � �)
2 � I (xr 2 J�(xi))

b) Estimate C by

Ĉj;l =
1

n

nX
i=1

âi;jl

Asymptotic results similar to those of ordinary average derivative estimators

can be obtained. Applying this procedure to FES and EBF data lead to the

result presented in Figures 5 and 6. The same � as above was used.

�
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