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Abstract

We investigate the replicator dynamics of the repeated Prisoners' Dilemma played

by finite automata. The players discount repeated game payoffs and incur a cost which is

proportional to the number of states in the automaton they use. 

An initial result is that the singleton set that contains "Defect for Ever" is the only

asymptotically stable set containing a pure strategy. 

We then search for asymptotically stable sets when the dynamics are restricted to

initial distributions that contain some given types in their support. It is shown that "Tat for

Tit" is the only pure strategy (up to look-a-likes) besides "Defect for Ever" that is

contained in such a set when the discount factor is sufficiently close to one and the cost

per state is arbitrarily small. "Tat for Tit" when playing against itself will defect first and

then cooperate forever. 
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C D

C 3, 3 !1, 5

D 5, !1 0, 0

Table I: An example for payoffs B() of the Prisoners'
Dilemma, C="cooperate", D="defect".

1. Introduction

The Prisoners' Dilemma is a symmetric two person game with two strategies C and

D (C="cooperate" and D="defect") where the payoffs to the row player

B:{C,D}×{C,D}6U are such that B(D,C)>B(C,C)>B(D,D)>B(C,D). We will sometimes

assume 2B(C,C)>B(D,C)+B(D,D) and/or B(D,C)!B(C,C)>B(D,D)!B(C,D). Table I

displays a possible constellation of the payoffs in which all conditions hold, this example

will be used for illustrative purposes throughout this paper.

We study the repeated Prisoners' Dilemma played by finite automata (or Moore

machines, for an introduction see Hopcraft and Ullman [11]). The underlying game we

consider fits into the framework developed by Rubinstein [15] and continued by Abreu

and Rubinstein [1]. Two players choose each an automaton and thereafter the two

automata play the repeated game against each other on behalf of the players. The

individuals have preferences over the repeated game payoffs and the complexity of the

automaton they choose. 

This complexity is measured by the number of states of the automaton. The resulting game

will be referred to as the meta game. 

Abreu and Rubinstein [1] characterize the pure strategy Nash equilibrium payoffs

for a general class of preferences in the meta game. In particular they consider

lexicographic preferences where players prefer higher repeated game payoffs (measured

by the limit of the means payoff criterion) and when indifferent prefer automata with less

states. We will call these preferences the patient lexicographic preferences. Abreu and
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Rubinstein [1] show that under these preferences the individual payoffs to pure strategy

symmetric Nash equilibria lie dense in the interval [B(D,D),B(C,C)]. 

We aim to analyze the meta game in an evolutionary framework. Maynard Smith

and Price [13] first developed the concept of an Evolutionarily Stable Strategy (ESS) as an

intuitive condition for a strategy to survive in an evolutionary process. Later it was shown

that an ESS is an asymptotically stable strategy in the so called replicator dynamics (see

Taylor and Jonker [19], Zeeman [22]). The fact that an ESS might not always exist has

since led to various weaker concepts. One area of research is to find a weaker concept that

is still sufficient for asymptotic stability of a strategy or a set of strategies with respect to

the replicator dynamics (see Thomas [20], Schlag [16]). Other undertakings weaken the

concept on intuitive grounds, without considering the replicator dynamics (e.g., Binmore

and Samuelson [5], Swinkels [18]). 

Central to the derivation of the replicator dynamics is a biologically motivated

scenario of reproduction. Recently several models of interacting and learning agents have

been constructed which show that the replicator dynamics also appear in economic

contexts. While Binmore and Samuelson [6] and Börgers and Sarin [7] explicitly specify

individual behavior, Schlag [17] implicitly determines which adjustment rules agents will

use. Although very different in their setup, each of these models leads to dynamic

processes that approximate the replicator dynamics.

The paper by Binmore and Samuelson [5] presented the initial spark for this

research. They apply static evolutionary stability theory to the meta game assuming

lexicographic preferences. Binmore and Samuelson [5] generalize the ESS condition to

incorporate for these lexicographic preferences and define the concepts modified ESS

(MESS) and polymorphous MESS. Their concepts are meant as an intuitive condition for

a strategy or collection of strategies to survive "some" evolutionary process. However a

direct connection to a dynamic adjustment process is not presented. On closer

examination, various difficulties arise when trying to incorporate lexicographic

preferences into such continuous dynamic systems. In section 6 this point will be

elaborated on and the results of Binmore and Samuelson [5] will be compared to ours.

We will consider a slightly different payoff function in the meta game. The payoff
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a player receives (denoted by E ( )) is the repeated game payoff minus a cost due to the*,c

degree of complexity of the automaton he uses. The repeated game payoff will be

measured as the normalized expected value of the discounted future payoffs (discount

factor *, *<1), the cost of complexity of an automaton will be proportional to the number

of the states it uses (c will be the cost per state, c>0). The constants * and c will be referred

to as the parameters.

We extend the results of Abreu and Rubinstein [1] to the meta game with

preferences defined by this payoff function. We show that the individual payoffs to

symmetric Nash equilibria of the meta game converge to and become dense in the interval

[B(D,D),B(C,C)] as the discount factor and the cost of complexity tend to 1 and 0

respectively.

The focus of this paper will be to analyze how the above static result without

evolution relates to the strategies or sets of strategies that may have nice properties in an

evolutionary process. Instead of defining or adapting an intuitive static concept we will

perform a direct analysis of the stability of a population evolving according to the

replicator dynamics with respect to rare mutations. We will combine sufficient conditions

for stability and asymptotic stability like weak ESS and ESS with the direct dynamic

analysis of the trajectories of the replicator dynamics. Along the way various useful

dynamic stability concepts will be introduced. Features that will make the analysis

interesting from the dynamic viewpoint will be the countable number of pure strategies of

the meta game (automata) and the multiplicity of automata that have the same equilibrium

path.

The replicator dynamics were originally derived from the approximation of the

following discrete time process. Consider an infinite population of individuals, each

endowed with a pure strategy (in our case an automaton). Individuals are pair-wise

randomly matched to play the repeated Prisoners' Dilemma. The discount factor *

introduced earlier has a slightly different interpretation in this setup. In each round of the

repeated game, (1!*) is the conditional probability that the repeated game is over for all

players simultaneously given that the game has lasted up to that round. Because * is

assumed to be strictly smaller than one, the expected number of rounds the repeated game

lasts is finite. So in this context, * can be considered the continuation probability.

However, to stay in the framework of static game theory we will continue to call * the
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Figure 1: The automata "Defect for Ever" and "Grim
Trigger".

discount factor. After the repeated game is over, the individuals reproduce proportionally

to the relative payoff they received in the repeated game. After that they die and their

offspring is randomly matched to play the repeated game, and so on. For a more detailed

introduction to and derivation of the replicator dynamics, see (van Damme [21]). For some

derivations of this process in economic models, see [6,7,17].

We will focus on the stability properties of sets instead of that of individual

strategies. In this context a set of population distributions (i.e., mixed strategies) L will be

said to "resist" small mutations if after an arbitrarily but sufficiently small frequency of

mutants enters the population, the population distribution stays close to the initial

population distribution and eventually evolves back to a distribution in the set L. In the

framework of dynamical systems this is equivalent to searching for asymptotically stable

sets of the replicator dynamics. An asymptotically stable set is a closed set of strategies

such that trajectories starting close stay close and eventually converge to an element of the

set. An asymptotically stable strategy is a singleton asymptotically stable set.

In order to simplify the discussion we will call a strategy that is associated with a

symmetric Nash equilibrium a symmetric Nash equilibrium strategy. Our initial interest is

to find out which of the unbounded number of symmetric Nash equilibrium strategies

characterized by Abreu and Rubinstein [1] are in such a set (elements of asymptotically

stable sets are Nash equilibrium strategies). Therefore we will focus our analysis on such

sets that contain a monomorphic population (i.e., a pure strategy). 

Consider the automaton that always plays "D" called "Defect for Ever" (see figure

1).

For any
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Figure 2: The automata "Tat for Tit" (CC), a toothless
look-a-like (CA) and the "automaton" DCC that can take

advantage of CA.

*<1 and c>0, the characteristics of the Prisoners' Dilemma imply that ("Defect for Ever",

"Defect for Ever") is a strict Nash equilibrium. Therefore "Defect for Ever" is an ESS and

hence an asymptotically stable strategy (theorem A1). We show that {"Defect for Ever"}

is the only asymptotically stable set containing a pure strategy when *<1 and c>0. The

reason for its uniqueness is illustrated in the following example that contains the basic

intuition and structure of the rest of the paper. 

Consider a population consisting of types "Tat for Tit" (CC), CA and DCC - we

will be using the notation from [5] whenever applicable. These strategies are graphically

represented in figure 2. 

The automata CA and CC are quite similar, when playing among themselves will

defect first and then cooperate forever. Additionally they both take advantage of the very

simple automata that always cooperates. However, unlike "Tat for Tit", CA does not

protect itself from deviations in the cooperation cycle, hence Binmore and Samuelson [5]

call it toothless. Automata that only differ on transitions not used when matched against

each other will play an important role in our analysis. They will be called look-a-likes,

hence CA and CC are look-a-likes. DCC represents actually the class of all automata that

have the basic structure graphed in figure 2, the transitions with dotted lines are optional.
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CC CA DCC

CC 3*!2c 3*!2c !(1!*)*+3* !2c3

CA 3*!2c 3*!2c !*!2c

DCC (1!*)5*+3* !3c3 5*!3c 3* !3c2

Table II: Payoffs E ( ) to the row player in the repeated Prisoners' Dilemma*,c
of table I with the strategies CC, CA and DCC. 

These automata take advantage of the toothlessness of CA and cooperate for ever against

CC. The payoffs to the row player among these three strategies in the example of table I

are given in table II. 

Notice that CC cannot be in an asymptotically stable set. Every strategy with

support in {CC,CA} is a fixed point of the dynamics and hence must be in an

asymptotically stable set containing CC, especially CA must be in this set. On the other

hand, elements of an asymptotically stable set must be a best response to themselves (see

lemma A4 in appendix) and CA is not one (E (DCC,CA)>E (CA,CA)). So toothless*,c *,c

look-a-likes deter asymptotic stability.

It turns out that "Defect for Ever" is the only symmetric Nash equilibrium strategy

without toothless look-a-likes and hence as a singleton set the unique asymptotically stable

set containing a pure strategy. 

We are interested in preferences that approach the patient lexicographic

preferences. However when the parameters (*,c) are sufficiently close to (1,0), we show

that "Grim Trigger" can take over in any neighborhood of "Defect for Ever". Therefore

one might say that the ability of "Defect for Ever" to resist arbitrary mutations vanishes

when this limit is taken. The automaton "Grim Trigger" (see figure 1) cooperates in each

round until its opponent defects. From then on it defects for ever. 

On closer examination, the requirement that a set must resist an arbitrary mutation

is too stringent for the setup in this paper. Although the evolutionary model associated
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with the replicator dynamics assumes a one time entrance of mutants, the intuition follows

more the line that mutation pressure will be sufficiently small relative to the dynamic

selection pressure. Schlag [16] demonstrates that this more general model can be

incorporated into the present setup as long as each mutation is sufficiently small. How

small each mutation must be depends on the current population distribution.

In continuous dynamics like the replicator dynamics a type never vanishes

although its frequency might tend to zero over time. So if the set of strategies is not too

large, after a sufficient amount of time we might expect that every type will be present in

the population. Our strategy space (denoted by S ), the set of all automata for playing thep

repeated Prisoners' Dilemma, has a countable infinite number of elements. Here it is not so

obvious that all strategies will be present although a certain number will be. Following

these remarks, an analysis of trajectories that contain a pre-specified set becomes

interesting. Certain strategies with very small frequencies will receive a very important

role in the analysis. As we will see later, it can happen that a set of population distributions

can only resist an arbitrary mutation if a certain type (or set of types) is present in the

current mutation or was present in an earlier mutation.

We will adapt the definition of asymptotic stability to this weaker condition, fixing

some set of types and only considering populations whose support contains that set. We

will call these sets asymptotically stable given previous intruders. We show that if such a

set is connected then it is a maximal connected set of stable equilibria.

In the following we must be more specific about the values of the parameters * and

c we want to consider. We want our analysis to go in the line of the patient lexicographic

preferences approach of Abreu and Rubinstein [1]. What is the intuition behind these

preferences? First of all, the repeated game payoffs should be the main impact on the

payoff of the meta game and only close to a "tie" should complexity considerations play a

role. Following this intuition for any fixed discount value we will analyze the game for

any (strictly) positive cost below some cap. Secondly, the emphasis is on extremely patient

players. We too will focus on the repeated game effects and consider the case where the

discount factor * is very close to one. To simplify notation, a subset of the parameters that

is compatible with these two conditions will be called lex-patient.

We will find a lex-patient set such that "Tat for Tit" is contained in an

asymptotically stable set given previous intruders for each parameter in the set. The
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Figure 3: Qualitative phase diagram of the population consisting
of the automata CC, CA and DCC for sufficiently large *<1 and

0<c<(1!*)[B(D,D)!B(C,D)].

condition of previous intruders will require that DCC (i.e., one out of its class) is contained

in the support of the mutation. 

To illustrate this result consider a population consisting of types CC, CA and (a

type of the class of) DCC. Here the previous intruders condition is equivalent to assuming

interior mutations, i.e., restricting the analysis to interior trajectories. We will show that

there exists a lex-patient set such that if ( is the maximal frequency of CA in a symmetric

Nash equilibrium strategy with support in {CA,CC} then {(1!")CC+"CA, 0#"#(} is

stable and attracting w.r.t. interior trajectories in ){CC,CA,DCC}. The phase diagram is

sketched in figure 3.

Of course "Defect for Ever" is also contained in an asymptotically stable set given

previous intruders. However we show that unlike "Defect for Ever" the ability of the

asymptotically stable set given previous intruders containing "Tat for Tit" to resist

arbitrary mutations does not vanish as (*,c) goes to (1,0).

Under an additional condition on the payoffs of the Prisoners' Dilemma we show

that there is no other pure strategy that is contained in an asymptotically stable set given

previous intruders for all parameters in some lex-patient set. Notice that in our above

example DCC is an asymptotically stable strategy in a population consisting of types CC,
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CA and DCC. However we will find other strategies whose existence hinder (any type in)

DCC from being in an asymptotically stable set given previous intruders when (*,c) is

close to (1,0). 

How is this result proven? Connected asymptotically stable sets given previous

intruders must be maximal connected sets of stable equilibria since stable means that

trajectories starting close stay close. On the border of a maximal connected stable set

containing a pure strategy other than "Defect for Ever" or a look-a-like of CC, toothless

look-a-likes can gang up with mutants to get higher payoffs than the pure strategy by

skipping its initial phase. This causes the look-a-likes to reproduce faster than the pure

strategy and thus create an unstable population.

Hence under certain conditions on the payoffs of the Prisoners' Dilemma "Defect

for Ever" and "Tat for Tit" with its look-a-likes are the only strategies contained in an

asymptotically stable set given previous intruders for all parameters in a lex-patient set.
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2. Preliminaries

In this section we will introduce the replicator dynamics, some general dynamic

stability concepts alongside some basic notation. Consider a symmetric two person game

'(S,E) with the countable set of pure strategies S:={e , i=1,2,...} and the bilinear payoffi

function E:)S×)S6U where )S is the set of probability distributions on S, i.e.,

)S:={x=(x )  s.t. x $0 and x =1}, where x =x(e ) is the frequency of e . For x0)S leti i0ù  i   i   i
i      i

R(x) be the set of pure strategy best responses to the strategy x, i.e.,

R(x):={e 0S s.t. E(e ,x)$E(z,x) for all z0)S}. For x0)S let C(x) be the support of x, i.e.,i   i

C(x):={e 0S s.t. x >0}. To simplify notation we will make no difference between the purei
i

strategy e0S and the distribution in )S assigning probability one to e (i.e., Sf)S). We will

sometimes call a strategy x0)S such that C(x)fR(x) a symmetric Nash equilibrium

strategy since (x,x) is a Nash equilibrium under these assumptions.

The replicator dynamics (RD) on )S for continuous time and pure strategy types is

as follows (see [19,22]):

x =  and , t$0, 0

where 0)S is the initial state and x  is the frequency of the type using strategy et          i
i

(e 0S) at time t. It can be shown that for each 0)S the above differential equation definesi

a unique function x:U 6)S. To simplify notation we will drop the parameter t from the+

expressions (e.g., x=x ). t

As a measure of distance in )S we will consider the l  norm, i.e.,1

dist(x,y):= *x(e)!y(e)* where *z* denotes the absolute value of z0U. We choose the l1

norm because then the distance a monomorphic population is "moved" by a mutation of

mass , only depends on ,. For any ,>0 and x0)S let U (x) be the open ball of radius ,,

around x, i.e., U (x)={y0)S s.t. dist(x,y)<,}. ,

An important characteristic of the replicator dynamics that we will use later is the
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continuity of its gradients. This property implies that given any trajectory leading from a to

b (a,b0)S) and any ,>0 there exists a strategy a'0U (a) such that the trajectory starting in,

a' intersects U (b).,

The subsequent dynamic stability concepts will be relevant for our analysis. A set

Lf)S is called attracting if there exists an open neighborhood W of L such that each

trajectory starting in W converges to L (Wf)S). The maximal such set W will be called

the basin of attraction of L. A strategy p0)S is called stable if for every open

neighborhood U of p there exists an open neighborhood V of p such that the trajectories

starting in V do not leave U. A set Lf)S is called stable if each p0L is stable. A strategy

p0)S is called unstable if it is not stable. A set Lf)S is called an asymptotically stable set

if it is closed, attracting and stable. A singleton asymptotically stable set is called an

asymptotically stable strategy.

In the following we add some notes on the above definitions. A trajectory starting

in X converges to L (L,Xf)S) if for any 0X and any sequence (t )  converging tok k0ù

infinity (t 0U), inf{dist( ,z), z0L}60 as k64 where x  solves the replicator dynamicsk
t

starting at x = . Trajectories starting in the basin of attraction of an attracting set must not0

converge to a single point. However if the set is also stable then each element is and

therefore trajectories will converge to an element of the set. The definition of stability is

slightly stronger than the classical one (see e.g. Bhatia and Szegö [4]): in the standard

definition the set as a whole must be stable, not necessarily each point. The standard

definition of stability was modified following the intuition given in the introduction of

what it means that a set of population distributions can "resist" small mutations. Since the

definition of stability and that of attracting is preserved under closure w.l.o.g. we require

additionally to the standard definition (Bhatia and Szegö [4]) for an asymptotically stable

set to be closed. We find it intuitive to include rest points on the border of the set into the

definition of an asymptotically stable set. Finally, notice that a stable strategy must be a

rest point. 

Since an asymptotically stable set does not have arbitrarily close rest points outside

the set we immediately obtain the following lemma.

LEMMA 2.1:
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Connected asymptotically stable sets are maximal connected sets of rest points.
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3. The analysis

The goal of this section is to characterize the asymptotically stable sets containing a

pure strategy of the repeated Prisoners' Dilemma played by finite automata. 

Let S  be the set of all finite automata for playing the repeated Prisoners' Dilemmap

(which is countable) and E':)S ×)S 6U be such that E'(x,y) is the normalized expectedp p

value of the discounted future payoffs to the player using x when matched against a player

using y (x,y0)S , discount rate *<1). More specifically, let e  be matched against ep
k    j

(e ,e 0S ) and let z ,z 0{C,D} be such that the player using e  (e ) plays z  (z ) in the t-thk j    t t        k j   t  t
p    k j           k j

round, t=1,2,.. . Then E'(e ,e ):=(1!*) * B(z ,z ) and E'( ) can be extended to )S ×)Sk j t!1 t t
k j         p p

as a bilinear function. Alternatively let * be the continuation probability, i.e., * is the

probability that the game is played in round r+1 given that it has lasted up to round r

(r=1,..). Then E'( ) can be considered the normalized expected aggregated payoff.

The payoff function of the meta game of selecting an automaton to play the

repeated Prisoners' Dilemma, denoted by E( ), will be the normalized expected value of

the repeated game payoffs minus a fixed cost for each state the chosen automaton uses.

Formally, for (*,c)0(0,1)×(0,1) let E :)S ×)S 6U such that for e 0S  and y0)S ,*,c p p     p  p
j

E (e ,y):=E'(e ,y)!*e *c where *e * denotes the number of states in e  and c>0 the cost of a*,c
j j j   j        j

state. Again this can be extended to )S ×)S . Notice that since E ( ) is continuous inp p     *,c

(*,c) and the limit exists as (*,c)6(1,0), E ( ) is well defined.1,0

The number of states an automaton has is considered a one time investment and

hence this cost is assumed to be separable from the repeated game payoffs E'( ). The

assumption that cost is linear in the number of states is just to simplify notation and does

not enter the results. The constants * and c will be referred to as the parameters of the

game. To make clear which parameters are considered we will write R (x) for the set of*,c

pure strategy best responses.

We will start out by quoting the relevant results of Abreu and Rubinstein [1],

characterizing the pure symmetric Nash equilibria in the repeated Prisoners' Dilemma

played by finite automata. 

Fix *<1 and c>0. The following statements are easy to check. An automaton ej
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matched against itself has an initial phase followed by a cycle. So if the initial phase has k

states and the cycle has l states then k+l#*e * (k,l0ù). The corresponding individual payoffj

is a convex combination of B(D,D)!*e *c and B(C,C)!*e *c. If e  is a pure symmetric Nashj   j   j

equilibrium strategy then it uses each of its states in some round when matched against

itself, i.e., e 0R (e ) implies k+l=*e *. Furthermore a Nash equilibrium strategy maximizesj j   j
*,c

repeated game payoffs against itself, i.e., if e 0R (e ) then e 0R (e ).j j   j j
*,c   *,0

The next theorem characterizes the set of Nash equilibrium payoffs and follows

almost directly from one stated in (Abreu and Rubinstein [1]). It states for discounted

payoffs and linear costs that the set of individual payoffs to pure strategy symmetric Nash

equilibria becomes dense in the interval [B(D,D),B(C,C)] as the discount factor and the

cost of complexity tend to one and zero respectively.

THEOREM 3.1:

Let (* ,c )  be a sequence such that (* ,c )0(0,1)×(0,1) and (* ,c )6(1,0) as k64k k k$0      k k   k k

and let D(*,c)={E (e ,e ) s.t. e 0R (e )}. Then*,c   *,c
j j   j j

{dist(x,y), x0D(* ,c ), y0[B(D,D),B(C,C)]}60 as k64.k k

PROOF: 

Abreu and Rubinstein [1] show for the "limit of means" payoff criterium and

lexicographic preferences that every rational convex combination of B(D,D) and B(C,C)

can be reached as individual payoff of a pure strategy Nash equilibrium. We will adopt

their proof directly. Consider the strategies that Abreu and Rubinstein [1] use. They are of

the form graphed in figure 4, each block represents a finite sequence of states prescribing

the play written in the center of the block.
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Figure 4: Basic features used to construct symmetric
Nash equilibrium strategies.

It follows that for any given number of strategies in the cycle if the initial phase is

long enough then there exists an ,>0 such that the corresponding automaton is a

symmetric Nash equilibrium strategy for any (*,c)0(0,1) 1{(*',c') s.t. 1!*'+c'<,}. The2

statement of theorem 3.1 now follows directly from the fact that the payoff function E ( )*,c

of the meta game approximates the limit of the means payoff as * goes to 1 and c goes to

0.

G

Next we will present a necessary condition for an automaton to be a pure

symmetric Nash equilibrium strategy. The theorem states that such an automaton must

start out by playing "D" (defection).

THEOREM 3.2:

Let *<1, c>0 and e 0S . If (e ,e ) is a Nash equilibrium then e  plays "D" in the firstj   j j       j
p

round.

PROOF: 

For a,b0S  let a  (b ) be the strategy that a (b) plays in round t when a and b arep  t t

matched (a ,b 0{C,D}, t=1,2,..). For T$1 let P (a,b):=(1!*) * E (a ,b ) be thet t      *,c *,c t t
T t!T

continuation payoff starting at round T (following Binmore and Samuelson [5]). Let (e ,e )j j
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be a pure strategy Nash equilibrium (e 0S ) and let T* be the first round in which P (e ,e )j           T j j
p           *,c

achieves its minimum. Because (e ,e ) is a Nash equilibrium and c>0 it follows that e  usesj j           j

each state when matched against itself. By the minimality of P (e ,e ) the strategy played*,c
T* j j

at round T* must be self enforcing, i.e. e  plays D in round T*. j

Assume that e  starts out by cooperating. Then T*$2. Notice that e  cooperates atj         j

time T*!1 when matched against itself, otherwise P (e ,e ) would achieve its minimum at*,c
T j j

time T*!1. 

On the other hand similar to the above argument that e  cannot protect its action atj

time T*, e  cannot protect its action at time T*!1. Therefore the strategy played in roundj

T*!1 must be self enforcing too. This contradicts the fact that e  cooperates at time T*!1j

and hence T*=1.

G

Looking back at the proof we showed that any pure symmetric Nash equilibrium

strategy achieves its minimal continuation payoff at time 0. Therefore given any pure

symmetric Nash equilibrium strategy, if each defection from the equilibrium path is

punished back to the first state then this altered strategy is a symmetric Nash equilibrium

strategy too. Defecting from the equilibrium path means that the opponent plays a different

action than the pure symmetric Nash equilibrium strategy does.

When an automaton is matched against itself not every transition or even every

state will be used. Automata that cannot be distinguished when matched among

themselves will play a very important part in this paper.

For e 0S  let Q(e ) be the set of all automata that cannot be distinguished from ej   j             j
p

w.r.t. the play in the repeated game when matched against e . Formally Q(e ):={e 0S  suchj   j k
p

that when e  is matched against e , they both play the same strategy in each round}. Ak    j

strategy e0Q(e ) such that *e *=*e* will be called a look-a-like of e . Notice that if e 0Q(e )j    j        j     k j

then Q(e )=Q(e ). So "look-a-like" is a mutual property - look-a-likes essentially have thek j

same states and differ only on transitions not used against each other. For

(*,c)0(0,1)×(0,1) we will call x0)S  a (symmetric) Nash equilibrium look-a-like of e  if xp
j

is a symmetric Nash equilibrium strategy whose support only contains look-a-likes of e ,j

i.e., C(x)fQ(e )1R (x).j
*,c
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The next lemma demonstrates the important role of look-a-likes: an asymptotically

stable set that contains a pure strategy must also contain all of its look-a-likes.

LEMMA 3.3:

Let *<1 and c>0. If Lf)S  is an asymptotically stable set that contains e 0S  thenp        p
j

{x0)S  s.t. C(x)fQ(e )}fL.p
j

PROOF: 

Since {x0)S  s.t. C(x)fQ(e )} is connected and any x0)S  such that C(x)fQ(e ) isp       p
j         j

a rest point, following lemma 2.1 the proof is complete. 

G

Part of the next theorem follows directly from this lemma and lemma A4. Each

element of an asymptotically stable set must be a symmetric Nash equilibrium strategy.

But not every look-a-like of an automata with a cooperation state in its equilibrium path is

one. Therefore the only candidate for a pure strategy contained in an asymptotically stable

set is "Defect for Ever" (see figure 1).

THEOREM 3.4: 

Let *<1 and c>0. "Defect for Ever" is an ESS and as a singleton set the only

asymptotically stable set containing a pure strategy.

PROOF: 

a) Since (DD,DD) is a strict Nash equilibrium (c>0), "Defect for Ever" is an ESS

and by theorem A1 it follows that it is an asymptotically stable strategy.

b) Let Lf)S  be an asymptotically stable set containing e 0S . Assume thatp       p
i

e …"Defect for Ever". Then e…"cooperate for ever" too since this is not a symmetric Nashi     i

equilibrium strategy (part ii) of lemma A4). 

Every symmetric Nash equilibrium strategy with at least two states has a

cooperation state since c>0, hence also e . Consider the look-a-like e of e  that stays in itsi       i



[B(D,D)&B(C,D)](1&*)%c
[B(D,D)&B(C,D)%B(C,C)&B(D,C)](1&*)%[B(C,C)&B(D,D)]*
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DD ca

DD 0!c 5(1!*)!c

ca !(1!*)!2c 3!2c

Table III: Payoffs to the row player in the repeated
Prisoners' Dilemma of table I between the strategies DD

("Defect for Ever") and ca ("Grim Trigger").

cooperation state whenever the opponent plays "D". Consequently e is not a symmetric

Nash equilibrium strategy and therefore cannot be in L. On the other hand e0Q(e ) and byi

lemma 3.3, e must be in L. This results in a contradiction and hence proves the theorem.

G

We would like to examine the basin of attraction of "Defect for Ever". In the

context of a population resisting arbitrary mutations we are interested in the maximal size

of a neighborhood of "Defect for Ever" that is defined independently of the other types

present in the population and which is contained in its basin of attraction. We will show

that any open ball contained in the basin of attraction of "Defect for Ever" shrinks to the

empty set as (*,c) approaches (1,0).

Consider a population consisting of "Defect for Ever" and "Grim Trigger". These

strategies are graphed in figure 1 and the payoffs they receive against each other in the

example of table I are written in table III. 

A frequency of more than

 

"Grim Trigger" types (referring to the parameters in table I, more than

(1+c!*)/(4*!1)) will disrupt the monomorphic population "Defect for Ever" and the

population will converge to a population consisting of only "Grim Trigger" types. As (*,c)

goes to (1,0) less and less of "Grim Trigger" are necessary to disrupt "Defect for Ever". 
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We therefore obtain the following result. 

THEOREM 3.5:

For *<1 and c>0 let ,(*,c)>0 be such that trajectories starting in U (DD),(*,c)

converge to DD. It follows that ,(*,c)60 as (*,c)6(1,0).

The proof follows directly from the statement made above. Notice that by the

continuity of the replicator dynamics the theorem is not changed if the trajectories are

restricted to the interior of )S .p

So the asymptotic stability of "Defect for Ever" depends crucially on (*,c), the

closer the parameters are to (1,0), the smaller a mutation must be that "Defect for Ever"

can resist. In the limit its asymptotic stability vanishes.

This unfavorable property causes us to pursue our analysis of the replicator

dynamics to find strategies with properties that are more "stable" with respect to the

parameters.

4. Interior mutations

In this section we will introduce some additional concepts in order to be able to

analyze populations that can "resist" any mutation containing a pre-specified set of types,

say JfS. We will adapt the dynamic stability concepts to this alternative setup in the

following way. In the neighborhoods in the definitions of stability, attracting and

asymptotic stability we will only consider strategies with support containing J. This is well

defined concept since the support of a strategy remains the same if it is evolving according

to the replicator dynamics. These alternative definitions will get the suffix "given previous

intruders (in J)". If various different types in X (XfS) are each sufficient as a previous

intruder we will add the suffix "given previous intruders containing a type in X. As an

example, the set Lf)S is called attracting given previous intruders in J if there exists an

open neighborhood W of L such that each trajectory starting in xE0W with JfC(xE)

converges to L. 

Adding the suffix "given previous intruders" results in a weakening of the concept.

The following lemma gives the relation between the concepts with and without the
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restriction of the support.

LEMMA 4.1: 

Let JfS.

i) A strategy p0)S is stable if and only if it is stable given previous intruders in J.

ii) A set Lf)S that is attracting given previous intruders in J need not be attracting.

PROOF:

We may assume that J=S, i.e. the case of interior trajectories.

Part i): All we need to show is the "if" statement. Assume that a trajectory starting

on the border of )S close to a strategy that is stable given previous intruders leads away

from it. Then by the continuity property of the replicator dynamics (see section 2) a

trajectory starting in the interior of )S also leads away. This contradicts the stability given

previous intruders.

Part ii): If * is sufficiently large and c is sufficiently small in the repeated Prisoners'

Dilemma with types CC, CA and DCC then there exists (0(0,1) such that {(1!")CC+"CA

s.t. 0#"#(} is an asymptotically stable set given previous intruders in DCC. However it is

not attracting since each x0){CA,CC} is a rest point (see introduction or theorem 5.4).

G

An easy conclusion from the above lemma is that if a strategy is unstable it cannot

be made stable given previous intruders if the set of types in the population is enlarged. On

the other hand, a set that is not attracting given previous intruders might become attracting

w.r.t. the interior if the set of strategies is enlarged. 

The next result is useful for finding asymptotically stable sets given previous

intruders.

LEMMA 4.2:

Let JfS and Lf)S be a connected asymptotically stable set given previous

intruders in J. Then 

i) L is a maximal connected set of stable strategies,
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ii) L may not have arbitrarily close weak ESS's outside of the set but

iii) L may have arbitrarily close rest points outside of L but their support cannot contain J.

PROOF:

Part i) and iii) follow directly from the definitions. Part ii) then follows by theorem

A2.

G
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5. Asymptotically stable sets given previous intruders

Following the previous section we will now relax the condition of asymptotic

stability. We continue the analysis of section 3, now analyzing the asymptotically stable

sets given previous intruders that contain a pure strategy.

Up to now all we imposed on the parameters * and c of the game was that *<1 and

c>0. We are not interested in results that only hold for specific values but in results that are

"qualitatively" true for a range of parameters (what we mean by "qualitatively" true will

become clear later on). There are two conditions we will impose on such a range. We are

interested in the approximation of the lexicographic preferences where players prefer

higher repeated game payoffs and only when indifferent prefer automata with less states.

Therefore we demand that the results should "qualitatively" remain unchanged if the cost

of complexity is decreased. Additionally we are interested in values of the discount factor

(continuation probability) close to 1, i.e., the results should not depend on the fact that the

discount factor may not approach 1. Sets of parameters satisfying these two conditions will

be called lex-patient. 

This is formalized in the following definition. We will call a set Wf(0,1)×(0,1) lex-

patient if

i) (*,c)0W implies (*,c')0W for all c'0(0,c) and

ii) (1,0)0MW (i.e., in the closure of W).

The main goal of the following theorems will be to show that the set of Nash

equilibrium look-a-likes of "Tat for Tit" is an asymptotically stable set given previous

intruders. 

First we will introduce two more look-a-likes of CC, namely AA and AC as

defined in figure 5. 



D CD C
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AC AA

D(' 2B(C,C)&B(D,C)&B(D,D)
4B(C,C)&B(D,C)&2B(D,D)&B(C,D)

((DCC)' [B(C,C)&B(D,C)]*(1&*)%[B(C,C)&B(D,D)]*2(1&*)%c
B(D,C)*2&B(D,D)*2(1&*)&B(C,C)*3
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Figure 5: The automaton AC and a toothless look-a-like
(AA).

It follows that the look-a-likes of "Tat for Tit" are AC, AA and CA (see also figure

2). Notice that AC can be a symmetric Nash equilibrium strategy for values of (*,c) close

to (1,0) whereas this is not possible for AA since it is toothless. More specifically, a best

response of AC for all parameters (*,c) arbitrarily close to (1,0) must be a look-a-like if

and only if 2B(C,C)>B(D,C)+B(D,D) and 0<c<(1!*)[B(D,D)!B(C,D)]. Notice that the

first condition holds if and only if (CC,CC) is a Nash equilibrium for all (*,c) sufficiently

close to (1,0). The second condition is necessary to ensure that "Cooperate for Ever" is not

a best response of AC.

We will now characterize the set of Nash equilibrium look-a-likes of "Tat for Tit"

and characterize a set that is contained in its basin of attraction. Especially, the basin of

attraction does not converge to the empty set as (*,c) goes to (1,0). 

THEOREM 5.1: 

Assume 2B(C,C)>B(D,C)+B(D,D). Let ,

for (*,c)0(0,1)  ,2

T={(*,c)0(0,1)  s.t. 0<c<(1!*)[B(D,D)!B(C,D)]},2

L(*,c)={x0){AA,CA,AC,CC} s.t. x(AA)+x(CA)#((DCC)} and

B(,)={x0)S  s.t. x(AC)+x(CC)>1!,, x(DCC)>0}. p



x(AC)AC%x(CC)CC
x(AC)%x(CC)

e(x)' x(AA)AA%x(CA)CA
x(AA)%x(CA)

q(x)'
j

a0S\Q(CC)
x(a)a

j
a0S\Q(CC)

x(a)
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Then there exists * <1 and D:(* ,1)6(0,1) such that for any (*,c)0T1{*>* }, 0   0      0

i) L(*,c)={x0)S s.t. C(x)fR (x)1Q(CC)},*,c

ii) L(*,c)fB(D(*)),

iii) any trajectory starting in B(D(*)) converges to L(*,c) and

iv) D(*)6D* as *61.

Notice that T1{*$* } is a lex-patient set, that ((DCC)60 and L(*,c)6){AC,CC} as0

(*,c)6(1,0), that D*0(0,½) and in the special example of a Prisoners' Dilemma given in

table I, that D*=1/8. 

We will be needing the following notation. For x0)S  let "(x) and $(x) be suchp

that "(x)=x(AA)+x(CA) and 1!"(x)!$(x)=x(AC)+x(CC). It follows that $(x) is the

measure of the strategies that are not look-a-likes of CC. Furthermore let e*(x), e(x) and

q(x) be the mean strategies of x in {AC,CC}, {AA,CA} and S\Q(CC), provided that they

exist. Formally, if "(x)+$(x)<1 then let e*(x)= , if "(x)>0 then let

 and if $(x)>0 then let . It follows that

e*(x)0){AC,CC}, e(x)0){AA,CA}, and q(x)0){S \Q(CC)} (when well defined),p

"(x),$(x)0[0,1] and x=[1!"(x)!$(x)]e*(x)+"(x)e(x)+$(x)q(x). Notice that e*(x), e(x) and

q(x) will generally change over time if x is the mean strategy of a population evolving

according to the replicator dynamics.

PROOF of theorem 5.1: 

Let * 0(0,1) be such that B(C,C)(1+*)>B(D,C)+*B(D,D) whenever * 0(*,1). Fix1       1

(*,c)0T1{*>* }. It follows that R (AC)=R (CC)=Q(CC). We will first find the maximal1     *,c *,c

frequencies of AA and CA that can be in a Nash equilibrium look-a-like of CC. Fix

e*0){AC,CC} and e0){AA,CA}. Since AA and CA are not symmetric Nash equilibrium

strategies there will be a strategy in S \Q(CC) that is the "reason" why a larger proportionp

of e cannot be in a symmetric Nash equilibrium strategy with support on {e*,e}. 



((q)'
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For q0S \Q(CC) such that E (q,e)>E (e*,e*) let . Itp    *,c *,c

follows that E (q,(1!((q))e*+((q)e)=E (e*,e*). Notice that 1/((q) is defined for all*,c *,c

q0S \Q(CC) and that the definition of ((q) is consistent with the definition of ((DCC) inp

the statement of the theorem. Consider inf{((q) s.t. q0S \Q(CC), E (q,e)>E (e*,e*)}. Byp  *,c *,c

the properties of finite automata it follows that "infimum" can be replaced by "minimum".

Moreover it follows that {DCC}=argmin{..}. Consequently for x0)Q(CC), if

"(x)<((DCC) then R (x)=Q(CC), if "(x)=((DCC) then R (P)={DCC}cQ(CC) and if*,c     *,c

"(x)>((DCC) then E (DCC,x)>E (x,x). Therefore x0){AA,AC,CA,CC} is a symmetric*,c *,c

Nash equilibrium strategy if and only if x(AA)+x(CA)#((DCC) which proves part i).

The objective for the proof of part iii) will be to show for sufficiently large * and

0<c<(1!*)[B(D,D)!B(C,D)] that there exists D(*)>0 such that L(*,c)fB(D(*)) and for any

x0B(D(*)) the mean frequency of AC and CC will increase, i.e.,

[E (e*(x),x)!E (x,x)](1!"(x)!$(x))>0. Once this is shown the proof of iii) will be*,c *,c

complete. A trajectory starting in B(D(*)) will converge to )Q(CC). Note that at this point

we can not claim that the trajectory converges to a strategy. However since

E (DCC,x)>E (CC,CC) for x0)Q(CC) such that "(x)>((DCC) and the fact that*,c *,c

x(DCC)>0 when x0B(,) it follows that the trajectory will not run arbitrarily close to

{x0)Q(CC) s.t. "(x)>((DCC)}=)Q(CC)\L(*,c) (for a formal argument construct a

Lyapunov function). Therefore each trajectory starting in B(D(*)) will converge to L(*,c). 

Some calculations:

For e*,e,q0)S  such that C(e*)f{AC,CC}, C(e)f{AA,CA} and C(q)1Q(CC)=i wep

obtain

E (x,x)=E (e*,e*)+$[E (e*,q)!2E (e*,e*)+E (q,e*)]*,c *,c *,c *,c *,c

+"$[E (e,q)!E (e*,q)+E (q,e)!E (q,e*)]*,c *,c *,c *,c

+$ [E (e*,e*)!E (q,e*)+E (q,q)!E (e*,q)].2
*,c *,c *,c *,c

E (e*,x)!E (x,x)=$[[E (e*,e*)!E (q,e*)] *,c *,c *,c *,c

!"[E (e,q)!E (e*,q)+E (q,e)!E (q,e*)] *,c *,c *,c *,c

!$[E (e*,e*)!E (q,e*)+E (q,q)!E (e*,q)]]*,c *,c *,c *,c

=$[E (e*,e*)!E (q,e*)][1!"/µ!$/8] where*,c *,c
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 and

Notice that if E (q,q)>E (e*,q) then 8(q)0(0,1) and*,c *,c

E (q,(1!8)e*+8q)=E (e*,(1!8)e*+8q). Especially if e*=CC then (1!8(q))CC+8(q)q is a*,c *,c

rest point of the replicator dynamics (compare to figure 2 in which (=((DCC) and

8=8(DCC) are included.

Fix (*,c)0T1{*>* }. We will now show that there exists DE(*)>0 such that for all0

q0)S  such that C(q)1Q(CC)=i, 1/8(q) is bounded above by 1/DE(*). This is equivalent top

showing that 8(q) is bounded below by DE(*) for all q0S \Q(CC) such thatp

E (q,q)>E (e*,q). *,c *,c

Notice that for t0[0,1] and q 0)S such that C(q)1Q(CC)=i, i=1,2,i

. Moreover 1/8(q) is decreasing in c and for fixed q,

1/8(q) achieves its maximum when varying e* in ){AC,CC} on {AC,CC}. Therefore it is

enough to show 1/8(q)#1/DE(*) for c=0, e*0{AC,CC} and any q0S \Q(CC).p

Fix e*0{AC,CC} and let c=0. From the properties of finite automata it follows that

there exists q*0S \Q(CC) that maximizes 1/8(q). For demonstration purposes we willp

assume that e* and q* are the only strategies and derive some properties of q*. The

automaton q* will deviate from e*'s behavior in some round and then "know" if it is

matched against e* or q*. We may assume that q* will deviate from e*'s behavior in either

round one or round two. If q* learns that it is matched against q* it will cooperate for ever

from then on. If it learns that it is matched against e* who is going to play D, q* will play

D too. 

Let k be the first round in which e* will cooperate (play "C") after q* learns that it

is matched against e*. Together with the remarks above either q* will forever cooperate or

will forever defect from then on. It can be shown (which also seems intuitive) that q* will
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play D for ever on once it reveals the identity of e*. 

Let DE(*)=8(q*). The above characterization of q* implies that 1/8(q)#1/DE(*) and

DE(*)6D* as *61. 

Similarly there exists D'(*)>0 such that for all z0)S  such that C(z)1Q(CC)=i,p

1/µ(z) is bounded above by 1/D'(*). The proof of this statement follows very closely the

one above. Let c=0, e0{AA,CA}, e*0{AC,CC} and let z* be the maximizer of 1/µ(z) for

z0S \Q(CC). It can be shown (which again seems intuitive) that z* will cooperate for everp

once it recognizes that it is matched against e and defects for ever once it knows that it is

matched against e*. With 1/D'(*)=1/µ(z*) we obtain that 1/µ(z)#1/D'(*) and 1/D'(*)61/D*

as *61.

With the above bounds we are now able to show that the mean frequency of AC

and CC is increasing. Let D(*):=min{DE(*),D'(*)}. Since ((DCC)60 as (*,c)6(1,0) there

exists * 0[* ,1) such that L(*,c)fB(D(*)) for all (*,c)0T1{*>* }. For (*,c)0T1{*>* } and0 2       0   0

x0B(D(*))\L(*,c) we obtain 0<"(x)+$(x)<D(*), $(x)>0 and therefore 

[E (e*,x)!E (x,x)](1!"!$)=$(1!"!$)[E (e*,e*)!E (q,e*)][1!"/µ!$/8]*,c *,c *,c *,c

$$(1!"!$)[E (e*,e*)!E (q,e*)][1!("+$)/D(*)]>0. This finishes the proof of part ii) and*,c *,c

iii). 

Finally part iv) follows directly from the fact that D(*) converges to D* as * goes to

1.

G

The next result follows almost directly from the proof of the above theorem.

COROLLARY 5.2:

Assume 2B(C,C)>B(D,C)+B(D,D). There exists * <1 such that ){AC,CC} is stable1

for all (*,c)0T1{*>* }.1

PROOF: 

It was shown in the proof of theorem 5.1 that there exists a * <1 such that for any0
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(*,c)0T1{*>* }, any x0B(D(*)),  E (e*(x),x)$E (x,x). However since0     *,c *,c

x=(1!"!$)e*(x)+"e+$q, we did not show that E (z*,y)$E (y,y) for all z*0){AC,CC}*,c *,c

and all y0B(D(*)). Especially setting z*=AC this would mean that the frequency of AC

always increases in B(D(*)). This is not true. It is easy to find a strategy q and trajectory in

){AA,CA,AC,CC,q} such that the frequency of AC decreases over time although the

frequency of the mean strategy of AC and CC increases (as shown in the proof in general). 

With a bit more effort and using continuity it can be shown that the above

statement is true in a neighborhood of z*, i.e., for any (*,c)0T1{*>* } and any0

z*0){AC,CC} there exists an ,>0 such that for any y0U (z*), E (z*,y)$E (y,y). Lemma,  *,c *,c

A3 then implies that z* is stable.

G

As mentioned earlier we aim to show that the set of Nash equilibrium look-a-likes

of CC is an asymptotically stable set given previous intruders. Following theorem 5.1 and

corollary 5.2 all we must show is that each Nash equilibrium look-a-like of CC that

contains toothless look-a-likes is stable. Because we do not have a general theorem to

prove this statement, we must consider the behavior of the trajectories directly.

Let e*0){AC,CC}, e0){AA,CA} and q0){S \Q(CC)}. Consider the replicatorp

dynamics in ){e*,e,q} as if e*, e and q were pure strategies, denoted by RD(e*,e,q).

Formally, RD(e*,e,q) is defined by

x =  and , t$0, where 0){e*,e,q} is the0

initial state and x (a) is the frequency of the type using strategy a (a0{e*,e,q}) at time t. t

Notice that the trajectories of RD(e*,e,q) can also be projected into )S , howeverp

the resulting trajectories in )S  should not be confused with the trajectories of thep

replicator dynamics (RD). In RD(e*,e,q) the strategies e*, e and q stay fixed, in the

replicator dynamics on )S  the mean strategies on {AC,CC}, {AA,CA} and S \Q(CC)p        p

vary over time. In order to distinguish strategies in ){e*,e,q} from mean strategies in )Sp

we will write x=(1!a!$)[e*]+"[e]+$[q] when x0){e*,e,q}.

The following lemma will simplify the calculation of the trajectories of the
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replicator dynamics. 

LEMMA 5.3: 

Let Xf{(",$) s.t. "+$#1, ",$$0} be a closed polygon. Assume for each

e*0){AC,CC}, e0){AA,CA} and q0S \Q(CC) that the trajectory of RD(e*,e,q) starting inp

U':={(1!"!$)[e*]+"[e]+$[q], (",$)0X} stays in U'. Then the trajectory of RD starting in

U:={x0)S  s.t. (",$)0X, x({AC,CC})=1!"!$, x({AA,CA})="} stays in U.p

Before presenting the proof notice that U' might be a small neighborhood of some

strategy in ){[e*],[e],[q]} whereas U will always be a "cylinder" set in )S .p

PROOF: 

Since X is a polygon, i.e., an intersection of half spaces, so is U. Trajectories

starting in U will stay in U if and only if the trajectories starting on the border of U do not

lead out of U. Because U is a polygon, this holds if and only if the gradients on the border

of U "point" towards U. The same can be stated of U'. Notice that the above is not

necessarily true if X is not a polygon.

We will now relate the gradients of RD(e*,e,q) to those of RD. It can be shown for

any x0)S  that the gradient of RD in x is identical to the gradient of RD(e*(x),e(x),q(x)) inp

(1!"(x)!$(x))[e*]+"(x)[e]+$(x)[q] projected into )S . p

Combining the above two statements completes the proof of the lemma.

G

Now we are able to present the first of two major results of this paper, stating

(together with theorem 5.1) that there exists a lex-patient set such that for all parameters in

this set, the set of Nash equilibrium look-a-likes of "Tat for Tit" is an asymptotically stable

set given previous intruders. The condition of previous intruders is satisfied if each initial

state contains a type in the class of DCC.

THEOREM 5.4: 

Assume 2B(C,C)>B(D,C)+B(D,D). Let T, L(*,c) and ((DCC) be defined as in
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theorem 5.1. There exists **<1 such that for all (*,c)0T1{*>**}, L(*,c) is an

asymptotically stable set given previous intruders containing a type in the class of DCC.

PROOF:

According to theorem 5.1 there exists * <1 and D:(* ,1)6(0,1) such that for all0   0

(*,c)0T1{*>* }, L(*,c) with respect to initial states in B(D(*)). Following corollary 5.2,0

each x0)(AC,CC} is stable for these parameters. All that is left to show is that there exists

**0[* ,1) such that strategies in L(*,c)\){AC,CC} are stable for any (*,c)0T1{*>**}.0

First we will show that strategies on the border of L(*,c) are stable, i.e., that there

exists *E<1 such that for any (*,c)0T1{*>*E} and any x0)S  with "(x)=((DCC) andp

$(x)=0 is stable.

The proof of this statement is split up into three steps, enumerated one to three. We

will first consider the replicator dynamics as if e*, e and q were pure strategies (i.e.,

RD(e*,e,q)). This reduces the number of pure strategies from countable infinite to three

which substantially facilitates an analysis of the trajectories. We will show that trajectories

in ){e*,e,q} starting close to (1!((DCC))[e*]+((DCC)[e] will stay close. Then we will

apply lemma 5.3 to show that the frequencies of the mean strategies on {AC,CC},

{AA,CA} and S \Q(CC) of a strategy starting close to the border of L(*,c) and evolvingp

according to RD will neither change very much. Finally we will show that the trajectories

of RD must stay close too (in )S ).p

STEP 1:

Let * 0[* ,1) be such that for all (*,c)0T1{*>* }, .1 0       1

Such a *  exists by theorem 5.1.1

Let (*,c)0T1{*>* }, e*0){AC,CC}, e0){AA,CA} and q0){S \Q(CC)} be fixed.1     p

In the following we will consider the replicator dynamics as if e*, e and q were pure

strategies (i.e., RD(e*,e,q)). 

For any P0){e*,e,q}, let "=P(e) and $=P(q) and vice versa, let

P(",$)=(1!"!$)[e*]+"[e]+$[q] for ",$>0 such that "+$#1. Following the proof of

theorem 5.1 and the definition of * , E (e*,P)!E (P,P)$0 (>0 if $>0 and) if "+$<D*/2 in1  *,c *,c
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which case the frequency of e* will increase in state P.

Using the notation in the proof of theorem 5.1, we obtain

E (q,P)!E (P,P)=E (q,e*)!E (e*,e*)+"[E (q,e)!E (q,e*)]*,c *,c *,c *,c *,c *,c

+$[!E (e*,q)+E (q,q)+2E (e*,e*)!2E (q,e*)]*,c *,c *,c *,c

!"$[E (e,q)!E (e*,q)+E (q,e)!E (q,e*)]*,c *,c *,c *,c

!$ [E (e*,e*)!E (q,e*)+E (q,q)!E (e*,q)]2
*,c *,c *,c *,c

=[E (e*,e*)!E (q,e*)](!1+"/(+$(1+1/8!"/µ!$/8))*,c *,c

=[E (e*,e*)!E (q,e*)]((1!$)($/8!1)+"(1/(!$/µ)).*,c *,c

For P0){e*,e,q} and a0{e*,e,q} let f(a) be the marginal increase of the frequency

of "a" according to RD(e*,e,q), i.e., f(a)=[E (a,P)!E (P,P)]P(a). With this notation, a*,c *,c

measure of the direction of the gradient of RD(e*,e,q) evaluated at a strategy P with

$(P)>0 and "(P)+$(P)<D*/2 is . 

The rest of step 1 will be subdivided into three parts. 

STEP 1.1

We now proceed to show that the rate at which q increases relative to the rate at

which e* increases is arbitrarily small if trajectories start in a neighborhood of

P(((DCC),0).

For P0){e*,e,q} and " 0(0,1) let SH(s," ) be the shaded area in figure 6 where0   0

s:=  is the "direction" of the vector P originating in (1!" )[e*]+" [e].0 0
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Figure 6: The set SH(s," ).0

What characteristic does the shaded area have?

. 

So P0SH(s," ) if and only if #s and SH(s," ):={P(",$) s.t.0        0

"+$(1+1/s)#" }.0

We will find "*0(((DCC),1) and construct a continuous function s*() such that for

" 0(((DCC),"*) and (*,c)0T1{*>* }, trajectories starting in SH(s*(" )," ) stay in it and0   1     0 0

the shaded area SH(s*(" )," ) approaches the segment {(1!2)[e*]+2[e], 0#2#((DCC)} as0 0

"  approaches ((DCC). 0

Let s*(" ):=  be defined for " 0[((DCC),D*/2).0     0
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Notice that s*() is continuous and that s*(((DCC))=0. Therefore

SH(s*(" )," )6{(1!2)[e*]+2[e], 0#2#((DCC)} as " 6((DCC). 0 0    0

Consider the direction of the gradient along the border of SH(s*(" )," ) that is in0 0

the interior of ){e*,e,q}, i.e., in all points P(",$) such that "+$(1+ )="  and0

0#$#$(" ) where $(" ) is defined such that $(" )(1+ )=" . Note that $(" )60 as0   0      0 0    0

" 60. We will show that for all (*,c)0T1{*>* } there exists "E>((DCC) such that for all0        1

((DCC)#" <"E and all 0#$#$(" ) #s*(" ). (1)0    0  0

Since the frequency of e* increases over time (1) will ensure that trajectories

starting in SH(s*(" )," )) stay in it.0 0

In order to show (1) we will use the following inequality and consider two cases,

one in which q is such that ((q) is close to ((DCC), one in which it is not.

 # .(2)

Assume that . Notice that the right hand side of (2) is bounded by

s*(" ) when $=0. Let "'0(((DCC),D*/2) be such that <0 for0

all " 0(((DCC),"'). Such an "' exists because s*(" )60 as " 6((DCC) and 1/µ(q) is0       0   0

bounded below. Using (2), (1) follows. 

Assume now that . Then for " #2((DCC), . If0



s(q,")'lim
$60

f(q)
f(e()

(",$)'
&1% "

(

(1& "
µ

)(1&")

f(q)
f(e()

(",$)

34

additionally $ is small, then (1) follows. So there exists "">((DCC) such that (1) holds for

all " 0(((DCC),"").0

Therefore setting "E=min{"',""}, (1) is proven and step 1.1 is completed.

STEP 1.2

We will now show that in a neighborhood of P(",0), "<((DCC) the gradients in the

interior point toward ){e*,e} for any q. Together with the fact that the frequency of e*

increases, this will imply that trajectories starting in a neighborhood of P(",0) stay in it.

The gradients on ){e*,e} are null vectors since these are rest points of the

dynamics. Consider the direction of gradients arbitrarily close to ){e*,e}, i.e., as $ goes to

zero and denote this by s(q,"), i.e., .

Let ,0(0,((DCC)/2) be fixed. By the maximality of DCC for 1/((@) it follows that

there exists F>0 such that s(q,((DCC)!,)<!2F for all q. From the properties of finite

automata for given (*,c) that 1/(, 1/8 and 1/µ are bounded below for all q0){S \Q(CC)}.p

Therefore using continuity there exists a neighborhood M' of P(((DCC)!,,0) such that for

any P(",$)0M', <!F. For T0(0,,) let

M:={P(",$) s.t. "+$#((DCC)!,+T, "+$(1+1/F)$((DCC)!,!T}. The set M is graphically

represented in figure 7.
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Figure 7: The set M.

It follows that T can be chosen such that MfM'1U (P(((DCC),0)). Therefore M is,

a neighborhood of P(((DCC)!,,0) and trajectories starting in M will stay in it and

converge to a limit P(",0) such that "<((DCC).

STEP 1.3:

Starting in a neighborhood of P(((DCC),0) the frequency of q will at most barely

increase while the frequency of e* increases steadily (step 1.1). We will now choose "0

closes enough to ((DCC) such that either the trajectory will converge to a point P(",0)

with " close to ((DCC) or it will enter the neighborhood M of P(((DCC)!,,0) from step

1.2 and from there on converge to a point P(",0) with " close to ((DCC)!,.

Let " :=max{" #"E s.t. " #((DCC)+2,, MSH(s*(" )," )1M1{$>0}…i}. Since1 0   0  0 0

s*(" )60 as " 6((DCC) such an "  exists. Let0   0    1

V:=SH(s*(" )," )1{(",$) s.t. "+$(1+1/F)$((DCC)!,!T} (see figure 8).1 1
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Figure 8: The construction of the neighborhood V
of P(((DCC),0).

By the above construction, VfU (P(((DCC),0)) and trajectories starting in V stay2,

in it. Furthermore the definition of V is not dependent on the choice of e*0){AC,CC},

e0){AA,CA} or q0){S \Q(CC)}. Since ,0(0,((DCC)/2) was arbitrary, we have shownp

that P(((DCC),0) is stable in RD(e*,e,q).

STEP 2:

In this step we apply lemma 5.3 to the results of step 1. Let

X={(",$) s.t. P(",$)0V}. Notice that X is a polygon. The conclusion is that the trajectories

of RD starting in VE={x0)S  s.t. (x({AA,CA}),x({S \Q(CC)}))0X} will stay in VE. So thep  p

frequencies of the mean strategies on {AC,CC}, {AA,CA} and S \Q(CC) stay close. p

STEP 3: 

Finally we must rule out the case that the frequencies of the pure strategies do not

stay close although the mean strategies do according to step 2. For this we will show that

the mean frequency on {AC,CC} increases up to a positive constant at least as strong as

the frequency of any pure strategy increases or decreases. Therefore if the mean strategy

on {AC,CC} stays close, so will the frequencies of the pure strategies.

Let (*,c)0T1{*>* } be fixed and consider eE0Q(CC), x0)S  such that x(eE)>01       p
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then  . 

Since  is bounded for all e*, e and q it follows that 

is bounded for all x0VE. 

Similarly for qE0S \Q(CC),p

. Since

x(qE)#x(q),  is bounded close to L(*,c) and  is bounded it

follows again that  is bounded. 

We have shown that for any (*,c)0T1{*>* }, any x0){AA,CA,AC,CC} with1

x({AA,CA})=((DCC) is stable.

Looking back at step 1.2 together with step 3 it follows that any

x0){AA,CA,AC,CC} with 0<x({AA,CA})<((DCC) is stable. This completes the proof.

G

In the following we will analyze whether there exist asymptotically stable sets

given previous intruders that contain a pure strategy other than DD, AC or CC. 

Similar to lemma 3.3, look-a-likes also play an important role for asymptotically

stable sets given previous intruders that contain a pure strategy. The following lemma

presents some necessary conditions for a pure strategy, say eE0S , to be contained in anp

asymptotically stable set given previous intruders for all parameters in some lex-patient
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set. It states that the lex-patient set of parameters can be chosen such that the best

responses of any pure symmetric Nash equilibrium look-a-like of eE are precisely eE's

look-a-likes and that each of the Nash equilibrium look-a-likes of eE is contained in such a

"nice" set.

LEMMA 5.5:

Let eE0S  and let Wf(0,1)×(0,1) be a lex-patient set. Assume that L(*,c) is anp

asymptotically stable set given previous intruders that contains eE for each (*,c)0W. Then

there exists a lex-patient set W'fW such that for all (*,c)0W'

i) R (e )=Q(eE) when e 0R (e )1Q(eE) and*,c   *,c
j   j j

ii) {x0)S  s.t. C(x)fR (x)1Q(eE)}fL(*,c).p  *,c

PROOF:

We will first show that there exists a v*<1 such that R (eE)=Q(eE) for all *0(v*,1).*,0

Let (*,c)0W. Since eE is contained in an asymptotically stable set given previous intruders,

(eE,eE) is a Nash equilibrium. Following the result of Abreu and Rubinstein [1] (see note

before theorem 3.1), eE is also a symmetric Nash equilibrium strategy for (*,0).

Let Q'(eE) be the set of all strategies e 0)S  such that e  plays just like eE whenk    k
p

matched against eE. Let e 0Q'eE)\Q(eE). Since (eE,eE) is a Nash equilibrium and c>0 itk

follows that *e *>*eE* and hence  E (eE,eE)>E (e ,eE) for all (*,c)0(0,1) . Therefore wek     k    2
*,c *,c

can ignore strategies in Q'(eE) when proving the existence of v*<1.

Let e 0S \Q'(eE) and let n be the round in which for the first time e 's play differsk              k
p

from eE's when matched against eE. Then

)(*):=E (eE,eE)!E (e ,eE)="(1!*)* +p(*)* $0 where "…0 and p(*)= $ * . The*,0 *,0     m
k n!1 n     m

reason for "…0 is that in the Prisoners' Dilemma there is a unique best reply in the stage

game. Note that )( ) is continuous.

From the identity theorem for polynomials it follows that ) cannot be identical to

0. Furthermore because two finite automata playing against each other must enter a cycle,

p( ) is a rational polynomial of finite degree in * and hence ) cannot oscillate at *=1. This

shows that v(e )=inf{*$0 s.t. )(*')>0 for all *'0(*,1)} exists and that v(e )<1.k          k
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Let v*:=sup{v(e ), e 0S \Q'(eE)}. We will show that v*<1 by showing that w.l.o.g.k  k
p

the supremum is only taken over finitely many e 's. For e 0S \Q'(eE) the sign of ) does notk   k
p

depend on the round in which e  plays differently than eE for the first time. Therefore wek

may restrict our attention to automata that differ from eE's behavior for the first time when

eE reaches a state for the first time. Additionally the sign of ) does not change if e  playsk

like eE when eE is in the same state for the second time. With these two remarks and the

fact that the automaton eE only has finitely many states it follows that v*<1. 

We now consider c>0. For c>0, *0(v*,1) and e 0S \Q'(eE) let k(*,e )=sup{c<1 s.t.k   k
p

E (eE,eE)>E (e ,eE)}. By the continuity of the payoffs and the definition of v* it follows*,c *,c
k

that k(*,e )>0. Let k(*):=sup{c<1 s.t. R (eE)=Q(eE)}=inf{k(*,e ), e 0S \Q'(eE)}. We willk     i  i
*,c  p

show that k(*)>0. Notice that if *e *$*eE* then E (eE,eE)>E (e ,eE) holds for all c>0.k   k
*,c *,c

Therefore k(*)=inf{k(*,e ) s.t. e 0S \Q'(eE) and *e *<*eE*}. Since there are only finitelyk   k   k
p

many e 0S  with less states than eE it follows that k(*)>0. Let W(eE)={(*,c) s.t. *0(v*,1),k
p

c0(0,k(*))} then W1W(eE) satisfies parts i) for eE (especially it is non empty).

We will now show that {x0)S  s.t. C(x)fR (x)1Q(eE)}fL(*,c) for anyp  *,c

(*,c)0W1W(eE). Let JfS  be the finite set such that L(*,c) is an asymptotically stable setp

given previous intruders in J. For y0)S  such that C(y)fR (y)1Q(eE) it follows that y is ap   *,c

weak ESS. Using lemma 4.2 and the fact that {x0)S  s.t. C(x)fR (x)1Q(eE)} isp  *,c

connected, part ii) is shown.

Finally, just like eE, any e 0S such that e 0R (e )1Q(eE) is contained in L(*,c) (partj    j j
*,c

ii)). We now repeat the proof of part i) for each such e  and obtain W(e ). Then withj   j

W'={(*,c) s.t. (*,c)0W(e ) whenever e 0R (e )1Q(eE)}1W (the intersection is over finitelyj   j j
*,c

many sets and therefore non empty), we obtain a W' that satisfies i) with W'fW.

G

We now come to the second major result in this paper. It states that under

additional restrictions on the payoffs of the Prisoners' Dilemma, no pure strategy other

than "Defect for Ever" (see theorem 3.4), "Tat for Tit" and its look-a-like AC (see theorem

5.4) is contained in an asymptotically stable set given previous intruders for all parameters

in some lex-patient set.
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Figure 9: The symmetric Nash equilibrium strategy b*
and its toothless look-a-like b.

THEOREM 5.6: 

Assume B(C,C)!B(D,D)>B(D,C)!B(C,C)>B(D,D)!B(C,D). Assume that

Wf(0,1)×(0,1) is a lex-patient set and b*0S  is contained in an asymptotically stable setp

given previous intruders for all (*,c)0W. It follows that b*0{DD,AC,CC}.

PROOF:

Let the assumptions of the theorem hold. Let W'fW be a lex-patient set satisfying

the statement of lemma 5.5. By subtracting B(D,D) from B(r,t) for r,t0{C,D} w.l.o.g. we

may assume that B(D,D)=0. Assume that b*ó{DD,AC,CC}.

Assume that b* has a cooperation cycle or that it has a cooperation node followed

by a defection node in some part of its initial phase. 

Then there exists u,v0ù such that b* plays the following strategies in the first

u+v+1 rounds: u D's are followed by v C's that are followed by one D where u$1 and if b*

has a cooperation cycle then v=0, otherwise v$1 (theorem 3.2 and b*ó{AC,CC}). Since

each pure strategy Nash equilibrium look-a-like of b* must be in the asymptotically stable

set given previous intruders (lemma 5.5), w.l.o.g. we may assume that b* punishes any

play different from its own (except in the first round) to the first (initial) state (compare to

the note after theorem 3.2). Additionally b* is such that its state in the second round is

independent of its opponents play in the first. See figure 9 for a graphical representation of

b*. 
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Let b0Q(b*) be the look-a-like of b* that offers to jump to the state played in round

u+v+2 if it receives C in the first round. The automaton b is graphed in figure 9.

Let r=E (b*,b*). We will first show that1,0

(u+v)r!vB(C,C)>!B(C,D). (3)

Assume that r=B(C,C). Then v=0 by assumption and equation (3) turns into

uB(C,C)>!B(C,D). From 2B(C,C)>B(D,C) and B(D,C)+B(C,D)>B(C,C) it follows that

B(C,C)>!B(C,D) and since u$1 (3) holds.

Now assume that r<B(C,C) then v$1 by assumption. In order for b* to be a

symmetric Nash equilibrium strategy it must protect itself against an automaton that

follows b*'s behavior in the first u+v!1 rounds and plays "D" in the (u+v)th round. Taking

the limit as (*,c) goes to (1,0) we obtain that r$[B(D,C)+(v!1)B(C,C)]/(u+v) which is

equivalent to (u+v)r!rB(C,C)$B(D,C)!B(C,C). Using the fact that

B(D,C)+B(C,D)>B(C,C) (3) follows.

We now aim to apply lemma A5. For this we will show that b is toothless and will

find a toughest entrant of b* and b. In the following we will present two possible

candidates for toughest entrants.

Candidate 1: Let y0S  be an automaton that plays "C" in the first round and thenp

imitates b's play (anticipating that b will jump to b*'s u+v+2'nd state) until it learns that it

is matched against b*. After that it imitates b*'s play.

When y is matched against b and (*,c) is close to (1,0), E (y,b)!E (b,b) is*,c *,c

approximately equal to B(C,D)+(u+v)r!vB(C,C). Following (3) there exists * <1 and c >01   1

such that E (y,b)>E (b,b) for all (*,c)0(* ,1)×(0,c ), especially b is toothless for these*,c *,c    1 1

parameters.

Let (*,c)0W'1(* ,1)×(0,c ). We will show that E (b*,y)<E (b,y).There exists a1 1      *,c *,c

state s of y which is not the first in which b*'s behavior differs from b's when matched

against y. Otherwise b* could shorten its initial phase. Assume that y plays "C" and b*

plays "D" when y is in state s. Then b* punishes this deviation to its first state and y plays
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the same strategies b* does from then on. Notice that this is as if an automaton played "D"

when b* was in state s. By lemma 5.5 such a deviation does not payoff and therefore

E (b*,y)<E (b,y). *,c *,c

Now consider the other case in which y plays "D" and b* plays "C" when y is in

state s. As before this behavior will be translated to behavior against b*. Playing "C" in

state s of b* is worse than playing "D" in the last cooperation state of b* prior to state s (on

the equilibrium path of b*). This in turn does not pay off since b* is a Nash equilibrium

strategy and therefore E (b*,y)<E (b,y). *,c *,c

Candidate 2: Let z0S  be an automaton that plays C in the first round and thenp

imitates b* until it learns that it is matched against b. Let k be the number of this round.

Since z did not follow b's equilibrium path b punishes z back to b's first (initial) state. The

automaton z is now assumed to play "C" and then imitate b's play. Since E (y,b)>E (b,b)*,c *,c

and R(b*)=Q(b*), z maximizes its continuation payoff P (z,b) in round k+1. Notice*,c
k+1

that *z*$*b*.

We will now show that E (b,z)!E (b*,z)>E (z,b)!E (b,b) if * is sufficiently*,c *,c *,c *,c

large. Since E (b*,z)=E (b,b)+(1!*)[B(D,C)!B(D,D)], *,c *,c

)(*)=[E (b,z)!E (b*,z)]![E (z,b)!E (b,b)]*,c *,c *,c *,c

=E (b,z)!E (z,b)!(1!*)[B(D,C)!B(D,D)]*,c *,c

=(1!*)[B(D,D)!B(C,D)+w* +(B(D,C)!B(C,D))* ]+c(*z*!*b*) wherek!1 k

w0{B(C,D)!B(D,C),B(D,C)!B(C,D)}. It follows that if * is sufficiently large then )(*)>0.

Consequently, * is sufficiently large and E (z,b)!E (b,b)>0 then*,c *,c

E (b,z)!E (b*,z)>0.*,c *,c

Since R(b*)=Q(b*), either y or z will be the toughest entrant of b* and b. In either

case following the above calculations, the assumptions of lemma A5 are satisfied but its

conclusion contradicted. 

Therefore b* can neither have a cooperation cycle nor have a cooperation node

followed by a defection node in its initial phase. If b*ó{DD,AC,CC} and it does not have

a cooperation cycle then b* will play "D" after it plays "C" in some round against itself.

This must not be in the initial phase as assumed above. However, it can be shown that the

inequalities above are not influenced by whether or not this occurs in the initial phase of
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b* and therefore the proof is complete.

G

What happened on the border of L that caused it not to be a closed connected stable

set when b* had more than one defection node? We constructed an entrant y (or z) that

took advantage of one of its toothless look-a-likes b but at the same time did not punish b

so that when matched against y, b got more than b* who is caught up in punishing y and

thereby punishes himself.

In order to obtain this result we had to restrict the payoffs of the Prisoners'

Dilemma (B(D,C)!B(C,C)>B(D,D)!B(C,D) and 2B(C,C)>B(D,C)+B(D,D)). The first of

the two assumptions make a shortcut to the cooperation cycle possible when the look-a-

like is matched against the mutant.
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6. Discussion

Our aim was to analyze the repeated Prisoners' Dilemma played by finite automata

in the continuous replicator dynamics. Especially we wanted to single out among the

infinite set of pure symmetric Nash equilibrium strategies under patient lexicographic

preferences (see [1]) the ones that are contained in a set that can "resist" small mutations.

The payoffs of the Prisoners' Dilemma were specified such that "Tat for Tit" is a Nash

equilibrium for the patient lexicographic preferences. The payoffs of the meta game were

set up as the discounted repeated game payoffs minus a constant cost per state of the

automaton used. It followed that "Defect for Ever" is the only pure strategy contained in a

set that can resist an arbitrary mutation. We then searched for sets that can resist any

mutation once some type(s) attempted to enter the population previously. Three automata

("Defect for Ever", "Tat for Tit" and its look-a-like AC) are contained in such a set when

preferences are close to the patient lexicographic case. Furthermore, unlike "Defect for

Ever", this property of the set containing "Tat for Tit" and AC does not vanish as the

preferences approach the patient lexicographic preferences. Finally under an additional

restriction on the payoffs of the Prisoners' Dilemma (B(D,C)!B(C,C)>B(D,D)!B(C,D))

there are no other sets that can resist any mutation given some previous mutations. 

The first evolutionary analysis of the repeated Prisoners' Dilemma was undergone

by Axelrod [2] in the form of an experiment. Although complexity considerations were

not incorporated into the payoffs Axelrod [2] still argued that "Tit for Tat" won the

tournament partially due to its simple structure.

Initial theoretical analysis of this repeated game followed the evolutionary stability

theory developed by Maynard Smith and Price [13] and considered preferences based

solely on repeated game payoffs. Consequently, strategies that behave differently off the

equilibrium path cause Evolutionarily Stable Strategies (ESS) not to exist in this setup (see

Boyd and Lorberbaum [9], Farell and Ware [10]). A further attempt along these lines was

undergone by Kim [12] who discovered a Folk Theorem for the weaker definition of a

limit ESS, a concept with no apparent connection to the replicator dynamics.

Binmore and Samuelson [5] were the first to include complexity considerations

into an evolutionary analysis of the repeated Prisoners' Dilemma. They consider the meta

game of choosing automata to play the repeated game. They select among the infinite pure
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symmetric Nash equilibria of the game with the help of their own static evolutionary

concepts called modified Evolutionarily Stable Strategy (MESS) and polymorphous

MESS. These concepts are adaptations of ESS and weak ESS to the lexicographic

preferences on the repeated game payoffs and the number of states. Binmore and

Samuelson [5] mainly use the limit of means payoff criterion for which they get

substantial results. 

When their concepts are applied to the discounted repeated game payoffs criterion

it is easy to see that any pure symmetric Nash equilibrium strategy that punishes play that

differs from its own to its first state is a MESS. Similarly polymorphous MESS can easily

be found, especially {AC,CC} is a polymorphous MESS. So under discounted payoffs

their concepts do not have enough bite, the set of payoffs achieved by MESS's is the same

as that achieved by symmetric Nash equilibrium strategies. 

In a different approach in the appendix of their paper Binmore and Samuelson [5]

disregard complexity considerations and search for pure strategies that do not have an

unstable strategy within O(1!*) of them. They call such a pure strategy a GUESS.

Although they do not present an example of such a strategy, they show that this concept

has substantially more bite: each GUESS must have a cooperation cycle. Theorem 5.1

supplements their analysis, it implies that both "Tat for Tit" and AC are a GUESS when

2B(C,C)>B(D,C)+B(D,D) and * is sufficiently large (set c=0 and use the continuity of the

replicator dynamics).

Parallel to the development of the theory of our paper, Probst [14] modified the

concept of a polymorphous MESS by assuming that a small frequency of "Cooperate for

Ever" and "Defect for Ever" types are always apparent in the population. Probst [14]

focuses on the limit of the means payoff criterion, just as most of [5] does.

The above two papers on the evolutionary properties of the repeated Prisoners'

Dilemma with the number of states as the measure of complexity set up static conditions

and calculate the set of strategies that satisfy them. As such they are models of equilibrium

selection. Although the concepts are derived from the ESS condition, a relation to a

dynamic adjustment process like the replicator dynamics is lacking. Various problems

arise when trying to set up a continuous dynamic adjustment process like the replicator

dynamics with their preference structure. These difficulties result from their use of the
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limit of means payoff criterion and of lexicographic preferences.

We argue that the limit of the means payoff criterion is not applicable in the

context of evolutionary processes. Using the limit of the means payoff criterion means that

the Prisoners' Dilemma is played an infinite number of times (with probability one). In the

context of evolutionary processes each generation plays the repeated game. Since an

infinite game cannot be played repeatedly this criterion seems inappropriate. We therefore

chose to discount repeated game payoffs. The discount value * can be considered a

continuation probability and thereby making the expected number of rounds the repeated

game is played finite (see also section 1). In this setup the repeated game can be played

repeatedly. 

Finally, the common argument of justifying the use of the limit of the means payoff

criterion as the limit of the discounting criterion cannot be applied to dynamic stability

analysis. Dynamic stability considerations are not interchangeable with taking the limit as

the discount value tends to one which makes the respective results incomparable.

Why did we use a small cost of complexity instead of the patient lexicographic

preferences used in [5]? Assuming these lexicographic preferences means that an

individual prefers higher repeated game payoffs and only when indifferent prefers an

automaton with less states. First of all there is no utility function representing these

preferences, so the dynamics cannot be implemented directly. What would happen if our

dynamic framework could be adjusted to select according to these preferences? Mutants

never die out completely in the replicator dynamics. Consequently there will generally be

types getting different payoffs which prevents the second condition to be implemented.

Only in specific populations will this not be the case. So when applied to the dynamic

analysis these lexicographic preferences ironically disregard complexity considerations in

polymorphous populations because of arbitrarily small differences in the repeated game

payoffs.

On the other hand, the assumption made in this paper of an arbitrarily small cost

makes the complexity considerations bite when the individual is nearly indifferent

between the repeated game payoffs. Taking the limit of the solutions of the analysis as the

cost goes to zero is a method to incorporate the intuition behind the lexicographic

preferences into a dynamic setting.
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Under the assumptions of our paper ){AC,CC} is the unique "sensible" set

emerging when taking the limit of the solutions as the cost goes to zero and the discount

value goes to one. It can therefore be argued that ){AC,CC} is the unique set containing a

pure strategy that can resist mutations in the evolutionary process driven by the replicator

dynamics under preferences that approximate the patient lexicographic preferences.

What is the role of look-a-likes and "previous intruders"? Without complexity costs

an ESS failed to exist because of look-a-likes (Boyd and Lorberbaum [9], Farell and Ware

[10]). In the model with a cost for each state look-a-likes remain important for the

analysis. Look-a-likes cannot be prevented from entering an asymptotically stable set and

result in {"Defect for Ever"} being the only asymptotically stable set that contains a pure

strategy. Look-a-likes can enter asymptotically stable sets given previous intruders too,

however just as long as the population mean strategy is a Nash equilibrium. The object of

the pure strategy Nash equilibrium is to protect the small frequencies of look-a-likes that

can enter from being taken advantage of. In this assignment the "previous intruders" types

help out. They limit the size of the connected set of rest points. How does this help for

example in the case of "Tat for Tit" (CC)? In a neighborhood of ){AC,CC} the mean

frequency of AC and CC will always increase when some non look-a-like of CC exists

with small frequency. Thus the population is forced back to a limit with support on the

look-a-likes of CC. If none of the types use an automaton of the class of DCC, the

connected set of rest points containing CC might be so large that parts of it lie outside of

the "gravitation field" of AC and CC, i.e., too close to CA and a mutation might lead away

from the set.

This paper is the first explicit theoretical analysis of the dynamic adjustment

process of a population playing a repeated game. As such it is a special example and might

bring forward some critical remarks. In the following we wish to point out some details of

the model and suggest possible lines for future research.

We focus our analysis mainly on "nice" sets that contain a pure strategy. This was

done because it simplifies the analysis and because this was sufficient to make a

comparison with related results. Abreu and Rubinstein [1] considered only pure strategy

Nash equilibria because of "delicate issues" and problems of motivation of mixed
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strategies. Binmore and Samuelson [5] avoid sets without pure strategies by setting up a

condition that forces pure strategies to exist in a polymorphous MESS.

Mixed strategy equilibria cannot be ruled out in a dynamic model because any

population mean will generally be mixed and trajectories converging to a mixed strategy

are generally the rule. Hence we aim to continue the present research in order also to

analyze the nice sets that do not contain pure strategies. 

Although mistakes in the form of mutations are allowed, the automata do not make

mistakes when playing the repeated game. Introducing noise might make an interesting

extension of the model.

Automata are frequently used to classify strategies. However the use of the number

of states as a realistic measure of complexity has been repeatedly criticized. Alternative

models using the number of transitions and the number of transitions and states have been

analyzed (e.g. Banks and Sundaram [3]).

Much of the analysis relies on the smooth properties that arise through the fact that

the population is infinite and time is continuous. As in the original evolutionary model we

consider non overlapping generations. All individuals are matched simultaneously and the

continuation probability * smaller than one eventually causes them all to simultaneously

stop playing the game and to reproduce. While in a one shot game this assumption is

easier to justify, in repeated games played over a longer period of time intuition behind a

mechanism stopping all of them from playing simultaneously is more difficult to imagine.

Due to the difficulty of the theoretical analysis of dynamic adjustment processes

simplifications (some of which were mentioned above) that might be considered too

simplistic are often necessary. Additionally the results are hard to convey in a few words.

However the gain of such an analysis is that instead of presupposing the result by defining

more or less arbitrary conditions the results of a dynamic analysis can often be surprising

and open up new structures for equilibrium sets. An example is the emergence of the role

of arbitrary small frequencies of DCC for the "stability" of our set.
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A. Appendix

In this section we will state the popular "static" definitions ESS and weak ESS and

quote the theorems relating them to the replicator dynamics. Let '(S,E) be a symmetric

game with the countable set of pure strategies S and the bilinear payoff function

E:)S×)S6U. 

DEFINITION: (Maynard Smith and Price [13])

A strategy p0)S is called an Evolutionarily Stable Strategy (ESS) if for any

q0)S\{p}, E(p,p)$E(q,p) where E(p,p)=E(q,p) implies E(p,q)>E(q,q).

It follows from the definition that if (p,p) is a strict Nash equilibrium (i.e.,

{p}=R(p)) then p is an ESS.

Consider the continuous replicator dynamics as defined in section 2.

THEOREM A1: (Taylor and Jonker [19], Zeeman [22])

If S is a finite set and p0)S is an ESS then p is an asymptotically stable strategy.

DEFINITION: (Thomas [20])

A strategy p0)S is called a weak Evolutionarily Stable Strategy (weak ESS) if for

any q0)S, E(p,p)$E(q,p) where E(p,p)=E(q,p) implies E(p,q)$E(q,q).

THEOREM A2: (Thomas [20])

If S is a finite set and p0)S is a weak ESS then p is stable.

The following lemma is a stronger version of theorem A2 for countable infinite set

of pure strategies. 

LEMMA A3:
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Let p0)S. If there exists ,>0 such that E(p,x)$E(x,x) for all x0U (p) and equality,

implies that C(x)fR(p) then p is stable.

The proof follows directly using the one by Thomas [20] that proves theorem A2. 

LEMMA A4: (Bomze [8]) Let S be finite

i) If the trajectory starting in x converges to p then (p,p) is a Nash equilibrium in the game

with the set of pure strategies restricted to C(x), i.e., E(p,p)$E(e,p) for all e0C(x).

ii) If p is stable then (p,p) is a Nash equilibrium. The converse is false.

PROOF: 

Part i) follows directly from the definition of the replicator dynamics.

Part ii): If (p,p) is not a Nash equilibrium then there exists an a 0S such thati

E(a ,p)>E(p,p). Since p is a rest point it follows that p(a )=0. By continuity there exists ani           i

open neighborhood of p, U(p) such that E(a ,x)>E(x,x) for all x0U(p). Starting in x0U(p)i

with x(a )>0 the frequency of a  will increase as long as the population mean is in U(p).i     i

However this contradicts the fact that p is stable and p(a )=0.i

A counterexample of a symmetric Nash equilibrium strategy that is not stable is

easy to find (see e.g., [21, p.229]).

G

The following lemma is purely technical and relates to the payoff structure on the

border of asymptotically stable sets given previous intruders. For any e 0S, letj

Q(e )={v0S s.t. E(e ,e )=E(e ,v)=E(v,e )=E(v,v)}.j   j j j j

LEMMA A5: 

Let S be finite, Lf)S be an asymptotically stable set given previous intruders and

let e 0S be such that e 0L and R(e )=Q(e ). Furthermore, let e0Q(e ) be such that eóR(e).i     i   i i    i

Then $*=min{$0(0,1) s.t. R((1!$)e +$e)\Q(e )…i} exists and E(e ,q)$E(e,q) for alli i    i
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q0R((1!$*)e +$*e)\Q(e ).i i

Such a q0R((1!$*)e +$*e)\Q(e ) we will call a toughest entrant of e  and e.i i         i

PROOF: 

Since R(e )=Q(e ) and eóR(e), $*0(0,1) exists. Let LE={(1!")e +"e, 0#"#$*} andi i       i

v=(1!$*)e +$*e. For any x0LE it follows that R(x)=Q(e ) and therefore that x is a weaki        i

ESS. Since v0L together with Lemma A3 it follows that v is stable. 

Let q0R((1!$*)e +$*e)\Q(e ). Assume that E(e,q)>E(e ,q) and consider the gamei i    i

and the dynamics restricted to ){e ,e,q}. By the definition of $* and since qóR(e ) iti         i

follows that E(q,(1!")e +"e)>E(e ,(1!")e +"e) when ">$*. Therefore the symmetric Nashi i i

equilibrium strategies with support in {e ,e} are LE. Consider any trajectory startingi

arbitrarily close to v with C(x)={e ,e,q} and x(e)/x(e )>$*/(1!$*). Since e strictlyi   i

dominates e  in the interior of ){e ,e,q}, the frequency of e will always grow more thani     i

that of e . Together with part i) of lemma A4 it follows from the above that this trajectoryi

will not converge to ){e ,e}. Therefore v cannot be stable in a population of types e , e andi            i

q. Together with the note after lemma 4.1 we get a contradiction.

G


